JP4553556B2 - 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム - Google Patents
波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム Download PDFInfo
- Publication number
- JP4553556B2 JP4553556B2 JP2003081779A JP2003081779A JP4553556B2 JP 4553556 B2 JP4553556 B2 JP 4553556B2 JP 2003081779 A JP2003081779 A JP 2003081779A JP 2003081779 A JP2003081779 A JP 2003081779A JP 4553556 B2 JP4553556 B2 JP 4553556B2
- Authority
- JP
- Japan
- Prior art keywords
- signal light
- wavelength
- optical
- quality
- optical transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07953—Monitoring or measuring OSNR, BER or Q
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Description
【発明の属する技術分野】
本発明は、光通信において伝送される波長多重信号光の品質を監視するための技術に関し、特に、符号誤りの発生状態を基に信号品質の劣化を監視する方法および装置、並びに、それを用いた光伝送システムに関するものである。
【0002】
【従来の技術】
従来、長距離の光伝送システムにおいては、光信号を電気信号に変換し、等化増幅(reshaping)、タイミング抽出(retiming)および 識別再生(regenerating)を行う再生中継器を用いて伝送を行っていた。しかし、現在では光増幅器をはじめとする光デバイスの進歩や波長多重(WDM)光伝送方式をはじめとする伝送技術の進展に伴い、大容量の光信号を電気信号に変換することなく数千kmもの距離に亘って伝送することが可能となっている。これに加えて、次世代の光伝送ネットワークにおいては、光増幅中継ノードの他、光分岐挿入(OADM)ノードや光クロスコネクト(OXC)ノード、ハブ(HUB)ノードなどを導入することにより、メッシュトポロジーのフォトニックネットワーキングが行われると期待されている。
【0003】
図13は、電気的な再生中継器を使用する従来の光伝送システムの構成例を示す図である。図13の光伝送システムでは、複数の光送受信部100が所要の間隔で再生中継器102を配置した光伝送路101により互いに接続されている。このような従来の光伝送システムにおける信号品質の監視手法として最も直接的なものは、各再生中継器102において電気的な再生中継を行う際に電気段で符号誤り率(Bit Error Rate:BER)を監視する方法である。具体的に、現在実用化されているSONET/SDH方式の光伝送ネットワークでは、伝送データのオーバーヘッド内の誤り検出ビットを利用して符号誤り率を推定することが可能であり、各光送受信部100間を繋ぐ各々のリンクでの信号品質劣化量を把握することができる。このようなネットワークにおいて、信号品質が著しく劣化した場合には、パスを切り替える等の対策がとられ、一方、許容範囲内の劣化であれば、信号光パワーを調節するなどの簡易な対策がとられる。また、誤り訂正技術を適用したシステムにおいては、誤り訂正数を測定することにより符号誤り率を推定することもできる。さらに、信号光波形からQ値を推定する手法も知られている。
【0004】
上記のような符号誤り率の測定を要する方法以外にも、例えば図14に示すように、光伝送部103および光受信部104の間の光伝送路105上に光分岐器106を設けてWDM光信号の一部を取り出し、その光スペクトラムを光スペクトラムアナライザ107で測定することにより信号品質を監視する方法がある。この方法では、各波長における光信号の光パワーレベルを基に信号品質が推定される。
【0005】
また、前述したように現在では光信号を電気信号に変換することなく長距離伝送することが可能となっている。このような光伝送システムの構成の一例を図15に示す。
【0006】
図15(a)のシステムは、光送信部200および光受信部201の間を接続する光伝送路202上に存在する複数の中継ノードとして、光増幅中継ノードN1のみを使用した長距離伝送システムであって、信号光が光送信部200から光受信部201に至るまで光の状態のまま伝送される。各光増幅中継ノードN1は、通常、光増幅機能および波長分散補償機能を有する。また、図15(b)のシステムは、上記の光増幅中継ノードN1の他に、補償ノードN2を適用したものである。WDM信号光を光の状態のまま長距離伝送すると、光増幅器の利得偏差の蓄積や波長分散によって、システムに要求される伝送特性を満足できないチャネルが出てくる。このようなチャネルの発生を抑えてより長距離の伝送を可能にするためには、図15(b)のように、光増幅機能や分散補償機能のみならず、利得等化機能あるいは分散スロープ補償機能などを有する補償ノードN2を所要の補償区間に対応させて適用することが必要になる。さらに、図15(c)に示すように補償ノードN2を複数使用することによって超長距離光伝送システムを実現することも可能になる。
【0007】
また、例えば図16に示すような次世代の光伝送システムでは、光増幅中継ノードN1および補償ノードN2に加えて、光方路の切り替え機能を有するハブノードN3が適用され、従来のポイント間伝送ではない光ネットワークの実現が図られている。
【0008】
上記の図15あるいは図16のようにWDM信号を光のまま長距離伝送するシステムについて信号品質の監視を導入する場合には、例えば、各ノードにおいて光分岐器を用いてWDM信号光の一部を取り出し、前述の図14に示したように光スペクトラムアナライザを利用して信号品質の監視を行うか、あるいは、取り出したWDM信号光を電気信号に変換した後に符号誤り率を測定して信号品質の監視を行うことが可能である(例えば、特許文献1、2参照)。
【0009】
【特許文献1】
特開平8−321805号公報
【特許文献2】
特開2000−31900号公報
【0010】
【発明が解決しようとする課題】
しかし、上記のような従来の信号品質の監視技術については、(a)信号品質の改善に要する時間の増大および信号品質の維持に要する工程の複雑化、(b)信号品質の測定精度の低下、という問題点ある。
【0011】
まず、上記(a)の問題点について具体的に説明する。一般に、ネットワークにおいて波長パス(光方路)を設定する1つの手法として、ある送信ノードとある受信ノードの組み合わせに対して設定できる波長パスの種類をネットワークのインストール時に定めておき、インサービス時に波長パスの設定要求が出された場合に、インストール時に定めた波長パスのうちから使用されていない波長パスを選んで使うという方法がある。また、他の手法としては、インサービス時に波長パスの設定要求が出された際、その候補となるルートに対して候補となる波長の光を実際に伝送させ、十分な信号品質を確保できることを確認した上で実際のデータを乗せた信号光を送信するという方法もある。後者の手法は、より柔軟なネットワークを構築できるという特長がある。
【0012】
しかしながら、後者の手法を適用したシステムにおいて、例えば、波長増設を行うことによって波長間隔が狭くなったり信号光波長帯域幅が広くなったりすると、それ以前の運用時には生じなかった、相互位相変調(XPM)やイントラチャネル四光波混合(IFWM)、誘導ラマン散乱(SRS)等の非線形効果によって、伝送される信号光の品質が劣化してしまう可能性がある。信号品質がシステム要求値を満たせなくなった場合には、信号品質の劣化要因を特定した後に対策を要する伝送区間を特定するなどの特性を改善させるための作業が必要となり、実際にはシステム管理者が試行錯誤を繰り返しながら特性改善を図らなければならない。このようなシステム管理者による作業は適切な設定を行うまでに長い時間を要する可能性が高く、システムを運用する通信事業者にとって大きなデメリットが生じることになる。
【0013】
また、例えば、光伝送路等のシステム構成要素の経時劣化が原因となって信号品質の劣化量が増加してきた場合には、信号品質がシステム許容値を満たしているうちに、波長パスの切り替え以外の簡易な手法を用いて迅速な特性改善を図ることが望まれる。その最も有効な手法の1つは、WDM信号光における各波長の光パワーの調整である。しかしながら、光分岐挿入ノードや光クロスコネクトノード、ハブノードを適用したシステムにおいては、各波長の信号光に対する品質の劣化要因が特定できず、当該信号光のパワーを調整すべき場所および信号光パワーの再設定値が不明となる可能性がある。このような状況は長距離伝送システムおよびネットワーク構成のシステムにおいて特に顕著となる。従って、適切な設定を行うまでに長い時間を要したり、あるいは、信号品質を維持するために要する工程が複雑化したりするといった問題が発生する。
【0014】
次に、上記(b)の問題点について具体的に説明する。前述したような従来の信号品質の監視技術は、符号誤り率を直接測定する場合にはその測定に長い時間を要してしまうことになるが、光スペクトラムを測定して信号光パワー対雑音光パワー比(OSNR)を調査する手法や、各チャネル信号光パワーの情報から信号品質を推定する手法を適用することによって比較的高速な処理が可能となる。しかしながら、このような光スペクトラム測定による監視は、信号光波長間隔が50GHz以下の高密度WDM伝送システムでは雑音光パワーの高精度な測定が難しくなる。このため、符号誤り率の正確な推定を望むことが困難であり、測定精度の面で課題をもつ。
【0015】
本発明は上記の点に着目してなされたもので、信号光の品質劣化の発生とその劣化要因とを短時間で精度良く判定できるWDM信号光の品質監視方法および装置、並びに、それを用いた光伝送システムを提供することを目的とする。
