JP4560622B2 - 薄膜形状測定方法および薄膜形状測定装置 - Google Patents

薄膜形状測定方法および薄膜形状測定装置 Download PDF

Info

Publication number
JP4560622B2
JP4560622B2 JP2005001788A JP2005001788A JP4560622B2 JP 4560622 B2 JP4560622 B2 JP 4560622B2 JP 2005001788 A JP2005001788 A JP 2005001788A JP 2005001788 A JP2005001788 A JP 2005001788A JP 4560622 B2 JP4560622 B2 JP 4560622B2
Authority
JP
Japan
Prior art keywords
light
value
interference
optical path
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005001788A
Other languages
English (en)
Other versions
JP2006189339A (ja
Inventor
修己 佐々木
Original Assignee
国立大学法人 新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 新潟大学 filed Critical 国立大学法人 新潟大学
Priority to JP2005001788A priority Critical patent/JP4560622B2/ja
Publication of JP2006189339A publication Critical patent/JP2006189339A/ja
Application granted granted Critical
Publication of JP4560622B2 publication Critical patent/JP4560622B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、例えば半導体ウェハ上の薄膜や、プラスチックフィルムや、コーティングフィルムなどの薄膜の各反射面の形状と、膜厚分布とを同時に二次平面上で測定するための薄膜形状測定装置に関する。
一般に、薄膜を被対象物として、この被対象物の膜厚を測定する方法として、入射角走査測定法,波長走査測定法による測定法が知られている。入射角走査測定法では、半導体レーザなどの光源から、被対象物に向けて単色光を入射角度を変化させながら照射し、被対象物からの反射光の強度変化を測定することで、被対象物の膜厚を算出している。しかし、被対象物の一点に単色光を当てて測定するものであるため、測定点が一点に限られてしまう。
波長走査測定法は、ハロゲンランプなどを光源として、この光源から被対象物に照射する光の波長を変化させながら、被対象物からの反射光量をマルチチャンネル分光光度計(MCPD)で測定して、被対象物の膜厚を求めている。この方法では、測定点が線状になるが、二次元的な面での膜厚測定を行なうには、線状の走査点を何らかの手段で走査する必要がある。また、単層の薄膜については測定できるものの、複数の反射面を有する多層膜には適用できない不満がある。さらに、上記2つの方法では、被対象物の膜厚分布を求めることができるが、薄膜の表面と裏面の形状を求めることができない。
これとは別に、膜厚分布のみならず膜厚の表面と裏面の形状をも同時に測定できる白色干渉計による測定装置が知られている。その原理は、特許文献1にも示されているが、白色光源からの狭帯域フィルタを通して得られる特定周波数帯域の白色光を、ビームスプリッタにより対物レンズの方向に向け、この対物レンズを通過した白色光を参照面へ反射させて得た参照光と、被測定物の表面へ反射させて得た測定光とを再びまとめて、CCDカメラの撮像面上で結像させる光学系を備えている。そして、CCDカメラにより光干渉信号を検出しながら、PZTなどの駆動手段により対物レンズを白色光の照射方向(垂直方向)に移動させることで、この光干渉信号の振幅が最大となるPZTの位置が薄膜の面となると共に、PZTの垂直移動量から被対象物の膜厚を求めるようにしている。
特開2001−66122号公報
上述の白色干渉計による測定装置では、干渉信号の振幅が最大となるPZTの位置によって被対象物である薄膜の面形状を知ることができると共に、PZTの走査距離によって被対象物の膜厚を知ることができる。しかし高精度な測定に際しては、PZTなどの駆動手段により対物レンズを正しく走査する必要があり、駆動手段による機械的な誤差要因を完全に排除することができない。
そこで本発明は上記問題点に鑑み、機械的な誤差要因を排除して、被対象物の各反射面の形状や膜厚の分布を、二次平面上で精密に測定することができる薄膜形状測定方法および薄膜形状測定装置を提供することをその目的とする。
請求項1における薄膜形状測定方法は、角周波数ωbで正弦波状に波長走査された光を発生する第1の工程と、前記光を分割して被対象物の測定面である複数の反射面および参照面に各々反射させた後、前記被対象物の測定面からの物体光と、前記参照面からの参照光とを合成して干渉光を得る第2の工程と、前記参照面または前記被対象物の測定面を角周波数ωcで正弦波振動させる第3の工程と、前記干渉光を二次元状に配置した検出点で捕らえて、それぞれ電気的な干渉信号に変換する第4の工程と、前記複数の反射面の数をnとしたときに、前記干渉信号をフーリエ変換して得た処理信号に基づき、前記第4の工程で電気的に変換した前記干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和が最小になったときの前記干渉信号の変調振幅Zbiと位相αi(i=1,2,…n)の値を、前記被対象物の各反射面のそれぞれに関して前記検出点毎に推定する第5の工程と、前記変調振幅Zbiと位相αiの値から、前記被対象物の各反射面で反射された光と、前記参照面で反射された参照光との光路差Lzi,Lαiを前記検出点毎に算出する第6の工程と、前記光路差Lzi,Lαiの値に基づき、前記被対象物の各反射面の位置を前記検出点毎に算出する第7の工程と、を含むことを特徴としている。
この場合、電気的に変換された干渉信号の位相は正弦波状に変化し、その変調振幅Zbiは光路差Lziと正弦波状に波長走査された光の走査振幅bとに比例すると共に、干渉信号の位相の時間平均である位相αiは光路差Lαiに比例する。そのため、変調振幅Zbiから得られる波長以上の光路差Lziと、位相αiから得られる波長以下の光路差Lαiとを組み合わせることで、波長以上の光路差Liの値を波長以下の光路差Lαiの測定精度と同じ高い精度で算出できる。
