JP4530503B2 - インピーダンス変換回路 - Google Patents

インピーダンス変換回路 Download PDF

Info

Publication number
JP4530503B2
JP4530503B2 JP2000253674A JP2000253674A JP4530503B2 JP 4530503 B2 JP4530503 B2 JP 4530503B2 JP 2000253674 A JP2000253674 A JP 2000253674A JP 2000253674 A JP2000253674 A JP 2000253674A JP 4530503 B2 JP4530503 B2 JP 4530503B2
Authority
JP
Japan
Prior art keywords
circuit
current
constant current
mos transistor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000253674A
Other languages
English (en)
Other versions
JP2002076798A (ja
Inventor
太朗 藤田
Original Assignee
日本テキサス・インスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テキサス・インスツルメンツ株式会社 filed Critical 日本テキサス・インスツルメンツ株式会社
Priority to JP2000253674A priority Critical patent/JP4530503B2/ja
Publication of JP2002076798A publication Critical patent/JP2002076798A/ja
Application granted granted Critical
Publication of JP4530503B2 publication Critical patent/JP4530503B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Analogue/Digital Conversion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、インピーダンス変換回路に係り、特にMOSトランジスタで構成されるインピーダンス変換回路に関する。
【0002】
【従来の技術】
図12に、この種のインピーダンス変換回路の従来例を示す。このインピーダンス変換回路は、高インピーダンスを有する一対の電圧出力回路100,104より交互に出力される電圧信号va,vbを一対の差動入力部112,122に高入力インピーダンスでそれぞれ入力して、出力部132より低出力インピーダンスで負荷(図示せず)に出力するように構成されている。
【0003】
電圧出力回路100,104はたとえば電荷再分配型D/Aコンバータの出力コンデンサ102,106からなり、各コンデンサ102,106よりD/A変換の結果として得られるアナログの出力電圧va,vbが開閉スイッチ108,110を介して交互に与えられる。
【0004】
図示の状態では、スイッチ108がオフ(開)状態、スイッチ110がオン(閉)状態で、定電流源118が切換スイッチ120により差動入力部122側に切り換えられており、一対のNMOSトランジスタ128,130は差動入力部122の電流ミラー回路として動作し、出力部132のノードNoutにはコンデンサ106からの入力電圧vbと対応する(理想的には等しい)出力電圧voutが得られる。出力部132は、正極側電源電圧端子Vddと負極側電源電圧端子Vssとの間に直列接続された定電流源134および駆動用のNMOSトランジスタ136で構成され、ノードNoutが出力端子として負荷に接続されるとともに両差動入力部112,122における入力段負極側のPMOSトランジスタ116,126のゲート端子に接続されている。
【0005】
コンデンサ102にD/A変換結果のアナログ電圧vaが得られると、所定のタイミングでスイッチ108がオン状態になり、コンデンサ102の電圧vaが差動入力部112における入力段正極側のPMOSトランジスタ114のゲート端子に与えられる。次いで、定電流源118が切換スイッチ120により差動入力部112側に切り換えられる。また、スイッチ110がオフ状態になる。これにより、NMOSトランジスタ128,130は差動入力部112の電流ミラー回路として動作し、出力部132のノードNoutにはコンデンサ102からの入力電圧vaと対応する(理想的には等しい)出力電圧voutが得られる。
【0006】
【発明が解決しようとする課題】
上記のようなインピーダンス変換回路では、ドライブ能力をほとんど持たない各電圧出力回路100,104(コンデンサ102,106)からの電圧va,vbが各差動入力部112,122における入力段正極側のPMOSトランジスタ114,124のゲート端子に入力または転送された時に、各コンデンサ102,106の容量Ca,Cbと各PMOSトランジスタ114,124のゲート容量(ゲート端子と基板との間の容量)CGとの間で無視できないほど大きな電荷の移動または分配が起こって、各入力電圧va,vbの値が変わってしまい、結果として出力部132の出力ノードNoutに得られる各出力電圧voutが各入力電圧va,vbの本来の値からずれる(オフセットする)という問題がある。
【0007】
さらに、差動入力部112,122間で切換が行われた直後に、入力電圧va,vbを入力している各入力段正極側のPMOSトランジスタ114,124に定電流源118からの電流が流れ始めると、基板電位つまりゲート電極と対向する基板領域の電位が変化して、ゲート容量CGに電荷が出入りする。このこともゲート容量CGを通じて入力電圧va,vbを変動させる原因となり、ひいては出力電圧voutのオフセットを拡大させる原因となっていた。
【0008】