【0016】
【課題を解決するための手段】
上記の目的を達成するため、本発明にかかるWDM信号光の品質監視方法は、光伝送路を介して伝送される波長多重信号光の品質監視方法において、該波長多重信号光に含まれる複数の波長の信号光のうちのある波長の信号光について、予め設定した時間内における符号誤りの発生回数を繰り返して測定し、該測定結果に基づいて該ある波長の信号光の品質に劣化が発生しているか否かを判定し、該ある波長の信号光の品質に劣化が発生していると判定するとき、該ある波長の信号光に隣接する波長グリッドに信号光が存在するか否かを判断する。そして、該ある波長の信号光に隣接する波長グリッドに信号光が存在しない場合、又は、該ある波長の信号光に隣接する波長グリッドに信号光が存在し、かつ、該ある波長の信号光について測定した符号誤りの発生回数の時間的な分布が均一である場合は、該ある波長の信号光の主な劣化要因がASE雑音であると判定する。一方、該ある波長の信号光に隣接する波長グリッドに信号光が存在し、かつ、該ある波長の信号光について測定した符号誤りの発生回数の時間的な分布が不均一である場合は、該ある波長の信号光の主な劣化要因が非線形効果であると判定すると共に、該隣接する波長グリッドの信号光について、予め設定した時間内における符号誤りの発生回数を繰り返し測定し、該測定した符号誤りの発生回数の時間的な分布が均一である場合は、該隣接する波長グリッドの信号光の主な劣化要因がASE雑音であると判定し、該符号誤りの発生回数の時間的な分布が不均一である場合は、該隣接する波長グリッドの信号光の主な劣化要因が非線形効果であると判定することを特徴とする。
【0017】
上記のようなWDM信号光の品質監視方法によれば、光伝送路を伝搬する波長多重信号光のある波長の信号光についての符号誤りの発生回数が測定され、当該信号光に品質劣化が発生している場合、該ある波長の信号光に隣接する波長グリッドに存在する他の波長の信号光の品質が測定され、ある波長の信号光についての測定結果と隣接する波長グリッドの信号光についての測定結果とを基に、ある波長の信号光の劣化要因及び隣接する波長グリッドの信号光の劣化要因がそれぞれ判定されるため、システム運用中に信号品質の劣化が発生したときでも、その劣化要因を短時間で精度良く判定して信号品質に関する監視情報を得ることができるようになる。これにより、従来、システム管理者等によって試行錯誤を繰り返しながら行われていた特性改善のための作業の負担を軽減することが可能になる。
【0018】
また、上記の品質監視方法については、前記ある波長の信号光の主な劣化要因がASE雑音であると判定されたとき、前記ある波長の信号光のパワーを調整するための制御信号を発生し、前記ある波長の信号光の主な劣化要因が非線形効果であると判定されたとき、前記隣接する波長グリッドの信号光についての主な劣化要因の判定結果に応じて、前記ある波長の信号光のパワー及び前記隣接する波長グリッドの信号光のパワーを調整するための制御信号を発生し、該制御信号を光伝送路上に伝えるようにしてもよい。これにより、劣化要因の判定結果を反映した信号光パワーの調整が制御信号に従って行われるようになり、WDM信号光の特性改善を迅速かつ確実に行うことが可能になる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。なお、全図を通して同一の符号は同一または相当部分を示すものとする。
【0021】
図1は、本発明にかかる信号品質の監視方法を適用した装置の第1実施形態を示す構成図である。
図1において、本装置1は、例えば、光分岐部としての光分岐器11と、波長選択部としての波長選択器12と、測定部としての光受信器13および誤り監視回路14と、判定部としての劣化要因判定回路15と、切り替え制御部としての切り替え信号制御回路16と、制御信号発生部としての制御信号発生回路17と、光合波部としての光合波器18を備える。この装置1は、上述の図16に示したような光伝送システムにおける所要の中継ノードなどに適用されるものとする。
【0022】
光分岐器11は、本装置1に接続される光伝送路2を伝搬する波長多重(WDM)信号光Lsの一部をモニタ光Lmとして分岐して波長選択器12に出力する。この光分岐器11で分岐されるWDM信号光Lsは、波長の異なる複数の信号光(チャネル)を含んだ光である。
【0023】
波長選択器12は、光分岐器11で分岐されたモニタ光Lmのうちの測定対象となる波長の信号光(以下、測定対象チャネルとする)を選択して光受信器13に送る。この波長選択器12において選択される測定対象チャネルは、切り替え信号制御回路16から出力される切り替え信号に従って制御される。
【0024】
図2および図3は、波長選択器12の具体的な構成の一例を示したものである。図2の構成例では、波長選択器12が光増幅器12A、光分波器12Bおよび光スイッチ12Cからなる。この波長選択器12では、光分岐器11からのモニタ光Lmが光増幅器12Aにより増幅され、アレイ型導波路格子(Arrayed Waveguide Grating:AWG)などを使用した光分波器12Bへ入力される。光分波器12Bの各出力ポートから出力される信号光は、その出力ポート数と同数以上の入力ポートを有するn×1(nは入力ポート数)光スイッチ12Cへ入力される。光スイッチ12Cは測定対象となる波長の信号光を切り替え信号に従い選択して光受信器13に出力する。また、図3の構成例では、波長選択器12が光増幅器12Dおよび可変光フィルタ12Eからなる。この波長選択器12では、光分岐器11からのモニタ光Lmが光増幅器12Dにより増幅され、1つの入力ポートと1つの出力ポートを有する透過帯域が可変の帯域通過フィルタを使用した光フィルタ12Eに入力される。可変光フィルタ12Eは、その透過帯域が切り替え信号に従って制御されることにより測定対象となる波長の信号光を抽出して光受信器13に出力する。
【0025】
光受信器13は、波長選択器12で選択された測定対象チャネルを電気信号に変換して誤り監視回路14に出力する。
誤り監視回路14は、光受信器13からの出力信号について、予め設定した時間内における符号誤りの発生回数(以下、誤り発生数とする)を所要の回数だけ繰り返して測定し、その測定結果を劣化要因判定回路15に出力すると共に、当該測定対象チャネルについての誤り発生数の測定終了を知らせる信号を切り替え信号制御回路16に出力する。
【0026】
劣化要因判定回路15は、誤り監視回路14において測定された誤り発生数の時間的な変動を基に信号品質の劣化要因を判定し、その判定結果を制御信号発生回路17に出力する。なお、この劣化要因判定回路15における具体的な劣化要因の判定方法については後述する。
【0027】
切り替え信号制御回路16は、誤り監視回路14からの出力信号に従って、測定対象チャネルを切り替えるための信号を生成し、その切り替え信号を波長選択器12に出力する。
【0028】
制御信号発生回路17は、劣化要因判定回路15での判定結果に応じて、WDM信号光の伝送特性を改善させるための制御信号光Lcを発生して光合波器18に出力する。
【0029】
光合波器18は、制御信号発生回路17からの制御信号光Lcを前段側の光伝送路2に送り、光伝送路2上の他のノードに制御信号光Lcを伝達する。上記の制御信号光Lcは、ここでは例えば本装置1が適用されるシステム内を伝搬させるために用意された専用の波長チャネルを利用して他の装置に伝達されるものとする。
【0030】
次に、第1実施形態の動作について説明する。
上記のような構成の装置1では、光伝送路2を伝搬するWDM信号光Lsは、光合波器18を通過後に光分岐器11へ入力される。この光分岐器11では、WDM信号光Lsのパワーの大部分がそのままの状態で後段側の光伝送路2に接続するポートへ出力されるが、その一部はモニタ光Lmとして光分岐器11の分岐ポートへ出力され、波長選択器12に入力される。波長選択器12においては、切り替え信号制御回路16から伝えられる切り替え信号に従って、モニタ光Lmのうち測定対象チャネルのみが選択されて光受信器13に出力される。光受信器13で受光された測定対象チャネルは、そのパワーに応じてレベルが変化する電気信号に変換されて誤り監視回路14に送られる。
【0031】
誤り監視回路14においては、光受信器13からの出力信号についての誤り発生数が測定される。この誤り発生数の測定は、例えば、測定対象チャネルに含まれる誤り訂正符号(Forward Error Correction:FEC)を利用して行われる。この場合、誤り発生数の1回あたりの測定時間は、誤り訂正符号の1フレーム長以上の時間に設定される。具体的に、例えば1チャネルあたりの伝送速度が10Gbps(ギガビット毎秒)である光伝送システムに本装置が適用されるとき、誤り発生数の1回あたりの測定時間を1ms(ミリ秒)に設定すると、この測定時間内に判定されるビット数は10Mbit(メガビット)となる。上記の光伝送システムに許容される符号誤り率を10−15とし、符号化利得が8.8dBの誤り訂正符号の適用を想定した場合、誤り訂正前の段階で許容される符号誤り率は2×10−3となる。従って、1回の測定時間1msの間に許容される最大の誤り発生数は20000ビットとなる。光伝送システムの安定的な運用のためには、1回の測定時間あたりの符号誤り数が上記の20000ビットを超えてしまう前に、特性改善の対策をとることが望まれる。
【0032】
なお、本発明における誤り発生数の測定条件は、上記の具体例に限定されるものではない。例えば、上記の設定では誤り発生数の1回あたりの測定時間を1msとしているが、誤り訂正符号として公知のリードソロモン符号(RS[255,239])の適用を想定した場合、1フレーム長は12.24μs(マイクロ秒)であるので、1回あたりの測定時間は12.24μs以上となる。
【0033】
上記のような特性改善の対策として、本実施形態では、誤り発生数の時間的な変動がWDM信号光Lsの伝送特性の劣化要因に依存するという公知の事実(例えば、文献;縣、外3名,「各種劣化要因に対する光伝送システムの符号誤り特性」,2002年電子情報通信学会ソサイエティ大会,B−10−77等参照)に注目し、誤り監視回路14での測定結果を基に劣化要因判定回路15で劣化要因を判定して、その判定結果に応じて信号光パワーの再設定を行うことにより、光伝送システムの安定した運用の実現を図っている。
【0034】
ここで、符号誤りの発生分布と伝送特性の劣化要因との関係について簡単に説明する。上記の文献によれば、光増幅器の雑音(ASE雑音)による信号劣化の場合には符号誤り発生分布が符号パターンに依存せずランダムであるのに対して、隣接チャネルクロストーク(XT)、相互位相変調(XPM)、誘導ラマン散乱(SRS)およびイントラチャネル四光波混合(IFWM)による信号劣化の場合には符号誤り発生分布が符号パターンに依存することが確認されている。この様子を図4に示す。
【0035】
図4の特性図は、伝送速度が10.7Gbps、PN段数が15段の擬似ランダム信号の各ビットにおける誤り発生頻度を劣化要因ごとにまとめたものであり、(a)は光増幅器のASE雑音が劣化要因となる場合、(b)はSRSが劣化要因となる場合、(c)はXPMが劣化要因となる場合、(d)はXTが劣化要因となる場合、(e)はIFWMが劣化要因となる場合をそれぞれ示している。図4(a)〜(e)に示すように、劣化要因がASE雑音による場合は符号誤りが概ねランダムであるのに対して、劣化要因がXPM、XTおよびIFWMによる場合、特にIFWMに起因するときは、符号誤りのパターン依存性が顕著になることが分かる。
【0036】
このような各種の劣化要因と信号光パワーとの関係について、図5および図6の模式図を参照して補足すると、隣接チャネルが存在しない場合、図5(a)に示すように測定対象チャネルがシステムに要求される伝送特性を十分に満たす程度の信号光パワー対雑音光パワー比(OSNR)を有している状態に対して、図5(b)に示すようなOSNRの劣化が生じたときには、ASE雑音が主な劣化要因であると考えられる。また、隣接チャネルが存在する場合には、図6(a)に示す正常な状態に対して、図6(b)に示すようなOSNRの劣化が生じたときには、ASE雑音が主な劣化要因となり、図6(c)に示すような測定対象チャネルおよび隣接チャネルのパワーが大きくなっているようなときには、XPMが主な要因で特性の劣化が発生している可能性がある。さらに、図6(d)に示すように隣接チャネルの外側に別のチャネルが発生しているときには、IFWMが主な劣化要因であると考えられ、図6(e)に示すように広い波長帯域に亘って信号チャネルが存在しているときには、SRSが主な劣化要因となり得る。
【0037】
上記のような符号誤りの発生分布と劣化要因との関係を基にして、本装置1では、誤り監視回路14で測定される誤り発生数の時間的な変動を用いた測定対象チャネルの劣化要因の判定が劣化要因判定回路15により行われ、その判定結果に応じて信号光パワーの再設定が制御信号発生回路17により行われる。この劣化要因判定回路15および制御信号発生回路17における処理は、例えば図7のフローチャートに示すような手順に従って実行される。
【0038】
まず、図7のステップ1(図中S1で示し、以下同様とする)では、誤り発生数の測定結果を用いた劣化要因の判定を行うための準備段階として、光伝送路2を伝送されるWDM信号光Lsの各波長がシステム設計値を満たすように、光伝送路2に接続された光送信部等の波長制御を行い、WDM信号光Lsに含まれる各波長に関する情報を光伝送システムの各ノードに与えておく。これにより、WDM信号光Lsの劣化要因のうちのXTが予め抑圧されるようになる。
【0039】
ステップ2では、誤り監視回路14において、前述したような測定対象チャネルについての誤り発生数の測定が、予め設定した回数(例えば10回など)繰り返して実行される。
【0040】
ステップ3では、誤り監視回路14での測定結果が伝えられた劣化要因判定回路15において、複数回測定された誤り発生数のうちの最大値と予め設定された閾値Aとの比較が実行される。この閾値Aは、1回の測定時間内の誤り発生数に対して許容される値であり、例えば2000ビット等に設定されている。誤り発生数の最大値が閾値A以下である場合には、ステップ4に進んで、当該測定対象チャネルは正常な状態であると判定し、次の測定対象チャネルの測定および劣化要因の判定に移る。一方、誤り発生数の最大値が閾値Aを超えた場合には、ステップ5に進み、信号光パワーの再設定が必要であると判断して、ステップ6以降の処理に移る。
【0041】
ステップ6では、前述の図5および図6を用いて説明したように、測定対象チャネルに隣接する波長グリッド(例えばITU−Tグリッド等)に信号光が存在するか否かによって生じ得る劣化要因が異なるため、上記のステップ1で与えられたWDM信号光Lsの各波長に関する情報を参照して、測定対象チャネルに隣接する波長グリッドに信号光が存在するかどうかを調べる。測定対象チャネルに隣接する波長グリッドに信号光が存在しない場合にはステップ7に進み、存在する場合にはステップ8に進む。
【0042】
ステップ7では、ASE雑音が主な劣化要因であると判定し、誤り発生数が閾値A以下となるよう信号光パワーを増加させるべきであるとの情報が劣化要因判定回路15から制御信号発生回路17に送られる。この劣化要因判定回路15からの情報を基に、制御信号発生回路17は測定対象チャネルに対応した信号光パワーを再設定するための制御信号光Lcを発生する。その制御信号光Lcは光合波器18を介して光伝送路2に送られ、前段側の中継ノード若しくは光送信装置における信号光パワーが再設定される。信号光パワーの再設定が終わると、ステップ2に戻って上記一連の処理が繰り返される。なお、信号光パワーの再設定後に測定される誤り発生数が再設定前の値より増大した場合には、当該信号光パワーを減少させて誤り発生数の測定等の処理を再び行うものとする。
【0043】
ステップ8では、測定対象チャネルに隣接する波長グリッドの一方あるいは両方に信号光が存在する場合において、測定対象チャネルの誤り発生数の時間的な分布が均一であるか不均一であるかの判定が行われる。ここでの判定の方法は、例えば、10回繰り返して測定された誤り発生数の最大値と平均値の比を基準として、その値が予め設定した閾値B(例えばB=2など)以下であれば、誤り発生数の時間的な分布は均一であると判定し、閾値Bを超えていれば、誤り発生数の時間的な分布は不均一であると判定する。ただし、誤り発生数の時間的な分布の判定方法は、上記の一例に限定されるものではない。誤り発生数の時間的な分布が均一と判定された場合にはステップ9に進み、不均一と判定された場合にはステップ10に進む。
【0044】
ステップ9では、ASE雑音が主な劣化要因であると判定し、前述のステップ7の場合と同様にして、信号光パワーを増加させる制御が行われ、ステップ2に戻って上記一連の処理が繰り返される。
【0045】
ステップ10では、隣接チャネルの影響による非線形効果を受けて測定対象チャネルの特性が劣化していると判断して、測定対象チャネルだけでなく、隣接チャネルについての誤り発生数の測定が複数回繰り返して行われる。
【0046】
ステップ11では、前述したステップ3の場合と同様にして、隣接チャネルについて複数回測定された誤り発生数のうちの最大値と予め設定された閾値Aとの比較が行われる。誤り発生数の最大値が閾値A以下である場合にはステップ12に進み、閾値Aを超えた場合にはステップ13に進む。
【0047】
ステップ12では、隣接チャネルの特性が劣化していないことが確認されたので、隣接チャネルの誤り発生数の最大値が閾値Aを超えない範囲で隣接チャネルのパワーが減少するように再設定を行い、測定対象チャネルに対する隣接チャネルの影響の低減が図られる。隣接チャネルパワーの再設定が終わると、ステップ2に戻って上記一連の処理が繰り返される。なお、隣接チャネルパワーの再設定後の一連の処理において、上記のステップ11で隣接チャネルの誤り発生数の最大値が閾値A以下と判定された場合には、測定対象チャネルのパワーを減少させて誤り発生数の測定等の処理を再び行うものとする。
【0048】
ステップ13では、前述したステップ8の場合と同様にして、隣接チャネルの誤り発生数の時間的な分布が均一であるか不均一であるかの判定が行われ、均一の場合にはステップ14に進み、不均一の場合にはステップ15に進む。
【0049】
ステップ14では、測定対象チャネルについての主な劣化要因が非線形効果であり、隣接チャネルについての主な劣化要因がASE雑音であって、隣接チャネルの影響による測定対象チャネルの劣化は小さいと判断して、測定対象チャネルのパワーを減少させる再設定が行わる。測定対象チャネルパワーの再設定が終わると、ステップ2に戻って上記一連の処理が繰り返される。
【0050】
ステップ15では、測定対象チャネルおよび隣接チャネルの主な劣化要因が非線形効果であると判定して、測定対象チャネルおよび隣接チャネルの双方のパワーを減少させる再設定が行わる。各々の再設定が終わると、ステップ2に戻って上記一連の処理が繰り返される。
【0051】
1つの測定対象チャネルについて上述したステップ2〜ステップ15の一連の処理が完了すると、続いて、ステップ1で与えられたWDM信号光Lsに含まれる波長の情報を基に、他の波長の信号光を波長選択器12で選択して測定対象チャネルとし、ステップ2〜ステップ15の一連の処理が繰り返される。なお、1つの測定対象チャネルについて、ステップ2〜ステップ15の一連の処理を予め決めた回数繰り返しても、誤り発生数の最大値が閾値Aを超えるようであれば、光伝送システムの管理部に波長パスの再設定を要求するなどの措置がとられるものとする。
【0052】
上述したように第1実施形態の装置1によれば、WDM信号光Lsに含まれる各波長の信号光について誤り発生数を複数回繰り返して測定し、その測定結果を基に所定の手順に従って信号光の劣化要因を判定して信号光パワーの再設定を行うようにしたことで、光伝送システムの運用中に信号品質に劣化が発生したときでも、信号光の伝送特性の改善を簡略な工程によって迅速に精度良く行うことが可能になる。
【0053】
なお、上記の第1実施形態では、専用の波長チャネルを用意して制御信号光Lcを他のノード等に伝達するようにしたが、本発明における制御信号光Lcの伝達方式はこれに限定されるものではない。例えば、ラマン増幅器を含んだノードに本装置1を適用する場合には、ラマン増幅用の励起光を電気の制御信号で変調して、制御信号光Lcに相当する情報を他の装置に伝達するようにしてもよい。また、WDM信号光Lsを伝搬する光伝送路2とは別の回線を使用して、制御信号光Lcを他のノードに伝送することも可能である。
【0054】
さらに、光伝送路2の途中に位置する中継ノードに対して本装置1を適用した場合を説明したが、例えば図8に示すように、光伝送路2の一端に接続される光受信部に対して本装置1を適用することも勿論可能である。この場合、光伝送路2を伝搬して光受信部に与えられたWDM信号光Lsは、光合波器18を通過した後に波長選択器12に入力されることになり、波長選択器12以降の構成および動作は第1実施形態の場合と同様である。
【0055】
次に、本発明の第2実施形態について説明する。
図9は、本発明にかかる信号品質の監視方法を適用した装置の第2実施形態を示す構成図である。
【0056】
図9において、第2実施形態の装置1’は、上述した第1実施形態について、光伝送路2を伝搬するWDM信号光Lsが異なるビットレートの信号光を含むために一種類の光受信器では信号品質を監視できない場合に対処した変形例である。具体的に、本装置1’の構成が上述の図1に示した装置1の構成と異なる部分は、波長選択器12と誤り監視回路14の間に、光分岐器21、可変波長分散補償器22A,22B、可変偏波分散補償器23A,23Bおよび光受信器24A,24Bを設けた部分である。その他の部分の構成は第1実施形態の場合と同一であるためここでの説明を省略する。
【0057】
光分岐器21は、波長選択器12で選択された測定対象チャネルを、光伝送路2を伝搬するWDM信号光Lsに含まれる信号光のビットレートの種類に応じて複数の光に分岐する。ここでは、例えば、10Gbpsおよび40Gbpsの2種類のビットレートの信号光がWDM信号光Lsに含まれる場合を想定し、波長選択器12からの測定対象チャネルが光分岐器21で2分岐されるものとする。
【0058】
各可変波長分散補償器22A,22Bは、光分岐器21で分岐された各測定対象チャネルが入力され、各々の測定対象チャネルに発生した波長分散の補償が行われる。各可変波長分散補償器22A,22Bにおける波長分散の補償量は、切り替え信号制御回路16から伝えられる切り替え信号に従って、測定対象チャネルに対応した所要の値に可変制御される。
【0059】
各可変偏波分散補償器23A,23Bは、各可変波長分散補償器22A,22Bで波長分散の補償が行われた各測定対象チャネルが入力され、各々の測定対象チャネルに発生した偏波分散の補償が行われる。各可変偏波分散補償器23A,23Bにおける偏波分散の補償量も、上記の各可変波長分散補償器22A,22Bの場合と同様に、切り替え信号に従って測定対象チャネルに対応した所要の値に可変制御される。
【0060】
光受信器24Aは、10Gbpsのビットレートを有する信号光を受信処理することが可能な公知の光受信器であって、可変偏波分散補償器23Aから出力される測定対象チャネルを電気信号に変換して誤り監視回路14に出力する。また、光受信器24Bは、40Gbpsのビットレートを有する信号光を受信処理することが可能な公知の光受信器であって、可変偏波分散補償器23Bから出力される測定対象チャネルを電気信号に変換して誤り監視回路14に出力する。10Gbps用光受信器24Aおよび40Gbps用光受信器24Bのいずれを駆動して信号品質の監視を行うかは、各波長とビットレートの対応関係を基に、切り替え信号制御回路16からの切り替え信号に従って切り替えられる。
【0061】
上記のような装置1’では、光伝送路2を伝送されるWDM信号光Lsの品質の監視および制御が、測定対象チャネルのビットレートに対応した光受信器24A,24Bを選択的に利用しながら、上述した第1実施形態の場合と同様の手順に従って実行されるようになる。これにより、ビットレートの異なる信号光を含んだWDM信号光Lsについても第1実施形態の場合と同様の効果を得ることが可能になる。
【0062】
なお、上記の第2実施形態では、10Gbpsおよび40Gbpsの信号光を含むWDM信号光Lsに対応した一例を示したが、これら以外のビットレートや3種類以上のビットレートを含んだWDM信号光についても、各々のビットレートに対応した光受信器等を用意することにより上記の場合と同様にして本発明を適用することが可能である。また、ここでは信号光のビットレートが異なる場合について説明したが、例えば、変調方式の異なる信号光を含んだWDM信号光についても、各変調方式に対応した光受信器をそれぞれ設けることで対処することが可能である。具体的には、直接検波で受信できない変調方式、例えば位相変調方式の信号光がWDM信号光に含まれる場合、位相変調方式の信号光を受信処理できる光受信器を用意すればよい。
【0063】
さらに、上記の第2実施形態では、可変波長分散補償器22A,22Bおよび可変偏波分散補償器23A,23Bを設けて測定対象チャネルの波長分散および偏波分散をそれぞれ補償するようにしたが、波長分散や偏波分散の補償が不要な場合、または、光伝送路2上の光分岐器11で分岐される前にWDM信号光に対する波長分散や偏波分散の補償が行われている場合などには、可変波長分散補償器22A,22Bおよび可変偏波分散補償器23A,23Bを省略して信号品質の監視および制御を行うようにしてもよい。
【0064】
次に、本発明の第3実施形態について説明する。
図10は、本発明にかかる信号品質の監視方法を適用した光伝送システムを示す構成図である。
【0065】
図10に示す光伝送システムは、上述の図16に示したような光増幅中継ノードN1、補償ノードN2およびハブノードN3を適用した公知のネットワーク構成について、例えば、各光送受信部3が、前述の図8に示したような本発明を適用した光受信部の構成を具備するようにしたものである。また、ここでは各補償ノードN2および各ハブノードN3が、上述の図14に示したような光スペクトラムアナライザを利用して信号品質の監視を行う従来の構成を具備しているものとする。
【0066】
上記のような構成の光伝送システムでは、各補償ノードN2および各ハブノードN3において、光伝送路2を伝送されるWDM信号光Lsの各チャネルについての光パワー、波長およびOSNRが監視される。これにより、いずれかのチャネルの波長ずれが規定値を超えることが確認された場合には、その波長ずれを補正するための制御信号が対応する光送受信部3に送られて該当チャネルの送信波長が調整される。各補償ノードN2および各ハブノードN3で監視された各々のチャネルの光パワー、波長およびOSNRについての情報が他のノード(光送受信部3を含む)にそれぞれ伝達される。なお、各補償ノードN2および各ハブノードN3における信号光の監視項目は光パワーおよび波長のみであってもよい。
【0067】
本発明による信号品質の監視方法が適用された各光送受信部3では、所要の波長パスを伝搬して受信されるWDM信号光Lsの各チャネルについての品質の監視が、前述した第1実施形態の場合と同様の手順に従って行われる。これにより、例えば、あるチャネルの信号光パワー増加が必要であると判断された場合には、各補償ノードN2および各ハブノードN3から伝達される各々のチャネルの光パワーあるいはOSNRに関する情報を分析して、該当チャネルの光パワーあるいはOSNRが相対的に低い補償区間が検索される。そして、その補償区間を構成する最初のノード(光送信部3、補償ノードN2またはハブノードN3)に対して該当チャネルの光パワー増加を指示する制御信号が送信され、信号品質の改善が図られる。
【0068】
一方、あるチャネルの信号光パワー減少が必要であると判断された場合には、各補償ノードN2および各ハブノードN3から伝達される各々のチャネルの光パワーあるいはOSNRに関する情報を分析して、該当チャネルの光パワーあるいはOSNRが相対的に高い補償区間が検索される。そして、その補償区間を構成する最初のノードに対して該当チャネルの光パワー減少を指示する制御信号が送信され、信号品質の改善が図られる。
【0069】
ところで、ハブノードやOADMノード、OXCノードを適用したシステムにおいては、ある測定対象チャネルに隣接する波長グリッドに存在していた信号チャネルが、測定対象チャネルに対して非線形効果による信号品質の劣化をもたらした後に、途中のノードで分岐されて受信端到達時には隣接チャネルが存在しなくなることが想定される。このような状況において非線形効果による測定対象チャネルの品質劣化が増大した場合、従来の技術を適用して受信端で信号品質の劣化が判断されたとしても、途中のノードにおけるOSNRが問題のない値となるために劣化要因および劣化要因の存在する区間が特定できなくなってしまうという問題が発生する。
【0070】
このような問題に対して、図10に示したように本発明による信号品質の監視方法を光伝送システムに適用すれば、誤り発生数の時間的な分布を基に、測定対象チャネルの劣化要因が隣接チャネルによる非線形効果によるものであるか否かを判定することができるため、上記の問題を解決することが可能となる。
【0071】
なお、図10に示した光伝送システムでは、本発明による信号品質の監視方法が各光送受信部3に対して適用される一例を示したが、各光送受信部3に加えて各補償ノードN2に対しても、上述の図1や図9に示したような本発明による構成を適用するようにしてもよい。また、各光増幅中継ノードN1について、光スペクトラムアナライザを利用して信号品質の監視を行う従来の構成を適用することも可能である。
【0072】
さらに、上記の第3実施形態では、ネットワーク型の光伝送システムについて説明したが、上述の図15に示したようなポイント間伝送を行う光伝送システムについても、第3実施形態の場合と同様に、光受信部や補償ノードに対して本発明による信号品質の監視方法を適用することができる。なお、図15(a)に示したような補償ノードを含まないシステム構成の場合には、光受信部に対してのみ本発明が適用されることになる。この場合、図14に示したような光スペクトラムアナライザを利用した構成を各光増幅中継ノードN1に適用してもよい。
【0073】
次に、本発明の第4実施形態について説明する。ここでは、例えば上述した第1実施形態の装置の応用例として、複数の光伝送路を伝搬する各WDM信号光の品質を監視および制御する場合について考える。
【0074】
図11は、第4実施形態による装置の構成例を示す図である。図11に示す装置1aでは、例えば2つの光伝送路2A,2Bを同方向に伝搬する各WDM信号光LsA,LsBの一部が、各光分岐器11A,11Bによって分岐されて2×1光スイッチ31に送られる。2×1光スイッチ31では、各光分岐器11A,11Bからのモニタ光LmA,LmBの一方が、切り替え信号制御回路16からの切り替え信号に従って時間的に切り替えられながら波長選択器12に出力される。そして、波長選択器12において所要の波長の信号光が測定対象チャネルとして抽出されて光受信器13に与えられる。これにより、上述した第1実施形態の場合と同様にして、各光伝送路2A,2Bを伝送されるWDM信号光LsA,LsBの各々の品質が監視され、劣化要因判定回路15で信号光の劣化が判定されると、信号品質の改善を図るための制御信号光LcA,LcBが制御信号発生回路17で生成される。制御信号発生回路17から出力される各制御信号光LcA,LcBは、各光合波器18A,18Bを介して対応する光伝送路2A,2Bに送信され、該当する信号光のパワーが増加または減少される。
【0075】
これにより、異なる光伝送路2A,2Bを伝送される各WDM信号光LsA,LsBについての品質の監視および制御が時分割で行われるようになり、第1実施形態の場合と同様の効果を得ることが可能になる。
【0076】
なお、上記の第4実施形態では、2つの光伝送路に対応した構成例を示したが、3つ以上の光伝送路についても上記の場合と同様にして応用することが可能である。
【0077】
次に、本発明の第5実施形態について説明する。ここでは、例えば上述した第1実施形態の装置の他の応用例として、光伝送路を双方向に伝送されるWDM信号光の品質を監視および制御する場合について考える。
【0078】
図12は、第5実施形態による装置の構成例を示す図である。図12に示す装置1bでは、1つの光伝送路2を伝送される上り側および下り側の各WDM信号光Ls1,Ls2の一部が、4つのポートを有する光分岐器32によってそれぞれ分岐されて2×1光スイッチ31に送られる。2×1光スイッチ31では、光分岐器32から出力される上り側のモニタ光Lm1および下り側のモニタ光Lm2の一方が、切り替え信号制御回路16からの切り替え信号に従って時間的に切り替えられながら波長選択器12に出力される。そして、波長選択器12において所要の波長の信号光が測定対象チャネルとして抽出されて光受信器13に与えられる。これにより、上述した第1実施形態の場合と同様にして、上り側のWDM信号光Ls1および下り側のWDM信号光Ls2の各々の品質が監視され、劣化要因判定回路15で信号光の劣化が判定されると、信号品質の改善を図るための制御信号光Lc1,Lc2が制御信号発生回路17で生成される。制御信号発生回路17から出力される各制御信号光Lc1,Lc2は、各光合波器181,182を介して前段側のノードに送信され、該当する信号光のパワーが増加または減少される。
【0079】
これにより、光伝送路2を双方向に伝送される上り側および下り側の各WDM信号光Ls1,Ls2についての品質の監視および制御が時分割で行われるようになり、第1実施形態の場合と同様の効果を得ることが可能になる。
【0080】
以上、本明細書で開示した主な発明について以下にまとめる。
【0081】
(付記1)光伝送路を介して伝送される波長多重信号光の品質を監視するための方法であって、
前記光伝送路を伝搬する波長多重信号光の一部をモニタ光として分岐し、
該分岐したモニタ光に含まれる複数の波長の信号光のうちの1つの波長の信号光を測定対象として選択し、
該選択した測定対象の信号光について、予め設定した時間内における符号誤りの発生回数を複数回繰り返して測定し、
該測定結果に基づいて、前記測定対象の信号光の品質に劣化が発生しているか否かを当該劣化要因と共に判定し、
該判定結果を監視情報として出力することを特徴とする波長多重信号光の品質監視方法。
【0082】
(付記2)付記1に記載の波長多重信号光の品質監視方法であって、
前記監視情報に応じて前記測定対象の信号光のパワーを調整するための制御信号を発生し、該制御信号を光伝送路上に伝えることを特徴とする波長多重信号光の品質監視方法。
【0083】
(付記3)付記1に記載の波長多重信号光の品質監視方法であって、
前記測定対象の信号光の品質に劣化が発生しているか否かの判定は、前記複数回繰り返して測定した符号誤りの発生回数のうちの最大値に基づいて行われることを特徴とする波長多重信号光の品質監視方法。
【0084】
(付記4)付記1に記載の波長多重信号光の品質監視方法であって、
前記測定対象の信号光の品質に劣化が発生していると判定したとき、当該測定対象の信号光に隣接する波長グリッドに信号光が存在するか否かを判断し、隣接する波長グリッドに信号光が存在するときには、当該隣接グリッドの信号光について、予め設定した時間内における符号誤りの発生回数を複数回繰り返して測定し、該測定結果に基づいて測定対象の信号光の劣化要因を判定することを特徴とする波長多重信号光の品質監視方法。
【0085】
(付記5)付記4に記載の波長多重信号光の品質監視方法であって、
前記測定対象の信号光の劣化要因の判定は、前記隣接グリッドの信号光についての符号誤りの発生回数の時間的な分布の均一性に基づいて行われることを特徴とする波長多重信号光の品質監視方法。
【0086】
(付記6)付記5に記載の波長多重信号光の品質監視方法であって、
前記隣接グリッドの信号光についての符号誤りの発生回数の時間的な分布が、予め定めた状態よりも均一であるとき、前記光伝送路上に配置された光増幅器で発生する雑音光が主な要因となって測定対象の信号光に劣化が発生したと判定し、前記予め定めた状態よりも不均一であるとき、非線形効果が主な要因となって測定対象の信号光に劣化が発生したと判定することを特徴とする波長多重信号光の品質監視方法。
【0087】
(付記7)付記6に記載の波長多重信号光の品質監視方法であって、
前記測定対象の信号光の劣化の主な要因が光増幅器で発生する雑音光であると判定されたとき、測定対象の信号光のパワーを増加させる制御信号を発生し、前記測定対象の信号光の劣化の主な要因が非線形効果であると判定されたとき、測定対象の信号光のパワーを減少させる制御信号を発生することを特徴とする波長多重信号光の品質監視方法。
【0088】
(付記8)光伝送路を介して伝送される波長多重信号光の品質を監視するための装置であって、
前記光伝送路を伝搬する波長多重信号光の一部をモニタ光として分岐する光分岐部と、
該光分岐部で分岐されたモニタ光に含まれる複数の波長の信号光のうちの1つの波長の信号光を測定対象として選択する波長選択部と、
該波長選択部で選択された測定対象の信号光について、予め設定した時間内における符号誤りの発生回数を複数回繰り返して測定する符号誤り測定部と、
該符号誤り測定部における測定結果に応じて、前記波長選択部の動作を制御するための切り替え信号を生成する切り替え制御部と、
前記符号誤り測定部における測定結果に基づいて、前記測定対象の信号光の品質に劣化が発生しているか否かを当該劣化要因と共に判定し、該判定結果を監視情報として出力する劣化要因判定部と、
を備えて構成されたことを特徴とする波長多重信号光の品質監視装置。
【0089】
(付記9)付記8に記載の波長多重信号光の品質監視装置であって、
前記劣化要因判定部から出力される監視情報に応じて測定対象の信号光のパワーを調整するための制御信号を発生する制御信号発生部と、
該制御信号発生部で発生した制御信号を光伝送路上に伝える光合波部と、
を備えたことを特徴とする波長多重信号光の品質監視装置。
【0090】
(付記10)付記8に記載の波長多重信号光の品質監視装置であって、
前記劣化要因判定部は、前記符号誤り測定部で複数回繰り返して測定された符号誤りの発生回数のうちの最大値に基づいて、前記測定対象の信号光の品質に劣化が発生しているか否かを判定することを特徴とする波長多重信号光の品質監視装置。
【0091】
(付記11)付記8に記載の波長多重信号光の品質監視方法であって、
前記劣化要因判定部は、測定対象の信号光に品質の劣化が発生していると判定したとき、当該測定対象の信号光に隣接する波長グリッドに信号光が存在するか否かを判断し、隣接する波長グリッドに信号光が存在するとき、当該隣接グリッドの信号光について、予め設定した時間内における符号誤りの発生回数を前記劣化要因判定部により複数回繰り返して測定し、該測定結果に基づいて、前記測定対象の信号光の劣化要因を判定することを特徴とする波長多重信号光の品質監視装置。
【0092】
(付記12)付記11に記載の波長多重信号光の品質監視装置であって、
前記劣化要因判定部は、前記符号誤り測定部で測定される隣接グリッドの信号光に関する符号誤りの発生回数の時間的な分布の均一性に基づいて、前記測定対象の信号光の劣化要因を判定することを特徴とする波長多重信号光の品質監視装置。
【0093】
(付記13)付記12に記載の波長多重信号光の品質監視装置であって、
前記劣化要因判定部は、前記隣接グリッドの信号光についての符号誤りの発生回数の時間的な分布が、予め定めた状態よりも均一であるとき、前記光伝送路上に配置された光増幅器で発生する雑音光が主な要因となって測定対象の信号光に劣化が発生したと判定し、前記予め定めた状態よりも不均一であるとき、非線形効果が主な要因となって測定対象の信号光に劣化が発生したと判定することを特徴とする波長多重信号光の品質監視装置。
【0094】
(付記14)付記13に記載の波長多重信号光の品質監視装置であって、
前記劣化要因判定部において測定対象の信号光の劣化の主な要因が前記光増幅器で発生する雑音光であると判定されたとき、測定対象の信号光のパワーを増加させる制御信号を発生し、測定対象の信号光の劣化の主な要因が非線形効果であると判定されたとき、測定対象の信号光のパワーを減少させる制御信号を発生する制御信号発生部と、
該制御信号発生部で発生した制御信号を前記光伝送路上に伝える光合波部と、を備えたことを特徴とする波長多重信号光の品質監視装置。
【0095】
(付記15)付記8に記載の波長多重信号光の品質監視装置であって、