また、電気的に変換された干渉信号から得られた処理信号の値と、理論式である処理信号の値との差の二乗和を誤差関数Hとし、この誤差関数Hを最小にすることで、理論式に含まれている被対象物の各反射面に関する変調振幅Zbiと位相αiを推定できる。この変調振幅Zbiと位相αiの推定値から、被対象物の各反射面の位置が求められ、従来のような機械的な誤差要因を排除して、被対象物の各反射面の形状を二次平面上で精密に測定することができる。
そして、このような作用効果は、角周波数ωbで正弦波状に波長走査された光を発生する光源装置と、前記光源装置からの光を分割して被対象物の測定面である複数の反射面および参照面に各々反射させた後、前記被対象物の測定面からの物体光と、前記参照面からの参照光とを合成して干渉光を得る干渉光学系と、前記参照面または前記被対象物の測定面を角周波数ωcで正弦波振動させる正弦波振動手段と、前記干渉光を二次元状に配置した検出点で捕らえて、それぞれ電気的な干渉信号に変換する光電変換手段と、前記複数の反射面の数をnとしたときに、前記干渉信号をフーリエ変換して得た処理信号に基づき、前記光電変換手段で電気的に変換した前記干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和が最小になったときの前記干渉信号の変調振幅Zbiと位相αi(i=1,2,…n)の値を、前記被対象物の各反射面のそれぞれに関して前記検出点毎に推定する第1の演算手段と、前記変調振幅Zbiと位相αiの値から、前記被対象物の各反射面で反射された光と、前記参照面で反射された参照光との光路差Lzi,Lαiを前記検出点毎に算出する第2の演算手段と、前記光路差Lzi,Lαiの値に基づき、前記被対象物の各反射面の位置を前記検出点毎に算出する第3の演算手段と、を備えた請求項4の薄膜形状測定装置でも実現できる。
請求項2における薄膜形状測定方法は、前記第5の工程で、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、次に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、
Figure 0004560622
前記第4の工程で変換した干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値(符号「^」を付して区別する)との差の二乗和を次式のような誤差関数Hとして、
Figure 0004560622
この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値を前記検出点毎に推定することを特徴している。
このように、干渉信号をフーリエ変換して、周波数成分がωc付近の領域(ωc/2<ω<3ωc/2)と、2ωc付近の領域(3ωc/2<ω<5ωc/2)から、2つの処理信号As(t)とAc(t)を得た後、上記誤差関数Hの値が最小となる変調振幅Zbiと位相αiとの値を推定すれば、被対象物の各反射面の位置を正確に測定すること可能になる。
そして、このような作用効果は、請求項5の構成を備えた薄膜形状測定装置でも実現できる。
請求項3における薄膜形状測定方法は、前記光路差 zi ,L αi の値に基づき、前記被対象物の反射面間の厚さを前記検出点毎に算出する第8の工程をさらに含んでいる。
これにより、被対象物の各反射面の形状だけでなく、反射面間の厚さをも機械的な誤差要因を排除しつつ、二次平面上で精密に測定することが可能になる。
そして、このような作用効果は、請求項6の構成を備えた薄膜形状測定装置でも実現できる。
請求項1の薄膜形状測定方法及び請求項4の薄膜形状測定装置によれば、機械的な誤差要因を排除して、被対象物の各反射面の形状を、二次平面上で精密に測定することができる。
請求項2の薄膜形状測定方法及び請求項5の薄膜形状測定装置によれば、被対象物の各反射面の位置を正確に測定すること可能になる。
請求項3の薄膜形状測定方法及び請求項6の薄膜形状測定装置によれば、機械的な誤差要因を排除して、被対象物の各反射面の形状のみならず、反射面間の膜厚の分布を、二次平面上で精密に測定することができる。
以下、本発明に係る薄膜形状測定方法および薄膜形状測定装置の好ましい実施例について、添付図面を参照しながら詳しく説明する。装置の全体構成を示す図1において、本実施例では2重正弦波位相変調干渉法を実現するための干渉光学系として、SWS(Sinusoidal Wavelength-Scanning:正弦波状波長走査)光源装置1と、このSWS光源装置1からの出力光を取り入れる例えばマイケルソン型のレーザ干渉計2がそれぞれ配設されている。SWS光源装置1は、正弦波状に波長走査された光を発生するもので、具体的には光源としての半導体レーザ10と、半導体レーザ10からの出射光を平行光にするレンズ11と、前記平行光が入射する回折格子12と、回折格子12からの1次回折光を半導体レーザ10に戻すように反射させるミラー13と、このミラー13を角周波数ωbで正弦波状に回転振動させる振動手段としてのレーザスキャナ31とにより構成される。そして、半導体レーザ10の後側の反射面(図示せず)とミラー13との間で、回折格子12からの1次回折光による外部共振器を構成することで、回折格子12の0次回折光がレーザ干渉計2への入射光としてSWS光源装置1から出力されるようになっている。なお、光源としては半導体レーザ10以外のものを用いてもよく、またSWS光源装置1の構成も実施例中のものに限定されない。
レーザ干渉計2は、ビームスプリッタ21と、振動手段である圧電素子41を備えたミラー20と、レンズ22,23とにより構成される。ビームスプリッタ21は、SWS光源装置1からの正弦波状に波長走査された出力光を、参照面を形成するミラー20および薄膜状の被対象物50へと分割すると共に、これらのミラー20からの反射光である参照光と、被対象物50からの反射光である物体光とを合成して干渉光を得るものである。また圧電素子41は、ミラー20を角周波数ωcで正弦波振動させるもので、これによりミラー20からの参照光の位相が正弦波位相変調される。被対象物50からの物体光は、当該被対象物50の測定面である表面と裏面でそれぞれ反射された光からなっており、この物体光と前記参照光とを合成したビームスプリッタ21からの干渉光が、レンズ22,23を通過して後述するCCDイメージセンサ61の検出面上に導かれるようになっている。なお、レーザ干渉計2としては、種々の干渉光学系を利用することができる。
61は、二次元の光電変換手段に相当するCCDイメージセンサで、これはレンズ22,23を通して形成される前記干渉光の像面にその検出面が配置され、この干渉による光強度分布を各画素毎に電気的な検出信号に変換して出力するものである。ここでの光電変換手段は、時間変化する光強度を短時間で測定できればよいので、CCD(Charge Coupled Device)のような追従性のよい光電変換素子を用いるのが好ましい。62は、CCDイメージセンサ61からの検出信号に基づいて、被対象物50の表面および裏面でそれぞれ反射された物体光と、ミラー20で反射された参照光との各光路差を算出して、被対象物50の表面および裏面の各位置を決定すると共に、前記各光路差から被対象物50の厚さを算出する処理装置としてのパソコンである。このパソコン62には、必要に応じてCCDイメージセンサ61の撮影画像を表示するモニタなどの表示器(図示せず)が接続される。
次に、上記構成についてその動作原理を説明する。SWS光源装置1の半導体レーザ10に所定の注入電流を印加すると、この半導体レーザ10からの光がレンズ11に向けて出力され、レンズ11を通過した平行光が回折格子12に入射して回折される。回折格子12からの1次回折光は、レーザスキャナ31を背面に取付けたミラー13に垂直に入射し、ミラー13からの反射光は再び回折格子12とレーザ11を経て、半導体レーザ10に戻る。これにより、SWS光源装置1の内部では、半導体レーザ10の後側の反射面(図示せず)とミラー13との間で外部共振器が構成される。
この状態で、レーザスキャナ31によってミラー13を角周波数ωbで正弦波状に回転振動させると、回折格子12の0次回折光の波長λ(t)は、次式のように正弦波状に走査される。
Figure 0004560622
但し、λ0は半導体レーザ10の中心波長であり、またbは走査振幅である。上記回折格子12の0次回折光は、レーザ干渉計2への入射光となってビームスプリッタ21に到達し、ここでミラー20へ伝搬する光と被測定物50へ伝搬する光とにそれぞれ分割される。ミラー20は圧電素子41により振幅aおよび角周波数ωcで正弦波状に振動しているので、ミラー20からの反射光である参照光の位相が正弦波状に変調(正弦波位相変調)される。一方、被対象物50からの反射光である物体光は、被対象物50の表面と裏面でそれぞれ反射された光からなっている。ミラー20からの参照光と被対象物50からの物体光は、ビームスプリッタ21により合成して重ね合わされ、干渉光としてCCDイメージセンサ61の検出面上に到達する。特にここでは、被対象物50の表面及び裏面の反射面の光場が、レンズ22,23によってCCDイメージセンサ61上に形成される。
CCDイメージセンサ61は、物体光と参照光の干渉による二次元的な強度分布を電気的な干渉信号に変換するものである。干渉信号は、図示しないA/D変換器によってデジタル信号に変換された後、パソコン62に取込まれ、ここで被対象物50の複数の反射面の表面形状と膜厚分布を求めるための演算処理が行なわれる。上述のように、SWS光源装置1で正弦波状に波長走査された光を生成し、さらにミラー20を圧電素子41により振動させて、干渉信号にさらに正弦波位相変調を与えた時の、前記CCDイメージセンサ61で検出される干渉信号に含まれている時間変化する成分S(t)は、次式のように表すことができる。
Figure 0004560622
ここでa1とa2は、それぞれ被対象物50の表面と裏面の各反射率である。なお、ミラー20がacos(ωc+θ)で振動し、且つSWS光源装置1からの光の強度変化M(t)を考慮した場合には、干渉信号S(t)が次式のようになる。
Figure 0004560622
被対象物50の表面および裏面の各位置をあらわす前記光路差を、それぞれL1およびL2とすると、上記式の変調振幅Zbiは、Zbi=2πbLi/λ0 2となり、位相αiは、αi=2πLi/λ0となる。つまり、被対象物50の表面と裏面のそれぞれについて変調振幅Zbiと位相αiとを算出すれば、既知である比例定数(2πb/λ0 2)と(2π/λ0)によって、光路差Liを特定することができる。
ここでパソコン62は、前記干渉信号S(t)をフーリエ変換して、周波数成分ωがωc付近の領域(ωc/2<ω<3ωc/2)と、2ωc付近の領域(3ωc/2<ω<5ωc/2)から、それぞれ次に示す2つの処理信号As(t)とAc(t)を得る。
Figure 0004560622
パソコン62は次に、CCDイメージセンサ61で検出した干渉信号S(t)から得られる時間tm=mΔtの時点での処理信号の値と、理論式である処理信号の値(符号「^」を付して区別する)との差の二乗和の級数を誤差関数Hとして、この誤差関数Hの値が最小となるように多次元探索を行ない、変調振幅Zbiと位相αiのそれぞれについて推定値を求める。誤差関数Hの最小値は、パソコン62のソフトウェア上の処理で、理論式で求まる処理信号の値を連続的に代入することで短時間に算出できる。当該誤差関数Hは、次式のようにあらわせる。
Figure 0004560622
ここで、変調振幅Zbiの推定値から求まる光路差Liの値をLziとし、位相αiの推定値から求まる光路差Liの値をLαiとすると、光路差Lziは波長以上の大まかな値であり、光路差Lαiは波長以下の大きさの部分の値(位相αiの値が−π〜+πの範囲で求まるので、光路差Lαiの値は−λ0/2〜+λ0/2の範囲となる)である。したがって、光路差Lziの測定誤差がλ0/2未満(<λ0/2)であれば、パソコン62は算出した2つの光路差Lzi,Lαiの値から、次式に示す数値mciを算出する。なお、光路差Lziの測定精度は、Zbi=2πbLi/λ0 2の関係式から明らかなように、正弦波状に波長走査された光の走査振幅bに比例するため、光路差Lziの測定誤差をλ0/2未満にするには、走査振幅bを大きくするSWS光源装置1が必要となる。
Figure 0004560622
パソコン62は上式で求めた数値mciの小数点以下を四捨五入し、光路差Lziに含まれる波長λ0の次数(整数値)miを算出して、次式の波長以上の光路差Liを得ることができる。
Figure 0004560622
ここで得られた光路差Liの値は、波長以下の大きさの部分の値(Lαi)に、波長λ0の整数倍を加えたものとなるため、その測定精度は、位相αiの推定値から求まる光路差Lαiによる測定精度と等しく、数nmのオーダーとなる。
