JP2010060420A - 表面形状および/または膜厚測定方法およびその装置 - Google Patents

表面形状および/または膜厚測定方法およびその装置 Download PDF

Info

Publication number
JP2010060420A
JP2010060420A JP2008226128A JP2008226128A JP2010060420A JP 2010060420 A JP2010060420 A JP 2010060420A JP 2008226128 A JP2008226128 A JP 2008226128A JP 2008226128 A JP2008226128 A JP 2008226128A JP 2010060420 A JP2010060420 A JP 2010060420A
Authority
JP
Japan
Prior art keywords
light
transparent film
intensity value
measurement object
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008226128A
Other languages
English (en)
Inventor
Susumu Sugiyama
将 杉山
Takuto Naito
卓人 内藤
Eiko Ogawa
英光 小川
Katsuichi Kitagawa
克一 北川
Kazuyoshi Suzuki
一嘉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Toray Engineering Co Ltd
Original Assignee
Tokyo Institute of Technology NUC
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Toray Engineering Co Ltd filed Critical Tokyo Institute of Technology NUC
Priority to JP2008226128A priority Critical patent/JP2010060420A/ja
Publication of JP2010060420A publication Critical patent/JP2010060420A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】表面を透明膜で覆われた測定対象物の透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、及び測定対象物の表面形状を求める。
【解決手段】参照面を光の進行方向に対して任意角度の斜め傾斜姿勢で配備して測定対象面と参照面から同一光路を戻る反射光により干渉縞を発生させる。干渉縞の各画素の強度値をCCDカメラで1回撮像し、CPUは算出対象画素毎とその近傍画素の強度値において、当該画素とその近傍画素の干渉縞波形の直流成分、正弦成分の振幅、及び余弦成分が一定であると仮定することで、干渉縞波形の直流成分、正弦成分の振幅、及び余弦成分の振幅を求めて測定対象物のパラメータおよび装置のパラメータに基づいて当該画素の光の強度値を参照面からの参照光の強度値と測定対象物からの物体光の強度値に分離する。両強度値から未知パラメータである透明膜の表面高さ、裏面高さ、膜厚、及び測定対象物の表面形状を求める。
【選択図】図2

Description

本発明は、透明膜で覆われた測定対象物の凹凸形状および厚みを測定する表面形状および/または膜厚測定方法およびその装置に係り、特に、単色光を用いて非接触で測定対象物の透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、および測定対象物の表面形状を測定する技術に関する。
従来、この種の装置として、半導体ウエハや液晶表示器用ガラス基板などの精密加工品の凹凸形状を白色光の干渉を用いて測定する方法を利用した表面形状測定装置が広く知られている。従来の表面形状測定装置は、図5に示すように、白色光源90からの白色光を第1レンズ91を通してハーフミラー92まで導き、ハーフミラー92で反射された白色光を第2レンズ93によって集束して、その白色光をビームスプリッタ95を介して測定対象面96上に照射するように構成された干渉計を備えている。
干渉計のビームスプリッタ95では、測定対象面96に照射する白色光と、参照面94に照射する白色光とに分ける。参照面94に照射される白色光は、参照面94の反射部94aで反射して、ビームスプリッタ95に再び達する。一方、ビームスプリッタ95を通過した白色光は、測定対象面96上で反射してビームスプリッタ95に再び達する。ビームスプリッタ95は、参照面94の反射部94aで反射した白色光と、測定対象面96で反射した白色光とを再び同一の経路にまとめる。このとき、参照面94からビームスプリッタ95までの距離L1と、ビームスプリッタ95から測定対象面96までの距離L2との距離の差に応じた干渉現象が発生する。その干渉現象が発生した白色光は、ハーフミラー92を通過してCCDカメラ98に入射する。
CCDカメラ98は、その干渉現象が発生した白色光とともに、測定対象面96を撮像する。ここで、図示しない変動手段によって、ビームスプリッタ95側のユニットを上下に変動させて、距離L1と距離L2との差を変化させることで、CCDカメラ98に入射する白色光が強め合ったり、弱め合ったりする。例えば、CCDカメラ98で撮像される領域内の測定対象面96上の特定箇所に着目した場合に、距離L2<距離L1から距離L2>距離L1になるまで、ビームスプリッタ95の位置を変動させる。これにより、特定箇所における干渉した白色光(以下、単に「干渉光」と呼ぶ)の強度を測定する。このときの干渉光の強度値変化の波形が最大になる位置を求めることで、測定対象面96の特定箇所の高さを求めることができる。同様にして、複数の特定箇所の高さを求めることで、測定対象面の凹凸形状を測定している。
具体的には、所定間隔で干渉光の強度値を測定して取得した離散的な干渉光の強度値のデータ群から干渉光の強度値変化が最大になる位置を求める必要がある。そこで、その強度値変化が最大になる位置を求める方法として、離散的なデータ群の平均値を算出し、算出された平均値を各強度値から減算し、算出されたそれぞれの値を、さらに2乗することによって、強度値変動をプラス側に強調したデータ群に変換して、このデータ群を平滑化した波形(包絡線)を求める。この平滑化した波形の最大値になる位置を求めることにより、特定箇所の表面高さを求めている(例えば、特許文献1参照)。
特開平11−23229号公報
しかしながら、従来の方法では次のような問題がある。
すなわち、測定対象物の表面が透明膜で覆われている場合に、透明膜を透過して透明膜の裏面と接触している測定対象面との界面(以下、適宜「透明膜の裏面」という)から反射した反射光に、当該透明膜の表面で反射する反射光が合成される。つまり、合成された両反射光を干渉信号に変換すると、個別に得なければならない各干渉信号が合成されてしまう。その結果、測定対象面の高さとして透明膜の表面高さを求めたい場合、透明膜の裏面の反射光が外乱となり、測定対象面の表面高さを正確に測定することができず、ひいては、測定対象物の表面形状をも正確に測定することができないといった問題がある。
本発明はこのような事情に鑑みてなされたものであって、透明膜に覆われた測定対象物の特定箇所の測定対象物の透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、および測定対象物の表面形状を高速かつ精度よく求めることのできる表面形状および/または膜厚測定方法およびその装置を提供することを主たる目的とする。
そこで、この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、第1の発明は、単色光源から出力される単色光を分岐手段を介して少なくとも一部分が透明膜で覆われた測定対象物と参照面とに照射し、測定対象物と参照面の両方から反射して同一光路を戻る反射光によって生じる干渉縞の強度値に基づいて測定対象物の透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、および測定対象物の表面形状の少なくともいずれか一つを求める表面形状および/または膜厚測定方法であって、
参照面を光の進行方向に対して所定角度の斜め傾斜姿勢に配置した状態で発生させた干渉縞の画像を取得する第1過程と、
取得した前記画像における各画素の干渉縞の強度値を求める第2過程と、
前記画素ごとにその画素の強度値と当該画素近傍の複数画素の強度値に基づいて、当該画素および当該画素近傍領域の干渉縞波形の直流成分、正弦成分の振幅、および余弦成分が一定であるとの仮定により、当該画素の干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅を求める第3過程と、
前記干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅、並びに測定対象物のパラメータおよび装置のパラメータに基づいて、当該画素の光の強度値を参照面から戻る参照光の強度値と測定対象物から戻る物体光の強度値に分離する第4過程と、
当該画素の前記参照光と物体光の両強度値に加え、測定対象物のパラメータおよび装置のパラメータに基づいて、撮像された測定対象物の透明膜の膜厚および透明膜の表面高さの少なくともいずれかを求める第5過程と、
を備えたことを特徴とする。
(作用・効果) この方法によれば、実測によって取得した測定対象物の画像の所定画素とその近傍画素の測定干渉縞の強度値において、当該画素近傍領域の干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅が一定であると仮定する。そして所定画素とその近傍画素の強度値情報を利用することによって、所定画素の干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅を求めることができる。さらに、所定画素の干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅に対して測定対象物のパラメータおよび装置のパラメータを利用することによって、光の強度値を参照面から戻る参照光の強度値と測定対象物から戻る物体光の強度値を分離して求めることができる。また、参照光の強度値と物体光の強度値に対して測定対象物のパラメータおよび装置のパラメータを利用することによって、撮像された測定対象物の透明膜の膜厚と透明膜の表面高さを求めることができる。
なお、これら透明膜の膜厚と透明膜の表面高さから透明膜の裏面高さが求まる。さらに、各画素について求めた透明膜の表面高さから測定対象物の撮像領域全体または任意の領域の表面形状を求めることができる。すなわち、未知のパラメータである透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、および測定対象物の表面形状の少なくともいずれか一つを求めることができる。
第2の発明は、第1の発明において、
前記測定対象物の測定対象物のパラメータとして、透明膜の反射係数、当該透明膜の透過係数、および測定対象面の反射係数を用い、
装置のパラメータとして、分岐手段における単色光の反射係数と透過係数、および参照面の反射係数を用いることを特徴とする。
(作用・効果) この方法によれば、これら測定対象物および装置の複数個のパラメータを利用することにより、測定誤差を除去した状態で各種未知のパラメータである透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、および測定対象物の表面形状の少なくともいずれか一つを精度よく求めることができる。
第3の発明は、単色光源から出力される単色光を分岐手段を介して少なくとも一部分が透明膜で覆われた測定対象物と参照面とに照射し、測定対象物と参照面の両方から反射して同一光路を戻る反射光によって生じる干渉縞の強度値に基づいて測定対象物の透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、および測定対象物の表面形状の少なくともいずれか一つを求める表面形状および/または膜厚測定装置であって、
前記参照面は、光の進行方向に対して所定角度の斜め傾斜姿勢で配備されており、
前記単色光が照射されて測定対象物と参照面とから反射して同一光路を戻る反射光によって干渉縞を生じさせて測定対象物を撮像する撮像手段と、
撮像された前記測定対象物を画素ごとに干渉縞の強度値として取り込むサンプリング手段と、
前記サンプリング手段によって取り込まれた前記強度値である干渉縞強度値群を記憶する記憶手段と、
前記記憶手段に記憶された強度値群から画素ごとに強度値を読み出し、当該画素の強度値とその近傍画素の強度値から、当該画素とその近傍画素の透明膜の膜厚および表面高さが一定であると仮定することにより、干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅を求め、
当該干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅、並びに測定対象物のパラメータおよび装置のパラメータに基づいて、当該画素の光の強度値を参照面から戻る参照光の強度値と測定対象物から戻る物体光の強度値に分離し、
得られた両強度値から撮像された測定対象物の透明膜の膜厚および透明膜の表面高さの少なくともいずれかを求める演算手段と、
を備えたことを特徴とする。
(作用・効果) この構成によれば、撮像手段は、単色光が照射されて測定対象物と参照面とから反射して同一光路を戻る反射光によって干渉縞を生じさせて測定対象物を撮像する。サンプリング手段は、撮像された測定対象物を画素ごとに干渉縞の強度値として取り込む。記憶手段は、サンプリング手段によって取り込まれた強度値である干渉縞強度値群を記憶する。演算手段は、記憶手段に記憶された強度値群から画素ごとに強度値を読み出し、当該画素の強度値とその近傍画素の強度値において干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅が一定であるとの仮定に基づいて、干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅を求め、測定対象物のパラメータおよび装置のパラメータに基づいて各画素の光の強度値を参照面から戻る参照光の強度値と測定対象物から戻る物体光の強度値を分離して求める。さらに、参照光と物体光の両強度値と測定対象物のパラメータおよび装置のパラメータに基づいて測定対象物の透明膜の膜厚および透明膜の表面高さの少なくともいずれかを求める。したがって、上記第1の方法発明を好適に実現することができる。
第4の発明は、第3の発明において、
前記測定対象物のパラメータは、透明膜の反射係数、当該透明膜の透過係数、および測定対象面の反射係数であり、
装置のパラメータは、分岐手段における単色光の反射係数と透過係数、および参照面の反射係数であることを特徴とする。
(作用・効果) この構成によれば、これら測定対象物および装置の複数個のパラメータを利用することにより、測定誤差を除去した状態で各種未知のパラメータである透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、および測定対象物の表面形状の少なくともいずれか一つを精度よく求めることができる。
この発明に係る表面形状および/または膜厚測定方法およびその装置は、当該画素の強度値とその近傍画素の強度値において、当該画素近傍領域の干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅が一定であると仮定することにより、干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅を求めたのちに、測定対象物のパラメータおよび装置のパラメータに基づいて当該画素の光の強度値を参照面から戻る参照光の強度値と測定対象物から戻る物体光の強度値に分離し、撮像された測定対象物の透明膜の膜厚および透明膜の表面高さの少なくともいずれかを求める。このとき、測定対象物のパラメータとして透明膜の反射係数、当該透明膜の透過係数、および測定対象面の反射係数を用い、装置のパラメータとして分岐手段における単色光の反射係数と透過係数、および参照面の反射係数を用いることにより、これら係数は容易に求めることが可能であるので、未知のパラメータである測定対象物の透明膜の膜厚および透明膜の表面高さの少なくともいずれか1つを精度よく測定することができる。
以下、図面を参照して本発明の実施例を説明する。なお、本実施例では、表面が略平坦な測定対象物のその表面高さおよびその表面形状を、干渉縞を利用して測定する表面形状測定装置を例に採って説明する。
図1は、本発明の実施例に係る表面形状測定装置の概略構成を示す図である。
この表面形状測定装置は、半導体ウエハ、ガラス基板、金属膜などの表面に微細な凹凸段差を有する略平坦な測定対象物30に特定波長帯域の単色光を照射する光学系ユニット1と、光学系ユニット1を制御する制御系ユニット2とを備えて構成されている。
光学系ユニット1は、測定対象面30Aおよび参照鏡15に照射する光を発生させるための光源である白色光源10と、白色光源10から白色光を平行光にするコリメートレンズ11と、特定周波数帯域の単色光だけを通過させるバンドパスフィルタ12と、バンドパスフィルタ12を通過した光を測定対象面30Aの方向に反射する一方、測定対象物30の方向からの光を通過させるハーフミラー13と、ハーフミラー13で反射されてきた単色光を集光する対物レンズ14と、対物レンズ14を通過してきた単色光を、参照鏡15へ反射させる参照光と、測定対象面30Aへ通過させる物体光とに分けるとともに、参照鏡15で反射してきた参照光と測定対象面30Aで反射してきた物体光とを再びまとめて干渉縞を発生させるビームスプリッタ17と、参照光と物体光がまとめられた単色光を結像する結像レンズ18と、干渉縞とともに測定対象面30Aを撮像するCCDカメラ19とを備えて構成されている。なお、CCDカメラ19は、本発明の撮像手段に相当する。
白色光源10は、例えばハロゲンランプなどであり、比較的広い周波数帯域の白色光を発生させる。この白色光源10から発生された白色光は、コリメートレンズ11によって平行光とされ、バンドパスフィルタ12を通過することによって特定周波数帯域の単色光となり、ハーフミラー13に向かう。
ハーフミラー13は、コリメータレンズ11からの平行光を測定対象物30の方向に向けて反射する一方、測定対象物30の方向から戻ってきた光を通過させるものである。このハーフミラー13で反射された特定周波数帯域の単色光は、対物レンズ14に入射する。
対物レンズ14は、入射してきた光を焦点Pに向けて集光するレンズである。この対物レンズ14によって集光される光は、ビームスプリッタ17に到達する。
ビームスプリッタ17は、対物レンズ14で集光される単色光を、参照鏡15で反射させるために、ビームスプリッタ17の例えば上面で反射させる参照光、透明膜31および測定対象面30Aで反射させるために、ビームスプリッタ17を通過させる物体光とに分ける。また、それら参照光と物体光を再びまとめることによって、干渉縞を発生させるものである。ビームスプリッタ17に達した単色光は、ビームスプリッタ17の上面で反射された参照光と、ビームスプリッタ17を通過する物体光とに分けられ、その参照光は参照鏡15に達し、その物体光は透明膜31で覆われた測定対象物30の透明膜31の表面、および透明膜の裏面と接合した測定対象物30の表面である測定対象面30Aに達する。
参照鏡15は、参照光の進行方向に対して前後斜め傾斜姿勢で取り付けられている。この参照鏡15によって反射された参照光は、ビームスプリッタ17に達し、さらに、この参照光はビームスプリッタ17によって反射される。
参照鏡15を参照光の進行方向に対して前後斜め傾斜姿勢で取り付けることにより、参照光の到達距離および反射光がCCDカメラ19に到達するまでの距離が、その反射面の位置によって変化する。これは参照鏡15を移動して、参照鏡15とビームスプリッタ17との間の距離L1を変動させるのと等価である。
ビームスプリッタ17を通過した物体光は、焦点PおよびP’に向けて集光され、透明膜の表面である測定対象面30Aおよび透明膜31の裏面で反射する。この反射した2つの物体光は、ビームスプリッタ17に達して、そのビームスプリッタ17を通過する。
ビームスプリッタ17で、参照光と物体光が再びまとまる。このとき、参照鏡15とビームスプリッタ17との間の距離L1と、ビームスプリッタ17と測定対象面30Aとの間の距離L2との違いによって光路差が生じる。この光路差に応じて、参照光と物体光とは干渉する。この干渉が生じた状態の光は、ハーフミラー13を通過し、結像レンズ18によって結像されて、CCDカメラ19に入射する。
CCDカメラ19は、物体光によって映し出される測定対象面30Aの画像を撮像する。このとき、参照鏡15が傾いていることにより、撮像された測定対象面30Aの画像には干渉による輝度の空間的な変動である干渉縞が撮像される。この撮像した画像データは、制御系ユニット2によって収集される。また、後述で明らかになるが、制御系ユニット2の駆動部24によって、所望する撮像箇所へ光学系ユニット1を図1中のx,y,z軸方向に移動させる。また、CCDカメラ19によって、所定のサンプリングタイミングで測定対象面30Aの画像が撮像され、その画像データが制御系ユニット2によって収集される。
制御系ユニット2は、表面形状測定装置の全体の統括的な制御や、所定の演算処理を行うためのCPU20と、CPU20によって逐次収集された画像データやCPU20での演算結果などの各種のデータやプログラムを記憶するメモリ21と、サンプリングタイミングや撮像エリアなどその他の設定情報を入力するマウスやキーボードなどの入力部22と、測定対象面30Aの画像などを表示するモニタ23と、CPU20の指示に応じて光学系ユニット1を上下左右に移動するように駆動させる、例えば、3軸駆動型のサーボモータなどの駆動機構で構成される駆動部24を備えるコンピュータシステムで構成されている。なお、CPU20は、本発明における演算手段に、メモリ21は本発明における記憶手段にそれぞれ相当する。
CPU20は、いわゆる中央演算処理装置であって、CCDカメラ19、メモリ21および駆動部24を制御するとともに、CCDカメラ19で撮像した干渉縞を含む測定対象面30Aの画像データに基づいて、測定対象物30の表面高さを求める演算処理を行う位相算出部25や画像データ作成部27を備えている。このCPU20における位相算出部25や画像データ作成部27の処理については後で詳細に説明する。さらに、CPU20には、モニタ23と、キーボードやマウスなどの入力部22とが接続されており、操作者は、モニタ23に表示される操作画面を観察しながら、入力部22から各種の設定情報の入力を行う。また、モニタ23には、測定対象面30Aの表面画像や凹凸形状などが数値や画像として表示される。
駆動部24は、所望する撮像箇所へ例えば光学系ユニット1を図1中のx,y,z軸方向に移動させる装置である。この駆動部24は、CPU20からの指示によって光学系ユニット1をx,y,z軸方向に駆動する例えば3軸駆動型のサーボモータを備える駆動機構で構成されている。なお、本実施例では、光学系ユニット1を動作させるが、例えば測定対象物30が載置される図示していないテーブルを直交3軸方向に変動させるようにしてもよい。また、移動軸は2軸以下や存在しなくても良い。
ここで干渉縞画像を表わす物理モデルは以下のように定義する。
まず、光源から出てくる光の振動を定義する。白色光源10からの白色光がコリメートレンズ11、バンドパスフィルタ12を介して単色光にしたときのこの波長λと角振動数kとの関係は、k=2π/λで表わすことができる。また、光速をcとすると、単色光の振動を次式(1)で表わすことができる。
φs(t)=acos(ckt) … (1)
なお、aは、図1に示す、ハーフミラー13およびビームスプリッタ17による光の減衰量が予め含まれているものとする。
ここで、測定対象面30Aに任意の原点(0,0)をとり、2次元座標として表す。また、図中の点線は、物体光がこの原点を通る光路であり、一点鎖線は、測定対象物表面の所定座標(x,y)を物体光が通る光路を示す。
次に、求めるべき膜厚と表面形状を定義する。原点を通って入射光と同一光路を戻る物体光が透過するハーフミラー13との交点をO1、ビームスプリッタ17との交点をO2とする。そして、ビームスプリッタ17から参照鏡15までの距離と同じL1だけ交点O2から下方に離れた位置に仮想面Eをとる。
この仮想面Eに対して任意に固定した水平な基準面z(z=0)から仮想面Eまでの高さz、基準面z=0から透明膜の表面上の点(x,y)までの高さをh(x,y)で表わす。また、点(x,y)から仮想面Eまでの距離をd(x,y)で表わす。
すなわち、d(x,y)=z−h(x,y)の関係が成り立つ。さらに、点(x,y)での透明膜の膜厚をD(x,y)で表す。本実施例における表面形状測定で求めるべきものは、絶対的な高さでなく相対的な高さである。よって、h (x,y)の値は不要でd(x,y)の値が分かればよい。d(x,y)は透明膜の表面高さ、d(x,y)-D(x,y)は透明膜の裏面高さである。d(x,y)の空間分布が表面形状である。ここで、φ (x,y)を次式(2)として定義する。
φ (x,y)=2k(h(x,y)‐z)
=‐2kd(x,y) … (2)
この時、φ (x,y)が求まれば表面形状はφ (x,y)/2kとなる。
次に、D(x,y)とφ (x,y)を用いて参照光と物体光の光路長を表現する。測定対象物30の表面が透明膜31で覆われているので、測定対象面30Aから反射して戻る物体光は、透明膜中で繰り返し反射した重ね合わせの光となる。具体的には、図3に示すように、透明膜中で重反射する光路j(j=0,1,2、…)と表し、透明膜31と接触する空気層の屈折率=1、透明膜31の屈折率=n1、測定対象物30(基板)の屈折率=n2と表わす。
点(x,y)を通るときの参照光の光路長をLref(x,y)、透明膜中の重反射光路j(j=0,1,2、…)の光路長をLj(x,y)とする。ここで、図3中のδ(x,y)は、原点を通るときの参照光と、点(x,y)を通るときの参照光の光路長の差に対応する。したがって、次式(3)で表わすことができる。
Lref(x,y)=Lref(0,0)+2δ(x,y) … (3)
δ(x,y)は、参照鏡15のx方向、y方向の傾きをそれぞれθx、θyとすると次式(4)で表わすことができる。
δ(x,y)=xtanθx+ytanθy … (4)
さらに、fx、fyを次式(5)、(6)で定義する。なお、この定義を以後、空間的キャリア周波数という。
Figure 2010060420
Figure 2010060420
空間キャリア周波数を利用すれば、次式(7)として表わすことができる。
Figure 2010060420
透明膜中でj回重反射する光路長Lj(x,y)は、仮想面Eまでの光路長がLref(0,0)と一致する。したがって、次式(8)で表わすことができる。
Lj(x,y)=Lref(0,0)+2d(x,y)+j(2n1D(x,y)) … (8)
上記式(3)および(8)から次式(9)の関係が成り立つ。
Lj(x,y)=Lref(x,y)+2d(x,y)‐2δ(x,y)+j(2n1D(x,y)) … (9)
さらに、点(x,y)から仮想面Eまでの距離d(x,y)を通過するのにかかる時間T(x,y)、点(x,y)を通るときの参照光の光路長の差分距離を通過するのにかかる時間Tδ(x,y)、透明膜31の膜厚分の距離を通過するのにかかる時間TD(x,y)は、次式(10)−(12)で表わすことができる。
T(x,y)=2d(x,y)/c=1/ck(−φ(x,y)) … (10)
Tδ(x,y)=2δ(x,y)/c=1/ck(2πfxx+2πfyy) … (11)
T(x,y)=2 nD(x,y)/c … (12)
したがって、参照光の光路を通過するのにかかる時間Tref(x,y)と透明膜中でj回重反射する光路(以下、適宜「膜内反射光路」という)を通過するのにかかる時間Tj(x,y)は、次式(13)の関係が成り立つ。
Tj(x,y)=Tref(x,y)+T(x,y)−Tδ(x,y)+jT(x,y) … (13)
次に、各光路を通過するときの振幅と位相の変化について定義および表現する。なお、図4に示す、測定対象物(試料)での振幅反射係数と振幅透過反射係数を、以下、単に「試料係数」という。これら両係数は、絶対値が振幅の何倍になるかを表わし、位相が変化しないときは正、位相がπから変化するときは負となる。フレネルの公式を用いれば、試料の有する屈折率から次式(14)−(18)が求まる。
Figure 2010060420
Figure 2010060420
Figure 2010060420
Figure 2010060420
Figure 2010060420
さらに、透明膜中で繰り返し反射する場合の1回分の反射に相当する減衰係数として、ρ1を次式(19)として定義する。
ρ1=ρ10ρ12 … (19)
ここで、ビームスプリッタ17と参照鏡15での振幅反射係数と振幅透過反射係数を装置係数とする。前記3つの係数を合わせて、次式(20)として定義する。
Figure 2010060420
このηeも装置係数である。
次に、CCD19に到達するまでの光を表現する。参照光と膜内反射光路j(J=2,3…)を通過してCCD19に到達する光は、次式(21)、(22)で表わすことができる。
Figure 2010060420
Figure 2010060420
なお、式(21)、(22)の係数は、次式(23a)−(23d)のようになる。
Figure 2010060420
Figure 2010060420
Figure 2010060420
Figure 2010060420
式(23d)は、透明膜内で光が1往復するごとに振幅がρ1倍になることを表わしている。したがって、物体光は、次式(24)で表わすことができる。
Figure 2010060420
ここで、式(24)を式(13)および(23)を用いると、透明膜で覆われている測定対象物の物体光は、次式(25)で表わすことができる。
Figure 2010060420
ここで、μc(x,y)およびμs(x,y)は、次式(26a)、(26b)となる。
Figure 2010060420
Figure 2010060420
次に、参照光と物体光の各強度は、次式(27)、(28)で表わすことができる。
Figure 2010060420
Figure 2010060420
CCDカメラ19に入射する光は参照光と物体光の重ね合わせであるので、参照光+物体光となる。つまり、以下のようになる。
Figure 2010060420
したがって、CCDカメラ19で観測される干渉縞画像g(x,y)は、次式(29)で表わすことができる。
g(x,y)=bd(x,y)+bc(x,y)cos(2πfxx+2πfyy)−bs(x,y)sin(2πfxx+2πfyy)…(29)
ここでbd(x,y)、bc(x,y)およびbs(x,y)は、次式(30)−(32)で表わすことができる。なお、bd(x,y)は干渉縞波形の直流成分、bc(x,y)は正弦成分の振幅、およびbs(x,y)は余弦成分の振幅である。
Figure 2010060420
Figure 2010060420
Figure 2010060420
以下、本実施例の特徴部分である表面形状測定装置全体で行なわれる処理を図2に示すフローチャートに従って説明する。
なお、本実施例では、参照鏡15を、図1に示すように傾けた場合を例に採って説明する。
<ステップS1> 条件設定
測定対象物30の物性に応じて予め決まっている測定対象物のパラメータ、および装置スペックにより予め決まっている装置のパラメータを入力設定する。
<ステップS2> 干渉縞の画像データの取得
CPU20は、図示しないステッピングモータなどの駆動系を駆動させて駆動部24が光学系ユニット1を測定対象物30の撮像領域に移動させる。撮像位置が決定すると、光学系ユニット1は、白色光源10から白色光を発生させる。この白色光はバンドパスフィルタ12を介して単色光(例えば、波長λ=600nm)とされ測定対象物30および参照面15に照射される。
この単色光の照射に連動してCCDカメラ19が作動し、測定対象面30Aの撮像を1回行う。この撮像によって取得された測定対象面30Aの干渉縞の画像データが収集されてメモリ21に記憶される。つまり、メモリ21には傾斜姿勢の参照面15からの参照光と、測定対象面30Aで反射して戻る物体光とによって生じる干渉縞の画像データが記憶される。このとき参照面15で反射する光の伝播距離は、参照面15での反射位置において規則的に変動する。したがって、透明膜31の膜厚が一定、かつ、透明膜の表面30A(測定対象物表面30A)および裏面が平坦な部分では、CCDカメラ19によって撮像される画像における干渉縞は参照面15の傾きの向きと角度に応じて撮像面内に空間的に規則的に現れる。この干渉縞は参照面15で反射する光の伝播距離の2倍と測定対象面30Aで反射して戻る反射光の伝播距離の2倍の差がλ/2=300nmとなるごとに1周期分現れる。
一方、透明膜31の膜厚、透明膜の表面30Aおよび裏面が変動する箇所では、干渉縞がずれた不規則な縞模様として現れる。
<ステップS3> 特定箇所の干渉光強度値群の取得
取得した画像データがモニタ23に表示されるのをオペレータが観察しながら、測定対象物30Aの高さおよび透明膜31の膜厚を測定したい特定箇所を入力部22から入力する。CPU20は、入力された特定箇所を把握して、測定対象面30Aを撮像した特定箇所における干渉光の強度値の画像データからそれぞれ取り込む。これにより、各特定箇所における複数個の強度値(干渉光強度値群)が得られる。
<ステップS4> 干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅の算出
CPU20は、特定個所の画素および近傍画素の強度値を利用して干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅を求める。
すなわち、上記式(30)−(31)から干渉縞の直流成分bd(x,y)、正弦成分の振幅bc(x,y)および余弦成分の振幅bs(x,y)には、透明膜の膜厚D(x,y)と表面形状φ(x,y)の情報が含まれていることが分かる。そこで、これらbd(x,y)、bc(x,y)およびbs(x,y)の値を推定する。
これらbd(x,y)、bc(x,y)およびbs(x,y)を推定するために、点(x,y)のM個の近傍点(画素)でその表面形状と膜厚が一定であると仮定する。つまり、次式(33)、(34)と仮定する。
φ(xi, yi)= φ (i=1,…,M) …(33)
D(xi, yi)= D (i=1,…,M)…(34)
この仮定は、φ(xi, yi)、D(xi, yi)が滑らかで近傍点を点(x,y)の十分近くから取れば、近似的に満たされる。このとき式(30)−(32)からbd(x,y)、bc(x,y)およびbs(x,y)も定数となる。したがって、式(29)を次式(35)として表わすことができる。
g(xi,yi)=bd+bccos(2πfxi+2πfyyi)−bssin(2πfxi+2πfyyi) …(35)
ただし、bd、bcおよびbsは、以下の通りである。
Figure 2010060420
Figure 2010060420
Figure 2010060420
また、式(35)は、未知の定数である空間的キャリア周波数fx、fyが含まれている。しかしながら、空間的キャリア周波数fx、fyは、参照鏡15の傾きから決まる定数であり、推定値として求めることができる。例えば、試料の平坦な部分で干渉縞の周波数と空間的キャリア数が一致していることを利用すれば求まる。したがって、未知数となるのは、bd、bc、およびbsだけとなる。
ここで、式(35)を次式(39)、(40a)、(40b)のように簡素化する。
Figure 2010060420
Figure 2010060420
Figure 2010060420
この座標(xi,yi)での干渉縞の光強度値giとすると干渉縞の直流成分bd、正弦成分の振幅bcおよび余弦成分の振幅bsは、最小2乗法により、次式(41)として推定できる。
Figure 2010060420
式(41)は、パラメータbd、bc、bsに関して線形であるので、線形最小2乗法であり、解は、次式(42)で求めることができる。
Figure 2010060420
ただし、Aの上付き文字Tは転置行列を意味し、その行列は以下の以下の通りである。
Figure 2010060420
Figure 2010060420
<ステップS5> 参照光の強度値と物体光の強度値の算出
CPU20は、上記係数bd、bcおよびbsから参照光の強度値grefと物体光の強度値gobjを求める。すなわち、式(27)、(28)、および、(30)−(32)から次式(45a)、(45b)の関係が成立している。
bd=gref+gobj … (45a)
Figure 2010060420
したがって、2次方程式の解と係数の関係式から、gref,gobjは、次式(46)の解である。
Figure 2010060420
よって、参照光の強度値grefと物体光の強度値gobjは、以下の解として求めることができる。
Figure 2010060420
上記2解について、参照光の強度値grefと物体光の強度値gobjは、どちらがgrefでどちらがgobjなのかを両値の大小関係から決定する。すなわち、式(27)、(28)から参照光の強度値grefは一定値をとり、物体光の強度値gobjは、膜厚の影響を受ける。よって、例えば、Dがどのような値の時でもgref>gobjのときプラス(+)の解が参照光の強度値grefで、マイナス(−)の解が物体光の強度値gobjであると決定できる。また、装置係数および試料係数の値で場合分けをすることにより、解を特定することもできる。
<ステップS6> 透明膜の膜厚および表面高さの算出
参照光の強度値grefと物体光の強度値gobjが求まると、式(28)を用いて膜厚Dを求める。すなわち、式(28)をcos(2kn1D)について解くと次式(48)となる。
Figure 2010060420
ここで、この式のa0、a1は、次式で定義される。
Figure 2010060420
Figure 2010060420
上記式(49a)、(49b)には、観測によって決めることのできない光源の振幅であるaが含まれている。式(23a)−(23d)と式(27)からこのaを求めると次式(50)となる。
Figure 2010060420
したがって、膜厚Dは、次式(51)となる。
Figure 2010060420
ここで、σは1または−1、mdは所定の整数、αは次式(52)となる。
Figure 2010060420
ただし、c1からc4は、以下の通りとなる。また、arccosは、(0,π)の値をとる。
Figure 2010060420
Figure 2010060420
Figure 2010060420
Figure 2010060420
なお、cosの周期性から膜厚Dには、周期π/(2kn1)=λ/(4n1)の不確定性が残る。しかし、例えば膜厚Dがλ/(4n1)未満であることが分かっていれば、σ=1、md=0と決めることができる。
次に、CPU20は、表面形状を求める。先ず、上記cos(2kn1D)の値がαとして求められた。また、sin(2kn1D)の値は、式(52)とσを用いて次式(53)で表わすことができる。
Figure 2010060420
ここで、cos(2kn1D)とsin(2kn1D)の値を式(37)、(38)に代入し、cosφとsinφに関する連立方程式とみなすことができる。この連立方程式を解くことにより、次式(54)が導かれる。また、光源の振幅aは、膜厚を求めるときと同様にgrefと装置係数を用いてキャンセルする。
φ=arctan(bs+σβbc,bc−σβbs)+2mhπ … (54)
ここで、σは膜厚Dを求めた値、すなわち式(51)と同じ値である1または−1、mhは所定の整数、βは次式(55)となる。
Figure 2010060420
ただし、αは、膜厚Dの決定に用いた値、c5からc7は、以下の通りとなる。
c5=ρ12+ρ1ρ01
c6=ρ01−ρ1ρ12
c7=ρ12−ρ1ρ01
ここで、arctan(x,y)は、次式を満たすθ∈[0,2π)である。
Figure 2010060420
三角関数の周期性からφには周期π/k=λ/2の不確定性が残る。これは、例えば、位相接続アルゴリズムにより決定すればよい。
なお、式(51)から求まる膜厚D の値が0のとき、その部位には透明膜31が存在しないことを意味する。換言すれば、透明膜31で被覆されていない測定対象物30の表面高さを示す。
<ステップS7> 全特定箇所が終了?
CPU20は、全ての特定箇所が終了するまで、ステップS3−S6の処理を繰り返し行い、全ての特定箇所の膜厚Dおよび表面高さを求める。これら求まる透明膜31の表面高さ、裏面高さ、および、透明膜31で被覆されていない測定対象物30の表面高さの分布をモデル化することにより、測定対象物30の全面または所定領域の表面形状が求まる。
<ステップS8> 表示
CPU20は、モニタ23に特定箇所の透明膜31の表面高さ、膜厚、測定対象物30の表面高さの情報を表示したり、それら各特定箇所の高さの情報に基づいた3次元または2次元の画像を表示したりする。オペレータは、これらの表示を観察することで、透明膜31の表面30A、あるいは、透明膜で被覆された部分と被覆されていない部分の両方を含む測定対象物30の表面30Aの凹凸形状を把握することができる。
以上のように、1回の撮像で取得した画像データから所定画素とその近傍画素の測定干渉縞の強度値において、干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅が一定であると仮定する。この仮定に基づいて、所定画素とその近傍画素の測定干渉縞の強度値から干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅を算出できる。さらに、干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅に対して、測定対象物のパラメータおよび装置のパラメータから所定画素の光強度値のうち参照面から戻る参照光の強度値と測定対象物から戻る物体光の強度値を分離して求めることができる。参照光と物体光の両強度値に対して、測定対象物のパラメータおよび装置のパラメータから撮像された測定対象物の透明膜の膜厚と透明膜の表面高さを求めることができる。また、これら透明膜の膜厚および透明膜の表面高さから透明膜の裏面高さが求まる。さらに、各画素について求めた透明膜の表面高さから測定対象物の撮像領域全体または任意の領域の表面形状を求めることができる。その結果、干渉縞を測定するための光学系の動作時間を省くことができる。
本発明は上述した実施例のものに限らず、次のように変形実施することもできる。
(1)上記実施例では、1波長の単色光を利用して透明膜31で覆われた測定対象物30の透明膜31の膜厚Dと透明膜31の表面高さとを同時に測定していたが、波長の異なる複数種類の単色光を用いて膜厚Dと表面高さとを同時に求めるようにしてもよい。
例えば、波長の異なる2種類の単色光を使用し、測定開始時の測定開始点が互いに一致する場合、透明膜の膜厚および表面高さは解候補値群から互いに一致する解を容易に絞り込むことができ、ひいては透明膜の膜厚および表面高さの正しい解を決定することができる。
(2)上記実施例では光源の後ろにバンドパスフィルタを利用して光源の周波数帯域を制限し単色光を得ていたが、撮像手段であるCCDカメラ19の受光部の前にバンドパスフィルタを搭載して光源の周波数帯域を制限し単色光を得ることもできる。
(3)上記実施例では、撮像手段としてCCDカメラ19を用いたが、例えば、特定箇所の干渉縞の強度値のみを撮像(検出)することに鑑みれば、一列または平面状に構成された受光素子などによって撮像手段を構成することもできる。
(4)上記実施例では、1種類の単色光を利用していたが、波長の異なる複数種類に単色光を使用する場合は、特定周波数帯域の単色光だけを透過させる複数種類のバンドパスフィルタを適時に切り換えて使うようにしてもよい。また、異なる波長のレーザーを出力するレーザーユニットを使用してもよい。
本実施例に係る表面形状測定装置の概略構成を示す図である。 表面形状測定装置における処理を示すフローチャートである。 透明膜中での光の重反射を示す図である。 (a)はビームスプリッタの振幅反射係数を示す図であり、(b)は参照鏡の振幅反射係数を示す図である。 従来例に係る表面形状測定装置の概略構成を示す図である。
符号の説明
1 … 光学系ユニット
2 … 制御系ユニット
10 … 白色光源
11 … コリメートレンズ
13 … ハーフミラー
14 … 対物レンズ
15 … 参照鏡
16 … ミラー
17 … ビームスプリッタ
18 … 結像レンズ
19 … CCDカメラ
20 … CPU
21 … メモリ
22 … 入力部
23 … モニタ
24 … 駆動部
30 … 測定対象物
30A… 測定対象面(測定対象物)
31 … 透明膜
31A… 測定対象面(透明膜表面)
D … 膜厚(透明膜)

Claims (4)

  1. 単色光源から出力される単色光を分岐手段を介して少なくとも一部分が透明膜で覆われた測定対象物と参照面とに照射し、測定対象物と参照面の両方から反射して同一光路を戻る反射光によって生じる干渉縞の強度値に基づいて測定対象物の透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、および測定対象物の表面形状の少なくともいずれか一つを求める表面形状および/または膜厚測定方法であって、
    参照面を光の進行方向に対して所定角度の斜め傾斜姿勢に配置した状態で発生させた干渉縞の画像を取得する第1過程と、
    取得した前記画像における各画素の干渉縞の強度値を求める第2過程と、
    前記画素ごとにその画素の強度値と当該画素近傍の複数画素の強度値に基づいて、当該画素および当該画素近傍領域の干渉縞波形の直流成分、正弦成分の振幅、および余弦成分が一定であるとの仮定により、当該画素の干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅を求める第3過程と、
    前記干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅、並びに測定対象物のパラメータおよび装置のパラメータに基づいて、当該画素の光の強度値を参照面から戻る参照光の強度値と測定対象物から戻る物体光の強度値に分離する第4過程と、
    当該画素の前記参照光と物体光の両強度値に加え、測定対象物のパラメータおよび装置のパラメータに基づいて、撮像された測定対象物の透明膜の膜厚および透明膜の表面高さの少なくともいずれかを求める第5過程と、
    を備えたことを特徴とする表面形状および/または膜厚測定方法。
  2. 請求項1に記載の表面形状および/または膜厚測定方法において、
    前記測定対象物のパラメータとして、透明膜の反射係数、当該透明膜の透過係数、および測定対象面の反射係数を用い、
    装置のパラメータとして、分岐手段における単色光の反射係数と透過係数、および参照面の反射係数を用いる
    ことを特徴とする表面形状および/または膜厚測定方法。
  3. 単色光源から出力される単色光を分岐手段を介して少なくとも一部分が透明膜で覆われた測定対象物と参照面とに照射し、測定対象物と参照面の両方から反射して同一光路を戻る反射光によって生じる干渉縞の強度値に基づいて測定対象物の透明膜の表面高さ、透明膜の裏面高さ、透明膜の膜厚、および測定対象物の表面形状の少なくともいずれか一つを求める表面形状および/または膜厚測定装置であって、
    前記参照面は、光の進行方向に対して所定角度の斜め傾斜姿勢で配備されており、
    前記単色光が照射されて測定対象物と参照面とから反射して同一光路を戻る反射光によって干渉縞を生じさせて測定対象物を撮像する撮像手段と、
    撮像された前記測定対象物を画素ごとに干渉縞の強度値として取り込むサンプリング手段と、
    前記サンプリング手段によって取り込まれた前記強度値である干渉縞強度値群を記憶する記憶手段と、
    前記記憶手段に記憶された強度値群から画素ごとに強度値を読み出し、当該画素の強度値とその近傍画素の強度値から、当該画素とその近傍画素の透明膜の膜厚および表面高さが一定であると仮定することにより、干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅を求め、
    当該干渉縞波形の直流成分、正弦成分の振幅、および余弦成分の振幅、並びに測定対象物のパラメータおよび装置のパラメータに基づいて、当該画素の光の強度値を参照面から戻る参照光の強度値と測定対象物から戻る物体光の強度値に分離し、
    得られた両強度値から撮像された測定対象物の透明膜の膜厚および透明膜の表面高さの少なくともいずれかを求める演算手段と、
    を備えたことを特徴とする表面形状および/または膜厚測定装置。
  4. 請求項3に記載の表面形状および/または膜厚測定装置において、
    前記測定対象物の測定対象物のパラメータは、透明膜の反射係数、当該透明膜の透過係数、および測定対象面の反射係数であり、
    装置のパラメータは、分岐手段における単色光の反射係数と透過係数、および参照面の反射係数である、
    ことを特徴とする表面形状および/または膜厚測定装置。
JP2008226128A 2008-09-03 2008-09-03 表面形状および/または膜厚測定方法およびその装置 Pending JP2010060420A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226128A JP2010060420A (ja) 2008-09-03 2008-09-03 表面形状および/または膜厚測定方法およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226128A JP2010060420A (ja) 2008-09-03 2008-09-03 表面形状および/または膜厚測定方法およびその装置

Publications (1)

Publication Number Publication Date
JP2010060420A true JP2010060420A (ja) 2010-03-18

Family

ID=42187369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226128A Pending JP2010060420A (ja) 2008-09-03 2008-09-03 表面形状および/または膜厚測定方法およびその装置

Country Status (1)

Country Link
JP (1) JP2010060420A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145229A (ja) * 2011-12-16 2013-07-25 Toray Eng Co Ltd 干渉色のモデル適合による膜厚測定方法およびその装置
JP2016534332A (ja) * 2013-07-26 2016-11-04 マーポス、ソチエタ、ペル、アツィオーニMarposs S.P.A. 機械加工されている物体の厚さを干渉法により光学的に測定するための方法及び装置
CN112902880A (zh) * 2021-01-22 2021-06-04 大连理工大学 一种平面构件平行度的测量方法和装置
CN112902900A (zh) * 2021-01-22 2021-06-04 大连理工大学 一种弱刚性平面构件的平行度测量方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145229A (ja) * 2011-12-16 2013-07-25 Toray Eng Co Ltd 干渉色のモデル適合による膜厚測定方法およびその装置
JP2016534332A (ja) * 2013-07-26 2016-11-04 マーポス、ソチエタ、ペル、アツィオーニMarposs S.P.A. 機械加工されている物体の厚さを干渉法により光学的に測定するための方法及び装置
CN112902880A (zh) * 2021-01-22 2021-06-04 大连理工大学 一种平面构件平行度的测量方法和装置
CN112902900A (zh) * 2021-01-22 2021-06-04 大连理工大学 一种弱刚性平面构件的平行度测量方法

Similar Documents

Publication Publication Date Title
JP4710078B2 (ja) 表面形状の測定方法およびこれを用いた装置
US6501553B1 (en) Surface profile measuring method and apparatus
JP4939304B2 (ja) 透明膜の膜厚測定方法およびその装置
TWI467127B (zh) Means, observation means and an image processing method for measuring the shape of
Beraldin et al. Metrological characterization of 3D imaging systems: progress report on standards developments
JP2012521005A (ja) 光学式ゲージ及び3次元表面プロファイル測定方法
JP6937482B2 (ja) 表面形状測定装置及びそのスティッチング測定方法
CN105209852B (zh) 表面形状测量方法以及其装置
CN104833311A (zh) 用于结构照明显微术的图像序列和评估方法及系统
JP5663758B2 (ja) 形状測定方法及び形状測定装置
JP2009098215A (ja) 顕微鏡装置、及び顕微鏡装置における位相変化量の算出方法。
JP2010060420A (ja) 表面形状および/または膜厚測定方法およびその装置
EP1899677A2 (en) Method of reconstructing a surface topology of an object
JP5057848B2 (ja) 透明膜の屈折率測定方法およびその装置並びに透明膜の膜厚測定方法およびその装置
JP2004340680A (ja) 表面形状および/または膜厚測定方法及びその装置
JP4183089B2 (ja) 表面形状および/または膜厚測定方法およびその装置
JP6388722B2 (ja) 干渉非接触光プローブおよび測定
JP4192038B2 (ja) 表面形状および/または膜厚測定方法及びその装置
JP5667891B2 (ja) 形状計測方法
JP2006329807A (ja) 画像処理方法およびこれを用いた装置
JP2009216702A (ja) 光学的計測装置
JP2010151781A (ja) 周波数推定方法、周波数推定装置、表面形状測定方法及び表面形状測定装置
JP2015081894A (ja) 表面形状測定装置及び表面形状測定方法
JP2010185844A (ja) 表面形状測定方法およびこれを用いた装置
Hinz et al. A 3d measuring endoscope for use in sheet-bulk metal forming: Design, algorithms, applications and results