本発明は、かかる問題点に鑑みてなされたもので、差動入力部における入力段MOSトランジスタのゲート容量による入力信号への影響を少なくして、精度の高い出力信号を得るようにしたインピーダンス変換回路を提供することを目的とする。
【0009】
本発明の別の目的は、高インピーダンスの電圧出力または保持回路からの入力信号に対しても低オフセットで精度の高い出力信号を得るようにしたインピーダンス変換回路を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明の第1のインピーダンス変換回路は、差動接続された第1および第2のMOSトランジスタと、前記第1および第2のMOSトランジスタに第1の電流をほぼ2等分して供給するための第1の定電流回路とを含む差動入力部と、電気的負荷に接続され、前記差動入力部の出力信号を増幅して前記負荷に供給する出力部と、前記出力部より得られる出力信号を前記第2のMOSトランジスタのゲート端子に帰還させる帰還回路と、前記第1のMOSトランジスタに前記第1の電流のほぼ1/2の電流値を有する第2の電流を供給するための第2の定電流回路と、所望の電圧レベルを有する入力信号が前記第1のMOSトランジスタのゲート端子に入力するに先立って前記第1の定電流回路をオフ状態にするとともに前記第2の定電流回路をオン状態にして前記第1のMOSトランジスタに前記第2の電流を供給させ、前記入力信号が前記第1のMOSトランジスタのゲート端子に入力した後に前記第1の定電流回路をオン状態に切り換えるとともに前記第2の定電流回路をオフ状態に切り換えて、前記第1および第2のMOSトランジスタに前記第1の電流をほぼ2等分して供給させる制御回路とを有する構成とした。
【0011】
上記の構成においては、入力信号が第1のMOSトランジスタのゲート端子に入力してゲート電位が変動しても、第2の電流により第1のMOSトランジスタのゲート容量への電荷の出入りを阻止して、入力信号への影響を防ぐことができる。そして、入力信号に対して第1の定電流回路がオン状態になっても第1のMOSトランジスタに流れる電流は変わらないため、ゲート容量の電荷は一定に維持され、入力信号に影響することはない。
【0012】
上記第1のインピーダンス変換回路において、好ましくは、前記第1のMOSトランジスタに前記第2の電流を供給するに先立って前記第1のMOSトランジスタのゲート端子にリセット用の所定の基準電圧を与えるリセット回路を有する構成としてよい。かかるリセット機能により、該ゲート端子回りの浮遊容量の影響を少なくすることができる。
【0013】
本発明の第2のインピーダンス変換回路は、差動接続された第1および第2のMOSトランジスタと、前記第1および第2のMOSトランジスタに第1の電流をほぼ2等分して供給するための第1の定電流回路とを含む第1の差動入力部と、差動接続された第3および第4のMOSトランジスタと、前記第3および第4のMOSトランジスタに前記第1の電流とほぼ等しい電流値を有する第2の電流をほぼ2等分して供給するための第2の定電流回路とを含む第2の差動入力部と、電気的負荷に接続され、前記第1または第2の差動入力部の出力信号を増幅して前記負荷に供給する出力部と、前記出力部より得られる出力信号を前記第2のMOSトランジスタのゲート端子に帰還させる第1の帰還回路と、前記出力部より得られる出力信号を前記第4のMOSトランジスタのゲート端子に帰還させる第2の帰還回路と、前記第1のMOSトランジスタに前記第1の電流のほぼ1/2の電流値を有する第3の電流を供給するための第3の定電流回路と、前記第3のMOSトランジスタに前記第2の電流のほぼ1/2の電流値を有する第4の電流を供給するための第4の定電流回路と、所望の電圧レベルを有する第1の入力信号が前記第1のMOSトランジスタのゲート端子に入力するに先立って前記第1の定電流回路をオフ状態にするとともに前記第2の定電流回路をオン状態にして前記第1のMOSトランジスタに前記第2の電流を供給させ、前記入力信号が前記第1のMOSトランジスタのゲート端子に入力した後に前記第1の定電流回路をオン状態に切り換えるとともに前記第2の定電流回路をオフ状態に切り換えて、前記第1および第2のMOSトランジスタに前記第1の電流をほぼ2等分して供給させる第1の制御回路と、所望の電圧レベルを有する第2の入力信号が前記第3のMOSトランジスタのゲート端子に入力するに先立って前記第2の定電流回路をオフ状態にしたまま前記第4の定電流回路をオン状態にして前記第3のMOSトランジスタに前記第4の電流を供給させ、前記入力信号が前記第3のMOSトランジスタのゲート端子に入力している状態の下で前記第2の定電流回路をオン状態に切り換えるとともに前記第4の定電流回路をオフ状態に切り換えて、前記第3および第4のMOSトランジスタに前記第1の電流をほぼ2等分して供給させる第2の制御回路と、前記第1の差動入力部の出力信号と前記第2の差動入力部の出力信号とを選択的に切り換えて前記出力部に供給させる第3の制御回路とを有する構成とした。
【0014】
上記の構成においては、前段の回路より交互に与えられる第1および第2の入力信号をそれぞれ入力する第1および第2の差動入力部の第1および第3のMOSトランジスタについて上記第1のインピーダンス変換回路と同様の作用が奏されることにより、該MOSトランジスタのゲート容量による入力信号への影響を無くし、精度の高い出力電圧を得ることができる。
【0015】
上記第2のインピーダンス変換回路において、好ましくは、前記第1および第2の差動入力部が共通の電流ミラー回路を含む構成であってよい。第1および第2の差動入力部は選択的または相補的に動作するため、共通の電流ミラー回路を切り換えて共有することができる。
【0016】
本発明のインピーダンス変換回路は、特に入力信号が高インピーダンスの電圧出力または保持回路より与えられるアプリケーションにおいて大なる利点を有する。
【0017】
【発明の実施の形態】
以下、図1〜図11を参照して本発明の好適な実施形態を説明する。
【0018】