前記光伝送路を伝送される波長多重信号光がビットレートの異なる信号光を含むとき、
前記波長選択部は、前記波長選択部で選択された測定対象の信号光を、波長多重信号光に含まれる信号光のビットレートの種類に応じて複数の光に分岐する光分岐器と、各信号光のビットレートにそれぞれ対応した複数の光受信器とを有し、前記光分岐器で分岐された光が前記各光受信器に与えられることを特徴とする波長多重信号光の品質監視装置。
【0096】
(付記16)付記8に記載の波長多重信号光の品質監視装置であって、
前記光分岐部は、複数の光伝送路をそれぞれ伝搬する波長多重信号光の一部をモニタ光として分岐する複数の光分岐器を有し、該各光分岐器で分岐されたモニタ光のいずれか1つが時間的に切り替えられて前記波長選択部に与えられることにより、前記複数の光伝送路をそれぞれ伝送される波長多重信号光の品質の監視が時分割で行われることを特徴とする波長多重信号光の品質監視装置。
【0097】
(付記17)付記8に記載の波長多重信号光の品質監視装置であって、
前記光分岐部は、光伝送路を双方向に伝搬する各波長多重信号光の一部をモニタ光としてそれぞれ分岐することが可能な光分岐器を有し、該光分岐器で分岐された各伝搬方向に対応するモニタ光のいずれか1つが時間的に切り替えられて前記波長選択部に与えられることにより、前記光伝送路を双方向に伝送される各波長多重信号光の品質の監視が時分割で行われることを特徴とする波長多重信号光の品質監視装置。
【0098】
(付記18)光送信部および光受信部の間で、光伝送路および該光伝送路上に配置された1つ以上の中継ノードを介して、波長多重信号光が送受信される光伝送システムにおいて、
前記光受信部および前記中継ノードの少なくとも1つが、付記8に記載の波長多重信号光の品質監視装置を具備することを特徴とする光伝送システム。
【0099】
(付記19)付記18に記載の光伝送システムであって、
前記光伝送路上に配置された複数の中継ノードのうちの一部が、波長多重信号光の光スペクトラムの測定に基づいて品質を監視する装置を具備することを特徴とする光伝送システム。
【0100】
【発明の効果】
以上説明したように、本発明にかかるWDM信号光の品質監視方法および装置によれば、光伝送路を伝搬するWDM信号光のある波長の信号光についての符号誤りの発生回数を繰り返し測定し、該ある波長の信号光に品質劣化が発生している場合に、当該信号光に隣接する波長グリッドに存在する信号光の符号誤りの発生回数を繰り返し測定し、ある波長の信号光及び隣接する波長グリッドの信号光の測定結果に基づいて、ある波長の信号光の劣化要因及び隣接する波長グリッドの信号光の劣化要因がそれぞれ判定されるため、システム運用中に信号品質の劣化が発生したときでも、その劣化要因を短時間で精度良く判定して信号品質に関する監視情報を得ることができる。これにより、システム管理者等によるWDM信号光の特性改善作業の負担軽減を図ることが可能になる。また、監視情報に応じて信号光パワーを調整する制御信号を発生して光伝送路上に伝えるようにしたことで、WDM信号光の特性改善を迅速かつ確実に行うことが可能になる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による装置を示す構成図である。
【図2】上記第1実施形態に用いられる波長選択器の具体例を示す構成図である。
【図3】上記第1実施形態に用いられる波長選択器の他の具体例を示す構成図である。
【図4】符号誤りの発生分布と伝送特性の劣化要因との関係を説明する図である。
【図5】隣接チャネルがない場合の劣化要因と信号光パワーの関係を説明する模式図である。
【図6】隣接チャネルがある場合の劣化要因と信号光パワーの関係を説明する模式図である。
【図7】上記第1実施形態における劣化要因判定および信号光パワー制御の手順を示すフローチャートである。
【図8】上記第1実施形態に関連した他の構成例を示す図である。
【図9】本発明の第2実施形態による装置を示す構成図である。
【図10】本発明の第3実施形態による光伝送システムを示す構成図である。
【図11】本発明の第4実施形態による装置を示す構成図である。
【図12】本発明の第5実施形態による装置を示す構成図である。
【図13】電気的な再生中継器を使用する従来の光伝送システムの構成例を示す図である。
【図14】光スペクトラムアナライザを利用して信号光の品質を監視する従来の方法を説明する図である。
【図15】光信号を電気信号に変換することなく長距離伝送する一般的な光伝送システムの構成例を示す図である。
【図16】公知の次世代光伝送システムの構成例を示す図である。
【符号の説明】
1,1’,1a,1b 本発明を適用した装置
2 光伝送路
3 光送受信部
11,11A,11B,21,32 光分岐器
12 波長選択器
13,24A,24B 光受信器
14 誤り監視回路
15 劣化要因判定回路
16 切り替え信号制御回路
17 制御信号発生回路
18,18A,18B,181,182 光合波器
22A,22B 可変波長分散補償器
23A,23B 可変偏波分散補償器
31 光スイッチ
N1 光増幅中継ノード
N2 補償ノード
N3 ハブノード
Ls WDM信号光
Lm モニタ光
Lc 制御信号光
Claims (5)
- 光伝送路を介して伝送される波長多重信号光の品質監視方法において、
該波長多重信号光に含まれる複数の波長の信号光のうちのある波長の信号光について、予め設定した時間内における符号誤りの発生回数を繰り返して測定し、
該測定結果に基づいて該ある波長の信号光の品質に劣化が発生しているか否かを判定し、
該ある波長の信号光の品質に劣化が発生していると判定するとき、該ある波長の信号光に隣接する波長グリッドに信号光が存在するか否かを判断し、
該ある波長の信号光に隣接する波長グリッドに信号光が存在しない場合、又は、該ある波長の信号光に隣接する波長グリッドに信号光が存在し、かつ、該ある波長の信号光について測定した符号誤りの発生回数の時間的な分布が均一である場合は、該ある波長の信号光の主な劣化要因がASE雑音であると判定し、
該ある波長の信号光に隣接する波長グリッドに信号光が存在し、かつ、該ある波長の信号光について測定した符号誤りの発生回数の時間的な分布が不均一である場合は、該ある波長の信号光の主な劣化要因が非線形効果であると判定すると共に、該隣接する波長グリッドの信号光について、予め設定した時間内における符号誤りの発生回数を繰り返し測定し、該測定した符号誤りの発生回数の時間的な分布が均一である場合は、該隣接する波長グリッドの信号光の主な劣化要因がASE雑音であると判定し、該符号誤りの発生回数の時間的な分布が不均一である場合は、該隣接する波長グリッドの信号光の主な劣化要因が非線形効果であると判定することを特徴とする波長多重信号光の品質監視方法。 - 請求項1に記載の波長多重信号光の品質監視方法において、
前記ある波長の信号光の主な劣化要因がASE雑音であると判定されたとき、前記ある波長の信号光のパワーを調整するための制御信号を発生し、前記ある波長の信号光の主な劣化要因が非線形効果であると判定されたとき、前記隣接する波長グリッドの信号光についての主な劣化要因の判定結果に応じて、前記ある波長の信号光のパワー及び前記隣接する波長グリッドの信号光のパワーを調整するための制御信号を発生し、該制御信号を光伝送路上に伝えることを特徴とする波長多重信号光の品質監視方法。 - 光伝送路を介して伝送される波長多重信号光の品質監視装置において、
前記波長多重信号光に含まれる複数の波長の信号光のうちのある波長の信号光について、予め設定した時間内における符号誤りの発生回数を繰り返して測定する測定部と、
該測定部での測定結果に基づいて、該ある波長の信号光の品質に劣化が発生しているか否か、及び、該ある波長の信号光の主な劣化要因を判定する判定部と、
を備え、
該判定部は、該ある波長の信号光の品質に劣化が発生していると判定したとき、該ある波長の信号光に隣接する波長グリッドに信号光が存在しない場合、又は、該ある波長の信号光に隣接する波長グリッドに信号光が存在し、かつ、該ある波長の信号光について測定した符号誤りの発生回数の時間的な分布が均一である場合に、該ある波長の信号光の主な劣化要因がASE雑音であると判定する一方、該ある波長の信号光に隣接する波長グリッドに信号光が存在し、かつ、該ある波長の信号光について測定した符号誤りの発生回数の時間的な分布が不均一である場合は、該ある波長の信号光の主な劣化要因が非線形効果であると判定し、
該測定部は、該判定部において該ある波長の信号光の主な劣化要因が非線形効果であると判定されたとき、該ある波長の信号光に隣接する波長グリッドの信号光について、予め設定した時間内における符号誤りの発生回数を繰り返して測定し、さらに、
該判定部は、該測定部で測定された該隣接する波長グリッドの信号光についての符号誤りの発生回数の時間的な分布が均一である場合、該隣接する波長グリッドの信号光の主な劣化要因がASE雑音であると判定し、該符号誤りの発生回数の時間的な分布が不均一である場合は、該隣接する波長グリッドの信号光の主な劣化要因が非線形効果であると判定することを特徴とする波長多重信号光の品質監視装置。 - 請求項3に記載の波長多重信号光の品質監視装置において、
前記測定部における測定結果に応じて、該測定部で測定する信号光を切り替える制御をする切り替え制御部を備えたことを特徴とする波長多重信号光の品質監視装置。 - 光送信部と光受信部の間で、光伝送路および該光伝送路上に配置された1つ以上の中継ノードを介して、波長多重信号光が送受信される光伝送システムにおいて、
前記光受信部および前記中継ノードの少なくとも1つが、請求項3に記載の波長多重信号光の品質監視装置を具備することを特徴とする光伝送システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003081779A JP4553556B2 (ja) | 2003-03-25 | 2003-03-25 | 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム |
US10/806,330 US7400830B2 (en) | 2003-03-25 | 2004-03-23 | Quality monitoring method and apparatus for wavelength division multiplexed optical signal and optical transmission system using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003081779A JP4553556B2 (ja) | 2003-03-25 | 2003-03-25 | 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004289707A JP2004289707A (ja) | 2004-10-14 |
JP4553556B2 true JP4553556B2 (ja) | 2010-09-29 |
Family
ID=32984989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003081779A Expired - Fee Related JP4553556B2 (ja) | 2003-03-25 | 2003-03-25 | 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム |
Country Status (2)
Country | Link |
---|---|
US (1) | US7400830B2 (ja) |
JP (1) | JP4553556B2 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4520763B2 (ja) * | 2004-03-29 | 2010-08-11 | 富士通株式会社 | 中継伝送装置 |
JP2005286906A (ja) * | 2004-03-30 | 2005-10-13 | Fujitsu Ltd | 波長分散補償方法及びその装置 |
EP1753160B1 (en) * | 2004-06-03 | 2016-08-10 | Nippon Telegraph And Telephone Corporation | Optical signal quality monitoring circuit and optical signal quality monitoring method |
US8761610B2 (en) * | 2006-01-10 | 2014-06-24 | Ciena Corporation | Methods and systems for the performance analysis of fiber optic networks |
JP4783648B2 (ja) * | 2006-02-28 | 2011-09-28 | 富士通株式会社 | 中継装置及び中継方法 |
JP4798711B2 (ja) * | 2006-12-27 | 2011-10-19 | Kddi株式会社 | 全光ネットワーク品質監視装置 |
WO2009028042A1 (ja) * | 2007-08-27 | 2009-03-05 | Fujitsu Limited | ネットワーク管理システム、中継装置及び方法 |
KR100903218B1 (ko) * | 2007-09-03 | 2009-06-18 | 한국전자통신연구원 | 광신호의 성능 감시 장치 및 방법 |
JP2009216626A (ja) * | 2008-03-12 | 2009-09-24 | National Taiwan Univ Of Science & Technology | 受動光線路網の破断点検出システム |
JP5495120B2 (ja) * | 2010-05-24 | 2014-05-21 | 日本電気株式会社 | 光受信装置、光受信方法及び光受信装置の制御プログラム |
CN102142902B (zh) * | 2010-11-19 | 2013-12-18 | 华为技术有限公司 | 一种实现直接检测和相干检测的方法和装置 |
EP2656517A1 (en) | 2010-12-22 | 2013-10-30 | Telefonaktiebolaget L M Ericsson (publ) | Optical signal power selection and control |
JP5796634B2 (ja) * | 2011-02-28 | 2015-10-21 | 日本電気株式会社 | 波長パス制御システム、波長パス制御方法および波長パス制御用プログラム記憶媒体 |
JP5830415B2 (ja) * | 2012-03-13 | 2015-12-09 | 富士通テレコムネットワークス株式会社 | 品質監視装置および伝送装置 |
US9094148B2 (en) * | 2013-05-10 | 2015-07-28 | Nec Laboratories America, Inc. | Adaptive optical amplifier for WDM systems |
US9389949B1 (en) | 2013-12-06 | 2016-07-12 | Rockwell Collins, Inc. | Optical fiber signal quality measuring and reporting in aviation systems and related method |
JP6484935B2 (ja) * | 2014-06-19 | 2019-03-20 | 日本電気株式会社 | マルチキャリア光伝送システム、光受信器、およびマルチキャリア光伝送方法 |
JP6492864B2 (ja) * | 2015-03-26 | 2019-04-03 | 富士通株式会社 | 光分岐挿入装置および光分岐挿入方法 |
EP3203657B1 (en) * | 2016-02-05 | 2019-07-10 | Telefonaktiebolaget LM Ericsson (publ) | Coherent optical spectrum analyser for monitoring a spectrum of a fibre link |
JP2017157941A (ja) * | 2016-02-29 | 2017-09-07 | 富士通株式会社 | 光伝送装置および光伝送装置内の光接続を確認する方法 |
JP2018007058A (ja) * | 2016-07-04 | 2018-01-11 | 富士通株式会社 | ネットワーク制御装置、光伝送システムおよび障害判定方法 |
WO2023195130A1 (ja) * | 2022-04-07 | 2023-10-12 | 日本電信電話株式会社 | 光伝送システム及び光伝送方法 |
WO2024184988A1 (ja) * | 2023-03-06 | 2024-09-12 | 日本電気株式会社 | 光監視装置、光伝送システム及び光監視方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06160238A (ja) * | 1992-11-20 | 1994-06-07 | Fujitsu Ltd | 光変動耐力試験装置 |
JPH07177130A (ja) * | 1993-12-21 | 1995-07-14 | Fujitsu Ltd | エラーカウント回路 |
JPH11103287A (ja) * | 1997-08-01 | 1999-04-13 | Fujitsu Ltd | 光伝送システム及び送信端局 |
JP2000031900A (ja) * | 1998-07-08 | 2000-01-28 | Fujitsu Ltd | 光ファイバ通信のための方法並びに該方法の実施に使用する端局装置及びシステム |
JP2000174733A (ja) * | 1998-12-10 | 2000-06-23 | Totoku Electric Co Ltd | 光受信回路 |
JP2002057624A (ja) * | 2000-08-08 | 2002-02-22 | Fujitsu Ltd | 波長多重光通信システムおよび波長多重光通信方法 |
JP2002164845A (ja) * | 2000-11-27 | 2002-06-07 | Nec Corp | 波長多重光送受信装置、波長多重光中継器、及び波長多重光通信システム |
JP2002353940A (ja) * | 2001-05-25 | 2002-12-06 | Mitsubishi Electric Corp | 光伝送システム |
WO2002103948A1 (fr) * | 2001-06-13 | 2002-12-27 | Fujitsu Limited | Systeme de communication optique |
JP2003069503A (ja) * | 2001-08-28 | 2003-03-07 | Nippon Telegr & Teleph Corp <Ntt> | 光多重伝送システム、及び光多重伝送方法 |
JP2003209864A (ja) * | 2002-01-15 | 2003-07-25 | Hitachi Ltd | 光経路設定装置、および、光通信網システム |
JP2004518333A (ja) * | 2001-01-05 | 2004-06-17 | 富士通株式会社 | 広帯域wdm光ファイバ伝送システムにおける長波長チャネル制御方式 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992011709A1 (en) * | 1990-12-18 | 1992-07-09 | Aster Corporation | Optical communication monitoring and control |
JP3846918B2 (ja) | 1994-08-02 | 2006-11-15 | 富士通株式会社 | 光伝送システム、光多重伝送システム及びその周辺技術 |
JP3293781B2 (ja) * | 1998-09-25 | 2002-06-17 | 日本電気株式会社 | スペクトラム拡散ダイバーシティ送受信機 |
US20020131115A1 (en) * | 2000-08-28 | 2002-09-19 | The Furukawa Electric Co. Ltd. | Wavelength multiplex transmission method and system |
GB2366925A (en) * | 2000-09-13 | 2002-03-20 | Marconi Comm Ltd | Power control and equalisation in an optical WDM system |
US6980737B1 (en) * | 2000-10-16 | 2005-12-27 | Nortel Networks Limited | Method and apparatus for rapidly measuring optical transmission characteristics in photonic networks |
US6952529B1 (en) * | 2001-09-28 | 2005-10-04 | Ciena Corporation | System and method for monitoring OSNR in an optical network |
-
2003
- 2003-03-25 JP JP2003081779A patent/JP4553556B2/ja not_active Expired - Fee Related
-
2004
- 2004-03-23 US US10/806,330 patent/US7400830B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06160238A (ja) * | 1992-11-20 | 1994-06-07 | Fujitsu Ltd | 光変動耐力試験装置 |
JPH07177130A (ja) * | 1993-12-21 | 1995-07-14 | Fujitsu Ltd | エラーカウント回路 |
JPH11103287A (ja) * | 1997-08-01 | 1999-04-13 | Fujitsu Ltd | 光伝送システム及び送信端局 |
JP2000031900A (ja) * | 1998-07-08 | 2000-01-28 | Fujitsu Ltd | 光ファイバ通信のための方法並びに該方法の実施に使用する端局装置及びシステム |
JP2000174733A (ja) * | 1998-12-10 | 2000-06-23 | Totoku Electric Co Ltd | 光受信回路 |
JP2002057624A (ja) * | 2000-08-08 | 2002-02-22 | Fujitsu Ltd | 波長多重光通信システムおよび波長多重光通信方法 |
JP2002164845A (ja) * | 2000-11-27 | 2002-06-07 | Nec Corp | 波長多重光送受信装置、波長多重光中継器、及び波長多重光通信システム |
JP2004518333A (ja) * | 2001-01-05 | 2004-06-17 | 富士通株式会社 | 広帯域wdm光ファイバ伝送システムにおける長波長チャネル制御方式 |
JP2002353940A (ja) * | 2001-05-25 | 2002-12-06 | Mitsubishi Electric Corp | 光伝送システム |
WO2002103948A1 (fr) * | 2001-06-13 | 2002-12-27 | Fujitsu Limited | Systeme de communication optique |
JP2003069503A (ja) * | 2001-08-28 | 2003-03-07 | Nippon Telegr & Teleph Corp <Ntt> | 光多重伝送システム、及び光多重伝送方法 |
JP2003209864A (ja) * | 2002-01-15 | 2003-07-25 | Hitachi Ltd | 光経路設定装置、および、光通信網システム |
Also Published As
Publication number | Publication date |
---|---|
US7400830B2 (en) | 2008-07-15 |
US20040190899A1 (en) | 2004-09-30 |
JP2004289707A (ja) | 2004-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4553556B2 (ja) | 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム | |
US8131155B2 (en) | Optical signal transmission apparatus | |
US8270843B2 (en) | Optical transmission system | |
US6040933A (en) | Method and apparatus for channel equalization in wavelength division multiplexed systems | |
JP3373332B2 (ja) | プリエンファシス方式光波長多重通信方法および装置 | |
US6847788B2 (en) | System and method for equalizing transmission characteristics in wavelength division multiplexing optical communication system | |
US7634194B2 (en) | Multi-channel protection switching systems and methods for increased reliability and reduced cost | |
EP1076434B1 (en) | Optical amplifying apparatus and method for amplifying wide-wavelength-band light | |
US6934479B2 (en) | Wavelength division multiplexing optical communication system and wavelength division multiplexing optical communication method | |
KR100329324B1 (ko) | 신호전송시스템 및 그 감시제어방법 | |
JP4053389B2 (ja) | 光信号対雑音比のモニタ方法およびそれを用いた光伝送システム | |
US10608775B2 (en) | Optical transmission apparatus, optical transmission method, and optical transmission system | |
US7064888B2 (en) | Optical transmission equipment for suppressing a four wave mixing and optical transmission system | |
EP2892167A1 (en) | Space division multiplexing apparatus including multi-core fiber and selfhomodyne detection method | |
US8494360B2 (en) | In-service optical network testing | |
US8712255B2 (en) | Optical receiver and optical transfer apparatus | |
JP4072184B2 (ja) | 光伝送システム | |
US20180287697A1 (en) | Fast probing of signal quality in a wdm network | |
JP6497439B2 (ja) | 通信装置、通信方法、及び、通信システム | |
JPH0918453A (ja) | 波長多重伝送方式の雑音抑圧方法 | |
EP1134925B1 (en) | Optical transmission system including performance optimization | |
Souza et al. | Service-aware genetic algorithm for link power control in multi-band optical transmission systems | |
Igarashi et al. | Scalability study of all-photonics metro/access network with simultaneous reception of wavelength-multiplexed control and main signals | |
US20040208515A1 (en) | Signal to noise ratio measurement in a communications system | |
Yagi et al. | All-optical wavelength-path service with quality assurance by multilayer integration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080318 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100713 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |