JP4558261B2 - 固体電解質型燃料電池 - Google Patents
固体電解質型燃料電池 Download PDFInfo
- Publication number
- JP4558261B2 JP4558261B2 JP2002175789A JP2002175789A JP4558261B2 JP 4558261 B2 JP4558261 B2 JP 4558261B2 JP 2002175789 A JP2002175789 A JP 2002175789A JP 2002175789 A JP2002175789 A JP 2002175789A JP 4558261 B2 JP4558261 B2 JP 4558261B2
- Authority
- JP
- Japan
- Prior art keywords
- separator
- gas
- supply manifold
- reaction
- fuel gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【発明の属する技術分野】
本発明は、セパレータとセルを交互に積層した積層体(スタック)を有する固体電解質型燃料電池に関する。
【0002】
【従来の技術】
従来、600℃〜800℃程度の反応温度で作動する低温作動形の固体電解質型燃料電池(SOFC)の一例として、単セル等のセルとセパレータとを交互に積層したスタック(積層体)タイプがある。この固体電解質型燃料電池では、反応ガスとして燃料ガスと酸化剤ガスを用い、セラミック等からなる固体電解質板を両側から正極と負極とで挟み込んでなるセルとセパレータとを交互に積層して構成されている。セパレータの正極側と負極側にそれぞれ形成した反応ガス流路の一方に酸素や空気等の酸化剤ガスを供給し、他方に水素等の燃料ガスを供給して、セルを通過した酸化剤ガスを燃料ガスと化学反応させて発電させるようにしている。
このような固体電解質型燃料電池では、セパレータ両面の反応ガス流路に反応ガスを供給するための反応ガス供給マニホールドを、セル及びセパレータを積層したスタックの外側に取り付けていて、反応ガス供給マニホールドから各セパレータ両面に燃料ガスと酸化剤ガスを分配供給することになる。
また別の固体電解質型燃料電池として、例えば特開平3−129675号公報に開示されたものがあり、この燃料電池では反応ガス供給マニホールドをスタックの中心軸付近に嵌挿させて各セパレータの両側の凹溝に反応ガスをそれぞれ分配するようにしている。
【0003】
【発明が解決しようとする課題】
しかし、これらスタック構成の固体電解質型燃料電池では、発電時にスタックの積層方向の上下両端部と中央部とで温度差を生じる欠点がある。その原因は、スタックの中央部ではその上下両側にセルとセパレータからなる発熱体があるために熱の移動が少ないのに対して、上下両端部ではその外側に発熱体がないためにスタックの固定板を通して熱がスタック外部に逃げてしまい中央部と比較して低温になってしまうためである。
固体電解質型燃料電池で発電する電圧は温度の低い領域で温度の高い領域より低くなる傾向にある。そのため、スタックの積層方向での発電時の温度分布が上部及び下部領域で低く中央部領域で高くなると、上部及び下部のセルでの電圧が他のセルでの電圧に比較して格段に低くなり、発電出力が上下部での電圧に規制されてスタック全体の発電出力低下の要因になっていた。
本発明は、このような実情に鑑みて、積層体の積層方向端部における温度を向上させることで、発電出力を高めることができるようにした固体電解質型燃料電池を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明による固体電解質型燃料電池は、セパレータとセルとが交互に積層された積層体の各セパレータに反応ガスを供給して発電させるようにした固体電解質型燃料電池であって、積層体の外周側には、反応ガスとして燃料ガスを供給する燃料ガス供給マニホールドと反応ガスとして酸化剤ガスを供給する酸化剤ガス供給マニホールドと熱媒体として燃料ガスまたは酸化剤ガスを供給する媒体供給マニホールドと加熱された前記熱媒体を供給する加熱媒体供給マニホールドとを備え、セパレータは積層体の積層方向両端に設けた端部側セパレータと中央部に設けた中央部側セパレータと端部側及び中央部側セパレータの間に設けた中間部セパレータとを備え、各セパレータは4本の渦巻き管が位相をずらせて同一面状にはめ込まれて配設され且つこれら渦巻き管の中央部に分岐プラグが嵌合されてなり、
積層体両端部の温度を上昇させることで、積層体の積層方向中央部の温度に積層方向両端部の温度が同程度になるよう調整する温度調整手段を設けており、中央部側セパレータでは、燃料ガス供給マニホールドと酸化剤ガス供給マニホールドとから第一及び第二の渦巻き管内に燃料ガスと酸化剤ガスがそれぞれ供給されて分岐プラグを介してセルを通過した燃料ガスと酸化剤ガスが化学反応して反応熱を発生させると共に、温度調整手段は、媒体供給マニホールドから中央部側セパレータの第三の渦巻き管内に供給された熱媒体を分岐プラグで第四の渦巻き管に連通させて加熱媒体供給マニホールドに送ることで、熱媒体を発電反応させることなく燃料ガス及び酸化剤ガスの反応熱を奪って熱交換して加熱媒体とし、この加熱媒体を加熱媒体供給マニホールドから端部側セパレータに移送する熱媒体移送機構であることを特徴とする。
温度調整手段を設けることで、積層方向端部の温度を中央部の温度と同程度になるよう調整してより均一な温度状態に設定でき、発電出力を高めることができる。
また、反応ガスによる発電反応熱及び燃焼熱等の熱に起因する温度は積層体の中央部の方が端部よりも高いため、中央部の熱を熱媒体によって置換してこの熱媒体を積層体の端部に供給することで積層体中央部の温度を下げると共に端部の温度を上昇させることができ、これによって積層体の温度分布を比較的高い温度にして容易に均一に設定できて出力を向上できる。
【0005】
