JP2018007058A - ネットワーク制御装置、光伝送システムおよび障害判定方法 - Google Patents

ネットワーク制御装置、光伝送システムおよび障害判定方法 Download PDF

Info

Publication number
JP2018007058A
JP2018007058A JP2016132377A JP2016132377A JP2018007058A JP 2018007058 A JP2018007058 A JP 2018007058A JP 2016132377 A JP2016132377 A JP 2016132377A JP 2016132377 A JP2016132377 A JP 2016132377A JP 2018007058 A JP2018007058 A JP 2018007058A
Authority
JP
Japan
Prior art keywords
signal quality
value
node
acquisition unit
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016132377A
Other languages
English (en)
Inventor
岡野 悟
Satoru Okano
悟 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016132377A priority Critical patent/JP2018007058A/ja
Priority to US15/622,498 priority patent/US20180006717A1/en
Publication of JP2018007058A publication Critical patent/JP2018007058A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0791Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07951Monitoring or measuring chromatic dispersion or PMD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

【課題】光伝送システムの障害の発生を事前に予測する。【解決手段】ノードを制御するネットワーク制御装置110は、信号品質取得部232と、伝送特性取得部233と、信号品質補正部234と、信号品質変動検出部235とを備える。信号品質取得部232は、ノードが接続される光伝送路で伝送される信号品質を取得する。伝送特性取得部233は、ノード又は光伝送路の伝送特性を取得する。信号品質補正部234は、信号品質取得部232で取得された信号品質を伝送特性取得部233で取得した伝送特性に基づいて補正する。信号品質変動検出部235は、信号品質補正部により補正された信号品質の変動を検出する。【選択図】図1

Description

開示は、ネットワーク制御装置、光伝送システムおよび障害判定方法に関する。
光伝送装置を用いる光伝送システムは、通信トラフィックの増加に伴う伝送の大容量化および長距離化を実現するために、光増幅器を用いた多中継の波長多重伝送方式が使用されている。光伝送装置の送受信器の伝送速度は、10ギガビット毎秒から40ギガビット毎秒への高速化を経て、100ギガビット毎秒が一般的となりつつある。また、さらに高速な400ギガビット毎秒が商用段階になりつつある。
100ギガビット毎秒以上の高速な伝送を実現する技術としては、偏波多重方式、デジタルコヒーレント方式および多値変調方式の少なくとも一つが採用されている。
特開2015−115863号公報 特開2004−289707号公報
送受信機の伝送速度の高速化に伴って、光ファイバ一本あたりの伝送容量は増加している。このため、今まで以上に光ネットワークの高信頼化が重要となってきている。一方、従来の光伝送システムでは、信号断などの障害が実際に検出されてから保守作業を実施しており、障害からの復旧に時間がかかる場合がある。
以上に鑑み、光伝送システムの障害の発生を事前に予測することを含む開示を行なう。
ノードを制御するネットワーク制御装置は、信号品質取得部と、伝送特性取得部と、信号品質補正部と、信号品質変動検出部とを備える。信号品質取得部は、ノードが接続される光伝送路で伝送される信号品質を取得する。伝送特性取得部は、ノード又は光伝送路の伝送特性を取得する。信号品質補正部は、信号品質取得部で取得された信号品質を伝送特性取得部で取得した伝送特性に基づいて補正する。信号品質変動検出部は、信号品質補正部により補正された信号品質の変動を検出する。
一側面によれば、光伝送システムの障害の発生を事前に予測することができる。
実施形態に係る光伝送システムの構成および機能を説明するための図である。 監視パスデータベースに格納されるデータの一例を示す図である。 実施形態に係る光伝送システムの制御装置における信号品質の補正の一例を示す図である。 実施形態に係る光伝送システムの制御装置による正常状態における信号品質の変動と許容範囲外の信号品質の変動との一例を示す図である。 実施形態に係る光伝送システムの制御装置の処理のフローチャートである。 実施形態に係る光伝送システムの制御装置の処理のフローチャートである。 実施形態に係る光伝送システムの制御装置がBER値の変動原因を解析する処理を説明するための図である。 実施形態に係る光伝送システムの制御装置がBER値の変動原因を解析する処理を説明するための図である。
以下、図面を参照して実施形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。
図1は、実施形態に係る光伝送システム100の構成および機能を説明するための図である。光伝送システム100は、本例では、ノードA(101)、ノードB(102)、ノードC(103)、ノードD(104)および制御装置110を備えて構成される。
ノードA(101)、B(102)、C(103)およびD(104)のそれぞれは、光伝送装置を備える光ノードである。図1を参照すると、ノードA(101)とノードB(102)、ノードB(102)とノードC(103)、およびノードC(103)とノードD(104)のそれぞれが光伝送路(例えば、光ファイバ)により接続される。したがって、波長パスの設定により、例えばノードA(101)の光伝送装置に接続された送信機としてのトランスポンダに電気信号が入力されると、ノードB(102)の光伝送装置に接続された受信機としてのトランスポンダから電気信号が出力されるようにできる。送信機にて電気信号より変換された光信号はノードA(101)の光伝送装置から光伝送路を経由してノードB(102)の光伝送装置に伝送され、受信機にて電気信号に変換される。
また、例えばノードA(101)からノードC(103)へ光信号を送信するには、ノードB(102)を経由して光信号が伝送される。別言すれば、まず、ノードA(101)から光信号が光伝送路を介してノードB(102)に伝送される。その後、ノードB(102)において光信号の増幅および方路の選択が行なわれ、ノードB(102)からノードC(103)へ光信号が光伝送路を介して伝送される。このとき、ノードA(101)からノードB(102)へ伝送される光信号の中心波長とノードB(102)からノードC(103)へ伝送される光信号の中心波長は等しくなる。ノード間で伝送される光信号の中心波長が等しくなることは、複数のノードを経由する場合も同様である。例えば、ノードA(101)からノードD(104)へ光信号がノードB(102)およびノードC(103)を経由して伝送されるときも、各ノード間で伝送される光信号の中心波長は等しい。
そこで、波長パスは、始点(換言すると、出発点)となるノードと、経由点のノードがあれば当該ノードと、終点となるノードと、光信号の中心波長との組として定義されてもよい。また、波長パスは、さらにスロット幅を含んでもよい。別言すれば、第2の定義による波長パスは、始点となるノードと、経由点のノードがあれば当該ノードと、終点となるノードと、光信号の中心波長と、スロット幅との組である。以下では、前者の定義を用いて説明するが、第2の定義を用いることもできる。
ノードA(101)は、波長パスの始点になるノードである。ノードA(101)は、WSS201と、ポストアンプ202を備え、WSS201には、光信号をアッドするためのトランスポンダ204〜206が接続されたマルチプレクサ203が接続される。なお、WSSは、Wavelength Selection Switchの略である。なお、ノードA内において、WSSを複数組み合わせることも可能である。WSSを複数組み合わせることができるのは他のノードにおいても同様である。
ノードB(102)は、波長パスの始点、終点および経由点のいずれにもなり得るノードである。ノードB(102)は、ノードA(101)から伝送される光信号をノードC(103)に伝送可能なノードである。ノードB(102)は、ノードA(101)からの光信号を増幅するプリアンプ208を有し、プリアンプ208の出力光信号は、WSS207に入力される。WSS207には、光信号をアッドしたりドロップしたりするためのトランスポンダ212が接続されたマルチプレクサ/デマルチプレクサ211が接続される。また、WSS207には、ポストアンプ210が接続される。ポストアンプ210により増幅された光信号は、ノードC(103)に伝送される。
ノードC(103)は、波長パスの始点、終点および経由点のいずれにもなり得るノードである。ノードC(103)は、ノードB(102)から伝送される光信号をノードD(104)に伝送可能なノードである。ノードC(103)は、ノードB(102)からの光信号を増幅するプリアンプ214を有し、プリアンプ214の出力光信号は、WSS213に入力される。WSS213には、光信号をアッドしたりドロップしたりするためのトランスポンダ217〜220が接続されたマルチプレクサ/デマルチプレクサ216が接続される。また、WSS213には、ポストアンプ215が接続される。ポストアンプ215により増幅された光信号は、ノードD(104)に伝送される。
ノードD(104)は波長パスの終点となるノードである。ノードD(104)は、ノードC(103)から伝送される光信号を増幅するプリアンプ222が、WSS221に接続され、WSS221は、光信号をドロップするためのトランスポンダ224〜226が接続されたデマルチプレクサ223に接続される。
また、ポストアンプ202、210、215およびプリアンプ208、214、222のそれぞれは、出力側に光特性モニタ(Optical Performance Monitor;OPM)251〜256を備える。OPM(251〜256)が複数備えられることにより、ノードA(101)からノードD(104)までに至るノードおよび光伝送路の伝送特性を監視することができる。
伝送特性は、信号品質に影響を及ぼすノードおよび光伝送路のパラメータ値により表わすことができる。伝送特性は、例えば、OSNR値、PMD値、PDL値、CD値および非線形位相雑音特性値の少なくとも1つの値により表される。OSNRは、Optical Signal to Noise Ratioの略であり、光信号と雑音との比を意味する。PMDは、Polarization Mode Dispersionの略であり、偏波モード分散を意味する。PDLは、Polarization Dependent Lossの略であり、偏波依存損失を意味する。CDは、Chromatic Dispersionの略であり、波長分散を意味する。したがって、OPM(251〜256)は、OSNR値、PMD値、PDL値、CD値および非線形位相雑音特性値の少なくとも1つの値を測定する。
なお、図1においては、ポストアンプ202、210、215およびプリアンプ208、214、222のそれぞれにOPM(251〜256)が備えられているが、一部のアンプにはOPMが備えられていなくてもよい。
波長パスに複数のOPM(251〜256)が備えられていることにより、通常とは異なる伝送特性を測定するOPMがある場合、当該OPMに隣接するOPMが通常の伝送特性を測定していると、2つのOPM間の光伝送路に異常が生じていることが推定できる。
制御装置110は、監視パスデータベース231と、信号品質取得部232と、伝送特性取得部233と、信号品質補正部234と、信号品質変動検出部235とを有する。また、制御装置110は、変動原因解析部236を有することもできる。
監視パスデータベース231は、監視対象の波長パスに関する情報を格納するデータベースである。監視対象の波長パスに関する情報は、光信号の中心波長、始点のノードの識別情報、必要な経由点のノードの識別情報および終点のノードの識別情報を含む。
図2は、監視パスデータベース231に格納される情報の一例を示す図である。「パス番号」は、波長パスを一意に識別するための識別情報を格納する列の名前であり、「波長」は、波長パスの光信号の中心波長の識別情報を格納する列の名前である。また、「パスおよび受信機」は、波長パスの始点のノードの識別情報、必要な経由点のノードの識別情報、終点のノードの識別情報および波長パスに伝送される光信号が受信される受信機の識別情報を格納する列の名前である。
図2を参照すると、パス番号の列に「1」という識別情報が格納される波長パスが監視対象の波長パスとなっており、光信号の中心波長の列に格納されている識別情報は「3」である。また、当該波長パスは、A(101)を始点とし、経由点をB(102)およびC(103)とし、D(104)を終点とする。また、受信機の識別情報は224である。なお、本例においては、受信機の識別情報は、図1に示す符号としている。
信号品質取得部232は、監視対象の波長パスに伝送される光信号の信号品質を取得する。当該光信号の信号品質は、受信機224に設置された信号品質測定器261により測定され、信号品質取得部232は、測定された信号品質を取得する。信号品質は、例えば、光信号を電気信号に変換し復号などするときのBER(Bit Error Rate)値により測定することができる。BER値が、訂正が可能なビット誤り率の上限であるビット訂正限界より小さければ小さいほど、信号品質は良好である。逆に、BER値が上昇しビット訂正限界に近づくと、信号品質が劣化し、光ネットワークの障害の発生が予測される場合がある。
信号品質取得部232により取得された信号品質は、取得した時刻に関連づけられて制御装置110が備える記憶装置に記憶され得る。
なお、信号品質の劣化には、種々の原因があるので、信号品質が劣化したからといって、障害が発生するとは限らない。以下に説明するように、本開示においては、制御装置110は、伝送特性に基づいて信号品質を補正し、補正された信号品質の変動に基づいて、障害の発生を予測する。
なお、信号品質取得部232は、監視パスデータベース231の「パスおよび受信機」の列に格納されている受信機の識別情報を取得して受信機を特定する。
伝送特性取得部233は、伝送特性の値を取得する。伝送特性の値は、ノードA(101)、B(102)、C(103)およびD(104)に設置された複数のOPM(251〜256)から取得される。
伝送特性取得部233により取得された伝送特性は、OPM(251〜256)および伝送特性ごとに、取得した時刻に関連づけられて制御装置110が備える記憶装置に記憶され得る。
信号品質補正部234は、信号品質取得部232が取得した信号品質を、伝送特性取得部233が取得した伝送特性に基づいて補正する。
図3は、伝送特性に基づく信号品質の補正の一例を説明する図である。図3に示す例においては、受信機224に設置された信号品質測定器261から、信号品質取得部232により、図3のグラフ401により示されるBER値の時間変動が得られている。グラフ401に示すようにBER値は時刻の経過とともに変動しており、一時的にBER値は上昇したが、その後、低下に転じ、現在は再び上昇傾向にあることを以下において想定する。
また、OPM(251〜256)のそれぞれから、例えばPDL値およびOSNR値が伝送特性取得部233により取得される。グラフ402および403に示すように、OPM(256)から取得されたPDL値およびOSNR値のそれぞれが変動していることを想定する。別言すれば、プリアンプ222の出力側において、PDL値は、一時的に上昇したが、その後、低下に転じ、現在は一時的な上昇の前の値に戻っている。また、OSNR値は、一定値を保っていたが、現在のところ、減少傾向にある。
信号品質補正部234は、伝送特性取得部233により取得された伝送特性に基づいて、信号品質取得部232が取得した信号品質を補正する。信号品質補正部234は、伝送特性として複数の特性の測定結果が得られている場合には、伝送特性のそれぞれの測定結果を用いて信号品質を補正する。あるいは、信号品質補正部234は、伝送特性の測定値を特定の伝送特性の値に変換し、変換された特定の伝送特性の値を用いて信号品質を補正する。
以下では、信号品質補正部234は、複数の伝送特性のそれぞれを特定の伝送特性の値に変換し、変換された特定の伝送特性の値を用いて信号品質を補正する例について、説明する。図3のように、伝送特性としてPDL値とOSNR値とが取得されている場合には、信号品質補正部234は、例えばPDL値をOSNR値に変換する。変換には、以下の数式を使用することができる。
Figure 2018007058
ここに、「OSNR(t)」は、ノードnにおける時刻tに関連付けられたOSNR値であり、「PDL(t)」は、ノードnにおける時刻tでのPDL値であり、「OSNR(t)」は、時刻tに関連付けられた信号品質の補正に使用されるOSNR値である。また、「Σ」は、監視対象の波長パスの始点、経由点および終点のノードについての総和を表わす。
グラフ404は、上記の数式を用いて、グラフ402のように変動するPDL値とグラフ403のように変動するOSNR値から受信機224の受信OSNR値の変動を示す。グラフ404に示すように、補正したOSNR値は、一時的に上昇したが、現在は減少傾向にある。
次に、信号品質補正部234は、補正したOSNR値の変動を信号品質の変動に変換した結果に基づいて、信号品質取得部232により取得された信号品質を補正する。なお、OSNR値の変動によるBER値の変動は、光伝送装置の送信機および受信機ごとにより異なり得る。信号品質補正部234は、送信機および受信機のそれぞれについてOSNR値の変動とBER値の変動とを関連付けたテーブルを予め保持し、当該テーブルを参照してOSNR値の変動をBER値の変動に変換してよい。
例えば、信号品質補正部234は、補正したOSNRの変動を信号品質の変動に変換した結果を用いて信号品質を補正するために、信号品質取得部232により取得された信号品質から、補正したOSNRの変動を信号品質の変動に変換した結果を減算する。したがって、グラフ401に示されるBER変動のモニタ値から、グラフ404のBER変動が減算され、結果は、グラフ405に示すようになる。
グラフ405に示すように、補正されたBER値は、ほぼ一定値を保った後、現在は増加傾向にあり、その増加の割合は、補正前のBER値の増加の割合よりも大きく、また、補正後のBER値は補正前のBER値よりもビット訂正限界に近づいている。したがって、制御装置110は、補正前のBER値の変動が正常範囲(換言すると、許容範囲)内であるとしても、BER値を伝送特性に基づいて補正することにより、BER値の変動が大きいことが検出される場合には、障害を予測することができる。
別言すれば、次のように言える。偏波多重信号(例えば、DP−QPSK(Dual Polarization Quadrature Phase Shift Keying))の場合、光信号の偏波の状態により信号品質が変動する。当該変動の速度や影響の大きさは、光ファイバの特性、敷設状態および光伝送装置のPDL値、OSNR値、送信機の機種および受信機の機種により異なる。そのため、単に終点ノードにて波長パスの合計PDL値を監視するだけでは障害を予測することは容易ではない。一方、上述のように、各ノードにおいてPDL値とOSNR値とをモニタし、偏波変動に伴うPDL値変動とOSNR値変動とを特定し、さらに送受信機毎にBER値に対する変動の影響を決定して補正することで、高い精度にて障害を予測できる。
信号品質変動検出部235は、信号品質補正部234によって補正された信号品質の変動を検出する。別言すれば、信号品質変動検出部235は、信号品質補正部234による補正後の信号品質の変動の大きさが、障害の発生に至らない変動であるか、許容範囲外の大きさであり障害の発生に至る変動であるかを判断する。例えば、信号品質変動検出部235は、図3のグラフ405に示すように、補正された信号品質が劣化し続けており、訂正限界から所定の値以内になる場合に障害の発生に至る変動であることを検出する。
また、信号品質変動検出部235は、信号品質補正部234によって補正された信号品質の単位時間あたりの変化量が所定値より大きい場合にも、許容範囲外の変動であることを検出してもよい。光伝送システム100の通常の運用であれば、信号品質補正部234によって補正された信号品質が急激に変動することはないためである。
なお、波長パスが新たに増設された場合、信号品質補正部234によって補正された信号品質が急激に変動し得る。この場合、当該変動が許容範囲外の変動であったとしても、信号品質変動検出部235は、許容範囲外の変動の例外とし、障害の発生に至る変動ではないと判断することが好ましい。新たな波長パスが増設されると、増設された波長パスの波長と監視対象の波長パスの波長とが隣接すること、または、相互位相変調、イントラチャネル四光波混合および誘導ラマン散乱などの非線形効果により、監視対象の波長パスの信号品質が劣化し得る。当該劣化による変動は、障害の発生に至る変動ではない。そこで、信号品質変動検出部235は、例えば光伝送システム100の波長パスの増設を記録するログなどを参照し、信号品質の変動が波長パスの増設によるものであるかどうかを検出する。
信号品質変動検出部235は、例えば、図4に示すように時刻601〜603において、BER値の変動が検出された場合には、波長パスの増設を記録するログなどを参照し、波長パスの増設が行なわれたか否かを判断する。例えば、時刻601および時刻602に波長パスの増設が行なわれていれば、当該BER値の変動が許容範囲外の変動であったとしても、信号品質変動検出部235は、障害の発生に至らない変動であると検出する。また、時刻603に波長パスの増設が行なわれていなければ、信号品質変動検出部235は、許容範囲外の変動として検出する。
変動原因解析部236は、信号品質変動検出部235により信号品質の許容範囲外の変動が検出された場合に、当該変動の原因を解析する。変動原因解析部236の解析の処理については、図6以降を参照して行なう。
図5は、制御装置110による障害の発生の予測処理のフローチャートである。ステップS301において、信号品質取得部232が信号品質の取得を行なう。ステップS302において、伝送特性取得部233が伝送特性の取得を行なう。
なお、ステップS301の実行とステップS302の実行とは、逆の順序で行なわれてもよいし、並列して行なわれてもよい。
ステップS303において、信号品質補正部234が信号品質の補正を行なう。
ステップS304において、信号品質変動検出部235が、補正された信号品質が許容範囲外の変動を示すかどうかを判定する。補正された信号品質が許容範囲内の変動を示す場合には、制御装置110は、ステップS301に処理を戻す。また、制御装置110は、補正された信号品質が許容範囲外の変動(換言すると、許容範囲を超える変動)を示す場合には、制御装置110は、ステップS305に処理を移す。
ステップS305において、信号品質取得部232が変動原因の解析を行なう。変動原因の解析は、次に説明するように行なわれる。
図6は、変動原因解析部236による変動原因の解析処理のフローチャートを示す。ステップS501において、変動原因の解析は、終点ノード(本例では、D(104))でOSNR値が変動しているかどうかを判定する。当該変動は、伝送特性取得部233や上述の記憶装置に変動原因解析部236が問合せることにより判定することができる。変動原因解析部236は、終点ノード(D(104))でOSNR値が変動していないときには、ステップS502に処理を移行させ、終点ノード(D(104))でOSNR値が変動しているときには、ステップS505に処理を移行させる。
ステップS502(終点ノード(D(104))でOSNR値が変動していないとき)において、変動原因解析部236は、終点ノードでBER値が変動している原因を特定する。例えば、変動原因解析部236は、OSNR以外の変動している伝送特性を特定する。
次のステップS503において、特定された伝送特性が変動している区間を特定する。本例では、当該区間は、隣接している2つのOPMの間の区間であり、一方のOPMによる伝送特性は変動しておらず、他方のOPMによる伝送特性が変動している区間である。当該特定は、監視対象の波長パスの光信号の伝送方向とは逆方向に、OPMの測定結果を調査して行ない得る。例えば、ノードBのプリアンプ208において測定される伝送特性が正常でなく、ノードBの上流のノードであるノードAのポストアンプ202において測定される伝送特性が正常であれば、ノードAとノードBとの間の区間が特定される。
ステップS504において、変動原因解析部236は、ステップS503にて特定された区間について変動箇所を特定する。
図7は、ステップS501からステップS504までの処理の一例を示す図である。グラフ701に示すように、BER値の変動が、許容範囲を越えるものであり、グラフ702に示すように、OSNR値が変動しなかった場合を想定する。この場合、ステップS502において、ノードD(104)のOPM256が測定する他の伝送特性のうち変動している伝送特性を特定する。グラフ703、705および706に示すように非線形位相雑音、PDL値およびCD値には変動がなく、グラフ704に示すように、PMD値が変動していることが特定される。
PMD値の変動が特定されると、変動原因解析部236は、PMD値が変動している区間を特定する。グラフ707によれば、OPM251はPMD値の変動を検出していないが、OPM252およびその下流のOPM253〜255は、PMD値の変動を検出している。したがって、OPM251とOPM252との間の区間がステップS503において特定される。したがって、ステップS504において、変動箇所が、ノードA(101)とノードB(102)との間の区間であることが特定され得る。
そこで、変動原因解析部236は、ノードA(101)とノードB(102)との間の光伝送路の予備の光伝送路を確保する指示を出すことができる。あるいは、制御装置110は、光伝送路を形成する経路を表す情報を格納する経路データベースなどを参照し、ノードA(101)からノードB(102)へ至る別の経路が存在すれば、その経路を用いて迂回する指示を出すことができる。
次にステップS501において、終点ノード(本例では、D(104))でOSNR値が変動している場合について説明する。例えば、図8のグラフ801およびグラフ802に示すように、ノードD(104)において、BER値およびOSNR値の変動が変動していることを想定する。
ステップS505において、OSNR値の変動が検出されるOPMとOSNR値の変動が検出されない隣接するOPMとの間の区間を特定する。例えば、グラフ803は、OPM(251〜256)のそれぞれにおけるOSNR値の測定結果を示す。グラフ803によれば、OPM(251)においてOSNR値の変動は検出されていないがOPM(252)においてOSNRの変動が検出されている。したがって、OPM(251)とOPM(252)との間の区間が特定される。
ステップS506において、変動原因解析部236は、ステップS505で特定された区間内のアンプの入出力レベルが変動しているかどうかを判定する。図8の場合には、変動原因解析部236は、OPM(251)とOPM(252)とが備えられたアンプ202および208の入出力レベルの変動をそれぞれ判定する。
アンプ入出力レベルが変動していれば、変動原因解析部236は、ステップS508へ処理を移行させ、上流側のレベル変動または光伝送路の損失変動が推定される。
グラフ804に示すように、アンプ202の出力レベルは変動していないが、アンプ208の入力レベルが変動していると判定されれば、ノードA(101)は始点ノードであり上流のノードは存在しないので、光伝送路の損失変動が推定される。
ステップS506においてアンプ入出力レベルが変動していなければ、ステップS507へ処理を移行させ、アンプのASE(Amplified Spontaneous Emission)が変動していることを推定する。
以上のように、開示によれば、光伝送システムに、伝送特性および信号品質をモニタする機能を具備させることで、通常運用内の信号品質の変動分を補正し、障害に至る変動を検出することで、障害の予測が可能となる。また、複数のOPMを用いて伝送特性をモニタしているので、光伝送システムの許容範囲外の信号品質の変動の原因箇所を特定することが可能となる。これにより、障害発生に起因する装置アラームなどによるエラーの発出前に計画的な保守作業が実施可能となり、スタンバイ要員や交換用スペアユニットの削減が可能となる。
また、障害が発生したとしても、障害箇所を特定することができ、前もって復旧に必要な装置および部品を準備することができ、復旧に要する時間の短縮が可能となる。
以上の実施形態の各説明に関し、更に以下の付記を記載する。
(付記1)
ノードを制御するネットワーク制御装置において、
前記ノードが接続される光伝送路で伝送される光信号の信号品質を取得する信号品質取得部と、
前記ノード又は前記光伝送路の伝送特性を取得する伝送特性取得部と、
前記信号品質取得部で取得された前記信号品質を前記伝送特性取得部で取得された前記伝送特性に基づいて補正する信号品質補正部と、
前記信号品質補正部により補正された前記信号品質の変動を検出する信号品質変動検出部を
備える、ネットワーク制御装置。
(付記2)
前記信号品質取得部は、前記信号品質としてBER(Bit Error Rate)値を取得する、付記1に記載のネットワーク制御装置。
(付記3)
前記伝送特性取得部は、前記伝送特性としてOSNR(Optical Signal Noise Ratio)値、PDL(Polarization Dependent Loss)値、PMD(Polarization Mode Dispersion)値、CD(Chromatic Dispersion)値、非線形位相雑音特性値の少なくとも1つを取得する、付記1または2に記載のネットワーク制御装置。
(付記4)
前記信号品質補正部は、前記伝送特性取得部が前記伝送特性としてOSNR値、PDL値、PMD値、CD値および非線形位相雑音特性値の内の2種類以上の値を取得する場合、前記2種類以上の値をOSNR値、PDL値、PMD値、CD値および非線形位相雑音特性値の内のいずれかに変換する、付記3に記載のネットワーク制御装置。
(付記5)
前記信号品質補正部は、前記2種類以上の値をOSNR値に変換する、付記4に記載のネットワーク制御装置。
(付記6)
前記信号品質変動検出部は、波長パスの増設による前記信号品質の変動を許容範囲内の変動として検出する、付記1から5のいずれか1項に記載のネットワーク制御装置。
(付記7)
前記信号品質変動検出部が前記信号品質の許容範囲外の変動を検出した場合、前記変動の原因を解析する変動原因解析部を有する、付記1から6のいずれか1項に記載のネットワーク制御装置。
(付記8)
前記変動原因解析部は、前記伝送特性の変動を検出する第1のモニタと、前記第1のモニタに隣接しかつ前記伝送特性の変動を検出しない第2のモニタと、の間の区間を障害が予測される区間として特定する、付記7に記載のネットワーク制御装置。
(付記9)
複数のノードと、前記複数のノードを制御するネットワーク制御装置と、を備える光伝送システムであって、
前記複数のノードは、光伝送路により接続され、前記光伝送路の伝送特性を監視するモニタを有し、
前記ネットワーク制御装置は、
前記光伝送路で伝送される光信号の信号品質を取得する信号品質取得部と、
前記ノード又は前記光伝送路の伝送特性を前記モニタから取得する伝送特性取得部と、
前記信号品質取得部で取得された前記信号品質を前記伝送特性取得部で取得した前記伝送特性に基づいて補正する信号品質補正部と、
前記信号品質補正部により補正された前記信号品質の変動を検出する信号品質変動検出部とを有する、光伝送システム。
(付記10)
前記信号品質取得部は、前記信号品質としてBER(Bit Error Rate)値を取得する、付記9に記載の光伝送システム。
(付記11)
前記伝送特性取得部は、前記伝送特性としてOSNR(Optical Signal Noise Ratio)値、PDL(Polarization Dependent Loss)値、PMD(Polarization Mode Dispersion)値、CD(Chromatic Dispersion)値、非線形位相雑音特性値の少なくとも1つを取得する、付記9または10に記載の光伝送システム。
(付記12)
前記信号品質補正部は、前記伝送特性取得部が前記伝送特性としてOSNR値、PDL値、PMD値、CD値および非線形位相雑音特性値の内の2種類以上の値を取得する場合、前記2種類以上の値をOSNR値、PDL値、PMD値、CD値および非線形位相雑音特性値の内のいずれかに変換する、付記11に記載の光伝送システム。
(付記13)
前記信号品質補正部は、前記2種類以上の値をOSNR値に変換する、付記12に記載の光伝送システム。
(付記14)
前記信号品質変動検出部は、波長パスの増設による前記信号品質の変動を許容範囲内の変動として検出する、付記9から13のいずれか1項に記載の光伝送システム。
(付記15)
前記信号品質変動検出部が前記信号品質の許容範囲外の変動を検出した場合、前記変動の原因を解析する変動解析部を有する、付記9から14のいずれか1項に記載の光伝送システム。
(付記16)
前記変動解析部は、前記伝送特性の変動を検出する第1のモニタと、前記第1のモニタと隣接しかつ前記伝送特性の変動を検出しない第2のモニタとの間の区間を障害が予測される区間として特定する、付記15に記載の光伝送システム。
(付記17)
ノードが接続される光伝送路で伝送される光信号の信号品質を取得し、
前記ノード又は前記光伝送路の伝送特性を取得し、
前記取得した前記信号品質を前記取得した前記伝送特性により補正し、
前記補正した前記信号品質の変動を検出する、障害判定方法。
(付記18)
BER(Bit Error Rate)値により前記信号品質を取得する、付記17に記載の障害判定方法。
(付記19)
前記伝送特性としてOSNR(Optical Signal Noise Ratio)値、PDL(Polarization Dependent Loss)値、PMD(Polarization Mode Dispersion)値、CD(Chromatic Dispersion)値、非線形位相雑音特性値の少なくとも1つを取得する、付記17または18に記載の障害判定方法。
(付記20)
前記伝送特性としてOSNR値、PDL値、PMD値、CD値および非線形位相雑音特性値の内の2種類以上の値を取得する場合、前記2種類以上の値をOSNR値、PDL値、PMD値、CD値および非線形位相雑音特性値のいずれかに変換する、付記19に記載の障害判定方法。
100 光伝送システム
110 制御装置
101〜104 ノード
201、207、213、221 WSS
202、210、215 ポストアンプ
203 マルチプレクサ
204〜206、212、217〜220、224〜226 トランスポンダ
208、214、222 プリアンプ
211、216 マルチプレクサ/デマルチプレクサ
223 デマルチプレクサ
251〜256 OPM
231 監視パスデータベース
232 信号品質取得部
233 伝送特性取得部
234 信号品質補正部
235 信号品質変動検出部
236 変動原因解析部

Claims (10)

  1. ノードを制御するネットワーク制御装置において
    前記ノードが接続される光伝送路で伝送される光信号の信号品質を取得する信号品質取得部と、
    前記ノード又は前記光伝送路の伝送特性を取得する伝送特性取得部と、
    前記信号品質取得部で取得された前記信号品質を前記伝送特性取得部で取得された前記伝送特性に基づいて補正する信号品質補正部と、
    前記信号品質補正部により補正された前記信号品質の変動を検出する信号品質変動検出部とを
    備える、ネットワーク制御装置。
  2. 前記信号品質取得部は、前記信号品質としてBER(Bit Error Rate)値を取得する、請求項1に記載のネットワーク制御装置。
  3. 前記伝送特性取得部は、前記伝送特性として、OSNR(Optical Signal Noise Ratio)値、PDL(Polarization Dependent Loss)値、PMD(Polarization Mode Dispersion)値、CD(Chromatic Dispersion)値、非線形位相雑音特性値の少なくとも1つを取得する、請求項1または2に記載のネットワーク制御装置。
  4. 前記信号品質補正部は、前記伝送特性取得部が前記伝送特性をOSNR値、PDL値、PMD値、CD値および非線形位相雑音特性値の内の2種類以上の値により取得する場合、前記2種類以上の値をOSNR値、PDL値、PMD値、CD値および非線形位相雑音特性値のいずれかに変換する、請求項3に記載のネットワーク制御装置。
  5. 前記信号品質補正部は、前記2種類以上の値をOSNR値に変換する、請求項4に記載のネットワーク制御装置。
  6. 前記信号品質変動検出部は、波長パスの増設による前記信号品質の変動を許容範囲内の変動として検出する請求項1から5のいずれか1項に記載のネットワーク制御装置。
  7. 前記信号品質変動検出部が前記信号品質の許容範囲外の変動を検出した場合、前記変動の原因を解析する変動原因解析部を有する、請求項1から6のいずれか1項に記載のネットワーク制御装置。
  8. 前記変動原因解析部は、前記伝送特性の変動を検出する第1のモニタと、前記第1のモニタに隣接しかつ前記伝送特性の変動を検出しない第2のモニタとの間の区間を障害が予測される区間として特定する、請求項7に記載のネットワーク制御装置。
  9. 複数のノードと、前記複数のノードを制御するネットワーク制御装置と、を備える光伝送システムであって、
    前記複数のノードは、光伝送路により接続され、前記光伝送路の伝送特性を監視するモニタを有し、
    前記ネットワーク制御装置は、
    前記光伝送路で伝送される光信号の信号品質を取得する信号品質取得部と、
    前記ノード又は前記光伝送路の伝送特性を前記モニタから取得する伝送特性取得部と、
    前記信号品質取得部で取得された前記信号品質を前記伝送特性取得部で取得した前記伝送特性に基づいて補正する信号品質補正部と、
    前記信号品質補正部により補正された前記信号品質の変動を検出する信号品質変動検出部とを
    有する、光伝送システム。
  10. ノードが接続される光伝送路で伝送される光信号の信号品質を取得し、
    前記ノード又は前記光伝送路の伝送特性を取得し、
    前記取得した前記信号品質を前記取得した前記伝送特性により補正し、
    前記補正した前記信号品質の変動を検出する、障害判定方法。
JP2016132377A 2016-07-04 2016-07-04 ネットワーク制御装置、光伝送システムおよび障害判定方法 Pending JP2018007058A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016132377A JP2018007058A (ja) 2016-07-04 2016-07-04 ネットワーク制御装置、光伝送システムおよび障害判定方法
US15/622,498 US20180006717A1 (en) 2016-07-04 2017-06-14 Network controller, optical transmission system, and method for determining failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132377A JP2018007058A (ja) 2016-07-04 2016-07-04 ネットワーク制御装置、光伝送システムおよび障害判定方法

Publications (1)

Publication Number Publication Date
JP2018007058A true JP2018007058A (ja) 2018-01-11

Family

ID=60807182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132377A Pending JP2018007058A (ja) 2016-07-04 2016-07-04 ネットワーク制御装置、光伝送システムおよび障害判定方法

Country Status (2)

Country Link
US (1) US20180006717A1 (ja)
JP (1) JP2018007058A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162187A1 (ja) * 2022-02-25 2023-08-31 日本電信電話株式会社 光伝送システムおよび故障箇所特定方法
WO2024034082A1 (ja) * 2022-08-10 2024-02-15 日本電信電話株式会社 故障予測装置、故障予測方法、および、故障予測プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667514B (zh) * 2018-05-18 2020-06-12 国家电网公司信息通信分公司 光传输设备在线失效预测方法和装置
US10997007B2 (en) 2019-08-28 2021-05-04 Mellanox Technologies, Ltd. Failure prediction system and method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225922A (en) * 1991-11-21 1993-07-06 At&T Bell Laboratories Optical transmission system equalizer
US6040933A (en) * 1997-12-19 2000-03-21 Nortel Networks Corporation Method and apparatus for channel equalization in wavelength division multiplexed systems
US6392769B1 (en) * 1999-03-19 2002-05-21 Lucent Technologies Inc. Automatic level control circuit for optical system
JP4671478B2 (ja) * 2000-08-08 2011-04-20 富士通株式会社 波長多重光通信システムおよび波長多重光通信方法
US6980737B1 (en) * 2000-10-16 2005-12-27 Nortel Networks Limited Method and apparatus for rapidly measuring optical transmission characteristics in photonic networks
US6952529B1 (en) * 2001-09-28 2005-10-04 Ciena Corporation System and method for monitoring OSNR in an optical network
JP3934513B2 (ja) * 2002-08-29 2007-06-20 富士通株式会社 非線形劣化を考慮したプリエンファシス制御方法
JP4553556B2 (ja) * 2003-03-25 2010-09-29 富士通株式会社 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム
US7522846B1 (en) * 2003-12-23 2009-04-21 Nortel Networks Limited Transmission power optimization apparatus and method
JP4520763B2 (ja) * 2004-03-29 2010-08-11 富士通株式会社 中継伝送装置
CN1910843A (zh) * 2004-06-03 2007-02-07 日本电信电话株式会社 光信号质量监控电路以及光信号质量监控方法
JP4783648B2 (ja) * 2006-02-28 2011-09-28 富士通株式会社 中継装置及び中継方法
JP4985762B2 (ja) * 2007-02-27 2012-07-25 富士通株式会社 Wdm伝送装置
JP5181770B2 (ja) * 2008-03-27 2013-04-10 富士通株式会社 光伝送システム
JP5633266B2 (ja) * 2010-09-15 2014-12-03 富士通株式会社 Wdm光伝送システムおよびその制御方法
US9350446B2 (en) * 2010-12-22 2016-05-24 Telefonaktiebolaget Lm Ericsson (Publ) Optical signal power selection and control
US9389949B1 (en) * 2013-12-06 2016-07-12 Rockwell Collins, Inc. Optical fiber signal quality measuring and reporting in aviation systems and related method
US9859976B2 (en) * 2014-03-03 2018-01-02 Eci Telecom Ltd. OSNR margin monitoring for optical coherent signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162187A1 (ja) * 2022-02-25 2023-08-31 日本電信電話株式会社 光伝送システムおよび故障箇所特定方法
WO2024034082A1 (ja) * 2022-08-10 2024-02-15 日本電信電話株式会社 故障予測装置、故障予測方法、および、故障予測プログラム

Also Published As

Publication number Publication date
US20180006717A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
US8224180B2 (en) Method and system for protection switching
EP1084537B1 (en) Method and apparatus for automatically identifying system faults in an optical communications system from repeater loop gain signatures
US8655170B2 (en) OSNR monitor device and OSNR measurement device
US6215565B1 (en) Method of and system for diagnosing optical system failures
JP5575992B2 (ja) 光多重セクションチャネル毎プリエンファシスパワーの動的評価
JP2018007058A (ja) ネットワーク制御装置、光伝送システムおよび障害判定方法
JP2008005340A (ja) 通信装置、回線診断方法、プログラム、記録媒体
US20120087648A1 (en) Method and system for protection switching
WO2018051935A1 (ja) 監視システム及び監視方法
US20110292814A1 (en) Communication path monitoring method and transmission apparatus
JP2004336754A (ja) 順方向誤り修正符号化を使用したqファクタのモニタリングのための方法と装置
JP2017085355A (ja) 伝送路障害検知方法及び光通信システム
US9306663B2 (en) Controller, a communication system, a communication method, and a storage medium for storing a communication program
US7327954B2 (en) Optical signaling to share active channel information
JP4900481B2 (ja) 波長分割多重装置及び光信号の入力断の検出方法
WO2020022310A1 (ja) 監視装置および監視方法
JP2018157330A (ja) 障害判定装置及びその制御方法、プログラム、並びに光ファイバ通信システム
JP5435223B2 (ja) 波長分割多重伝送装置およびその信号光監視方法
US20160226580A1 (en) Optical signal quality monitoring apparatus, optical signal quality monitoring method and optical repeater
WO2022024248A1 (ja) 故障個所特定装置、故障個所特定方法、および、故障個所特定プログラム
US7221871B2 (en) Identification of polarization-mode dispersion on a communication network
EP2237453B1 (en) Method and equipment for managing optical channel monitoring in an optical network
JP4757742B2 (ja) リング型光伝送システム
KR101024213B1 (ko) 폐루프를 이용한 자가진단 기능이 구비된 광송수신 모듈 및자가진단 방법
JP2009296336A (ja) 光受信装置、遠隔監視装置および遠隔監視プログラム