また前述した光路差Lzi,Lαiの値が求まると、パソコン62はCCDイメージセンサ61で検出される二次元平面(X−Y)上の各位置で、被対象物50の一方の面である表面の形状r1と、他方の面である裏面の形状r2とを、次式を利用して算出することができる。
Figure 0004560622
但し、nRは被対象物50の屈折率である。さらに被対象物の厚さdについても、パソコン62は次の式を利用して簡単にその値を算出できる。ここでの整数値mは、m=m2−m1である。
Figure 0004560622
このように、レーザ干渉計2およびCCDイメージセンサ31を介して得られる干渉信号の位相が正弦波状に変化し、その変調振幅Zbiは光路差Lziと正弦波状に波長走査された光の走査振幅bとに比例すると共に、干渉信号の位相の時間平均である位相αiは光路差Lαiに比例する。そのため、変調振幅Zbiから得られる波長以上の光路差Lziと、位相αiから得られる波長以下の光路差Lαiとを組み合わせることで、波長以上の光路差Liの値を波長以下の光路差Lαiの測定精度と同じ高い精度で算出できる。なお、光路差Lzi,Lαiの組み合わせを行なうには、光路差Lziの測定精度を波長走査される光の中心波長λ0の2分の1より高くする必要があるが、光路差Lziの測定精度は前記走査振幅bに比例するので、この走査振幅bを大きくすれば所望の測定精度が得られる。
また特に本実施例では、CCDイメージセンサ31で検出した処理信号の値と、理論式である処理信号の値との差の二乗和を誤差関数Hとし、この誤差関数Hを最小にすることで、理論式に含まれている薄膜の各反射面(被対象物50の表面と裏面)に関する変調振幅Zbiと位相αiを推定できる。この変調振幅Zbiと位相αiの推定値から、薄膜の各反射面の位置が求められ、薄膜の面形状を正確に求めることができると共に、各反射面間の厚さも正確に求めることができる。
次に、図2〜図5を参照しながら、本実施例の薄膜形状測定装置を利用した実際の測定例を提示する。被対象物50として、ここでは屈折率nRが1.46で厚さ20μmの石英ガラスを使用する。また、SWS光源装置1として使用する半導体レーザ10の中心波長λ0は780nm,出力は40mWであり、レーザスキャナ31がミラー13に回転振動を与えることで、波長走査幅2b=20nm,周波数ωb/2π=66.4Hzの正弦波状に波長走査された光をSWS光源装置1から取り出した。さらに、レーザ干渉計2において、圧電素子41がミラー20に振動を与えることで、参照光の正弦波位相変調の周波数はωc/2π=2125Hzとなった。光電検出手段としては、上述したような二次元のCCDイメージセンサ61を用いたが、ここでのX−Y平面上の測定点の数(ピクセル数)は60×60であり、測定領域は1.2×1.2mmであった。従って、各ピクセルのサイズは20μm四方となる。
図2は、CCDイメージセンサ61の一つのピクセルで検出された処理信号As(t)の値と、同じ位置で理論的に推定される処理信号の値とをそれぞれ別個に示したものである。ここでは、被対象物50の表面の反射率a1や、各変調振幅Zb1,Zb2の大まかな値を、検出した処理信号As(t)の値から入手し、各位相α1,α2の初期値を1.0radの間隔で設定した。次の表は、a1,Zb1,Zb2,α1,α2,Hの初期値と、誤差関数Hが最小となるa1,Zb1,Zb2,α1,α2,Hの推定値を示したものである。
Figure 0004560622
こうしてパソコン62は、CCDイメージセンサ61の各ピクセルについて、反射率aiと、変調振幅Zbiと、位相αiの各値を推定する。次の表は、各ピクセルのX−Y平面上の座標位置を(Ix,IY)とした場合に、上式から算出された光路差Lz1,Lz2,Lα1,Lα2と、四捨五入前の数値mc1,mc2とを示したもので、ここではx軸で10個目のピクセル(Ix=10)に沿って、Y軸で10個単位に測定した値をあらわしている。
Figure 0004560622
CCDイメージセンサ61の各ピクセルにおいて、位相α1,α2の各推定値から求まる光路差Lα1,Lα2が算出されれば、上式から二次元平面上での被対象物50の表面の形状r1と裏面の形状r2をそれぞれ求めることができる。図3は、測定結果の一例を三次元的に示したものであるが、ここでは約10nm以下の繰り返し測定誤差で、被対象物50の表面形状と、裏面形状が求められている。なお、X−Y軸に沿った各ピクセルサイズ(ΔIx,ΔIY)は、前述のようにいずれも20μmである。
図4は、各ピクセル毎に上記数値mc1,mc2の小数点を四捨五入して得た次数m1,m2の分布を三次元的に示している。被対象物50の表面に対応した次数m1について、ここではm1=30が全体の16%を占め、m1=31が全体の73%を占め、m1=32が全体の11%を占めていたので、パソコン62は最も占有率の高いm1=31の値を採用した。また、次数m2についても、m2=101が全体の4%を占め、m2=102が全体の80%を占め、m2=103が全体の16%を占めていたので、パソコン62は最も占有率の高いm2=102の値を採用した。したがって、この場合の前記m=m2−m1の値は71となる。
被対象物50の表面の形状r1および裏面の形状r2と、整数値mが決定すれば、上式より被対象物50の表面と裏面との間の厚さを測定することができる。図5は、その測定結果を三次元的に示したものである。被対象物50の厚さも、約10nm以下の繰り返し測定誤差で算出できる。
上述したミラー13を正弦波状に回転振動させる方法では、SWS光源装置1から2b=20nmの広い走査幅で正確に正弦波状に波長走査された光が与えられている。この波長走査された光から生じる干渉信号を、二次元的に展開されたCCDイメージセンサ31で検出すれば、被対象物50の表面と裏面に対する変調振幅Zbiや位相αiの各値を、パソコン62の演算処理によって処理信号As(t),Ac(t)から推定できると共に、整数値miを決定できる。これにより、位相αiの推定値から求まる光路差Lαiによる測定誤差で、波長以上の光路差Liを得ることができ、10nmの誤差で被対象物50の表面の形状r1および裏面の形状r2が同時に測定できると共に、被対象物50の厚さdも測定できる。
また上記実施例では、被対象物50が単層の薄膜である場合を想定しているが、反射面を数有する多層膜についても、同様に上式のiを3以上にすることで(i=1,2,…n)、被対象物50の各反射面における形状や、反射面間の膜厚を個々に測定できる。また被対象物50としては、半導体ウェハ上の薄膜や、プラスチックフィルムや、コーティングフィルムなども適用できる。
以上のように本実施例では、角周波数ωbで正弦波状に波長走査された光を発生する第1の工程と、前記光を分割して被対象物50の測定面である複数の反射面(表面,裏面)およびミラー20による参照面に各々反射させた後、被対象物50の測定面からの物体光と、ミラー20からの参照光とを合成して干渉光を得る第2の工程と、参照面または被対象物50の測定面を角周波数ωcで正弦波振動させる第3の工程と、干渉光を二次元状に配置したCCDイメージセンサ61の検出点で捕らえて、それぞれ電気的な干渉信号S(t)に変換する第4の工程と、複数の反射面の数をnとしたときに、干渉信号S(t)をフーリエ変換して得た処理信号As(t),Ac(t)に基づき、前記第4の工程で電気的に変換した前記干渉信号から得られる処理信号As(t),Ac(t)の値と、理論的に導出される処理信号の値との差の二乗和が最小になったときの、前記干渉信号S(t)に含まれる変調振幅Zbiと位相αi(i=1,2,…n)の値を、被対象物50の各反射面のそれぞれに関してCCDイメージセンサ61の有効な各検出点毎に推定する第5の工程と、前記変調振幅Zbiと位相αiの値から、被対象物50の各反射面で反射された光と、ミラー20で反射された参照光との光路差Lzi,Lαiを前記CCDイメージセンサ61の検出点毎に算出する第6の工程と、前記光路差Lzi,Lαiの値に基づき、被対象物50の各反射面の位置をCCDイメージセンサ61の検出点毎に算出する第7の工程と、を含む方法を採用している。
また本実施例では、第1の工程を行なう光源装置としてのSWS光源装置1と、第2の工程を行なう干渉光学系としてのレーザ干渉計2と、第3の工程を行なう正弦波振動手段としての圧電素子41と、第4の工程を行なう光電変換手段としてのCCDイメージセンサ61と、第5の工程を行なう第1の演算手段,第6の工程を行なう第2の演算手段,第7の工程を行なう第3の演算手段としてのパソコン62と、を備えた装置を採用している。
上記の方法および装置では、電気的に変換された干渉信号S(t)の位相は正弦波状に変化し、その変調振幅Zbiは光路差Lziと正弦波状に波長走査された光の走査振幅bとに比例すると共に、干渉信号S(t)の位相の時間平均である位相αiは光路差Lαiに比例する。そのため、変調振幅Zbiから得られる波長以上の光路差Lziと、位相αiから得られる波長以下の光路差Lαiとを組み合わせることで、波長以上の光路差Liの値を波長以下の光路差Lαiの測定精度と同じ高い精度で算出できる。
また、電気的に変換された干渉信号S(t)から得られた処理信号の値と、理論式である処理信号の値との差の二乗和を誤差関数Hとし、この誤差関数Hを最小にすることで、理論式に含まれている被対象物50の各反射面に関する変調振幅Zbiと位相αiを推定できる。この変調振幅Zbiと位相αiの推定値から、被対象物50の各反射面の位置が求められ、従来のような機械的な誤差要因を排除して、被対象物50の各反射面の形状を二次平面上で精密に測定することができる。
本実施例では、前記第5の工程で、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、上記数10に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、前記第4の工程で変換した干渉信号S(t)から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和を、前記数11のような誤差関数Hとして、この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値をCCDイメージセンサ61の検出点毎に推定する方法を採用している。
また本実施例では、パソコン62に含まれる第1の演算手段が、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、上記数10に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、CCDイメージセンサ61で変換した干渉信号S(t)から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和を、前記数11のような誤差関数Hとして、この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値をCCDイメージセンサ61の検出点毎に推定するように構成している。
上記の方法および装置によれば、干渉信号S(t)をフーリエ変換して、周波数成分がωc付近の領域(ωc/2<ω<3ωc/2)と、2ωc付近の領域(3ωc/2<ω<5ωc/2)から、2つの処理信号As(t)とAc(t)を得た後、上記誤差関数Hの値が最小となる変調振幅Zbiと位相αiとの値を推定すれば、被対象物50の各反射面の位置を正確に測定すること可能になる。
本実施例では、前記光路差 zi ,L αi の値に基づき、被対象物50の反射面間の厚さをCCDイメージセンサ61の検出点毎に算出する第8の工程をさらに含んだ方法を採用している。
また本実施例では、前記光路差Lzi,Lαiの値に基づき、被対象物50の反射面間の厚さをCCDイメージセンサ61の検出点毎に算出する第4の演算手段を、パソコン62にさらに備えている。
上記の方法および装置によれば、被対象物50の各反射面の形状だけでなく、反射面間の厚さをも機械的な誤差要因を排除しつつ、二次平面上で精密に測定することが可能になる。
なお、本発明は上記各実施例に限定されるものではなく、種々の変形実施が可能である。例えば本実施例では、参照面となるミラー20を振動させた構成を示したが、被対象物50の測定面を振動させるようにしてもよい。さらにSWS光源装置1は、本発明に係るSWS干渉計の光源に限らず、他の用途にも適用できる。
本発明の好ましい一実施例における薄膜形状測定装置の全体構成を示す概略説明図である。 同上、CCDイメージセンサの一つのピクセルで検出された処理信号の値と、同じ位置で理論的に推定される処理信号の値とをそれぞれ別個に示したグラフである。 同上、被対象物の表面の形状と裏面の形状をそれぞれ別個に示したグラフである。 同上、被対象物の次数m1,m2の分布をそれぞれ別個に示したグラフである。 同上、被対象物の厚さを示すグラフである。
1 SWS光源装置(光源装置)
2 レーザ干渉計(干渉光学系)
41 圧電素子(正弦波振動手段)
50 被対象物
61 CCDイメージセンサ(光電変換手段)
62 パソコン(第1の演算手段,第2の演算手段,第3の演算手段,第4の演算手段)

Claims (6)

  1. 角周波数ωbで正弦波状に波長走査された光を発生する第1の工程と、
    前記光を分割して被対象物の測定面である複数の反射面および参照面に各々反射させた後、前記被対象物の測定面からの物体光と、前記参照面からの参照光とを合成して干渉光を得る第2の工程と、
    前記参照面または前記被対象物の測定面を角周波数ωcで正弦波振動させる第3の工程と、
    前記干渉光を二次元状に配置した検出点で捕らえて、それぞれ電気的な干渉信号に変換する第4の工程と、
    前記複数の反射面の数をnとしたときに、前記干渉信号をフーリエ変換して得た処理信号に基づき、前記第4の工程で電気的に変換した前記干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和が最小になったときの前記干渉信号の変調振幅Zbiと位相αi(i=1,2,…n)の値を、前記被対象物の各反射面のそれぞれに関して前記検出点毎に推定する第5の工程と、
    前記変調振幅Zbiと位相αiの値から、前記被対象物の各反射面で反射された光と、前記参照面で反射された参照光との光路差Lzi,Lαiを前記検出点毎に算出する第6の工程と、
    前記光路差Lzi,Lαiの値に基づき、前記被対象物の各反射面の位置を前記検出点毎に算出する第7の工程と、
    を含むことを特徴とする薄膜形状測定方法。
  2. 前記第5の工程で、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、次に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、
    Figure 0004560622

    前記第4の工程で変換した干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値(符号「^」を付して区別する)との差の二乗和を次式のような誤差関数Hとして、
    Figure 0004560622

    この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値を前記検出点毎に推定することを特徴とする請求項1記載の薄膜形状測定方法。
  3. 前記光路差 zi ,L αi の値に基づき、前記被対象物の反射面間の厚さを前記検出点毎に算出する第8の工程をさらに含むことを特徴とする請求項1または2記載の薄膜形状測定方法。
  4. 角周波数ωbで正弦波状に波長走査された光を発生する光源装置と、
    前記光源装置からの光を分割して被対象物の測定面である複数の反射面および参照面に各々反射させた後、前記被対象物の測定面からの物体光と、前記参照面からの参照光とを合成して干渉光を得る干渉光学系と、
    前記参照面または前記被対象物の測定面を角周波数ωcで正弦波振動させる正弦波振動手段と、
    前記干渉光を二次元状に配置した検出点で捕らえて、それぞれ電気的な干渉信号に変換する光電変換手段と、
    前記複数の反射面の数をnとしたときに、前記干渉信号をフーリエ変換して得た処理信号に基づき、前記光電変換手段で電気的に変換した前記干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値との差の二乗和が最小になったときの前記干渉信号の変調振幅Zbiと位相αi(i=1,2,…n)の値を、前記被対象物の各反射面のそれぞれに関して前記検出点毎に推定する第1の演算手段と、
    前記変調振幅Zbiと位相αiの値から、前記被対象物の各反射面で反射された光と、前記参照面で反射された参照光との光路差Lzi,Lαiを前記検出点毎に算出する第2の演算手段と、
    前記光路差Lzi,Lαiの値に基づき、前記被対象物の各反射面の位置を前記検出点毎に算出する第3の演算手段と、
    を備えたことを特徴とする薄膜形状測定装置。
  5. 前記第1の演算手段は、周波数成分ωがωc/2<ω<3ωc/2の領域と、3ωc/2<ω<5ωc/2の領域で、前記干渉信号をフーリエ変換することにより、次に示す2つの処理信号As(t)とAc(t)をそれぞれ取得し、
    Figure 0004560622

    前記光電変換手段で変換した干渉信号から得られる前記処理信号の値と、理論的に導出される前記処理信号の値(符号「^」を付して区別する)との差の二乗和を次式のような誤差関数Hとして、
    Figure 0004560622

    この誤差関数Hの値が最小となる前記変調振幅Zbiと位相αiとの値を前記検出点毎に推定するものであることを特徴とする請求項4記載の薄膜形状測定装置。
  6. 前記光路差Lzi,Lαiの値に基づき、前記被対象物の反射面間の厚さを前記検出点毎に算出する第4の演算手段をさらに含むことを特徴とする請求項4または5記載の薄膜形状測定装置。
JP2005001788A 2005-01-06 2005-01-06 薄膜形状測定方法および薄膜形状測定装置 Active JP4560622B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001788A JP4560622B2 (ja) 2005-01-06 2005-01-06 薄膜形状測定方法および薄膜形状測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001788A JP4560622B2 (ja) 2005-01-06 2005-01-06 薄膜形状測定方法および薄膜形状測定装置

Publications (2)

Publication Number Publication Date
JP2006189339A JP2006189339A (ja) 2006-07-20
JP4560622B2 true JP4560622B2 (ja) 2010-10-13

Family

ID=36796695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001788A Active JP4560622B2 (ja) 2005-01-06 2005-01-06 薄膜形状測定方法および薄膜形状測定装置

Country Status (1)

Country Link
JP (1) JP4560622B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5282929B2 (ja) * 2007-08-29 2013-09-04 株式会社ミツトヨ 多波長干渉計

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214309A (ja) * 1986-03-17 1987-09-21 Tokyo Seimitsu Co Ltd 表面粗さ・形状測定装置
JP2000065517A (ja) * 1998-08-18 2000-03-03 Tokyo Seimitsu Co Ltd 正弦波状波長走査干渉計及び正弦波状波長走査光源装置
JP2004286689A (ja) * 2003-03-25 2004-10-14 Niigata Tlo:Kk 多層膜の表面形状と膜厚分布の同時測定方法及びその装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214309A (ja) * 1986-03-17 1987-09-21 Tokyo Seimitsu Co Ltd 表面粗さ・形状測定装置
JP2000065517A (ja) * 1998-08-18 2000-03-03 Tokyo Seimitsu Co Ltd 正弦波状波長走査干渉計及び正弦波状波長走査光源装置
JP2004286689A (ja) * 2003-03-25 2004-10-14 Niigata Tlo:Kk 多層膜の表面形状と膜厚分布の同時測定方法及びその装置

Also Published As

Publication number Publication date
JP2006189339A (ja) 2006-07-20

Similar Documents

Publication Publication Date Title
US7599071B2 (en) Determining positional error of an optical component using structured light patterns
TWI405949B (zh) 表面形狀之測定方法及使用該方法之裝置
JP5241806B2 (ja) 表面輪郭測定のための装置および方法
JP5349739B2 (ja) 干渉計及び干渉計の校正方法
KR101596290B1 (ko) 두께 측정 장치 및 두께 측정 방법
JPH0374763B2 (ja)
JPH0760086B2 (ja) 物体の形状誤差を測定する方法およびその装置
US9464882B2 (en) Interferometer with continuously varying path length measured in wavelengths to the reference mirror
JP4560622B2 (ja) 薄膜形状測定方法および薄膜形状測定装置
JP3960427B2 (ja) 多層膜の表面形状と膜厚分布の同時測定方法及びその装置
EP3338053A1 (en) Method and apparatus for deriving a topograpy of an object surface
JP2010060420A (ja) 表面形状および/または膜厚測定方法およびその装置
JP5667891B2 (ja) 形状計測方法
JP2993836B2 (ja) コヒーレンス度を利用する干渉計
EP2955490B1 (en) Displacement detecting device
JP3714853B2 (ja) 位相シフト干渉縞同時撮像装置における平面形状計測方法
JP4081538B2 (ja) 透明平行平板の干渉縞解析方法
JP2017090123A (ja) 干渉計
JP2993835B2 (ja) 多波長位相干渉法及び多波長位相干渉計
JP6501307B2 (ja) ヘテロダイン干渉装置
JPH0726826B2 (ja) シェアリング干渉計装置
JP2003090765A (ja) 波長ゆらぎ測定方法および装置
JP3396284B2 (ja) 位相振幅測定装置
JPH0625644B2 (ja) 光学的微小変位測定装置
JP2002340539A (ja) 形状測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150