また、前記熱媒体は酸化剤ガスまたは燃料ガスであり、前記積層体の中央部側セパレータで熱を奪って熱媒体の温度を上昇させて積層体の端部側セパレータに反応ガスとして供給するようにしてもよい。
熱媒体として酸化剤ガスまたは燃料ガスを用い、積層体の中央部側セパレータで熱を奪って熱媒体の温度を上昇させて積層体の端部側セパレータでの反応ガスとして供給すれば、効率的な利用ができる。
【0006】
また、積層体の積層方向両端部に加熱機構を設けてもよい。
積層体の積層方向において比較的発電温度の低い端部を加熱機構で加熱すれば、端部側セパレータの温度を上昇させることができて全体の温度分布をより均一に設定できるから積層体の出力を向上できる。この発明によれば、積層体中央部の熱を奪わないために全体の温度分布をより高い状態に設定できて出力を上げることができる。
【0007】
また、積層体の積層方向中央部への反応ガス供給量よりも積層方向端部への反応ガス供給量を多くしてもよい。
積層体の端部側セパレータへの反応ガス供給量を多く設定することで、この領域の発電反応熱及び燃焼熱を上昇させることができ、全体の温度分布をより均一に設定できて積層体の出力を向上できる。この発明によれば、積層体中央部の熱を奪わないために全体の温度分布をより高い状態に設定できて出力を上げることができる。
尚、積層体の端部側セパレータへの反応ガス供給量を多く設定するためには、端部側セパレータに反応ガスを送り出す反応ガス供給細管及びセパレータ供給管の内径を他のセパレータにおける上記管より大きく設定すればよい。
【0008】
また反応ガス供給マニホールドとセパレータとの間で反応ガスを供給するための反応ガス供給管及び反応ガス供給細管を接続する連結管として、反応ガス供給管及び反応ガス供給細管の接続部を二重管構造に設定すると共に連結管の貫通孔内に熱膨張係数の高いシール金属を介して嵌合させて締め付けナット等の固着部材で固着する構成を採用するとよい。
温度変化で連結管部分が熱膨張しても、シール金属が他の部品よりも大きく熱膨張するために、反応ガス供給管及び反応ガス供給細管と連結管の貫通孔との熱膨張差で生じ得る間隙をシール金属で封止することができ、反応ガス漏れ等を生じない。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態による固体電解質型燃料電池を図1乃至図16により説明する。
実施の形態による固体電解質型燃料電池1は、例えば図1及び図2に示すように外観略円柱状を呈していて、円板状のセパレータ2と発電セル、例えば略円板状のセル3とが交互に積層されたスタック(積層体)4として概略構成されている。尚、各セル3の両面には多孔質金属板等の図示しない燃料極側集電材と空気極側集電材とがそれぞれ配設されている。スタック4の積層方向両端、例えば上下両端にはそれぞれセパレータ2が配設されている。セル3の外径を例えば155mmとすると、セパレータ2の外径は例えば165mm程度になる。
スタック4は上下両端のセパレータ2、2の更に外側に上部固定板6(第一固定板)と下部固定板7(第二固定板)とを有しており、両固定板6,7は積層されたセパレータ2及びセル3を挟持した状態で複数のテンションボルト8によって連結されている。テンションボルト8はスプリング8aによって上下部固定板6,7間距離を狭める方向に弾性力を付与して、積層されたセパレータ2及びセル3の外周面近傍に装着されている。
その外側には上下部固定板6,7間に4本の反応ガス供給マニホールドが周方向に例えば90°間隔で取り付けられている。反応ガスとして例えば水素ガス等の燃料ガスと例えば酸素や空気等の酸化剤ガスとを用いるものとする。4本の反応ガス供給マニホールドは燃料ガス供給マニホールド10A、空気供給マニホールド10B、第二空気供給マニホールド10C、加熱空気供給マニホールド10Dとで構成されている。
上部固定板6の中央部にはセパレータ2及びセル3と反対側に加熱機構11と空気極電極9Aが配設され、下部固定板7の中央部にもセパレータ2及びセル3と反対側に加熱機構12と燃料極電極9Bが配設されている。
【0010】
セパレータ2は図3乃至図5に示すように複数種類、例えば3種類のものからなる。例えばスタック4が26枚のセパレータ2と25枚のセル3を交互に積層した25段の積層構造を有する場合、図3に示すものが上下端部に位置する端部側セパレータ2A、図4に示すものが中央部側セパレータ2B、図5に示すものが両セパレータ2A、2B間に位置する中間部側セパレータ2Cを構成している。
各セパレータ2は、いずれも図6に示す渦巻き管13を4本、例えば90°づつ位相をずらせて順次同一面上に嵌め込んで略リング状に形成した渦巻き部14を有しており、その両面に円板状の平板15(図7参照)を溶接等で固着すると共に、渦巻き部14及びその両側の平板15、15の中央部に分岐プラグ16(図8参照)を嵌合させて構成されている。
図6に示す渦巻き管13は渦巻き状をなす中空の管13aの内側端部13bが湾曲して径方向内側に向いており、外側端部13cは接線方向外側に延びて例えばセラミック製等の絶縁材質からなる連結管18に連結されている。図7に示す平板15は中央に分岐プラグ16を嵌合する中央孔15aを有しており、セル3の外径と同一寸法の円形段部15bとその外側のリング状鍔部15cとからなり、鍔部15cには位置決め用の凹部15dが所定間隔で設けられている。
図8(a)、(b)、(c)に示す分岐プラグ16は、表裏両面にそれぞれ形成された円周溝17a、17bと、外周面から周方向に適宜の順番で90°間隔に形成された孔部18a、18b、18c、18dと、これら4つの孔部のうちの一対の反応ガス孔部18a、18bと円周溝17a、17bをそれぞれ連通する開口19a、19bとを有している。
【0011】
特に図8(a)に示す端部側分岐プラグ16Aは端部側セパレータ2Aに装着され、4本の渦巻き管13のうちの2本の反応ガス供給用の渦巻き管13、13の内側端部13b、13bが90°離れ且つ開口19a,19bを介して円周溝17a、17bにそれぞれ連通する反応ガス孔部18a,18bに嵌合し、他の2本の渦巻き管13,13の内側端部13b、13bが嵌合する孔部18c、18dは閉鎖されて袋止めされている。
図8(b)に示す中央部側分岐プラグ16Bは中央部側セパレータ2Bに装着され、4本の渦巻き管13のうちの2本の反応ガス供給用の渦巻き管13、13の内側端部13b、13bが180°対向し且つ開口19a,19bを介して円周溝17a、17bにそれぞれ連通する反応ガス孔部18a,18bに嵌合し、他の2本の渦巻き管13,13の内側端部13b、13bが嵌合する孔部18c、18dは互いに連通する構成を有している。
図8(c)に示す中間部側分岐プラグ16Cは中間部側セパレータ2Cに装着され、4本の渦巻き管13のうちの2本の反応ガス供給用の渦巻き管13、13の内側端部13b、13bが180°対向し且つ開口19a,19bを介して円周溝17a、17bにそれぞれ連通する反応ガス孔部18a,18bに嵌合し、他の2本の渦巻き管13,13の内側端部13b、13bが嵌合する孔部18c、18dは閉鎖されて袋止めされている。
【0012】
次にこのような分岐プラグ16を装着した3種のセパレータ2A、2B、2Cについて説明する。各セパレータ2A、2B、2Cは、図1において、スタック4の上部と下部に端部側セパレータ2Aを例えば各4枚積層し、中央部側セパレータ2Bは例えば8枚積層し、中央部側セパレータ2Bと上下部の端部側セパレータ2Aとの間に中間部側セパレータ2Cを各5枚積層した構成を有している。尚、各層のセパレータ2A、2B,2Cはそれぞれ任意の1または複数枚のセパレータを積層して構成してよい。
図3に示す端部側セパレータ2Aは、互いに90°づつ周方向にずらして嵌合された4本の渦巻き管13のうち、隣接する2つの渦巻き管13,13を反応ガス用として外側端部13c、13c及び連結管18,18を突出させる。これらの外側端部13c、13cの一方を燃料ガス供給管13Aとし、他方を加熱空気供給管13Dとしてそれぞれ渦巻き管13内に反応ガスを送り込んで、内側端部13b、13b及び開口19a,19bを介して両面の円周溝17a、17bからそれぞれ吐出させることになる。尚、残りの渦巻き管13、13の外側端部13c、13cは渦巻き部14の外周端で切断しておく。
【0013】
また図4に示す中央部側セパレータ2Bは、互いに90°づつ周方向にずらして嵌合された4本の渦巻き管13について各外側端部13c及び連結管18をそれぞれ外側に突出させる。これらの各外側端部13cのうち3本は、燃料ガス供給管13A、空気供給管13B、第二空気供給管13Cとしてそれぞれ反応ガスを渦巻き管13内に送り込むことになる。残りの外側端部13cは加熱空気供給管13D′を構成し、第二空気供給管13Cから渦巻き管13内に送り込まれた空気が中央側分岐プラグ16Bを介してスタック4内中央部の反応熱で加熱されて加熱空気供給管13D′へ送り出されることになる。
図5に示す中間部側セパレータ2Cは、互いに90°づつ周方向にずらして嵌合された4本の渦巻き管13のうち、180°対向する2つの渦巻き管13,13について外側端部13c、13c及び連結管18,18を突出させる。これらの外側端部13c、13cの一方を燃料ガス供給管13Aとし、他方を空気供給管13Bとしてそれぞれ渦巻き管13内に反応ガスを送り込んで、内側端部13b、13b及び開口19a,19bを介して両面の円周溝17a、17bからそれぞれ吐出させることになる。尚、残りの渦巻き管13、13の外側端部13c、13cは渦巻き部14の外周端で切断しておく。
【0014】
次にスタック4における4本の反応ガス供給マニホールド10A〜10Dと各セパレータ2との接続構成について説明する。先ず燃料ガス供給マニホールド10Aは、図9に示すようにスタック4の全てのセパレータ2に設けた燃料ガス供給管13Aとそれぞれ連結されている。燃料ガス供給マニホールド10Aから長手方向に沿って両側に交互にずれて分岐する燃料ガス供給細管10Aaと10Abが千鳥状に配列されており、左右の各燃料ガス供給細管10Aa、10Abは積層された各セパレータ2の燃料ガス供給管13Aと連結管18を介してそれぞれ連結されている(図14参照)。
連結管18による連結構造を図10により説明する。連結管18は略円筒状の絶縁用セラミック管を構成し、内部を貫通する貫通孔21は両側の拡管孔部21a、21bと連通孔部21cとで構成され、外周面両側には雄ねじ部22a、22bが設けられている。一方、燃料ガス供給細管10Aa、10Abと燃料ガス供給管13Aの先端部には外側管23が嵌合させられて先端部をそろえて溶接された二重管構造を有している。
これら燃料ガス供給細管10Aa、10Abと燃料ガス供給管13Aの各先端部に熱膨張率の比較的大きい銅等のリング状のシール金属24を付着して拡管孔部21a、21bに嵌入することで、各先端部を連結管18に嵌合できる。連通孔部21cの内径を各供給細管10Aa、10Ab、供給管13Aの内径と略同一に設定することで、反応ガス流速を阻害する(圧力損失になる)ことを防止できる。また連結管18の外周面両側の雄ねじ部22a、22bに、供給細管10Aa、10Ab、供給管13Aの外径と同程度の穴を開けた締め付けナット25,25を螺合させることで供給細管10Aaまたは10Abと供給管13Aを非接触で結合できる。締め付けナット25は例えば六角袋ナット形状を有している。
しかもセパレータ2の積層方向に隣り合う連結管18.18は互いに接触しないように供給細管10Aa、10Abまたは供給管13Aの延在方向に交互にずれている(図9参照)。この連結管18の構成は他のマニホールド10B,10C、10Dとセパレータ2とを接続させる連結管18においても同様である。
【0015】
図1において、空気供給マニホールド10Bは、スタック4に対して例えば燃料ガス供給マニホールド10Aと対向する位置に取り付けられていて、中央部側セパレータ2B及びその上下の中間部側セパレータ2C、2Cの各セパレータ2に空気を供給するために、これらセパレータ2の空気供給管13Bとそれぞれ連結されている。即ち、空気供給マニホールド10Bから長手方向に沿って両側に交互にずれて分岐された空気供給細管10Baと10Bbとが千鳥状に配列されており、左右の各空気供給細管10Ba、10Bbは積層された各セパレータ2の空気供給管13Bと連結管18を介してそれぞれ連結されている(図14〜図16参照)。
第二空気供給マニホールド10Cは、中央部側セパレータ2Bの8枚の各セパレータ2に空気を供給するために、これらセパレータ2の第二空気供給管13Cとそれぞれ連結されている。即ち、第二空気供給マニホールド10Cから長手方向に沿って両側に交互にずれて分岐された第二空気供給細管10Caと10Cbとが千鳥状に配列されており、左右の各第二空気供給細管10Ca、10Cbは積層された各セパレータ2の第二空気供給管13Cと連結管18を介してそれぞれ連結されている。
中央部側セパレータ2Bにおいて、第二空気マニホールド10Cから各第二空気供給細管10Ca、10Cbを通って第二空気供給管13Cに供給された第二空気は渦巻き管13内を流れて中央部側セパレータ2B内で発電反応に用いられることなく反応熱を奪う。そして中央部側分岐プラグ16Bの孔部18c、18dを通って加熱された空気として他の渦巻き管14内の加熱空気供給管13D′、加熱空気供給細管10D′a、10D′bを通って加熱空気供給マニホールド10D内に貯蔵される。これらの構成を媒体移送機構(温度調整手段)という。尚、媒体として、第二空気、加熱空気等の酸化剤ガスまたは燃料ガス等を採用してよい。
【0016】
加熱空気供給マニホールド10Dは、中央部側セパレータ2Bの8枚の各セパレータ2から加熱された空気を送り込まれ、そしてこれら加熱空気を上下部の端部側セパレータ2A、2Aの各4枚のセパレータ2に供給するために、これらセパレータ2の加熱空気供給管13Dとそれぞれ連結されている。即ち、加熱空気供給マニホールド10Dから長手方向に沿って両側に交互にずれて分岐する加熱空気供給細管10Daと10Dbとが千鳥状に配列されており、左右の各加熱空気供給細管10Da、10Dbは積層された各セパレータ2の加熱空気供給管13Dと連結管18を介してそれぞれ連結されている。この構成も媒体移送機構に含まれる。
またスタック4において、図14〜図16に示すように、上部側から順次積層する4枚の端部側セパレータ2A、5枚の中央部側セパレータ2B、8枚の中間部側セパレータ2C、5枚の中央部側セパレータ2B、4枚の端部側セパレータ2Aで、各マニホールド10A、10B、10C、10Dを挟んでその両側にセパレータ1枚分の段差を介して対向する2枚のセパレータの各2本の供給管13A、13B,13C、13Dは平面視で略180°離間し且つ連結管18が対向するように形成されて各渦巻き部14がそれぞれ積層されている。
【0017】
次に上下部固定板6、7に設けた加熱機構11、12(温度調整手段)と両電極9A、9Bについて図11乃至図13により説明する。
図11乃至図13において、スタック4の一端に位置する上端セパレータ2にはスタック4の出力(電圧・電流)を取り出すための電極板26が直接接触しており、その中央部には上部固定板6を貫通して上方に延びる電極棒27が設けられている。電極板26は例えば空気極(+)であって略円板状に形成されており、電極板26の上端セパレータ2への接触面にはセパレータ2と同軸の円板状の中央凹部26aが形成され、この中央凹部26aから電極板26の外周面に向けて放射状に複数条(図では12条)の凹溝26bが連通して設けられている(図13参照)。
図13に示すように、電極板26の中央凹部26a内には略円板状の分離板28が連結されており、この分離板28によって中央凹部26aは上部空間29aと下部空間29bとに2分されている。下部空間29b内には上端のセパレータ2の端部側分岐プラグ16Aから供給される燃料ガスが充満することになる。上部空間29a内には上部固定板6及び電極板26を貫通して加熱用燃料ガス供給管30と加熱用空気供給管31とが開口しており、加熱用燃料ガス供給管30と空気供給管31とはそれぞれ連結管18を介して図示しない燃料供給源と空気供給源とに接続されている。
【0018】
そして発電当初においては、上端のセパレータ2からの燃料ガスの供給が十分でないために加熱用燃料ガス供給管30及び空気供給管31から燃料ガスと空気を中央凹部26a内に供給して分離板28の外側で燃焼させてスタック4の上部領域を加熱する。燃焼後の排気ガスは凹溝26bを通して排出される。反応の進行によってスタック4内の温度が上昇すると上端のセパレータ2からの燃料ガスの供給が進むために加熱用燃料ガス供給管30を絞っていき、最終的には加熱用空気供給管31を通して空気のみを中央凹部26a内に供給することでスタック4全体の均熱を得るように制御する。
尚、下部固定板7にも加熱機構11と同一構成の加熱機構12が設けられている。この場合、加熱機構11と相違する点は、下端のセパレータ2から中央凹部26a内に空気が供給されてくるために、加熱用燃料ガス供給管30及び空気供給管31のうちの空気供給管31を徐々に絞って燃料ガスのみを加熱用燃料ガス供給管30から供給するように制御する点である。
【0019】
本実施の形態による固体電解質型燃料電池1は上述の構成を有しており、次に作用を説明する。
図1及び図2に示す固体電解質型燃料電池1において、発電開始時に加熱ガスをスタック4の外周部に供給して雰囲気温度を上昇させてスタック4が発電温度になるまで加熱する。スタック4が発電温度に到達すると加熱ガスの供給を停止し、燃料ガスや空気を反応ガスとしてスタック4に供給する。
燃料ガス供給マニホールド10Aと空気供給マニホールド10Bと第二空気供給マニホールド10Cには、スタック4の外部に設置された図示しない予熱構造部で加熱(例えば約450〜550℃)された反応ガスが供給される。尚、空気供給マニホールド10Bと第二空気供給マニホールド10Cへ供給される各空気は略同一の温度である。
このうち、燃料ガス供給マニホールド10Aでは供給された燃料ガスが、燃料ガス供給マニホールド10Aの両側に互い違いに千鳥配列された複数の燃料ガス供給細管10Aa、10Abに送られ、連結管18及び燃料ガス供給管13Aを介してスタック4の全てのセパレータ2内に供給される。そして燃料ガス用の渦巻き管13の中心部である分岐プラグ16A,B,Cに送られて発電反応に供される。
またスタック4の中心側セパレータ部2B及び中間部側セパレータ部2Cでは、空気供給マニホールド10B内の空気が、空気供給マニホールド10Bの両側に互い違いに千鳥配列された複数の空気供給細管10Ba、10Bbに送られ、連結管18及び空気供給管13Bを介して各セパレータ2内に供給される。そして空気用の渦巻き管13の中心部である分岐プラグ16B,Cに送られて発電反応に供される。空気中の酸素イオンはセル3の固体電解質板内を正極側から負極側に移動して隣接するセパレータ2に供給された燃料ガス中の例えば水素イオンや一酸化炭素イオンと化学反応して発熱と電位差を生じる。
【0020】
同時に中央部側セパレータ2Bでは、第二空気供給マニホールド10Cから両側に互い違いに千鳥配列された複数の第二空気供給細管10Ca、10Cb、連結管18及び第二空気供給管13Cを介して、第二空気がセパレータ2内に供給される。そして第二空気用の渦巻き管13の中心部である分岐プラグ16Bに送られる。この第二空気は発電反応に用いられることはなく、中央部セパレータ2B内での発電反応による反応熱及び燃焼熱と置換し、中央部セパレータ2B内の温度を低下させると共に第二空気を加熱して別の渦巻き管13、加熱空気供給管13D′を介して加熱空気供給マニホールド10D内に送り込まれる。
そして、加熱空気供給マニホールド10D内に送られた加熱空気は、加熱空気供給細管10Da、10Db、連結管18を介して加熱空気供給管13Dから上下部の各端部側セパレータ2A、2Aの各セパレータ2内に送り込まれる。これらセパレータ2内では、加熱空気用の渦巻き管13内を流れる加熱空気は分岐プラグ16Aからセル3に吐出され、セル3の正極側から負極側に移動して隣接するセパレータ2に供給された燃料ガスと発電反応する。
このような作用によって、発電時に比較的高温になるスタック4の中央部側セパレータ2Bでは第二空気供給管13C及び加熱空気供給管13D′を通して熱を奪われることで反応温度を下げると共に、比較的低温になる上下部の端部側セパレータ2A、2Aでは加熱空気を供給することでこの領域の反応熱及び燃焼熱を上昇させることができる。これによってスタック4の積層方向全域に亘る温度差、特に中央部と両端部との温度差を低減させることができる。
【0021】
更にスタック4の上下部には加熱機構11、12を備えており、この構成によっても温度差を更に抑制できる。即ち、発電開始時にスタック4の上端と下端のセパレータ2にも上述のように燃料ガスと空気がそれぞれ供給される。加熱機構11では、上部のセパレータ2の中央から燃料ガスが電極板26の中央凹部26a内の下部空間29bに供給され、同時に加熱用燃料ガス及び空気供給管30,31からも空気(や燃料ガス)が上部空間29aに供給される。そして中央凹部26a内で反応することで燃焼させてスタック4の上部を加熱する。
しかも加熱機構12でも同様に、下部のセパレータ2の中央から空気が電極板26の中央凹部26aの下部空間29b内に供給され、加熱用燃料ガス及び空気供給管30,31からも空気(や燃料ガス)が上部空間29a内に供給される。そして中央凹部26a内で反応することで燃焼させてスタック4の下部を加熱する。尚、加熱機構12では加熱機構11に対して上部空間29aと下部空間29bの配置が上下逆になっている。
このような制御によってスタック4の上下部側セパレータ2Aの温度を上昇させることによってスタック4の積層方向上下部と中央部の温度差を補正して温度を均一化(均熱)できる。
更に上下部側セパレータ2Aに燃料ガスを供給する燃料ガス供給細管10Aa、10Ab、連結管18及び燃料ガス供給管13Aの内径を他の領域のセパレータ2B,2Cに供給する各管よりも大きく設定することで、上下部における反応熱及び燃焼熱を上昇させることができ、スタック4のより均一な温度分布を得ることができる。
【0022】
また従来の連結管では、絶縁用セラミック管の貫通孔内面の両側に雌ねじを切ると共に反応ガス供給用の管体の外周面に雄ねじを切ることで、両管体を連結管に非接触の状態で螺合させる構成を有していた。しかしながらこの構成では雄ねじを切るために管体の肉厚を大きくとる必要があり、また連結管と管体を完全にシールした状態で締め付け固定できないために、内部のガス流量が大きくて内圧が上昇した場合には不十分な接合部から反応ガスが漏れるおそれがあった。
これに対して本実施の形態では、燃料ガス供給細管10Aa、10Ab等と燃料ガス供給管13A等を二重管に形成して連結管18の拡管孔部21a、21bに押し込み嵌合し、締め付けナット25で抜き出し不能に固着している。しかも他の部材よりも熱膨張係数の大きいシール金属24を各管の先端に介在させたことで熱膨張時にガス漏れが生じるのを確実に防止できる。
【0023】
上述のように本実施の形態による固体電解質型燃料電池1は、媒体移送機構を用いてスタック4の上下部側セパレータ2Aの温度を上昇させると共に中央部側セパレータ2Bの温度を低下させることで、スタック4の積層方向全体に亘る温度分布をより容易に均一に制御してスタック4の均熱を得ることができる。更に加熱機構11,12を設けることで、また端部側セパレータ2Aに供給する反応ガス量を他のセパレータより多く設定することで、両端部側をより高い温度に設定できてスタックの均熱を得ることができる。これによってスタック4の出力を増大できる。
また連結管18に対して燃料ガス供給細管10Aa、10Ab等と燃料ガス供給管13A等とを押し込み嵌合としてシール金属でガスの漏洩を確実に防止することができる。
【0024】
尚、上述の実施の形態においては、スタック4の温度差を抑制するために3種類の手段を設けたがいずれか1つまたは2つの手段だけを任意に選択して採用してもよい。この場合でも、スタック4の積層方向の温度差を十分調整することができる。
特に加熱機構11、12を設けた場合または/及び上下部の端部側セパレータ2Aへ供給する燃料ガス及び加熱ガスの供給量を増大させた場合には、中央部側セパレータ2Bの反応熱を奪うものでないためにスタック4全体の温度分布をより高い状態で均一に制御できて、スタック4の出力電圧や出力電流を上昇させることができる。
また上述の実施の形態ではセパレータ2の反応ガス流路を4本の渦巻き管13で構成したが、これに代えて上述した従来の技術と同様に、反応ガス流路として円板状のセパレータ両面に2条または4条の凹溝を形成するようにしてもよい。
なお、本発明において、第二空気供給マニホールドは媒体供給マニホールドを構成し、加熱空気供給マニホールドは加熱媒体供給マニホールドを構成する。
【0025】
【発明の効果】
本発明による固体電解質型燃料電池は、積層体端部の温度を上昇させることで中央部との温度差を低減させて温度分布をより均一に設定でき、発電出力を向上できる。
特に積層体中央部の熱を奪って端部に供給すれば温度分布の均一性をより向上できる。また積層体中央部の熱を奪わずに端部の温度を上昇させることで、温度分布をより高く設定できてより高い出力を得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態による固体電解質型燃料電池を空気供給マニホールド側から見た側面図である。
【図2】 図1に示す固体電解質型燃料電池の平面図である。
【図3】 上下部の端部側セパレータにおける1つのセパレータの平面図である。
【図4】 中央部側セパレータにおける1つのセパレータの平面図である。
【図5】 中間部側セパレータにおける1つのセパレータの平面図である。
【図6】 セパレータの渦巻き管を示すもので、(a)は平面図、(b)は側面図である。
【図7】 セパレータの平板を示すもので、(a)は平面図、(b)は側面図である。
【図8】 分岐プラグの平面図と側面図を示すもので、(a)は上部側または下部側セパレータに装着する端部側分岐プラグ、(b)は中央部側セパレータに装着する中央部側分岐プラグ、(c)は中間部側セパレータに装着する中間部側分岐プラグである。
【図9】 固体電解質型燃料電池を燃料ガス供給マニホールド側から見た側面図である。
【図10】 連結管を示す図であり、(a)は正面図、(b)は側面図、(c)は縦断面図である。
【図11】 加熱機構と空気極側電極の側面図である。
【図12】 電極板をセパレータ側から見た平面図である。
【図13】 図11に示す加熱機構の要部拡大図図である。
【図14】 スタックの空気極側から見た最上段の端部側セパレータの管連結構造を示す平面図である。
【図15】 スタックの空気極側から見た中央部側セパレータの管連結構造を示す平面図である。
【図16】 スタック最下段の端部側セパレータの管連結構造を示す平面図である。
【符号の説明】
1 固体電解質型燃料電池
2 セパレータ
2A 端部側セパレータ
2B 中央部側セパレータ
2C 中間部側セパレータ
3 セル
4 スタック
10A 燃料ガス供給マニホールド
10B 空気供給マニホールド(酸化剤ガス供給マニホールド)
10C 第二空気供給マニホールド(第二酸化剤ガス供給マニホールド)
10D 加熱空気供給マニホールド(加熱酸化剤ガス供給マニホールド)
10Aa、10Ab 燃料ガス供給細管(反応ガス供給細管)
10Ba、10Bb 空気供給細管(反応ガス供給細管)
10Ca、10Cb 第二空気供給細管(反応ガス供給細管)
10Da、10Db 加熱空気供給細管(反応ガス供給細管:温度調整手段)
11、12 加熱機構(温度調整手段)
13A 燃料ガス供給管(反応ガス供給管)
13B 空気供給管(反応ガス供給管)
13C 第二空気供給管(反応ガス供給管:温度調整手段)
13D、13D′ 加熱空気供給管(反応ガス供給管:温度調整手段)
Claims (4)
- セパレータとセルとが交互に積層された積層体の各セパレータに反応ガスを供給して発電させるようにした固体電解質型燃料電池であって、
前記積層体の外周側には、反応ガスとして燃料ガスを供給する燃料ガス供給マニホールドと反応ガスとして酸化剤ガスを供給する酸化剤ガス供給マニホールドと熱媒体として燃料ガスまたは酸化剤ガスを供給する媒体供給マニホールドと加熱された前記熱媒体を供給する加熱媒体供給マニホールドとを備え、
前記セパレータは積層体の積層方向両端に設けた端部側セパレータと中央部に設けた中央部側セパレータと端部側及び中央部側セパレータの間に設けた中間部セパレータとを備え、前記各セパレータは4本の渦巻き管が位相をずらせて同一面状にはめ込まれて配設され且つこれら渦巻き管の中央部に分岐プラグが嵌合されてなり、
前記積層体両端部の温度を上昇させることで、前記積層体の積層方向中央部の温度に積層方向両端部の温度が同程度になるよう調整する温度調整手段を設けており、
前記中央部側セパレータでは、前記燃料ガス供給マニホールドと前記酸化剤ガス供給マニホールドとから第一及び第二の前記渦巻き管内に前記燃料ガスと酸化剤ガスがそれぞれ供給されて前記分岐プラグを介してセルを通過した前記燃料ガスと前記酸化剤ガスが発電反応して反応熱を発生させると共に、
前記温度調整手段は、前記媒体供給マニホールドから前記中央部側セパレータの第三の前記渦巻き管内に供給された熱媒体を前記分岐プラグで第四の前記渦巻き管に連通させて前記加熱媒体供給マニホールドに送ることで、前記熱媒体を発電反応させることなく前記燃料ガス及び酸化剤ガスの反応熱を奪って熱交換して加熱媒体とし、この加熱媒体を前記加熱媒体供給マニホールドから端部側セパレータに移送する熱媒体移送機構であることを特徴とする固体電解質型燃料電池。 - 前記熱媒体は酸化剤ガスまたは燃料ガスであり、前記積層体の中央部側セパレータで熱を奪って熱媒体の温度を上昇させて積層体の前記端部側セパレータに反応ガスとして供給するようにした請求項1に記載の固体電解質型燃料電池。
- 前記積層体の積層方向両端部に加熱機構を設けたことを特徴とする請求項1または2に記載の固体電解質型燃料電池。
- 前記積層体の積層方向中央部への反応ガス供給量よりも積層方向両端部への反応ガス供給量を多くしたことを特徴とする請求項2または3に記載の固体電解質型燃料電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002175789A JP4558261B2 (ja) | 2002-06-17 | 2002-06-17 | 固体電解質型燃料電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002175789A JP4558261B2 (ja) | 2002-06-17 | 2002-06-17 | 固体電解質型燃料電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004022343A JP2004022343A (ja) | 2004-01-22 |
JP4558261B2 true JP4558261B2 (ja) | 2010-10-06 |
Family
ID=31174343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002175789A Expired - Fee Related JP4558261B2 (ja) | 2002-06-17 | 2002-06-17 | 固体電解質型燃料電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4558261B2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006012548A (ja) * | 2004-06-24 | 2006-01-12 | Mitsubishi Materials Corp | 固体酸化物形燃料電池 |
JP5212762B2 (ja) * | 2005-05-17 | 2013-06-19 | 日産自動車株式会社 | 燃料電池スタック構造体の温度制御方法及び燃料電池スタック構造体 |
JP4897301B2 (ja) * | 2006-02-03 | 2012-03-14 | 日本電信電話株式会社 | 固体酸化物形燃料電池 |
JP2007280652A (ja) * | 2006-04-03 | 2007-10-25 | Tokyo Gas Co Ltd | 平板型固体酸化物形燃料電池スタック及びその燃料欠乏回避方法 |
EP2023431B1 (en) * | 2006-05-29 | 2017-07-05 | NGK Spark Plug Co., Ltd. | Solid electrolyte fuel cell stack |
CA2640355A1 (en) * | 2006-06-23 | 2007-12-27 | Ngk Spark Plug Co., Ltd. | Solid electrolyte fuel cell stack |
US20090274940A1 (en) * | 2006-07-28 | 2009-11-05 | Junji Morita | Fuel cell and fuel cell system |
JP2008218279A (ja) * | 2007-03-06 | 2008-09-18 | Mitsubishi Materials Corp | 固体酸化物形燃料電池および燃料ガスの供給方法 |
JP5233249B2 (ja) * | 2007-11-09 | 2013-07-10 | 日産自動車株式会社 | 燃料電池 |
JP6613933B2 (ja) * | 2016-02-04 | 2019-12-04 | 株式会社デンソー | 燃料電池装置 |
GB2575789B (en) * | 2018-07-20 | 2021-11-03 | Dyson Technology Ltd | Energy storage device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63279574A (ja) * | 1987-05-08 | 1988-11-16 | Ishikawajima Harima Heavy Ind Co Ltd | 燃料電池の温度分布改善方法 |
JPH03129675A (ja) * | 1989-10-14 | 1991-06-03 | Fuji Electric Co Ltd | 固体電解質型燃料電池 |
JPH03219563A (ja) * | 1988-07-23 | 1991-09-26 | Fuji Electric Co Ltd | 固体電解質型燃料電池 |
JPH06275306A (ja) * | 1993-03-24 | 1994-09-30 | Mitsubishi Heavy Ind Ltd | 平板型固体電解質燃料電池 |
JPH07142078A (ja) * | 1993-11-19 | 1995-06-02 | Toyota Motor Corp | 燃料電池および燃料電池用冷却部材 |
JPH0935737A (ja) * | 1995-07-18 | 1997-02-07 | Fuji Electric Co Ltd | 固体高分子電解質型燃料電池 |
JPH10308229A (ja) * | 1997-05-07 | 1998-11-17 | Fuji Electric Co Ltd | 固体高分子電解質型燃料電池 |
JP2001155754A (ja) * | 1999-12-01 | 2001-06-08 | Tokyo Gas Co Ltd | 固体電解質燃料電池、およびその起動方法 |
JP2001196088A (ja) * | 1999-12-13 | 2001-07-19 | Sofco Lp | 燃料電池システムのための一体化されたマニホールド/改質装置 |
JP2001223014A (ja) * | 2000-02-09 | 2001-08-17 | Mitsubishi Nuclear Fuel Co Ltd | 固体電解質型燃料電池 |
JP2002151106A (ja) * | 2000-11-10 | 2002-05-24 | Sumitomo Precision Prod Co Ltd | 燃料電池 |
-
2002
- 2002-06-17 JP JP2002175789A patent/JP4558261B2/ja not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63279574A (ja) * | 1987-05-08 | 1988-11-16 | Ishikawajima Harima Heavy Ind Co Ltd | 燃料電池の温度分布改善方法 |
JPH03219563A (ja) * | 1988-07-23 | 1991-09-26 | Fuji Electric Co Ltd | 固体電解質型燃料電池 |
JPH03129675A (ja) * | 1989-10-14 | 1991-06-03 | Fuji Electric Co Ltd | 固体電解質型燃料電池 |
JPH06275306A (ja) * | 1993-03-24 | 1994-09-30 | Mitsubishi Heavy Ind Ltd | 平板型固体電解質燃料電池 |
JPH07142078A (ja) * | 1993-11-19 | 1995-06-02 | Toyota Motor Corp | 燃料電池および燃料電池用冷却部材 |
JPH0935737A (ja) * | 1995-07-18 | 1997-02-07 | Fuji Electric Co Ltd | 固体高分子電解質型燃料電池 |
JPH10308229A (ja) * | 1997-05-07 | 1998-11-17 | Fuji Electric Co Ltd | 固体高分子電解質型燃料電池 |
JP2001155754A (ja) * | 1999-12-01 | 2001-06-08 | Tokyo Gas Co Ltd | 固体電解質燃料電池、およびその起動方法 |
JP2001196088A (ja) * | 1999-12-13 | 2001-07-19 | Sofco Lp | 燃料電池システムのための一体化されたマニホールド/改質装置 |
JP2001223014A (ja) * | 2000-02-09 | 2001-08-17 | Mitsubishi Nuclear Fuel Co Ltd | 固体電解質型燃料電池 |
JP2002151106A (ja) * | 2000-11-10 | 2002-05-24 | Sumitomo Precision Prod Co Ltd | 燃料電池 |
Also Published As
Publication number | Publication date |
---|---|
JP2004022343A (ja) | 2004-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4558261B2 (ja) | 固体電解質型燃料電池 | |
US20080038622A1 (en) | Integrated solid oxide fuel cell and fuel processor | |
JPH09259910A (ja) | 溶融炭酸塩型燃料電池とこれを用いた発電装置 | |
AU2005319933C1 (en) | Multi-pipe heat exchanger apparatus and method of producing the same | |
JP2010114092A (ja) | 燃料電池組立体 | |
AU2005320011B8 (en) | Fuel cell system | |
JP2005203255A (ja) | 燃料電池のマニホールド構造 | |
JP4244579B2 (ja) | 平板積層型の固体酸化物形燃料電池 | |
JP5377835B2 (ja) | 燃料電池モジュール | |
US8557467B2 (en) | Fuel cell and fuel cell stack | |
JPH1167258A (ja) | 燃料電池 | |
JP2004103552A (ja) | 固体電解質型燃料電池の運転開始時の予熱方法 | |
JP2001223014A (ja) | 固体電解質型燃料電池 | |
JP4304986B2 (ja) | 燃料電池モジュール | |
JP4090758B2 (ja) | 固体電解質型燃料電池用セパレータ | |
JPH04144069A (ja) | 燃料電池 | |
JP2916054B2 (ja) | 固体電解質型燃料電池スタック | |
JP5491079B2 (ja) | 燃料電池システム | |
JP4963590B2 (ja) | 燃料電池 | |
JPH025368A (ja) | 溶融炭酸塩型燃料電池 | |
JPS60241659A (ja) | 溶融塩型燃料電池 | |
JP2023031383A (ja) | 燃料電池モジュール | |
JPH0349159A (ja) | 間接型内部改質方式溶融炭酸塩型燃料電池 | |
JPH01279572A (ja) | 燃料電池 | |
JPH0349163A (ja) | 間接型内部改質方式溶融炭酸塩型燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100721 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |