WO2020022310A1 - 監視装置および監視方法 - Google Patents

監視装置および監視方法 Download PDF

Info

Publication number
WO2020022310A1
WO2020022310A1 PCT/JP2019/028769 JP2019028769W WO2020022310A1 WO 2020022310 A1 WO2020022310 A1 WO 2020022310A1 JP 2019028769 W JP2019028769 W JP 2019028769W WO 2020022310 A1 WO2020022310 A1 WO 2020022310A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
monitoring
light
optical power
monitoring device
Prior art date
Application number
PCT/JP2019/028769
Other languages
English (en)
French (fr)
Inventor
悠平 松本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/259,759 priority Critical patent/US20210159972A1/en
Priority to JP2020532402A priority patent/JP7167985B2/ja
Priority to CN201980049035.5A priority patent/CN112534746B/zh
Publication of WO2020022310A1 publication Critical patent/WO2020022310A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems

Definitions

  • the present invention relates to an optical communication technology, and more particularly to a technology for monitoring the presence or absence of an abnormality in a transmission path.
  • tapping by tapping is performed, for example, by stripping the coating of the optical fiber and connecting a tapping device to the optical fiber.
  • Patent Document 1 relates to an optical communication network monitoring device.
  • the monitoring device of Patent Literature 1 has an OTDR (Optical ⁇ Time ⁇ Domain ⁇ Reflectometer) connected to a plurality of transmission paths via an optical switch.
  • the monitoring device of Patent Literature 1 performs OTDR measurement for each transmission line by switching an optical switch, and checks whether or not each transmission line is abnormal.
  • OTDR Optical ⁇ Time ⁇ Domain ⁇ Reflectometer
  • Patent Document 1 the technique of Patent Document 1 is not sufficient in the following points.
  • the monitoring device of Patent Literature 1 transmits a management frame for each transmission line by switching a switch, and performs OTDR measurement on a transmission line having an abnormality. Therefore, in order to confirm the presence / absence of an abnormality for each transmission line, it is necessary to transmit a management frame to all the transmission lines while switching the switch, and execute OTDR measurement on the transmission line where the abnormality is detected.
  • the monitoring device of Patent Literature 1 may require time to detect a transmission line in which an abnormality has occurred.
  • the monitoring device disclosed in Patent Document 1 may have a lower accuracy when identifying a location where an abnormality has occurred on a long-distance transmission line connected via a plurality of repeaters. Therefore, Patent Literature 1 is not sufficient as a technique for accurately specifying a location where an optical fiber failure has occurred without requiring time.
  • the object of the present invention is to provide a monitoring device capable of accurately specifying a location where a failure has occurred in a short time without solving the problem.
  • the monitoring device of the present invention includes a receiving unit and a monitoring unit.
  • the receiving means acquires information on the level fluctuation of the optical power of the control signal transmitted to the transmission path.
  • the monitoring means monitors the transmission path based on the backscattered light of the light pulse output to the transmission path when the level variation of the optical power of the control signal does not satisfy the predetermined condition.
  • the monitoring method of the present invention obtains information on the level variation of the optical power of the control signal transmitted to the transmission line, and outputs the optical pulse output to the transmission line when the level variation of the optical power of the control signal does not satisfy a predetermined condition.
  • the transmission path is monitored on the basis of the backscattered light.
  • FIG. 1st embodiment of the present invention It is a figure showing the outline of composition of a 1st embodiment of the present invention. It is a figure showing the outline of composition of a 2nd embodiment of the present invention. It is a figure showing the composition of the terminal unit of a 2nd embodiment of the present invention. It is a figure showing the composition of the monitoring device of a 2nd embodiment of the present invention. It is a figure showing an example of composition of a monitoring device of a 2nd embodiment of the present invention. It is a figure showing an example of scattered light intensity measured in a 2nd embodiment of the present invention. It is a figure showing an operation flow of a 2nd embodiment of the present invention. It is a figure showing an operation flow of a 2nd embodiment of the present invention. It is a figure showing an operation flow of a 2nd embodiment of the present invention.
  • FIG. 9 is a diagram schematically illustrating an example of a location where an abnormality has occurred in a second embodiment of the present invention. It is a figure showing typically operation at the time of abnormality occurring in a 2nd embodiment of the present invention. It is a figure showing typically operation at the time of abnormality occurring in a 2nd embodiment of the present invention. It is a figure showing typically operation at the time of abnormality occurring in a 2nd embodiment of the present invention. It is a figure showing typically operation at the time of abnormality occurring in a 2nd embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an outline of a configuration of a monitoring device according to the present embodiment.
  • the monitoring device according to the present embodiment includes a receiving unit 1 and a monitoring unit 2.
  • the receiving means 1 acquires information on the level fluctuation of the optical power of the control signal transmitted to the transmission path.
  • the monitoring unit monitors the transmission path based on the backscattered light of the optical pulse output to the transmission path.
  • the monitoring device monitors the transmission line based on the backscattered light of the light pulse when the level fluctuation of the optical power of the control signal output to the transmission line does not satisfy the predetermined condition.
  • the monitoring device is capable of monitoring the transmission line when the level fluctuation of the optical power of the control signal in the installed transmission line does not satisfy a predetermined condition. It is possible to determine the presence or absence of an abnormality and to specify the location of occurrence. As a result, by using the monitoring device of the present embodiment, it is possible to accurately specify the location where the failure has occurred without requiring time.
  • FIG. 2 is a diagram illustrating an outline of a configuration of the optical communication system according to the present embodiment.
  • the optical communication system according to the present embodiment is an optical communication network for transmitting and receiving a wavelength division multiplexed signal between terminal devices via a transmission line.
  • the optical communication system includes a first terminal device 11, a second terminal device 12, a communication control device 13, and a transmission path 14.
  • the first terminal device 11 and the second terminal device 12 are connected via a transmission line 14.
  • the transmission path 14 further includes an optical amplifier 21, an optical amplifier 22, and a monitoring device 23.
  • the optical amplifier 21 includes N optical amplifiers 21-1 to 21-N (N is an integer).
  • the optical amplifiers 22 include N optical amplifiers 22-1 to 22 -N corresponding to the optical amplifiers 21.
  • the monitoring devices 23 include N monitoring devices 23-1 to 23-N corresponding to the optical amplifiers 21 and 22, respectively.
  • FIG. 3 shows a configuration of the first terminal device 11 and the second terminal device 12 as a terminal device 30.
  • the terminal device 30 includes a transmitter 31, a receiver 32, and a monitoring device 33.
  • the transmitter 31 generates an optical signal of each channel to be transmitted on the transmission line 14 based on the client signal input to the terminal device 30, and outputs the optical signal as a wavelength multiplexed signal.
  • the transmitter 31 includes an optical transmission module that generates an optical signal of a wavelength corresponding to each channel based on an input signal, and a multiplexing element that multiplexes the optical signal of each wavelength.
  • the receiver 32 demultiplexes the wavelength-division multiplexed signal input from the transmission line, decodes the optical signal of each channel, and outputs it as a client signal.
  • the receiver 32 includes a demultiplexer for demultiplexing the input wavelength-division multiplexed signal, and an optical receiving module for receiving optical signals of each wavelength.
  • FIG. 4 is a diagram illustrating a configuration of the monitoring device 33 according to the present embodiment.
  • the monitoring device 33 includes a transmission / reception unit 101, a monitoring control unit 102, and a storage unit 103.
  • the transmission / reception unit 101 includes a light source that outputs an OSC (Optical Supervisory Channel) light and an optical pulse for OTDR (Optical Time Domain Reflectometer) measurement, and a light receiving element that detects the OSC light and the optical pulse for OTDR measurement. Further, the transmission / reception unit 101 has a function of measuring the optical power of the light received by the light receiving element. The transmission / reception unit 101 outputs the measurement result of the optical power to the monitoring control unit 102.
  • OSC Optical Supervisory Channel
  • OTDR Optical Time Domain Reflectometer
  • the OSC light and the optical pulse for OTDR measurement are multiplexed with the wavelength multiplexed signal output from the transmitter 31 and transmitted to the transmission line 14.
  • the multiplexing element is configured using, for example, AWG (Arrayed Waveguide Gratings).
  • the multiplexing element may be configured using another optical element such as a wavelength selection switch.
  • the monitoring control unit 102 controls the operation of the transmission / reception unit 101 to transmit the OSC light and the optical pulse for OTDR measurement to the transmission line.
  • the transmission / reception unit 101 receives the OSC light transmitted from the other monitoring device 23 or the terminal device.
  • the transmission / reception unit 101 sends the received OSC light to the monitoring control unit 102.
  • the monitoring control unit 102 has a function of determining the presence or absence of an abnormality based on the measurement results of the OSC light and the optical power for OTDR measurement.
  • the monitoring control unit 102 compares the OTDR measurement results with reference data stored in advance as a database, and determines whether there is an abnormality. Further, the monitoring control unit 102 estimates the position where the abnormality has occurred based on the OTDR measurement result. Further, the monitoring control unit 102 stores the OTDR measurement result in the normal state in the storage unit 103.
  • the monitoring control unit 102 When the monitoring control unit 102 detects that the fluctuation of the optical power of the OSC light is equal to or more than the reference, the monitoring control unit 102 transmits information indicating that the fluctuation of the optical power of the OSC light has occurred to the upstream monitoring device 23.
  • upstream refers to a source side of a wavelength multiplexed signal transmitted through the transmission path 14
  • downstream refers to a destination side of a wavelength multiplexed signal transmitted through the transmission path 14.
  • the monitoring control unit 102 Upon receiving the notification indicating that the OSC light has fluctuated from the downstream monitoring device 23, the monitoring control unit 102 controls the transmission / reception unit 101 to output the optical pulse for OTDR measurement and measure the backscattered light. I do.
  • the monitoring control unit 102 specifies the distance to the location where the abnormality has occurred based on the OTDR measurement result. After calculating the distance to the location where the abnormality has occurred, the monitoring control unit 102 transmits to the communication control device 13 information indicating that the abnormality has occurred, information on the location where the abnormality has occurred, information on excessive loss, and the like.
  • the storage unit 103 has a function of storing the result of the OTDR measurement.
  • the storage unit 103 stores the measurement data of the OTDR measurement when the OSC light is normal, in association with the measurement date and time of the OTDR measurement and the measurement data.
  • the measurement data is recorded as data of the optical power of the backscattered light with respect to time.
  • the communication control device 13 performs monitoring of the optical communication system, control of the terminal device, and the like.
  • the communication control device 13 receives the information indicating the abnormality of the transmission path and the information of the occurrence location from the monitoring device, the communication control device 13 notifies the worker or the like of the occurrence of the abnormality and the information of the occurrence location by display or the like.
  • the optical amplifier 21 amplifies the optical power of the signal light of the wavelength multiplexed signal transmitted from the first terminal device 11 to the second terminal device 12.
  • the optical amplifier 21 of the present embodiment includes an EDFA (Erbium Doped Fiber Optical Amplifier) and an excitation light source.
  • EDFA Erbium Doped Fiber Optical Amplifier
  • the optical amplifier 21 includes a demultiplexer for demultiplexing the wavelength multiplexed signal, the OSC light, and the OTDR light pulse on the input side before the EDFA, that is, on the input side.
  • the demultiplexer is configured using, for example, an AWG, and demultiplexes the OSC light, the light having the wavelength assigned for the OTDR measurement, and the signal light of the wavelength multiplexed signal.
  • the optical amplifier 21 sends the OSC light and the light for OTDR measurement to the transmission / reception unit 101.
  • the optical amplifier 21 is provided with a multiplexing element on the subsequent stage, that is, on the output side, for multiplexing the OSC light and the optical pulse for OTDR measurement into the wavelength multiplexed signal whose optical power has been amplified by the EDFA.
  • the multiplexing element is configured using AWG.
  • the backscattered light of the optical pulse for OTDR measurement enters the multiplexing element from the transmission line 14 and is sent to the monitoring device 23.
  • the optical amplifier 22 amplifies the optical power of the signal light of the wavelength multiplexed signal transmitted from the second terminal device 12 to the first terminal device 11.
  • the optical amplifier 21 of the present embodiment includes an EDFA (Erbium Doped Fiber Optical Amplifier) and an excitation light source.
  • EDFA Erbium Doped Fiber Optical Amplifier
  • the optical amplifier 22 includes a demultiplexer for demultiplexing the wavelength multiplexed signal, the OSC light, and the OTDR light pulse on the input side before the EDFA, that is, on the input side.
  • the demultiplexer is configured using, for example, an AWG, and demultiplexes the OSC light, the light having the wavelength assigned for the OTDR measurement, and the signal light of the wavelength multiplexed signal.
  • the optical amplifier 22 sends the OSC light and the optical pulse for OTDR measurement to the transmission / reception unit 101.
  • the optical amplifier 22 is provided with a multiplexing element for multiplexing the OSC light and the optical pulse for OTDR measurement into the wavelength multiplexed signal whose optical power has been amplified by the EDFA on the subsequent stage, that is, on the output side.
  • the multiplexing element is configured using AWG.
  • FIG. 5 is a diagram illustrating a configuration of the monitoring device 23 of the present embodiment.
  • the monitoring device 23 includes a transmission / reception unit 111, a monitoring control unit 112, and a storage unit 113.
  • the transmission / reception unit 111 includes a light source that outputs an OSC light and an optical pulse for OTDR measurement, and a light receiving element that detects backscattered light of the OSC light and the optical pulse for OTDR measurement.
  • the backscattered light of the OTDR measurement light pulse input from the transmission path via the AWG is sent to only the light receiving element by the directional coupler.
  • the transmission / reception unit 111 has a function of measuring the optical power of the light received by the light receiving element.
  • the transmission / reception unit 111 outputs the measurement result of the optical power to the monitoring control unit 112.
  • the function of receiving the OSC signal light transmitted from another device among the functions of the transmission / reception unit 111 of the present embodiment corresponds to the receiving unit 1 of the first embodiment.
  • the monitoring control unit 112 controls the operation of the transmitting / receiving unit 111 transmitting the OSC light and the optical pulse for OTDR measurement to the transmission line.
  • the monitoring control unit 112 has a function of determining the presence or absence of an abnormality based on the measurement results of the OSC light and the optical power for OTDR measurement.
  • FIG. 6 is a diagram schematically showing a measurement result of the backscattered light.
  • FIG. 6 shows the result of measuring the optical power of the backscattered light with respect to the elapsed time after outputting the optical pulse.
  • the horizontal axis in FIG. 6 corresponds to the distance.
  • the loss at that location increases, so that the intensity of the scattered light discontinuously changes at the location where the abnormality has occurred, as shown in FIG. Therefore, as shown in FIG. 6, the distance from the point at which the abnormality has occurred is detected by converting the time from outputting the optical pulse to the distance based on the light propagation speed and the like, by detecting the discontinuously changing point. Can be calculated.
  • the monitoring control unit 112 stores the OTDR measurement result in the normal state in the storage unit 113. For example, the monitoring control unit 112 calculates the average of the optical power of the backscattered light for each elapsed time from the output of the optical pulse for a plurality of measurement data of the OTDR in a normal state, and calculates the difference between the average value and the measured value in advance. It is determined that an abnormality has occurred when the value exceeds the set value. The monitoring control unit 112 may determine that an abnormality has occurred when the difference between the average value and the measured value is equal to or greater than a preset value for a preset time or more. With such a configuration, the influence of temporary fluctuation can be suppressed, and the occurrence of an abnormality can be correctly detected.
  • the monitoring control unit 112 When detecting that the fluctuation of the optical power of the OSC light is equal to or more than the reference, the monitoring control unit 112 transmits information indicating that an abnormality has occurred in the optical power of the OSC to the upstream monitoring device 23 via the OSC. .
  • the monitoring control unit 112 Upon receiving a notification from the downstream monitoring device 23 indicating that an abnormality has occurred in the OSC light, the monitoring control unit 112 outputs an optical pulse for controlling the transmission / reception unit 111 and performs OTDR measurement.
  • the monitoring control unit 112 specifies the distance to the location where the abnormality has occurred, based on the OTDR measurement data.
  • the monitoring control unit 112 performs communication control of the information indicating that the abnormality has occurred, the information of the location where the abnormality has occurred, the information of the excess loss, and the like via the first terminal device 11 or the second terminal device 12. Transmit to the device 13. Further, among the functions of the monitoring control unit 112 of the present embodiment, the function of controlling the output of the optical pulse and the measurement of the backscattered light when the level variation of the optical power does not satisfy the predetermined condition is the same as that of the first embodiment. Monitoring means 2.
  • the storage unit 113 has a function of storing the OTDR measurement result.
  • the storage unit 113 stores the measurement data of the OTDR measurement when the fluctuation of the optical power of the OSC light is in the normal range as a database in which the measurement date and time of the OTDR measurement are associated with the measurement data.
  • the measurement data is recorded as data of the optical power of the backscattered light with respect to the elapsed time after outputting the optical pulse.
  • Environmental data such as temperature data may be further associated with the measurement data.
  • FIGS. 7 and 8 are diagrams illustrating an operation flow of the monitoring device when monitoring the presence or absence of an abnormality in the optical communication system according to the embodiment.
  • FIG. 7 shows an operation flow of the upstream device among the monitoring devices adjacent to each other.
  • FIG. 8 shows an operation flow of a downstream device among monitoring devices adjacent to each other.
  • the monitoring control unit 112 of the upstream monitoring device 23-2 transmits the OSC light to the transmission line 14 via the transmission / reception unit 111 (step S11).
  • the OSC light is generated based on a control signal or a dummy signal.
  • the monitoring control unit 112 of the downstream monitoring device 23-3 receives the OSC light by the transmission / reception unit 111 (step S21).
  • the monitoring control unit 112 monitors the fluctuation of the OSC light power received by the transmission / reception unit 111 and determines whether the fluctuation amount is within a predetermined standard.
  • the monitoring control unit 112 continues to monitor the optical power of the OSC light measured by the transmission / reception unit 111.
  • the monitoring control unit 112 of the upstream monitoring device 23-2 confirms whether or not information indicating the abnormality of the OSC light transmitted from the downstream monitoring device 23-3 has been received.
  • the monitoring control unit 112 checks the elapsed time since the last time the OTDR measurement was performed.
  • the monitoring control unit 112 When the predetermined time has not elapsed after performing the OTDR measurement (No in step S17), the monitoring control unit 112 continues the control of the transmission of the OSC light in step S11.
  • a predetermined time serving as a reference when determining whether or not the OTDR measurement is necessary is set in advance.
  • the monitoring control unit 112 controls the transmission / reception unit 111 to perform the OTDR measurement (step S18).
  • the transmission / reception unit 111 When the OTDR measurement is started, the transmission / reception unit 111 outputs an optical pulse and measures the optical power of the backscattered light for each elapsed time. The transmission / reception unit 111 sends the measurement data of the OTDR measurement to the monitoring control unit 112.
  • the monitoring control unit 112 Upon receiving the OTDR measurement data, the monitoring control unit 112 stores the measurement data in the storage unit in association with the measurement date and time information (step S19). After storing the measurement data, the monitoring control unit 112 continues the control of the transmission of the OSC light in step S11.
  • the monitoring control unit 112 controls the transmission / reception unit 111 to operate.
  • Information indicating that an OSC light abnormality has occurred at the source of the OSC light is transmitted via the OSC light (step S23).
  • the monitoring control unit 112 of the upstream monitoring device 23-2 controls the transmitting / receiving unit 111 to perform the OTDR measurement. Execute (step S13).
  • the transmission / reception unit 111 When the OTDR measurement is started, the transmission / reception unit 111 outputs an optical pulse and measures the optical power of the backscattered light for each elapsed time. The transmission / reception unit 111 sends the measurement data of the OTDR measurement to the monitoring control unit 112.
  • the monitoring control unit 112 Upon receiving the measurement data of the OTDR measurement, the monitoring control unit 112 compares the received measurement data with the normal measurement data stored in the storage unit 113 (step S14).
  • the monitoring control unit 112 determines that bending or tapping has occurred in the optical fiber. It is determined that this is a normal state that has not occurred. When determining that the state is normal, the monitoring control unit 112 continues the control of the transmission of the OSC light in step S11. Further, when it is determined that there is a change in the OSC light and there is no abnormality in the OTDR measurement, the monitoring control unit 112 determines that a sign of abnormality has occurred, and the communication control device 13 instructs the communication control device 13 to change the OSC light and change the OTDR measurement. Information indicating that there is no abnormality may be transmitted.
  • the monitoring control unit 112 When comparing the measurement data with the normal measurement data, if the difference between the measurement data and the normal measurement data is equal to or larger than the reference (No in step S15), the monitoring control unit 112 causes an abnormality in the optical fiber or the like. Judge that When determining that an abnormality has occurred in the optical fiber or the like, the monitoring control unit 112 transmits information indicating that an abnormality has occurred to the communication control device 13 (step S16).
  • FIGS. 9 to 12 are diagrams schematically showing an example of an operation when an abnormality occurs between the optical amplifier 21-2 and the optical amplifier 21-3 in the optical communication system of the present embodiment.
  • the monitoring device 23-3 outputs the optical power of the received OSC light. Detect fluctuations.
  • FIG. 10 is a diagram schematically illustrating an operation in which the monitoring device 23-3 notifies the monitoring device 23-2 of information indicating that an error has occurred in the OSC light.
  • the monitoring device 23-3 transmits information indicating that the OSC light has an abnormality using the OSC via an optical fiber in a direction opposite to the direction in which the abnormality is detected.
  • FIG. 11 is a diagram schematically illustrating the operation of the OTDR measurement performed by the monitoring device 23-2 on the transmission path between the monitoring device 23-2 and the monitoring device 23-3.
  • FIG. 12 is a diagram schematically illustrating an operation in which the monitoring device 23-2 transmits information indicating that an abnormality has occurred in the optical fiber to the communication control device 13 via the first terminal device 11. is there.
  • the communication control device 13 Upon receiving the information indicating that the optical fiber has an abnormality, the communication control device 13 displays the information indicating that the abnormality has occurred and the information of the position where the abnormality has occurred to a worker or the like on a screen display or the like. Notice. As described above, the optical power of the OSC light is monitored, and the OTDR measurement is performed in the section where the fluctuation exceeds the reference to determine the presence / absence of the abnormality and to specify the location where the abnormality has occurred. The required time can be suppressed.
  • the optical communication system of the present embodiment monitors the optical power of the OSC signal light transmitted from the upstream by the monitoring device provided on the transmission line, and when the fluctuation of the optical power exceeds a predetermined condition, the upstream The OTDR measurement is being performed by the monitoring device.
  • the optical communication system according to the present embodiment constantly monitors signal light being transmitted and received by the OSC, and performs OTDR measurement in a corresponding section when an abnormality occurs, thereby quickly detecting the abnormality and specifying the location of the occurrence. It can be carried out. Further, by using the signal light of the OSC as a monitoring target, it is possible to simplify a device configuration necessary for detecting an abnormality.
  • the optical device for OTDR measurement when each monitoring device receives a notification from the downstream monitoring device indicating that the fluctuation level of the optical power of the OSC light has exceeded the reference, the optical device for OTDR measurement is placed on the downstream transmission line. Outputs pulse.
  • the monitoring device that detects that the optical power of the OSC light has exceeded the fluctuation level reference may output an OTDR measurement optical pulse to the upstream side to perform the OTDR measurement.
  • the device that detects the level fluctuation of the optical power of the OSC light and the device that performs OTDR measurement become the same monitoring device.
  • the presence / absence and abnormal part can be specified. Therefore, when a failure occurs in the transmission of the signal light in one section, it is possible to notify the occurrence of the abnormality and the information of the location of the occurrence via the terminal device on the opposite side.
  • receiving means 2 monitoring means 11 first terminal device 12 second terminal device 13 communication control device 14 transmission line 21 optical amplifier 22 optical amplifier 23 monitoring device 30 terminal device 31 transmitter 32 receiver 33 monitoring device 101 Transmission / reception unit 102 monitoring / control unit 103 storage unit 111 transmission / reception unit 112 monitoring / control unit 113 storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

[課題]時間を要さずに異常の発生箇所を特定することができる監視装置を提供する。 [解決手段]受信手段1と、監視手段2を備えている。受信手段1は、伝送路に送信した制御信号の光パワーのレベル変動の情報を取得する。監視手段2は、制御信号の光パワーのレベル変動が所定の条件を満たさないとき、伝送路に出力する光パルスの後方散乱光を基に、伝送路の監視を行う。

Description

監視装置および監視方法
 本発明は、光通信技術に関するものであり、特に、伝送路の異常の有無を監視する技術に関するものである。
 光通信ネットワークが広く用いられるようになり、通信の安定性や安全性の確保が重要になっている。光通信ネットワークでは、光ファイバの損傷による通信の障害や、タッピングと呼ばれる盗聴行為による安全性の低下が生じ得る。タッピングによる盗聴行為は、例えば、光ファイバの被覆を剥いで光ファイバに盗聴用の機器を接続することで行われる。
 通信の安定性や安全性の確保するためには、光ファイバの損傷や盗聴の恐れが生じた際に、損傷や盗聴の発生箇所を特定し迅速に対応することが重要となる。そのため、光ファイバの損傷や盗聴の恐れが生じた際に、発生箇所の特定は、素早く行えることが望ましい。そのような背景から、光通信ネットワークにおいて、光ファイバの損傷や盗聴の恐れを検知する技術や発生箇所の特定を行う技術の開発が行われている。そのような、光ファイバの損傷や盗聴の発生の検知等を行う技術としては、例えば、特許文献1のような技術が開示されている。
 特許文献1は、光通信ネットワークの監視装置に関するものである。特許文献1の監視装置は、光スイッチを介して複数の伝送路と接続されているOTDR(Optical Time Domain Reflectometer)を有している。特許文献1の監視装置は、光スイッチを切り替えることで、伝送路ごとにOTDR測定を実施し、各伝送路の異常の有無を確認している。
特表2017-521981号公報
 しかしながら、特許文献1の技術は次のような点で十分ではない。特許文献1の監視装置は、スイッチを切り替えることで伝送路ごとに管理フレームを送信し、異常があった伝送路についてOTDR測定を実行している。そのため、伝送路ごとの異常の有無を確認するためには、スイッチを切り替えながら全ての伝送路に管理フレームを送信し、異常が検知された伝送路についてOTDR測定を実行する必要がある。しかし、特許文献1の監視装置は、異常の発生している伝送路を検知するまでに時間を要する恐れがある。また、特許文献1の監視装置は、複数の中継器を介して接続されたような長距離の伝送路上における異常の発生箇所を特定する際には精度が低下する恐れがある。そのため、特許文献1は、光ファイバの障害の発生箇所の特定を、時間を要さずに正確に行う技術としては十分ではない。
 本発明は、上記の課題を解決するため、障害の発生箇所の特定を、時間を要さずに正確に行うことができる監視装置を提供することを目的としている。
 上記の課題を解決するため、本発明の監視装置は、受信手段と、監視手段を備えている。受信手段は、伝送路に送信した制御信号の光パワーのレベル変動の情報を取得する。監視手段は、制御信号の光パワーのレベル変動が所定の条件を満たさないとき、伝送路に出力する光パルスの後方散乱光を基に、伝送路の監視を行う。
 本発明の監視方法は、伝送路に送信した制御信号の光パワーのレベル変動の情報を取得し、制御信号の光パワーのレベル変動が所定の条件を満たさないとき、伝送路に出力する光パルスの後方散乱光を基に、伝送路の監視を行う。
 本発明によると、障害の発生箇所の特定を、時間を要さずに正確に行うことができる。
本発明の第1の実施形態の構成の概要を示す図である。 本発明の第2の実施形態の構成の概要を示す図である。 本発明の第2の実施形態の端局装置の構成を示す図である。 本発明の第2の実施形態の監視装置の構成を示す図である。 本発明の第2の実施形態の監視装置の構成の例を示す図である。 本発明の第2の実施形態において測定される散乱光強度の例を示す図である。 本発明の第2の実施形態の動作フローを示す図である。 本発明の第2の実施形態の動作フローを示す図である。 本発明の第2の実施形態における異常の発生箇所の例を模式的に示した図である。 本発明の第2の実施形態において異常が生じた際の動作を模式的に示した図である。 本発明の第2の実施形態において異常が生じた際の動作を模式的に示した図である。 本発明の第2の実施形態において異常が生じた際の動作を模式的に示した図である。
 (第1の実施形態)
 本発明の第1の実施形態について図を参照して詳細に説明する。図1は、本実施形態の監視装置の構成の概要を示した図である。本実施形態の監視装置は、受信手段1と、監視手段2を備えている。受信手段1は、伝送路に送信した制御信号の光パワーのレベル変動の情報を取得する。監視手段2は、制御信号の光パワーのレベル変動が所定の条件を満たさないとき、伝送路に出力する光パルスの後方散乱光を基に、伝送路の監視を行う。
 本実施形態の監視装置は、伝送路に出力した制御信号の光パワーのレベル変動が所定の条件を満たさないとき、光パルスの後方散乱光を基に伝送路の監視を行っている。本実施形態の監視装置は、設置されている伝送路における制御信号の光パワーのレベル変動が所定の条件を満たさないときに、伝送路の監視を行うこと異常が生じてから時間を要さずに異常の有無の判断と発生箇所の特定を行うことができる。その結果、本実施形態の監視装置を用いることで、障害の発生箇所の特定を、時間を要さずに正確に行うことができる。
 (第2の実施形態)
 本発明の第2の実施形態について図を参照して詳細に説明する。図2は、本実施形態の光通信システムの構成の概要を示した図である。本実施形態の光通信システムは、端局装置間で伝送路を介して波長多重信号の送受信を行う光通信ネットワークである。
 本実施形態の光通信システムは、第1の端局装置11と、第2の端局装置12と、通信制御装置13と、伝送路14を備えている。第1の端局装置11と第2の端局装置12は、伝送路14を介して接続されている。
 伝送路14は、光増幅器21と、光増幅器22と、監視装置23をさらに備えている。光増幅器21は、光増幅器21-1から光増幅器21-NのN台(Nは、整数)、備えられている。また、光増幅器22は、光増幅器21と対応するように光増幅器22-1から光増幅器22-NのN台、備えられている。監視装置23は、光増幅器21および光増幅器22と対応するように、監視装置23-1から監視装置23-NのN台、備えられている。
 第1の端局装置11および第2の端局装置12の構成について説明する。図3は、第1の端局装置11および第2の端局装置12の構成を端局装置30として示したものである。図3に示すように端局装置30は、送信器31と、受信器32と、監視装置33を備えている。
 送信器31は、端局装置30に入力されたクライアント信号を基に、伝送路14において伝送する各チャネルの光信号を生成し、波長多重信号として出力する。送信器31は、入力された信号を基に各チャネルに対応する波長の光信号を生成する光送信モジュールと、各波長の光信号を合波する合波素子を備えている。
 受信器32は、伝送路から入力された波長多重信号を分波し、各チャネルの光信号を復号してクライアント信号として出力する。受信器32は、入力された波長多重信号を分波する分波素子と、各波長の光信号の受信処理を行う光受信モジュールを備えている。
 監視装置33の構成について説明する。図4は、本実施形態の監視装置33の構成を示した図である。監視装置33は、送受信部101と、監視制御部102と、記憶部103を備えている。
 送受信部101は、OSC(Optical Supervisory Channel)光およびOTDR(Optical Time Domain Reflectometer)測定用の光パルスを出力する光源と、OSC光およびOTDR測定用の光パルスを検出する受光素子を備えている。また、送受信部101は、受光素子が受光した光の光パワーを測定する機能を有する。送受信部101は、光パワーの測定結果を監視制御部102に出力する。
 OSC光およびOTDR測定用の光パルスは、送信器31から出力された波長多重信号と合波され伝送路14に送信される。合波素子は、例えば、AWG(Arrayed waveguide gratings)を用いて構成されている。合波素子は、波長選択スイッチ等の他の光学素子を用いて構成されていてもよい。
 監視制御部102は、送受信部101のOSC光およびOTDR測定用の光パルスを伝送路に送信する動作を制御する。
 また、送受信部101は、他の監視装置23や端局装置から送られてくるOSC光を受信する。送受信部101は、受信したOSC光を監視制御部102に送る。
 監視制御部102は、OSC光およびOTDR測定用の光パワーの測定結果を基に異常の有無を判断する機能を有する。監視制御部102は、OTDR測定結果をあらかじめデータベースとして保存している基準データを比較し、異常の有無を判断する。また、監視制御部102は、OTDR測定結果を基に異常が発生した位置を推定する。また、監視制御部102は、正常時のOTDRの測定結果を記憶部103に保存する。
 監視制御部102は、OSC光の光パワーの変動が基準以上であることを検知すると、上流の監視装置23にOSC光の光パワーに変動が生じたことを示す情報を送信する。以下の説明において上流とは、伝送路14を伝送される波長多重信号の送信元の側のことをいい、下流とは、伝送路14を伝送される波長多重信号の送信先の側のことをいう。
 監視制御部102は、下流の監視装置23からOSC光に変動が生じたことを示す通知を受け取ると、送受信部101を制御してOTDR測定用の光パルスの出力および後方散乱光の測定を実行する。
 監視制御部102は、OTDRの測定結果を基に、異常が生じている箇所までの距離を特定する。監視制御部102は、異常が生じた箇所までの距離を算出すると、異常が生じたことを示す情報と、異常が生じた箇所の情報および過剰損失の情報等を通信制御装置13に送信する。
 記憶部103は、OTDR測定の結果を保存する機能を有する。記憶部103は、OSC光が正常であるときのOTDR測定の測定データを、OTDR測定の測定日時と測定データを関連づけて保存している。測定データは、時間に対する後方散乱光の光パワーのデータとして記録されている。
 通信制御装置13は、光通信システムの監視や端局装置の制御等を行う。通信制御装置13は、監視装置から伝送路の異常を示す情報および発生箇所の情報を受け取ったときに、表示等によって異常の発生と発生箇所の情報を作業者等に通知する。
 光増幅器21は、第1の端局装置11から第2の端局装置12に伝送される波長多重信号の信号光の光パワーを増幅する。本実施形態の光増幅器21は、EDFA(Erbium Doped Fiber Optical Amplifier)と励起光源を備えている。
 光増幅器21は、EDFAの前段、すなわち、入力側に波長多重信号とOSC光およびOTDRの光パルスを分波する分波素子を備えている。分波素子は、例えば、AWGを用いて構成され、OSC光およびOTDR測定用に割り当てられた波長の光と波長多重信号の信号光を分波する。光増幅器21は、OSC光およびOTDR測定用の光を送受信部101に送る。
 また、光増幅器21は、後段側、すなわち、出力側にOSC光およびOTDR測定用の光パルスをEDFAで光パワーが増幅された波長多重信号に合波する合波素子を備えている。合波素子は、AWGを用いて構成されている。合波素子には、OTDR測定用の光パルスの後方散乱光が伝送路14から入射され、監視装置23に送られる。
 光増幅器22は、第2の端局装置12から第1の端局装置11に伝送される波長多重信号の信号光の光パワーを増幅する。本実施形態の光増幅器21は、EDFA(Erbium Doped Fiber Optical Amplifier)と励起光源を備えている。
 光増幅器22は、EDFAの前段、すなわち、入力側に波長多重信号とOSC光およびOTDRの光パルスを分波する分波素子を備えている。分波素子は、例えば、AWGを用いて構成され、OSC光およびOTDR測定用に割り当てられた波長の光と波長多重信号の信号光を分波する。光増幅器22は、OSC光およびOTDR測定用の光パルスを送受信部101に送る。
 また、光増幅器22は、後段側、すなわち、出力側にOSC光およびOTDR測定用の光パルスをEDFAで光パワーが増幅された波長多重信号に合波する合波素子を備えている。合波素子は、AWGを用いて構成されている。
 監視装置23の構成について説明する。図5は、本実施形態の監視装置23の構成を示した図である。監視装置23は、送受信部111と、監視制御部112と、記憶部113を備えている。
 送受信部111は、OSC光およびOTDR測定用の光パルスを出力する光源と、OSC光およびOTDR測定用の光パルスの後方散乱光を検出する受光素子を備えている。AWGを介して伝送路から入力されるOTDR測定用の光パルスの後方散乱光は、方向性結合器によって受光素子のみに送られる。また、送受信部111は、受光素子が受光した光の光パワーを測定する機能を有する。
 送受信部111は、光パワーの測定結果を監視制御部112に出力する。また、本実施形態の送受信部111の機能のうち、他の装置から送られてくるOSCの信号光を受信する機能は、第1の実施形態の受信手段1に相当する。
 監視制御部112は、送受信部111のOSC光およびOTDR測定用の光パルスを伝送路に送信する動作を制御する。
 監視制御部112は、OSC光およびOTDR測定用の光パワーの測定結果を基に異常の有無を判断する機能を有する。図6は、後方散乱光の測定結果を模式的に示した図である。図6は、光パルスを出力してからの経過時間に対する後方散乱光の光パワーを測定した結果を示したものである。
 測定される後方散乱光は、光パルスの出力地点から時間に比例して離れた距離を反映した結果となるため、図6の横軸は距離に対応している。光ファイバの折り曲げやタッピング等が生じると、その箇所での損失が大きくなるため、異常が生じた箇所では、散乱光の強度が図6のように不連続で変化する。そのため、図6のように不連続に変化する箇所を検出し、光パルスを出力してからの時間を、光の伝搬速度等を基に距離に換算することで異常が生じた箇所までの距離を算出することができる。
 監視制御部112は、正常時のOTDRの測定結果を記憶部113に保存する。監視制御部112は、例えば、正常時のOTDRの複数の測定データについて光パルスの出力からの経過時間ごとに後方散乱光の光パワーの平均を算出し、平均値と測定値との差があらかじめ設定された値以上になったときに異常が生じていると判断する。監視制御部112は、平均値と測定値との差があらかじめ設定された値以上になった時間があらかじめ設定された時間以上、継続したときに異常が生じていると判断してもよい。そのような、構成とすることで、一時的なゆらぎの影響を抑制し、異常の発生を正しく検出できるようになる。
 監視制御部112は、OSC光の光パワーの変動が基準以上であることを検知すると、上流の監視装置23にOSCの光パワーに異常が生じたことを示す情報を、OSCを介して送信する。
 監視制御部112は、下流の監視装置23からOSC光に異常が生じたことを示す通知を受け取ると、送受信部111を制御しての光パルスを出力し、OTDR測定を実行する。
 監視制御部112は、OTDRの測定データを基に、異常が生じている箇所までの距離を特定する。監視制御部112は、異常が生じたことを示す情報と、異常が生じた箇所の情報および過剰損失の情報等を第1の端局装置11または第2の端局装置12を介して通信制御装置13に送信する。また、本実施形態の監視制御部112の機能のうち、光パワーのレベル変動が所定の条件を満たさないときの光パルスの出力および後方散乱光の測定を制御する機能は、第1の実施形態の監視手段2に相当する。
 記憶部113は、OTDRの測定結果を保存する機能を有する。記憶部113は、OSC光の光パワーの変動が正常範囲であるときのOTDR測定の測定データを、OTDR測定の測定日時と測定データを関連づけてデータベースとして保存している。測定データは、光パルスを出力してからの経過時間に対する後方散乱光の光パワーのデータとして記録されている。測定データには、温度データ等の環境データがさらに関連づけられていてもよい。
 本実施形態の光通信システムの動作について説明する。図7および図8は、実施形態の光通信システムにおいて異常の有無の監視を行う際の監視装置の動作フローを示す図である。図7は、互いに隣接する監視装置のうち上流側の装置の動作フローを示している。また、図8は、互いに隣接する監視装置のうち下流側の装置の動作フローを示している。
 以下の説明では、監視装置23-2と監視装置23-3の間の区間において、監視装置23-2側を上流側とする動作を例に説明する、他の監視装置23間並びに第1の端局装置11および第2の端局装置12の監視装置33と隣接する監視装置23の間でも同様の動作が行われる。
 通常時、上流側の監視装置23-2の監視制御部112は、送受信部111を介してOSC光を伝送路14に送信する(ステップS11)。OSC光は、制御信号またはダミー信号を基に生成される。
 下流側の監視装置23-3の監視制御部112は、送受信部111でOSC光を受信する(ステップS21)。監視制御部112は、送受信部111で受信するOSC光パワーの変動を監視し、変動量が所定の基準内であるかを判断する。OSC光の光パワーの変動が所定の基準内のとき(ステップS22でYes)、監視制御部112は、送受信部111において測定されるOSC光の光パワーの監視を継続する。
 上流側の監視装置23-2の監視制御部112は、下流の監視装置23-3から送られてくるOSC光の異常を示す情報の受信の有無を確認する。異常の情報を受信していないとき、すなわち、OSC光が正常であるとき(ステップS12でYes)、監視制御部112は、前回、OTDR測定を行ったときからの経過時間を確認する。
 OTDR測定を行ってから所定の時間が経過していないとき(ステップS17でNo)、監視制御部112は、ステップS11におけるOSC光の送信の制御を継続する。OTDR測定の要否を判断する際の基準となる所定の時間は、あらかじめ設定されている。
 OTDR測定を行ってから所定の時間が経過しているとき(ステップS17でYes)、監視制御部112は、送受信部111を制御してOTDR測定を実行する(ステップS18)。
 OTDR測定を開始すると、送受信部111は、光パルスを出力し、経過時間ごとの後方散乱光の光パワーを測定する。送受信部111は、OTDR測定の測定データを監視制御部112に送る。
 OTDR測定データを受け取ると、監視制御部112は、測定データを測定日時の情報と関連づけて記憶部に保存する(ステップS19)。測定データを保存すると、監視制御部112は、ステップS11におけるOSC光の送信の制御を継続する。
 下流側の監視装置23-3においてOSC光を受信した際に、OSC光の光パワーの変動量が所定の基準よりも大きいとき(ステップS22でNo)、監視制御部112は、送受信部111を介して、OSC光の送信元にOSC光の異常が生じていることを示す情報を送信する(ステップS23)。
 上流側の監視装置23-2の監視制御部112は、受信信号からOSC光に異常が生じていることを示す情報を検知すると(ステップS12でNo)、送受信部111を制御してOTDR測定を実行する(ステップS13)。
 OTDR測定を開始すると、送受信部111は、光パルスを出力し、経過時間ごとの後方散乱光の光パワーを測定する。送受信部111は、OTDR測定の測定データを監視制御部112に送る。
 監視制御部112は、OTDR測定の測定データを受け取ると、受け取った測定データと記憶部113に保存されている正常時の測定データを比較する(ステップS14)。
 測定データと正常時のデータを比較した際に、測定データと正常時の測定データとの差が基準内であるとき(ステップS15でYes)、監視制御部112は、光ファイバに折り曲げやタッピングが生じていない正常な状態であると判断する。正常な状態であると判断すると、監視制御部112は、ステップS11におけるOSC光の送信の制御を継続する。また、OSC光に変動がありOTDR測定で異常が無いと判断された場合に、監視制御部112は、異常の徴候が生じているとして通信制御装置13に、OSC光に変動がありOTDR測定で異常が無いことを示す情報を送信してもよい。
 測定データと正常時のデータを比較した際に、測定データと正常時の測定データとの差が基準以上であるとき(ステップS15でNo)、監視制御部112は、光ファイバ等に異常が生じていると判断する。光ファイバ等に異常が生じていると判断すると、監視制御部は112、通信制御装置13に異常が生じていることを示す情報を送信する(ステップS16)。
 図9乃至図12は、本実施形態の光通信システムにおいて、光増幅器21-2と光増幅器21-3の間で異常が発生した場合の動作の例について模式的に示した図である。
 図9に示すように光増幅器21-2と光増幅器21-3の間で伝送路14の光ファイバの損傷やタッピング等が生じると、監視装置23-3は、受信するOSC光の光パワーの変動を検知する。
 OSC光の光パワーの変動があらかじめ設定された基準を超えて、所定の条件を満たさなくなると、監視装置23-3は、監視装置23-2にOSC光に異常が生じている情報を送信する。図10は、監視装置23-3は、監視装置23-2にOSC光に異常が生じていることを示す情報を通知する動作を模式的に示した図である。監視装置23-3は、異常を検出した方向とは逆方向の光ファイバを介してOSCを用いてOSC光に異常が生じている情報を送信する。
 監視装置23-2は、OSC光に異常が生じている情報を受信すると、監視装置23-2と監視装置23-3の間の伝送路においてOTDR測定を実行する。図11は、監視装置23-2が、監視装置23-2と監視装置23-3の間の伝送路において行うOTDR測定の動作を模式的に示した図である。
 OTDR測定の結果、伝送路に異常が生じていると判断すると、監視装置23-2は、異常が生じている箇所を特定する。異常の箇所を特定すると、監視装置23-2は、第1の端局装置11を介して通信制御装置13に、光ファイバに異常が生じていることを示す情報と異常の箇所の情報を送信する。図12は、監視装置23-2が第1の端局装置11を介して通信制御装置13に、光ファイバに異常が生じていることを示す情報を送信する動作を模式的に示した図である。
 通信制御装置13は、光ファイバに異常が生じていることを示す情報を受け取ると、異常が生じていることを示す情報と、異常が生じている位置の情報を画面表示などにより作業者等に通知する。このように、OSC光の光パワーを監視し、基準以上の変動が生じた区間でOTDR測定を実行することで異常の有無の判断と発生箇所の特定を行うことで、異常の箇所の特定に要する時間を抑制することができる。
 本実施形態の光通信システムは、伝送路に備えられた監視装置において上流から送られてくるOSCの信号光の光パワーを監視し、光パワーの変動が所定の条件を超えたときに上流の監視装置によってOTDR測定が行われている。本実施形態の光通信システムは、OSCにおいて常時、送受信されている信号光の監視を行い、異常があったときに該当区間でOTDR測定を行うことで、異常の検知と発生箇所の特定を素早く行うことができる。また、OSCの信号光を監視対象とすることで、異常の検知に必要な装置構成を簡略化することができる。
 第2の実施形態において、各監視装置は、OSC光の光パワーの変動レベルが基準を超えたことを示す通知を下流の監視装置から受けたときに、下流の伝送路にOTDR測定用の光パルスを出力している。そのような構成に代えて、OSC光の光パワーの変動レベル基準を超えたことを検知した監視装置が、上流側にOTDR測定用の光パルスを出力してOTDRの測定を行ってもよい。上流側でOTDR測定を行う構成とすることで、OSC光の光パワーのレベル変動を検知する装置とOTDR測定を行う装置が同じ監視装置となるため、1台の監視装置によって自律的に異常の有無および異常個所の特定が可能となる。そのため、1区間において信号光の伝送に障害が発生している場合に、反対側の端局装置を介して異常の発生および発生箇所の情報の通知が可能になる。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2018年7月27日に出願された日本出願特願2018-141187を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  受信手段
 2  監視手段
 11  第1の端局装置
 12  第2の端局装置
 13  通信制御装置
 14  伝送路
 21  光増幅器
 22  光増幅器
 23  監視装置
 30  端局装置
 31  送信器
 32  受信器
 33  監視装置
 101  送受信部
 102  監視制御部
 103  記憶部
 111  送受信部
 112  監視制御部
 113  記憶部

Claims (10)

  1.  伝送路に送信した制御信号の光パワーのレベル変動の情報を取得する受信手段と、
     前記制御信号の光パワーのレベル変動が所定の条件を満たさないとき、前記伝送路に出力する光パルスの後方散乱光を基に、前記伝送路の監視を行う監視手段と
     を備えることを特徴とする監視装置。
  2.  前記制御信号の光パワーのレベル変動が前記所定の条件を満たすときの前記光パルスの後方散乱光の測定データを保存する記憶手段をさらに備え、
     前記監視手段は、前記記憶手段に保存されている前記測定データと、前記光パルスの後方散乱光の測定結果との比較を基に、前記伝送路の異常の有無を判断することを特徴とする請求項1に記載の監視装置。
  3.  前記監視手段は、前記制御信号の光パワーのレベル変動が前記所定の条件を満たすときに、前記光パルスを所定の時間ごとに前記伝送路に出力させ、出力した前記光パルスの後方散乱光の測定データを取得し、取得した前記測定データを前記記憶手段に保存することを特徴とする請求項2に記載の監視装置。
  4.  前記光パルスを前記伝送路に送信し、前記光パルスの後方散乱光の光パワーを測定する送受信手段をさらに備え、
     前記監視手段は、前記送受信手段が測定した前記光パルスの後方散乱光の光パワーの測定データを前記記憶手段に保存することを特徴とする請求項2または3に記載の監視装置。
  5.  前記監視手段は、前記伝送路上の異常個所を特定し、特定した異常個所の情報を出力することを特徴とする請求項1から4いずれかに記載の監視装置。
  6.  前記監視手段は、前記伝送路を介して他の装置から受信する第2の制御信号の光パワーのレベル変動が前記所定の条件を満たさないとき、前記第2の制御信号の光パワーに異常が生じている情報を前記第2の制御信号の送信元に送信することを特徴とする請求項1から5いずれかに記載の監視装置。
  7.  伝送路を伝送される信号光の光パワーを増幅する光増幅器と、
     請求項1から5いずれかに記載の監視装置と
     を備え、
     前記監視装置は、前記光増幅器の出力側において前記制御信号および前記光パルスを出力し、前記光パルスの後方散乱光の測定を行うことを特徴とする光中継器。
  8.  伝送路に送信した制御信号の光パワーのレベル変動の情報を取得し、
     前記制御信号の光パワーのレベル変動が所定の条件を満たさないとき、前記伝送路に出力する光パルスの後方散乱光を基に、前記伝送路の監視を行うことを特徴とする監視方法。
  9.  前記制御信号の光パワーのレベル変動が前記所定の条件を満たすときの前記光パルスの後方散乱光の測定データを記憶装置に保存し、
     保存されている前記測定データと、前記光パルスの後方散乱光の測定結果との比較を基に、前記伝送路の異常の有無を判断することを特徴とする請求項8に記載の監視方法。
  10.  前記光パルスを前記伝送路に送信し、前記光パルスの後方散乱光の光パワーを測定し、
     測定した前記光パルスの後方散乱光の光パワーの測定データを前記記憶装置に保存することを特徴とする請求項9に記載の監視方法。
PCT/JP2019/028769 2018-07-27 2019-07-23 監視装置および監視方法 WO2020022310A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/259,759 US20210159972A1 (en) 2018-07-27 2019-07-23 Monitoring device and monitoring method
JP2020532402A JP7167985B2 (ja) 2018-07-27 2019-07-23 監視装置および監視方法
CN201980049035.5A CN112534746B (zh) 2018-07-27 2019-07-23 监视设备和监视方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018141187 2018-07-27
JP2018-141187 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022310A1 true WO2020022310A1 (ja) 2020-01-30

Family

ID=69180639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028769 WO2020022310A1 (ja) 2018-07-27 2019-07-23 監視装置および監視方法

Country Status (3)

Country Link
US (1) US20210159972A1 (ja)
JP (1) JP7167985B2 (ja)
WO (1) WO2020022310A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242904A1 (ja) * 2022-06-13 2023-12-21 日本電信電話株式会社 異常区間推定方法、異常区間推定システム及び異常区間推定装置
JP7450829B1 (ja) 2023-05-09 2024-03-15 三菱電機株式会社 光ファイバケーブル断線検出装置、光ファイバケーブル断線特定システム、光ファイバケーブル断線検出方法及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047293A1 (en) * 2000-12-04 2002-06-13 Ceyba Inc. Integrated optical time domain reflectometer and optical supervisory network
JP2007251683A (ja) * 2006-03-16 2007-09-27 Fujitsu Ltd 光特性を測定する方法およびシステム
JP2015091003A (ja) * 2013-11-05 2015-05-11 富士通株式会社 光伝送システム及び光伝送装置
JP2017521981A (ja) * 2014-06-27 2017-08-03 ソリッド システムズ インコーポレイテッド 光通信線路監視装置及び方法
JP2018011279A (ja) * 2016-07-15 2018-01-18 富士通株式会社 伝送装置及び状態検出方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140056582A1 (en) 2012-08-27 2014-02-27 Calix, Inc. Detecting and communicating potential optical fiber issues in optical networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047293A1 (en) * 2000-12-04 2002-06-13 Ceyba Inc. Integrated optical time domain reflectometer and optical supervisory network
JP2007251683A (ja) * 2006-03-16 2007-09-27 Fujitsu Ltd 光特性を測定する方法およびシステム
JP2015091003A (ja) * 2013-11-05 2015-05-11 富士通株式会社 光伝送システム及び光伝送装置
JP2017521981A (ja) * 2014-06-27 2017-08-03 ソリッド システムズ インコーポレイテッド 光通信線路監視装置及び方法
JP2018011279A (ja) * 2016-07-15 2018-01-18 富士通株式会社 伝送装置及び状態検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242904A1 (ja) * 2022-06-13 2023-12-21 日本電信電話株式会社 異常区間推定方法、異常区間推定システム及び異常区間推定装置
JP7450829B1 (ja) 2023-05-09 2024-03-15 三菱電機株式会社 光ファイバケーブル断線検出装置、光ファイバケーブル断線特定システム、光ファイバケーブル断線検出方法及びプログラム

Also Published As

Publication number Publication date
US20210159972A1 (en) 2021-05-27
CN112534746A (zh) 2021-03-19
JPWO2020022310A1 (ja) 2021-08-02
JP7167985B2 (ja) 2022-11-09

Similar Documents

Publication Publication Date Title
EP2020767B1 (en) Optical relay device and optical relay transmission system
US7899331B2 (en) WDM optical transmission system and optical amplifying apparatus
EP2088697B1 (en) System and method for fault identification in optical communication systems
JP5648416B2 (ja) プロテクションスイッチングのための方法及びシステム
AU748446B2 (en) Method and system for detecting loss of signal in wavelength division multiplexed systems
US8554070B2 (en) Optical transmission apparatus and optical attenuation amount control method
US20050174563A1 (en) Active fiber loss monitor and method
WO2020022310A1 (ja) 監視装置および監視方法
US20180006717A1 (en) Network controller, optical transmission system, and method for determining failure
JP2012205172A (ja) 光伝送システムにおけるスパンロス自動調整装置および方法
JP5627427B2 (ja) 波長多重伝送装置及び波長多重伝送システム
EP1698078B1 (en) Optical communication network and component therefore
CN112534746B (zh) 监视设备和监视方法
US8792784B2 (en) Terrestrial optical fiber communication with added capacity
JP6696561B2 (ja) 通信装置および通信方法
GB2404295A (en) Polarization mode dispersion detection
US20240027259A1 (en) Multi-span optical fiber das system with amplified-filtered loopback (aflb)
US11936423B2 (en) Fault detection apparatus, fault detection method, and submarine cable system
JP3541881B2 (ja) 波長多重光送信装置、及び波長多重光送信方法
US20160218809A1 (en) Excitation light source device and optical transmission system
JP2017098680A (ja) 伝送装置、故障診断方法、通信システム
KR200396306Y1 (ko) 테스팅 광파장을 이용한 광선로 감시 시스템
JPH0730486A (ja) 光中継装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840515

Country of ref document: EP

Kind code of ref document: A1