図1および図2を参照して本発明で用いる技法の要点を説明する。図1に示す定電流回路は、正極側電源電圧端子Vddと負極側電源電圧端子Vssとの間に定電流源1、PMOSトランジスタ2およびNMOSトランジスタ3を直列に接続したものである。図2に、この定電流回路におけるPMOSトランジスタ2およびNMOSトランジスタ3のデバイス構造を示す。P型シリコン基板4の主面にNウエル5およびPウエル6を並べて形成し、Nウエル5内にPMOSトランジスタ2を、Pウエル6内にNMOSトランジスタ3をそれぞれ形成している。
【0019】
PMOSトランジスタ2は、ソース端子と基板(Nウエル5)とを相互に接続してなり、インピーダンス変換回路の差動入力部における入力段正極側のトランジスタであってよい。NMOSトランジスタ3は、ドレイン端子とゲート端子とを相互接続してなり、定電流源1と協働してPMOSトランジスタ2に一定の電流Iを流すための定電流回路を構成している。
【0020】
PMOSトランジスタ2においては、ゲート電極とそれと対向する基板側対向電極との間に一定のゲート容量CGが存在する。このゲート電極(端子)には、前段の電圧出力または保持回路(図示せず)より所望の電圧レベルを有するアナログの電圧信号Vinが与えられる。
【0021】
いま、PMOSトランジスタ2に飽和領域で電流(ドレイン電流)Iが流れているとする。この時、ゲート・ソース間の電圧VGSは電流Iの大きさに依存して一義的に決まる。したがって、たとえば入力信号Vinが入力してゲート電極の電位が変化すると、電流Iが一定に維持される限りゲート・ソース間電圧VGSも一定に維持されるようにPMOSトランジスタ2が動作する。つまり、ゲート電極の電位変化分をキャンセルするように基板側対向電極の電位(ノードN1の電位VN1)を変化させるように動作する。したがって、次の式(1)が成り立つ。
N1=Vin+VGS ‥‥‥(1)
【0022】
一方、ゲート容量CGに蓄えられる電荷Qは次式(2)で与えられる。
Q=(VN1−Vin)CG ‥‥‥(2)
【0023】
式(2)に式(1)を代入すると、次の式(3)が得られる。
Q=VGSG ‥‥‥(3)
【0024】
このように、定電流Iが流れているPMOSトランジスタ2のゲート容量CGに保持される電荷Qはゲート電圧または入力電圧Vinに依存せず一定であり、ゲート容量CGに電荷の出入りが生ずることはない。入力段PMOSトランジスタ2のゲート容量CGに電荷の出入りが生じないということは、前段の電圧出力または保持回路からみるとゲート容量CGの見掛け上の値が限りなく小さく、事実上無視できるということである。なお、PMOSトランジスタ2をNMOSトランジスタに置き換えた回路構成も可能である。
【0025】
本発明では、上記のようなMOSトランジスタ(2)の特性をインピーダンス変換回路の中で利用する。つまり、入力信号が入力段MOSトランジスタのゲート端子に入力される時点の前後で該MOSトランジスタに一定の電流Iを流し続けることにより、該MOSトランジスタのゲート容量による入力信号への影響を無くし、ひいては入出力オフセットを少なくするようにしている。
【0026】
図3に、本発明の一実施形態によるインピーダンス変換回路の構成を示す。このインピーダンス変換回路は、高インピーダンスを有する一対の電圧出力回路10,14より交互に出力される電圧信号Va,Vbを一対の差動入力部26,48に高入力インピーダンスでそれぞれ入力して、出力部62より低出力インピーダンスで負荷(図示せず)に出力するように構成されている。
【0027】
電圧出力回路10,14はたとえば電荷再分配型D/Aコンバータの出力コンデンサ12,16からなり、各コンデンサ12,16よりD/A変換の結果として得られるアナログの出力電圧Va,Vbが開閉スイッチ18,20を介して交互に与えられる。
【0028】
このインピーダンス変換回路において、第1の差動入力部26は、差動接続された一対のPMOSトランジスタ28,30と、差動入力中にこれらのPMOSトランジスタ28,30に所定の定電流Ioをほぼ2等分して供給するための差動増幅用の定電流回路32とを有している。ここで、定電流回路32は、正極側電源電圧端子Vdd側から上記定電流Ioを供給する定電流源34と、一対のNMOSトランジスタ36,38からなる電流ミラー回路40とで構成されている。定電流源34の電流出力端子は、スイッチ42を介して両PMOSトランジスタ28,30のソース端子および基板(対向電極)に接続可能となっている。NMOSトランジスタ36,38は、それぞれのドレイン端子がスイッチ44,46を介してPMOSトランジスタ28,30のドレイン端子に接続されるとともに、それぞれのソース端子が負極側電源電圧端子Vssに接続され、それぞれのゲート端子が相互接続されるとともにスイッチ46を介してPMOSトランジスタ30のドレイン端子に接続可能となっている。
【0029】
第2の差動入力部48は、差動接続された一対のPMOSトランジスタ50,52と、差動入力中にこれらのPMOSトランジスタ50,52に上記と同じ大きさの定電流Ioをほぼ2等分して供給するための差動増幅用の定電流回路54とを有している。ここで、定電流回路54は、上記の定電流源34と電流ミラー回路40とで構成されている。定電流源34の電流出力端子は、スイッチ56を介して両PMOSトランジスタ50,52のソース端子および基板(対向電極)に接続可能となっている。電流ミラー回路40のNMOSトランジスタ36,38は、それぞれのドレイン端子がスイッチ58,60を介してPMOSトランジスタ50,52のドレイン端子に接続可能となっている。
【0030】
このように、第1および第2の差動入力部26,48における定電流回路32,54は共通の定電流源34と電流ミラー回路40とで構成されており、スイッチ(42,44,46)、(56,58,60)を切り換えて定電流回路32,54のどちらかを選択的または排他的に動作させるようにしている。より詳細には、第1の差動入力部26を動作させるときは、スイッチ(42,44,46)をオン(閉)状態にするとともにスイッチ(56,58,60)をオフ(開)状態にすることで、定電流回路32をオン(通電)状態、定電流回路54をオフ(非通電)状態とする。また、第2の差動入力部48を動作させるときは、スイッチ(42,44,46)をオフ(開)状態にするとともにスイッチ(56,58,60)をオン(閉)状態にすることで、定電流回路32をオフ(非通電)状態、定電流回路54をオン(通電)状態とするようになっている。
【0031】
出力部62は、正極側電源電圧端子Vddと負極側電源電圧端子Vssとの間に直列接続された定電流源64および駆動用のNMOSトランジスタ66で構成され、定電流源64とNMOSトランジスタ66との間のノードNoutが出力端子として負荷に接続されるとともに、両差動入力部26,48における負極側のPMOSトランジスタ30,52のゲート端子にスルーの帰還回路を介して接続されている。
【0032】
このインピーダンス変換回路には、第1および第2の差動入力部26,48に、それぞれの差動入力動作が開始する前に入力段正極側のPMOSトランジスタ28,50に上記定電流Ioのほぼ1/2の大きさの定電流Io/2を流すためのスタンバイ用定電流回路68,78が設けられている。これらのスタンバイ用定電流回路68,78は図1の定電流回路に相当するものである。
【0033】
第1の差動入力部26側のスタンバイ用定電流回路68は、正極側電源電圧端子Vddと負極側電源電圧端子Vssとの間で入力段正極側のPMOSトランジスタ28と選択的に直列接続可能な定電流源70およびNMOSトランジスタ72で構成されている。定電流源70は正極側電源電圧端子Vdd側から上記定電流Io/2を与えるものであり、その電流出力端子はスイッチ74を介してPMOSトランジスタ28のソース端子および基板(対向電極)に接続可能となっている。NMOSトランジスタ72は、ドレイン端子がスイッチ76を介してPMOSトランジスタ28のドレイン端子に接続可能であり、ソース端子が負極側電源電圧端子Vssに接続され、ゲート端子とドレイン端子とが相互接続されている。
【0034】
このスタンバイ用定電流回路68をオン(通電)状態にするには、両スイッチ74,76をオン(閉)状態にすればよい。スタンバイ用定電流回路68をオフ(非通電)状態にするには、両スイッチ74,76をオフ(開)状態にすればよい。
【0035】
第2の差動入力部48側のスタンバイ用定電流回路78は、正極側電源電圧端子Vddと負極側電源電圧端子Vssとの間で入力段正極側のPMOSトランジスタ50と選択的に直列接続可能な定電流源80およびNMOSトランジスタ82を有している。定電流源80も正極側電源電圧端子Vdd側から上記定電流Io/2を与えるものであり、その電流出力端子はスイッチ84を介してPMOSトランジスタ50のソース端子および基板(対向電極)に接続可能となっている。NMOSトランジスタ82では、ドレイン端子がスイッチ86を介してPMOSトランジスタ50のドレイン端子に接続可能となっており、ソース端子が負極側電源電圧端子Vssに接続され、ゲート端子とドレイン端子とが相互接続されている。
【0036】
両スイッチ84,86をオン(閉)状態にすることでスタンバイ用定電流回路78をオン(通電)状態に切り換え、両スイッチ84,86をオフ(開)状態にすることでスタンバイ用定電流回路78をオフ(非通電)状態に切り換えられるようになっている。
【0037】
図4に、この実施形態において電圧出力回路10,14を与える電荷再分配型D/Aコンバータの回路構成例を示す。このD/Aコンバータには同一の値(C)に設定されたキャパシタンスを有する3個のコンデンサ80,12,16が含まれており、その中のコンデンサ12,16がD/A変換結果のアナログ出力電圧Va,Vbを保持ないし出力する出力コンデンサであり、電圧出力回路10,14を構成している。コンデンサ80は、一方の電極がスイッチ82を介して論理値“1”の基準電位Vddに接続可能であるとともにスイッチ84を介して論理値“0”の基準電位Vssに接続可能であり、他方の電極が基準電位Vssに定常的に接続されている。
【0038】
コンデンサ12の一方の端子は、スイッチ86を介してコンデンサ80の一方の電極に接続されるとともにスイッチ22を介して基準電位Vcomに接続され、さらにはスイッチ18を介してインピーダンス変換回路の第1の差動入力部26(図3)に接続される。コンデンサ12の他方の端子は基準電位Vssに接続される。
【0039】
コンデンサ16の一方の端子は、スイッチ90を介してコンデンサ80の一方の電極に接続されるとともにスイッチ24を介して基準電位Vcomに接続され、さらにはスイッチ20を介してインピーダンス変換回路の第2の差動入力部48(図3)に接続される。コンデンサ16の他方の端子は基準電位Vssに接続される。
【0040】
このD/Aコンバータでは、入力ディジタル信号の各バイナリコード[Dm‥‥D1D0]に対して、以下のような手順でスイッチ82,84,90,18,20,20,24のオン(閉)/オフ(開)を制御して、出力コンデンサ12,16の一方にD/A変換結果のアナログ出力電圧VaもしくはVbを得るようにしている。なお、以下の手順の中で特に言及しないスイッチはオフ状態にあるものとする。
【0041】
(1) 先ず、スイッチ22,18をそれぞれオンにして出力コンデンサ12の充電電圧(電荷)を基準電圧Vcomにリセットする。その後、スイッチ22,18をそれぞれオフにする。
【0042】
(2) 入力バイナリコードの最下位ビットD0に対して、そのビットの論理値が“1”(“0”)のときはスイッチ82(84)をオンにし、コンデンサ80を基準電位Vddでチャージ(基準電位Vssでディスチャージ)する。その後、当該スイッチ82(84)をオフにする。
【0043】
(3) スイッチ86をオンにしてコンデンサ80に蓄積されている電荷を第1および第2のコンデンサ80,12間で各1/2に分配させる。その後、スイッチ86をオフにする。
【0044】
(4) 上記(2)、(3)の動作を最上位ビットDmまで上位の各ビットD1,D2,‥‥に対して繰り返す。
【0045】
(5) 最上位ビットに対する上記(3)の動作の後にスイッチ24,20をそれぞれオンにしてコンデンサ16の充電電圧(電荷)を基準電圧Vcomにリセットする。その後、スイッチ24,20をそれぞれオフにする。
【0046】
(6) スイッチ18をオンにして、コンデンサ12の充電電圧Vaを上記入力バイナリコードに対応するアナログ出力電圧Vaとして出力する。
【0047】
(7) 次の入力バイナリコードに対して、コンデンサ12をコンデンサ16に置き換えるとともにスイッチ86,18をスイッチ90,20にそれぞれ置き換えて、上記の動作(1)〜(6)を繰り返し、最終的にコンデンサ16に得られる充電電圧をD/A変換結果のアナログ出力電圧Vbとして出力する。
【0048】
図5に、上記D/Aコンバータ(図4)およびインピーダンス変換回路(図3)における各部のスイッチを制御し、ひいては全体の動作シーケンスを制御するための制御回路を示す。この制御回路は、D/A変換を受けるべき入力ディジタル信号の各バイナリコードDATA[Dm‥‥D1D0]を一定周期のタイミングパルスTP1に応動して入力(ラッチ)し、D/A変換用クロックDACCLKおよびシステムクロックSCLKを基に所定のシーケンスで各スイッチ(82,84,‥‥、86,90,22,24,‥18,20)を各対応する制御信号Sによって制御する。
【0049】
図6に、図3のインピーダンス変換回路および前段のD/Aコンバータ出力回路10,14における各スイッチの具体的構成例を示す。D/Aコンバータ出力回路10,14において、スイッチ18,20はCMOSトランスミッションゲートで構成され、スイッチ22,24はそれぞれPMOSトランジスタで構成される。インピーダンス変換回路において、スイッチ42,56,74,84はそれぞれPMOSトランジスタで構成され、スイッチ44,46,58,60,76,86はそれぞれNMOSトランジスタで構成される。
【0050】
次に、図7〜図11につきこの実施形態におけるインピーダンス変換回路の動作シーケンスを説明する。なお、図7のタイミング図において、スイッチ類(18,20‥‥)のHレベルはオン(閉)状態を示し、Lレベルはオフ(開)状態を示す。
【0051】
図8に、タイミングパルスTP1がアクティブ(Hレベル)になる前の時点たとえば図7の時点t0における各部の状態を示す。
【0052】
この時、D/Aコンバータ出力回路10,14においては、一方の信号転送用スイッチ18はオン状態、他方の信号転送用スイッチ20はオフ状態にあり、リセット用スイッチ22,24はどちらもオフ状態にある。D/Aコンバータ(図4)内では、一方の出力コンデンサ12が前回の入力バイナリコードに対応するアナログ出力電圧Vaをフローティング状態で保持しており、他方の出力コンデンサ16は今回(現時)の入力バイナリコードに対するデコーディングに使用されている。
【0053】
インピーダンス変換回路においては、第1の差動入力部26側でスイッチ42,44,46がそれぞれオン状態になっていて差動増幅用の定電流回路32が通電し、入力段の両PMOSトランジスタ28,30には定電流源34からの定電流Ioを2等分した電流Io/2がそれぞれ流れ、D/Aコンバータ出力回路10(コンデンサ12)からの電圧Vaと出力部62からの出力電圧Voutとに対して差動入力ないし増幅動作が行われている。出力部62では、第1の差動入力部26からの出力信号(ノードNaの電圧)に応動して駆動用のNMOSトランジスタ66が非飽和状態で動作し、ノードNoutより入力電圧Vaにほぼ等しい出力電圧Voutが出力される。
【0054】
一方、第2の差動入力部48側は、スイッチ56,58,60がそれぞれオフ状態になっていて第2の差動入力部48の差動増幅用定電流回路54が非通電状態にあり、出力部62から遮断されている。しかし、スイッチ86がオン状態になっていてスタンバイ用の定電流回路78は通電している。これにより、第2の差動入力部48における入力段正極側のPMOSトランジスタ50には、定電流源80からの定電流Io/2が飽和状態で流れ続けている。これにより、PMOSトランジスタ50のゲート・ソース間電圧VGCは定電流Io/2に対応する一定値に維持されている。
【0055】
図9に、上記のような時点t0の後でタイミングパルスTP1が最初にアクティブ(Hレベル)になった時点(図7の時点ta1)における各部の状態を示す。この場面では、タイミングパルスTP1がアクティブ(Hレベル)になる直前のD/A変換用クロックDACCLKのタイミングでコンデンサ80,16間の電荷再分配によるデコーディングが終了し、出力コンデンサ16にはD/A変換の結果となるアナログ電圧Vbが充電されている。
【0056】
タイミングパルスTP1がHレベルになると、その立ち上がりエッジのタイミングで信号転送用スイッチ20がオン状態となり、出力コンデンサ16の電圧Vbがスイッチ20を介して第2の差動入力部48における入力段正極側のPMOSトランジスタ50のゲート端子に転送される。この時、PMOSトランジスタ50においては、スタンバイ用定電流回路78により定電流Io/2が飽和状態で流れているため、図1の回路と同様の原理により、出力コンデンサ16からの電圧Vbによってゲート電極の電位が変化してもゲート容量への電荷の出入りは殆どなく、非常に高い入力インピーダンスを維持し、入力電圧Vbをそのままの値に保持する。この間、第1の差動入力部26は出力コンデンサ12からの電圧Vaに対して上記の差動入力ないし増幅動作を継続しており、出力部62からの出力電圧Voutは電圧Vaにほぼ等しい値を維持している。
【0057】
タイミングパルスTP1がLレベルになると(図7の時点ta2)、インピーダンス変換回路においては、第1の差動入力部26側でスイッチ42,44,46がそれぞれオフ状態になって差動増幅用の定電流回路32が非通電状態に切り換わると同時に、第2の差動入力部48側でスイッチ56,58,60がそれぞれオン状態になって差動増幅用の定電流回路54が通電状態に切り換わる。さらに、第1の差動入力部26側でスイッチ76がオン状態になってスタンバイ用の定電流回路68が通電状態に切り換わると同時に、第2の差動入力部48側でスイッチ86がオフ状態になってスタンバイ用の定電流回路78が非通電状態に切り換わる。一方、D/Aコンバータ出力回路10においてリセット用スイッチ22がオン状態になる。
【0058】
図10に、この時(時点ta2)の各部の状態を示す。インピーダンス変換回路においては、第2の差動入力部48側で差動増幅用の定電流回路54が通電することにより、入力段の両PMOSトランジスタ50,52には定電流源34からの定電流Ioを2等分した電流Io/2がそれぞれ流れ、D/Aコンバータ出力回路14(コンデンサ16)からの電圧Vbと出力部62からの出力電圧Voutとに対して差動入力ないし増幅動作が行われる。出力部62では、第2の差動入力部48からの出力信号(ノードNbの電圧)に応動して駆動用のNMOSトランジスタ66が非飽和状態で動作し、ノードNoutより入力電圧Vbにほぼ等しい出力電圧Voutが出力される。第2の差動入力部48の入力段正極側のPMOSトランジスタ50においては、スタンバイ用定電流回路78からの定電流Io/2が途切れるものの、それと入れ替わりに差動増幅用定電流回路54により同じ大きさの定電流Io/2が流れるため、定電流の連続性が実質的に保たれ、ゲート容量における電荷の出入りは殆どなく、入力信号Vbの値に影響を与えることはない。したがって、入力電圧Vbの本来の値にほぼ等しい低オフセットの出力電圧Voutが得られる。
【0059】
一方、第1の差動入力部26側は、差動増幅用定電流回路32が非通電状態で、出力部62から遮断される。しかし、スタンバイ用の定電流回路68が通電することにより、第1の差動入力部26における入力段正極側のPMOSトランジスタ28には、定電流源70からの定電流Io/2が飽和状態で流れ始める。D/Aコンバータ出力回路10ではリセット用スイッチ22がオン状態になることにより、リセット用の基準電圧Vcomがコンデンサ12に供給されると同時に、信号転送用スイッチ18を介してPMOSトランジスタ28のゲート端子にも与えられる。この基準電圧Vcomは、PMOSトランジスタ28を飽和状態でオン状態に維持できる任意の値、つまりVcom<Vdd−Vt(しきい値)に設定されてよい。このように、差動増幅終了直後に入力段正極側のPMOSトランジスタ28(50)のゲート電位を一定の基準電圧にリセットすることで、信号転送経路上の浮遊容量の影響(バラツキ)を少なくすることができる。
【0060】
上記のようにして、タイミングパルスTP1の周期でD/Aコンバータ出力回路10,14からの出力電圧Va,Vbを交互に切り換えるとともに、インピーダンス変換回路において第1および第2の差動入力部26,48を相補的に交互に動作させる。D/Aコンバータ出力回路10(14)においては、上記のような基準電圧Vcomによる出力コンデンサ12(16)のリセットが終了した時点(図7の時点ta3)で、図11に示すようにリセット用スイッチ22および信号転送用スイッチ18の双方をオフ状態に切り換えて、当該出力コンデンサ12を次のバイナリコードに対するデコーディングに使用する。
【0061】
上記したように、本実施形態においては、高インピーダンスのD/Aコンバータ出力回路10,14より交互に与えられるD/A変換結果のアナログ電圧Va,Vbに対して、インピーダンス変換回路において電圧Va,Vbをそれぞれ入力する第1および第2の差動入力部26,48の入力段正極性MOSトランジスタ28,50がゲート容量の影響をキャンセルして非常に高い入力インビーダンスを保証するので、精度の高い出力電圧Voutを得ることができる。
【0062】
また、本実施形態においては、スタンバイ用の定電流回路68,78の消費電流は差動増幅用定電流回路32,54の消費電流電力と比較して1/2以下であり、従来一般のインピーダンス変換回路を2個並列使用する場合よりも消費電流の総量は少なくて済む。
【0063】
なお、スタンバイ用の定電流回路68,78は、前段の電圧出力または保持回路より新規入力電圧が転送される直前に該当の入力段正極性PMOSトランジスタ28,50に飽和状態で定電流を供給しておけばよいので、動作開始をぎりぎりまで遅らせることもできる。
【0064】
上記した実施形態における各部の構成、特に差動入力部26,48、定電流回路32,54、出力部62、前段の電圧出力回路10,14等の回路構成は一例であり、本発明の技術思想の範囲内で種々の変形が可能である。また、上記実施形態のようなD/Aコンバータへのアプリケーションも一例であって、種々のアプリケーションが可能であり、たとえば演算増幅器として非反転増幅回路を構成することも可能である。
【0065】
【発明の効果】
以上説明したように、本発明のインピーダンス変換回路によれば、差動入力部における入力段MOSトランジスタのゲート容量による入力信号への影響を少なくして、精度の高い出力信号を得ることができる。特に、高インピーダンスの電圧出力または保持回路からの入力信号に対しても、低オフセットで精度の高い出力信号を得ることができる。
【図面の簡単な説明】
【図1】本発明の技法の要点を説明するための回路図である。
【図2】図1の回路の要部のデバイス構造例を示す断面図である。
【図3】一実施形態によるインピーダンス変換回路の構成を示す回路図である。
【図4】実施形態において電圧出力回路を与える電荷再分配型D/Aコンバータの回路構成例を示す回路図である。
【図5】実施形態において各部のスイッチおよび動作シーケンスを制御するための制御回路を示す図である。
【図6】実施形態における各部のスイッチの具体的構成例を示す回路図である。
【図7】実施形態の動作シーケンスにおける各部のタイミングを示す図である。
【図8】実施形態の動作シーケンスにおける第1の状態を示す図である。
【図9】実施形態の動作シーケンスにおける第2の状態を示す図である。
【図10】実施形態の動作シーケンスにおける第3の状態を示す図である。
【図11】実施形態の動作シーケンスにおける第4の状態を示す図である。
【図12】従来のインピーダンス変換回路の構成を示す回路図である。
【符号の説明】
10,14 電圧出力回路
12,16 コンデンサ
18,20 信号転送用スイッチ
22,24 リセット用スイッチ
26,48 差動入力部
28,30 入力段PMOSトランジスタ
32,54 差動増幅用定電流回路
34,70,80 定電流源
36,38,(40) NMOSトランジスタ(電流ミラー回路)
42,44,46,56,58,60,76,86 スイッチ
50,52 入力段PMOSトランジスタ
62 出力部
68,78 スタンバイ用定電流回路

Claims (5)

  1. 差動接続された第1および第2のMOSトランジスタと、前記第1および第2のMOSトランジスタに第1の電流をほぼ2等分して供給するための第1の定電流回路とを含む差動入力部と、
    電気的負荷に接続され、前記差動入力部の出力信号を増幅して前記負荷に供給する出力部と、
    前記出力部より得られる出力信号を前記第2のMOSトランジスタのゲート端子に帰還させる帰還回路と、
    前記第1のMOSトランジスタに前記第1の電流のほぼ1/2の電流値を有する第2の電流を供給するための第2の定電流回路と、
    所望の電圧レベルを有する入力信号が前記第1のMOSトランジスタのゲート端子に入力するに先立って前記第1の定電流回路をオフ状態にするとともに前記第2の定電流回路をオン状態にして前記第1のMOSトランジスタに前記第2の電流を供給させ、前記入力信号が前記第1のMOSトランジスタのゲート端子に入力している状態の下で前記第1の定電流回路をオン状態に切り換えるとともに前記第2の定電流回路をオフ状態に切り換えて、前記第1および第2のMOSトランジスタに前記第1の電流をほぼ2等分して供給させる制御回路と
    を有するインピーダンス変換回路。
  2. 前記第1のMOSトランジスタに前記第2の電流を供給するに先立ち、前記第1のMOSトランジスタのゲート端子にリセット用の所定の基準電圧を与えるリセット回路を有する請求項1に記載のインピーダンス変換回路。
  3. 差動接続された第1および第2のMOSトランジスタと、前記第1および第2のMOSトランジスタに第1の電流をほぼ2等分して供給するための第1の定電流回路とを含む第1の差動入力部と、
    差動接続された第3および第4のMOSトランジスタと、前記第3および第4のMOSトランジスタに前記第1の電流とほぼ等しい電流値を有する第2の電流をほぼ2等分して供給するための第2の定電流回路とを含む第2の差動入力部と、
    電気的負荷に接続され、前記第1または第2の差動入力部の出力信号を増幅して前記負荷に供給する出力部と、
    前記出力部より得られる出力信号を前記第2のMOSトランジスタのゲート端子に帰還させる第1の帰還回路と、
    前記出力部より得られる出力信号を前記第4のMOSトランジスタのゲート端子に帰還させる第2の帰還回路と、
    前記第1のMOSトランジスタに前記第1の電流のほぼ1/2の電流値を有する第3の電流を供給するための第3の定電流回路と、
    前記第3のMOSトランジスタに前記第2の電流のほぼ1/2の電流値を有する第4の電流を供給するための第4の定電流回路と、
    所望の電圧レベルを有する第1の入力信号が前記第1のMOSトランジスタのゲート端子に入力するに先立って前記第1の定電流回路をオフ状態にするとともに前記第の定電流回路をオン状態にして前記第1のMOSトランジスタに前記第の電流を供給させ、前記入力信号が前記第1のMOSトランジスタのゲート端子に入力した後に前記第1の定電流回路をオン状態に切り換えるとともに前記第の定電流回路をオフ状態に切り換えて、前記第1および第2のMOSトランジスタに前記第1の電流をほぼ2等分して供給させる第1の制御回路と、
    所望の電圧レベルを有する第2の入力信号が前記第3のMOSトランジスタのゲート端子に入力するに先立って前記第2の定電流回路をオフ状態にしたまま前記第4の定電流回路をオン状態にして前記第3のMOSトランジスタに前記第4の電流を供給させ、前記入力信号が前記第3のMOSトランジスタのゲート端子に入力している状態の下で前記第2の定電流回路をオン状態に切り換えるとともに前記第4の定電流回路をオフ状態に切り換えて、前記第3および第4のMOSトランジスタに前記第の電流をほぼ2等分して供給させる第2の制御回路と、
    前記第1の差動入力部の出力信号と前記第2の差動入力部の出力信号とを選択的に切り換えて前記出力部に供給させる第3の制御回路と
    を有するインピーダンス変換回路。
  4. 前記第1および第2の差動入力部が共通の電流ミラー回路を含む請求項3に記載のインピーダンス変換回路。
  5. 各々の前記入力信号が高インピーダンスの電圧出力または保持回路より与えられる請求項1〜4のいずれかに記載のインピーダンス変換回路。
JP2000253674A 2000-08-24 2000-08-24 インピーダンス変換回路 Expired - Fee Related JP4530503B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000253674A JP4530503B2 (ja) 2000-08-24 2000-08-24 インピーダンス変換回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000253674A JP4530503B2 (ja) 2000-08-24 2000-08-24 インピーダンス変換回路

Publications (2)

Publication Number Publication Date
JP2002076798A JP2002076798A (ja) 2002-03-15
JP4530503B2 true JP4530503B2 (ja) 2010-08-25

Family

ID=18742729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000253674A Expired - Fee Related JP4530503B2 (ja) 2000-08-24 2000-08-24 インピーダンス変換回路

Country Status (1)

Country Link
JP (1) JP4530503B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605601B2 (ja) * 2005-05-16 2011-01-05 ルネサスエレクトロニクス株式会社 演算増幅器
US8941319B2 (en) * 2011-05-19 2015-01-27 Shenzhen Fuxinya Technology Development Co., Ltd LED constant-current drive circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940712A (ja) * 1982-08-31 1984-03-06 Toshiba Corp 切換増幅器
JPH0520890A (ja) * 1991-07-11 1993-01-29 Matsushita Electric Ind Co Ltd Mos型サンプルホールドドライバー装置
JPH1021696A (ja) * 1996-07-05 1998-01-23 Texas Instr Japan Ltd サンプルホールド回路
JPH11305739A (ja) * 1998-04-27 1999-11-05 Toshiba Corp 増幅回路及びこれを用いた液晶ディスプレイ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940712A (ja) * 1982-08-31 1984-03-06 Toshiba Corp 切換増幅器
JPH0520890A (ja) * 1991-07-11 1993-01-29 Matsushita Electric Ind Co Ltd Mos型サンプルホールドドライバー装置
JPH1021696A (ja) * 1996-07-05 1998-01-23 Texas Instr Japan Ltd サンプルホールド回路
JPH11305739A (ja) * 1998-04-27 1999-11-05 Toshiba Corp 増幅回路及びこれを用いた液晶ディスプレイ装置

Also Published As

Publication number Publication date
JP2002076798A (ja) 2002-03-15

Similar Documents

Publication Publication Date Title
JP4128545B2 (ja) サンプリングスイッチ
KR100684244B1 (ko) 차지 펌프 회로
US7557648B2 (en) Operational amplifier, integrating circuit, feedback amplifier, and controlling method of the feedback amplifier
US8884653B2 (en) Comparator and ad converter provided therewith
KR20090031675A (ko) 부스트된 전하 회로
JPH08130422A (ja) 最大電圧スイングを有する交換演算増幅器を使用する低電圧交換キャパシタンス回路
US5847601A (en) Switched capacitor common mode feedback circuit for differential operational amplifier and method
JP3204132B2 (ja) 駆動回路
US6628148B2 (en) Sample and hold circuit having a single control signal
US5973537A (en) Common mode control circuit for a switchable fully differential Op-AMP
JPH1188159A (ja) チャ−ジポンプ回路
JP4530503B2 (ja) インピーダンス変換回路
JPH05191169A (ja) 増幅回路および直流バイアス信号およびアナログ信号供給方法
JPH04115622A (ja) カレントミラー型増幅回路及びその駆動方法
JP2004096324A (ja) 増幅回路
JP2001111419A (ja) チャージポンプ回路
US20170149398A1 (en) Programmable resistor array for a continuous time pga filter
JP3370169B2 (ja) 出力回路
WO1996038912A1 (fr) Circuit a retard variable
TW202118230A (zh) 類比開關
JP2000132989A (ja) トラックホールド回路
JP3047828B2 (ja) コンパレータ回路
JPH02101814A (ja) チョッパ型コンパレータ
JPH09162654A (ja) 差動増幅回路を内蔵した半導体集積回路
JP7059647B2 (ja) ピーク・ボトム検出回路、a/dコンバータ及び集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees