JP4527663B2 - センサ、センサ機構、および測定方法 - Google Patents

センサ、センサ機構、および測定方法 Download PDF

Info

Publication number
JP4527663B2
JP4527663B2 JP2005510852A JP2005510852A JP4527663B2 JP 4527663 B2 JP4527663 B2 JP 4527663B2 JP 2005510852 A JP2005510852 A JP 2005510852A JP 2005510852 A JP2005510852 A JP 2005510852A JP 4527663 B2 JP4527663 B2 JP 4527663B2
Authority
JP
Japan
Prior art keywords
sensor
excitation
sensor layer
piezoelectric material
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005510852A
Other languages
English (en)
Other versions
JP2007533953A (ja
Inventor
ホルガー・フリッツェ
ハリー・エル・トゥラー
Original Assignee
テクニシェ・ユニバーシテート・クラウシュタール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクニシェ・ユニバーシテート・クラウシュタール filed Critical テクニシェ・ユニバーシテート・クラウシュタール
Publication of JP2007533953A publication Critical patent/JP2007533953A/ja
Application granted granted Critical
Publication of JP4527663B2 publication Critical patent/JP4527663B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

本発明は、センサのセンサ層の導電率の変化を用いてセンサに対する環境影響を検出するための方法および装置に関する。
本発明は、センサのセンサ層の導電率の変化を検出することによってセンサに対する環境影響を検出するための機構に関する。
本発明は、センサのセンサ層の導電率の変化を用いて、かつ、体積内部に沈積しているかもしくは表面上に存在する堆積物、および/または、当該センサ上の測定すべき物質もしくは環境物質の相互作用、を検出することによって、環境影響を検出するためのセンサ装置に関する。
様々な環境影響、たとえば、ガス、粒子または光線が、たとえば生物学的または化学的製造工程の際に、かつ、特定の生活環境および労働環境において、ごく微量で存在しているだけであっても、人間にとって有害なものである、ということが今日分かっている。
こうした環境影響を測定するために、種々のタイプのセンサが開発されている。この場合、これらセンサは、測定するために、電気効果、光学効果、音響効果および電気化学的効果を用いる。測定結果を、機械および工程を監視および制御するために使用することができる。たとえば、ガスセンサ、温度センサ、または化学センサの測定結果を、化学工程を行うために使用することができる。
特定すべき環境影響がごく微量でしかない、たとえば、低出力の光線またはごく微量しかない化学物質である、ということが多いため、これらを検出するためには非常に感度が高いセンサを開発する必要があった。
非常に感度が高いセンサとして圧電材料を有するセンサが特に有用である、ということが分かっている。このタイプのセンサによって、たとえば、ガスまたは粒子の可逆的または非可逆的なセンサ層内の沈着物またはセンサ層上の付着物等の環境影響を検出することができる。ガスが吸着された結果、たとえばセンサ上にフィルムが形成されて、センサの質量が変化し、それによって、センサの振動周波数が変化する。周波数の変化は、吸収されたガスの量に直接依存する、ということが分かっている。
特許文献1から、圧電材料を有するセンサが知られている。当該センサ上には、大きさが異なる2つの励起電極が設けられており、これら電極によって、圧電材料が振動するように励起される。センサを電解液内に浸し、それにより、電解液の特性を分析する。その際、電解液は励起電極に直接作用する。この種の測定の場合、電極面は、測定中一定のままである。このタイプのセンサを用いると電解液の特性の測定は常温(Raumtemperatur)の範囲に限定して行われる、というさらなる欠点がある。さらに、電解液が励起電極に直接作用し、それによって電極が変化してしまう、という欠点がある。
特許文献2から、圧電材料、たとえばランガサイトを有する高温型天秤(Hochtemperaturwaage)が知られている。天秤の周波数偏移を観察して、天秤上に堆積している物質による高温条件下での変化を特定する。この天秤の場合、堆積している物質の量だけしか測定できない、という欠点がある。
特許文献3から、圧電共振器が知られている。当該共振器の上には、共振器を振動するように励起するために、大きさが異なる励起電極が設けられている。この場合、ポリマー層によって電極のうちの1つを覆うことができる。共振器を有機溶液内に入れ、それにより、溶液内の化学物質を検出する。その際、ポリマー層の導電率の変化、よって、共振器の少なくとも1つの共振周波数および少なくとも1つの反共振周波数の変化を利用する。このタイプのセンサの場合、常温の範囲用にのみ設計されている、という欠点がある。さらなる欠点として、ポリマー層が用いられているので、限られた帯域(Bandbreite)の環境影響しか考慮することができない、ということがある。さらに、環境影響の種類または大きさを測定するためには少なくとも1つの共振周波数および少なくとも1つの反共振周波数を特定しなくてはならないため、計測技術上の(messtechnisch)上部構造および計算能力が相当必要になる、という欠点がある。
米国特許出願公開第2003/0076743号明細書 米国特許第6370955号明細書 国際公開第97/45723号パンフレット
したがって、本発明の課題は、センサの選択性および感度を改善すること、および、簡略化された測定方法を提供することである。
本発明によると、上記課題は、請求項1に記載の、センサのセンサ層の導電率の変化を用いてセンサに対する環境影響を検出するための装置と、請求項16に記載の対応する方法とによって解決される。
さらに、上記課題は、請求項22に記載の、センサのセンサ層の導電率の変化を検出することによってセンサに対する環境影響を検出するための機構であって、請求項1に記載の装置を2つ備える、機構、によって解決される。
また、上記課題は、請求項27に記載の、センサのセンサ層の導電率の変化を用いて、かつ、当該センサ上の環境物質の堆積物を検出することによって、環境影響を検出するためのセンサ装置によって解決される。
好適な実施形態は、従属請求項に記載されている。
センサ層の概略的な動作モード(Funktionsweise)、共振周波数の生成、および使用されるべき材料に関する以下の記載はそれぞれ、図示されているすべての本発明による実施形態に関する。
請求項1に記載の本発明による装置および請求項16に記載の本発明による方法であって、センサのセンサ層の導電率の変化を用いてセンサに対する環境影響を検出するための装置および方法は、センサに対する環境影響の種類および大きさを特定するためには、基音の共振周波数のみを測定すればよい、という点で従来技術よりも優れている。さらに、適した圧電材料(たとえばランガサイト)を選択することによって、この圧電材料が広範にわたる温度範囲、すなわち、−60℃〜1000℃、好適には、−30℃または0℃〜900℃、600℃、500℃、250℃または100℃、において相転移を生じない限り、当該温度範囲を対象とすることができる。したがって、−200℃までの温度であっても、本発明によるセンサを用いれば測定可能であるか、または、センサを上記の温度範囲で使用することができる。
さらに、センサ層は、所定の材料に限定されることなく、特定すべき環境影響に起因して導電率が変化するすべての材料によって形成することができる。
請求項22に記載の本発明による機構の場合、請求項1(または請求項1ないし15のいずれか1項)に記載の、同一の構造を有する2つの装置が、同じ環境影響にさらされる。ただしその際、第1の装置のみが、環境影響の種類または大きさを表すデータを送信し、第2の装置はこの環境影響を受けないままである(unberuehrt)。基音の共振周波数同士を比較すると、第1の装置の共振周波数には、環境影響の作用(たとえば酸素分圧の変化)および環境条件の変化(たとえば900℃まで上昇した温度)が反映されているが、第2の装置の基音の共振周波数には、測定すべき環境条件の変化(すなわち600℃に上昇した常温)のみが反映されている。したがって、本明細書でいう環境影響とは、センサによって測定すべき値である。本明細書でいう環境条件とは、一般的な物理的条件、化学的条件、または生物学的条件であって、センサはこれらの条件下におかれており、また、これら条件によって場合によってはセンサの周波数挙動も変化し得る、条件、として定義される。本発明による測定機構の場合、環境条件は、基準値として測定され、かつ、対象となっている環境影響を測定する際には消去される。このようにして、センサ用に標準測定または基準測定を前もって行う必要がなく、基音の共振周波数に対する環境影響の作用を、非常に容易に検出することができるようになる。したがって、本発明による機構は、環境影響および環境条件が前もって測定されていない場合であっても、ただちに測定可能な態勢になっており、かつ、環境影響の種類または大きさを測定するために基準曲線に照らして相殺する必要がない。さらに、このようにして、たとえば、2つのセンサ装置内での温度変化によって生じるセンサ素子の機械的応力を、環境影響に基づいて発せられる所望の信号から分離することもできる。
請求項27に記載の本発明によるセンサ装置は、以下のことを特徴とする。まず、請求項1ないし15において定義されているようなセンサを有し、それにより、センサに対する環境影響の種類または大きさを測定するために、センサのセンサ層の導電率の変化を検出することができる。この実施形態のセンサは、第3の励起電極をさらに有し、この励起電極によって、同一のセンサを用いてセンサ上に堆積した物質の量を測定することもできる。このようにして、本発明によるこのセンサ装置は、センサ層の導電率の変化を検出するためのセンサとしてだけではなく、センサに堆積または沈積している物質の量を検出するためにも用いられる。
本発明による装置、方法、機構およびセンサ装置には、以下のことが当てはまる。
励起ユニットとして、発振回路を使用することが有利であり得る。それにより、環境影響の測定がより安価になる。あるいは、励起ユニットとして、回路網解析器を使用することが有利であり得る。回路網解析器によって、圧電材料の全共振スペクトルを記録し、それによって、たとえばオーバートーンを用いて温度補償をより容易に行うために他のオーバートーンの共振周波数も提供するか、または、共振吸収を用いてセンサ上に堆積した物質の粘性を決定するために共振吸収を提供する。
励起ユニットから、周期性を有して発生される信号、特に方形波信号、正弦波信号または三角波信号が生成され、次いで、それら信号が圧電材料に供給されることが有利である。
励起電極は、金属、たとえば金またはアルミニウム(温度が低い場合に好適である)、非酸化物セラミック、たとえばTiN、酸化セラミック、たとえばLa0.3Sr0.7CrO、または貴金属、たとえばPt、Pt−Rh合金(高温時に好適である)によって形成され得る。
励起電極は、圧電材料に直接接していることが有利である。しかし、絶縁材料の層および/または粘着層(Haftschichten)を励起電極と圧電材料との間に設け、それにより、たとえば両材料が互いに化学反応を起こすことを防止することができる。
第1の励起電極が、一方の面において圧電材料に接していることが好適である。この面は、第2の励起電極が圧電材料に接している面よりも大きいかまたは小さい。この変更形態を選択する場合、請求項22に記載の機構用に、以下のようなセンサ層を選択することができる。すなわち、そのセンサ層は、両センサに関して同一の構造を有するが、第1のセンサの場合には、大きい方の励起電極上に設けられるとともにこの励起電極と同じ大きさであり、第2のセンサの場合には、小さい方の励起電極上に設けられ、それにより、センサ層が小さい方の電極を完全に覆いつつも圧電材料の或る領域に直接接している。このようにして、両センサは一般的な環境条件に起因して自身の周波数挙動を変化させるが、第2のセンサのみが、測定すべき環境影響に起因して自身の周波数挙動を変化させるようにすることができる。その理由は、第2のセンサの場合の有効電極面は、環境影響によって拡大されるからである。本発明によるこの電極の場合、圧電材料は、圧電材料に接している電極面によって、また、センサ層によって励起される。その理由は、環境影響に起因して、センサ層の導電率が上昇し、よって励起電極に印加されている電位がセンサ層にまで及ぶからである。結果として、励起電極が及んだセンサ層のこの領域でも、圧電材料が励起されることとなる。換言すると、環境影響の結果、センサ層の導電性が上昇し、それによって、センサ層においても、励起ユニットの電位が印加され、それによって圧電材料がセンサ層によっても振動するように励起されることになる。
これらの工程を逆に行うこと、すなわち、センサ層の導電率を低下させること、したがって励起電極の有効電極面を減少させることを、たとえばセンサ層から物質を脱離させる際に測定に応じて適宜行うことができる。励起電極(複数可)は、センサを特に簡単に製造することができるように、円形面において圧電材料に接していることが有利である。
さらに、形状寸法上の作用に起因して圧電材料の励起が異ならないように、第1の励起電極および第2の励起電極は、それぞれ追加の端子を有する同じ形状寸法を有し得る。励起電極は、形状寸法および材料等が異なることに起因する作用が生じないように、同一の構造を有するように構成されていることが特に好適である。
さらなる実施形態において、センサは、それぞれセンサ層によって覆われている励起電極が両側に設けられている共振器である。この場合、異なる材料および/または異なる形状寸法でセンサ層を構成することも可能である。図1bには、このようなセンサが概略的に示されており、異なるセンサ層が、3aおよび3bの符号を付されている。
本発明のさらなる実施形態において、センサ層の面を変化させ、それにより、対向する励起電極に適合したセンサ層の或る領域を、形状寸法を変化させることによって、たとえば環状素子または円形セグメントとして形成することができる。このように有効電極面を恣意的に変化させることによって、共振周波数を変化させることができる。別の方法では、共振周波数の変化は、センサ層の材料を完全にまたは部分的に変更することによって達成される。この措置は、所定の環境条件にセンサを適合させるために、または測定すべき環境影響に対する明瞭な測定信号を発生させるために、用いられる。例として、センサ層の面または材料をこのように変更することによって、測定すべき所定の温度範囲または酸素分圧に適合された周波数偏移を調節することができる。
共振器は、任意のどの圧電材料からも形成することができる。しかし、センサ、機構およびセンサ装置が、本発明おいて好適な高温範囲において動作可能であるように、圧電材料は、石英、CaGaGe14の構造の材料(ランガサイトおよびランガサイトの同形化合物(isomorphe Verbindungen))、(Al、Ga)N系の材料、またはGaPOであることが好適である。
圧電材料は、基本的に任意の幾何学的な形態をとり得る。しかし、製造方法および/または測定方法に基づいて、シリンダの形状が好適である。
センサ層が、少なくとも1つの励起電極および/または圧電材料に直接接していることが好適である。
周波数測定装置は、周波数カウンタまたは回路網解析器またはインピーダンス分光器であり得る。
周波数測定装置によって、基音の共振周波数の他に、少なくとも1つの、オーバートーンの共振周波数、および/または基音もしくはオーバートーンの共振吸収が測定可能であり、よって、これらの値は、さらなる評価のために有利に提供される。たとえば、オーバートーンの共振周波数を用いて温度補償を行うことができる(たとえば、H.フリッツェ(H. Fritze)、O.シュナイダー(O. Schneider)、H.ゼー(H. Seh)、H.L.トゥラー(H.L. Tuller)およびG.ボルヒャルト(G. Borchardt)著「ランガサイトの高温バルク音波特性(High temperature bulk acoustic wave properties of langasite)」、フィジカル・ケミストリー・ケミカル・フィジック(Phys. Chem. Chem. Phys)、2003年)。さらに、共振吸収を、機械的特性、たとえばセンサ上に付着している物質の粘性またはセンサ層自身の粘性を測定するために使用することができる。同様に、オーバートーンの共振周波数を、環境影響の種類または大きさを測定するために使用することができる。
基本的には、環境影響としてセンサ層に対するあらゆる種類の外的作用が考慮される。ただし、導電率が変化するという形で環境影響に対して反応する材料をセンサ層に用いるという点でのみ制限が生じる。
センサ層用の材料として、酸化物セラミック、非酸化物セラミック、半導体および有機合成ポリマーまたは有機天然ポリマーが考慮される。特に、ZnO、ZnS、TiO2、Se、CeO、および、遷移金属、たとえば銅もしくは鉄の酸化物、ならびに、プロテインまたはヌクレイン酸が考慮される。当業者は、測定すべき環境影響に応じて導電率がどのように変化するかにしたがって、センサ層に適した材料を選択し得る。
高エネルギー光線、たとえば光子、粒子光線、放射線、電子ビームおよび/またはレントゲン光線を環境影響として測定するために、センサ層の材料は、たとえば酸化亜鉛から成る。光子が入射することによって、電子は、酸化亜鉛の伝導帯(Leitungsband)に励起され、それにより、伝導帯の導電率が上昇する。半導体の代わりに、有機化合物を使用することもできる。
センサ層(3)上の化学的物質または生物学的物質を環境影響として測定するために、上記物質がセンサ層の材料に接触すると導電率が変化する材料を、センサ層用に使用することができる。物質とセンサ材料とがこのように相互作用する結果、センサ用材料内またはセンサ用材料の表面上の電荷担体の移動性および/または密度が変化することになる。
温度変化を測定するために、加熱または冷却されると導電率が変化する材料を使用することができる。この目的のために、特に半導体またはセラミックが考慮される。
測定された周波数の温度補償を行うために、概ね3つの取り得る措置が存在する。第1の取り得る措置として、温度補償された部分を有する圧電材料を使用することができる。第2の取り得る措置として、サーモメータまたは光学手段によって測定センサの領域における温度を測定し、それに続いて、温度が上昇することに起因する周波数偏移を、たとえば温度係数を用いて、「計算して抜き出す(Herausrechnen)」ことによって差し引くことができる。第3の取り得る措置として、圧電材料の基音の共振周波数の他に、少なくとも1つの、オーバートーンの共振周波数を測定することができる。そして、これら共振周波数の両方によって、温度補償された周波数値が計算される(たとえば、H.フリッツェ(H. Fritze)、O.シュナイダー(O. Schneider)、H.ゼー(H. Seh)、H.L.トゥラー(H.L. Tuller)およびG.ボルヒャルト(G. Borchardt)著「ランガサイトの高温バルク音波特性(High temperature bulk acoustic wave properties of langasite)」、フィジカル・ケミストリー・ケミカル・フィジック(Phys. Chem. Chem. Phys)、2003年)。
本発明の一実施形態において、共通の機構において動作される2つのセンサ素子を用いることができる。請求項22ないし27のいずれか1項に記載の本発明による機構は、請求項1ないし15のいずれか1項に記載の、センサの位置および大きさ以外は同一の構造を有する2つの装置を有し、それにより、異なる圧電材料、異なる励起電極、および異なるセンサ層材料等を用いることに起因する作用が、測定結果に影響を及ぼさないようにすることが有利である。公称上、センサ層の位置以外は同一の構造によって、環境条件の影響を消去することができ、それにより、環境影響の所望の測定値を抽出する(herausheben)ことができる。
さらに、圧電材料は、同一の励起ユニットによって振動するように励起されることが有利であり、圧電材料の振動は、同一の周波数カウンタによってカウントされることが有利である。したがって、概して、(請求項1ないし15のいずれか1項による)両装置それぞれに存在する必要がない(請求項22ないし26のいずれか1項による)機構の素子が共通で使用されることが有利であり、それによって、構造が簡単になりかつ費用が削減される。
請求項27ないし31のいずれか1項に記載のセンサ装置は、対称軸周りでシリンダ状に対称になるよう構成することができる。その際、圧電材料はシリンダの形状を有する。また、第1の励起電極および第2の励起電極は円板の形状を有し、中心点は両方とも対称軸上にある。また、第3の励起電極は円形リングの形状を有し、その円形リングの中心点は、同様に共通の対称軸上にある。また、センサ層は、円板の形状を有するとともに直接第1の励起電極上に設けられており、その中心点も共通の対称軸上にある。
ここで、(請求項1ないし15のいずれか1項に記載の装置の場合と同様に)、センサ層が励起電極に直接接しており、励起電極が圧電材料に直接接していることが好適である。
本発明を、図面を参照して以下に説明する。
原則的に、本発明の種々の実施形態が考えられ得る。以下に、本発明の好適な実施形態を説明する。
図1は、電位を生成するための励起ユニット13、センサ5、および周波数測定装置17を示している。
励起ユニット13は、ここでは、発振回路によって形成されている。センサ5は、第1の励起電極7および第2の励起電極9から成る。これら電極はそれぞれ、圧電材料11の片方の側に直接設けられている。第1の励起電極7および第2の励起電極9には、センサ層3が直接設けられている、両励起電極7、9上のこれらセンサ層は同一である、すなわち、同一の材料から成り、同一の直径および厚さを有し、よって同一の質量を有する。
周波数測定装置17は、ここでは、周波数カウンタである。
励起ユニット13が振動電位を生成すると、これら振動電位は、第1の励起電極7および第2の励起電極9を介して圧電材料11に印加され、それによって、圧電材料が振動するように励起される。圧電材料は、基音(Grundton)の共振周波数で、かつ、たとえば1次、3次、5次、および7次のオーバートーンの共振周波数で振動する。圧電材料11の振動周波数は、周波数測定装置17を用いて測定することができる。
図1のセンサ5の上面図が図2に示されている。励起電極7、9および圧電材料11は、ここでは同心状に設けられている。
センサ層3の導電率は、環境影響によって可変である。センサ5が環境影響にさらされると、センサ層3の導電率が変化する。導電率が大きくなると、第1の励起電極7に印加された電位が、センサ層3の全領域において作用する。その理由は、第1の励起電極7およびセンサ層3が、導電的に接続されるからである。したがって、圧電材料11は、第1の励起電極7によって、かつ、より大きな導電性を有するようになったセンサ層3によって、直接励起され、それによって、導電性を有するようになったセンサ層の領域周辺の「有効電極面」が増大する。センサ層が初期状態では導電性を有する場合、測定すべき環境影響によって導電率が低下し、よって有効電極面が縮小され得る。有効電極面が変化する結果、共振周波数が変化する。
以下の考察によって、励起電極7、9の大きさが決定される。すなわち、圧電材料11の十分大きな容量を励起するために、第2の励起電極9は、一方の面において圧電材料11の一方の側に載置されている。この第2の励起電極9は、圧電材料11の上記一方の側の大きさに近似している。したがって、センサ層3の有効電極面の上方の境界は、励起電極9が圧電材料11に接している面として固設されている。センサ層3が十分な導電率を達成し、この導電率が、少なくとも電極9と同じ大きさである場合、第1の励起電極7の有効電極面と、第2の励起電極9の、圧電材料11に接している面とは、同じである。その際、導電率は最大の効果を有するが、このことは、センサ層の下側の全領域が振動するように励起される場合に当業者が簡単な試験によって求めることができる。
センサ5によって、測定データがさらなる測定領域にわたって記録されることができるので、センサ層3の、圧電材料11に接している面は、十分大きくなければならない。この面は、第1の励起電極7およびセンサ層3の間で十分大きな面接触が生じなくなるほど小さくあってはならない。
センサ層の導電率の変化を測定するのみである本発明によるセンサは、第1の励起電極7が圧電材料11に接している面が、第2の励起電極9が圧電材料11に接している面よりも常に小さい、ということを前提とする。
有効電極面が拡大するという上記の作用の結果、図2aに示されているように、圧電材料11の今や拡大した振動領域が、周波数偏移することになる。図2aには、初期状態では1に標準化されている、拡大した有効電極面と比較した、計算された周波数偏移(y軸)が記録されている。この場合、実線は、周縁領域を考慮に入れていないが、点線の計算の場合には、周縁領域が所定量分含まれている。周縁領域は、本発明による測定に用いられる効果にとっては必要不可欠なものではないが、その効果に影響を与える。
したがって、基音の共振周波数の(実験で観察された)周波数偏移から、環境影響の大きさまたは種類を検出することができる。その理由は、周波数偏移が、環境影響の大きさと直接相関するからであり、また、或る特定の環境影響を測定すべき場合、または環境影響が特別な種類である場合に生じるものだからである。
測定機構の例
導電材料11として、ランガサイト共振器が用いられた。また、励起電極はプラチナから成っている。励起電極7の直径は、約4mmであり、第2の励起電極9の直径は、約9mmである。センサ層3は、TiOから成り、7mmの直径を有する。
圧電材料が約590℃で作動されるとき、酸素分圧po2が低下することによって、TiOの導電率が上昇することになる。T−センサ層3の領域は、プラチナから成る第1の励起電極7よりも大きいので、Tの導電率が上昇すると、有効電極面を拡大させる。
図2bには、本実験において測定された、基音の共振周波数の偏移が、実点によって示されている。Y軸には、測定された周波数偏移が示されており、X軸には、酸素分圧が対数スケールで示されている。図2bから分かるように、特に、酸素分圧が非常に低い場合には、基音の共振周波数が明確に変化する。
図2bは、白抜きの測定点によって、同一の構造を有する(baugleich)基準センサの挙動も示している。図2bから分かるように、この基準センサでは、酸素分圧が低下しつつある場合にも共振周波数の変化がほとんど見られない。
測定された周波数値の温度補償は、以下のようにして行われる。すなわち、センサ5の領域における支配的な温度が、たとえばサーモメータによって、または光学的方法によって測定される。測定された温度から、温度の上昇によって生じる効果を算出することができ、続いて、その効果を、測定された周波数の値から差し引くことができる。このようにして、温度に依存せずかつ酸素分圧にのみ依存する基音の共振周波数の値が明らかになり、それによって、測定された基音の共振周波数が温度補償される。
測定された機能がいったん分かると、所定の周波数偏移に対する、対応する酸素分圧をただちに導き出すことができる。
上述の説明において、励起ユニット13として回路網解析器が使用されて、圧電材料11の全周波数スペクトルが記録された。代替的に、発振回路を使用することができる。
しかし、測定が、基音の共振周波数と、たとえば3次のオーバートーンの共振周波数とに拡大して行われる場合、高温時に、測定されたデータの温度補償を行ってもよい(たとえば、H.フリッツェ(H. Fritze)、O.シュナイダー(O. Schneider)、H.ゼー(H. Seh)、H.L.トゥラー(H.L. Tuller)およびG.ボルヒャルト(G. Borchardt)著「ランガサイトの高温バルク音波特性(High temperature bulk acoustic wave properties of langasite)」、フィジカル・ケミストリー・ケミカル・フィジック(Phys. Chem. Chem. Phys)、2003年に公開されている)。
図2cは、図2bでも用いられているものと同一の未加工データの改善された温度補償を示している。既に図2bより明らかなように、導電率の変化によって強信号が生成される。基準センサの測定の進行が、図2cでも白抜きの点によって示されている。測定信号は、図2cの場合では酸素分圧が小さい場合には低下する傾向にあるが、図2bの場合には上昇する傾向にある。この効果は、温度補償によって優勢な質量効果の極性符号が変換される、ということに基づく(H.フリッツェ(H. Fritze)、O.シュナイダー(O. Schneider)、H.ゼー(H. Seh)、H.L.トゥラー(H.L. Tuller)およびG.ボルヒャルト(G. Borchardt)著「ランガサイトの高温バルク音波特性(High temperature bulk acoustic wave properties of langasite)」、フィジカル・ケミストリー・ケミカル・フィジック(Phys. Chem. Chem. Phys)、2003年:も参照せよ)。
したがって、既に上述したように、センサ5のセンサ層3の導電率の変化を検出することによってセンサに対する環境影響15を検出するための本発明による方法を、以下の工程に分けることができる。
工程1.圧電材料内で基音を生成すること、
工程2.工程1の振動次数の共振周波数を測定すること、
工程3.センサ層(3)の導電率が変化し、よって、圧電材料の周波数スペクトルが変化するように、センサ層(3)に対して環境影響(15)を及ぼすこと、
工程4.環境影響が及んだ後の振動次数を測定すること、
工程5.共振周波数差を算出することであって、該共振周波数差は、工程1の振動次数の共振周波数と、環境影響が変化した後の振動次数の共振周波数との差によって構成される、算出すること、および
工程6.環境影響(15)の大きさを共振周波数差と相関させること。
環境影響15の大きさを振動次数の共振周波数差と相関させる工程は、既存の測定曲線に基づいて、または、算出によって行うことができる。ここで、単に測定信号を求めるためには、たとえば較正曲線を用いた、導電率の変化を求めるためのソルベリー式を使用することができる。
図3には、構造が異なる2つのセンサを用いて導電率の変化を検出することによってセンサに対する環境影響を検出するための、本発明による特に好適な構成が示されている。センサは、大きさが異なるセンサ層が、異なる励起電極上に設けられている、という点で異なるが、これらのセンサは、その他の点では同様に構成されている。
この構成は、電位を生成するための励起ユニット13と、2つのセンサ5oおよび5uと、周波数測定装置17とを有する。
圧電材料11と、センサ5oおよび5uの第1の励起電極7および第2の励起電極9とは、それぞれ同一の構造を有している、すなわち、それらは、特に同一の材料から成るとともに本構成では同一の空間的寸法を有している。
図3の上側センサ5oは、第1の励起電極7に接しているセンサ層3を有している。これに対して、図3の下側センサ5uは、第2の励起電極9に直接接しているセンサ層3を有している。
図3の両センサ層は、同一の材料から成っている。センサ層の形状寸法は、変化することができ、それにより、図1aを参照して説明したように、センサのレスポンス特性を設定する。図3の両センサ5o、5uのセンサ層を同一の環境影響にさらす、たとえば電解液に浸すと、両センサ層3の導電率が同様に変化する。その結果、上側センサ5oにおいて、有効電極面が変化してセンサ5oの周波数スペクトルが偏移することになる。その結果、下側センサ5uにおいて、センサ層3の導電率は確かに変化することになるが、それによってセンサ5uの周波数挙動が影響を受けることはない。その理由は、下側センサ5uのセンサ層3は、圧電材料11との接触面を有さないからである。したがって、換言すると、導電率の変化が、圧電材料11の周波数スペクトルに影響を与えることはない。その理由は、センサ5uの第2の励起電極9および第1の励起電極7のみが、センサ5uを振動するように励起させるからである。
したがって、両センサ5o、5uは、確かに同一の環境影響にさらされかつ同一の環境条件下にあるが、センサ5oの周波数スペクトルのみが、環境影響によって、さらには環境条件によって影響を受け、その一方、センサ5uの周波数スペクトルは、環境条件のみに基づいて変化する。
センサ5uは、センサ層以外の点ではセンサ5oと構造が同一であるため、センサ5oの周波数偏移を環境影響によって引き起こされた周波数偏移に還元するのに適した基準センサである。このようにして、環境条件、たとえば温度の変化、または、センサ層3の質量に起因して生じた周波数偏移を、消去することができる。
図2bおよび図2cに示されている質量曲線は、図3の構成によって測定された。
図4には、本発明によるセンサ装置の概略断面図が示されている。センサ装置は、圧電材料11のシリンダと、第1の励起電極7および第2の励起電極9と、第1の励起電極7および圧電材料11に接しているセンサ層3とを有するセンサを含む。第2の励起電極は、最大で、対向する第1の励起電極によって覆われている領域にわたって延在している。第1の励起電極は、圧電材料にも延在しているセンサ層によって覆われている。このセンサ装置は、同様に圧電材料11に直接接している第3の励起電極27をさらに有する。ここで、第3の励起電極は、少なくとも、対向するセンサ層によってのみ覆われている領域を覆っていなくてはならない。ここで、励起電極27は、同様に円筒状に対称に設けられている円形リングの形態で構成されているが、振動挙動に適合するために他の幾何学的形状も可能である。
3つの励起電極7、9、27からは、切替手段29に合流する配線21が出ている。切替手段29によって、励起電極7と27とを導電的に互いに接続するか、または、励起電極9と27とを導電的に互いに接続することができる。
さらなる実施形態において、第3の励起電極は、複数の別個の第3の部分電極を組み合わせて成ることができ、かつ、共振器の対向する面領域においてそれぞれ同様のまたは異なるセンサ材料および/またはセンサ形状寸法で設けられることができる。このように第3の励起電極を第3の部分電極に分配する場合には、個々の部分電極は、別個に接続されるとともに、外部に電気的に配線されており、それにより、多極切替手段によって第3の部分電極の個々のものまたは複数のものを選択的に切り替えることができるようになる。このようにして、異なる機能性、たとえば測定すべき環境影響に対する特定性または他の応答挙動をい有するセンサ領域を、制御式に切り替えることができるようになる。
励起電極9および27が導電的に互いに接続されると、これら両励起電極9および27は、ほぼ単一の励起電極のように動作する。この場合、センサ装置27は、上述した図1aのセンサ5のように反応する。したがって、センサ装置25をこのように切り替えることによって、センサ層3の導電率に影響を与える環境影響を検出することができる。
励起電極7および27が導電的に互いに接続されている場合、励起電極は、図4の電極9の大きさが圧電材料11の振動領域を決定するように設けられる。(センサ装置25に対する環境影響としての)堆積した物質によって、センサ装置の振動挙動が変化し、それにより、基音またはオーバートーンの共振周波数から付着されたまたは堆積している材料の質量を推測することができる。
切替手段29がどのように切り替えられるかによって、センサ装置25は、センサ層3の導電率の変化に対して反応するセンサとして機能するか、または、自身の上に堆積した物質の質量を示すセンサとして機能する。
これら両「センサ」間またはこれら両「センサ機能」間の切り換えが即座に行われ、それにより、ほぼ同時に、環境影響の種類(導電率に関する)および大きさ(センサ層内またはセンサ層上に堆積した質量に関する)についての追加的な情報が提供される。
この実施形態においても、簡単な切替手段を追加で使用するだけで、共振センサ、たとえば、このタイプのガスセンサの一般に既存の測定装置によってセンサ層の導電率を測定することもできることが有利である。
本明細書において、かつ既に上述したように、装置、機構、およびセンサ装置の圧電材料が高温時にも動作可能となるように、石英、ランガサイト、およびランガサイトの同形化合物、(Al、Ga)N系の圧電材料、またはGaPOの圧電材料を、圧電材料として用いることが好ましい。
センサ装置が高温時にも動作できるようにするために、この高温領域であってもセンサ装置25の機能性を保証する、励起電極7、9、27用の材料を用いることも有利である。このような材料は、特に、セラミック、非酸化物セラミック、酸化物セラミック、または貴金属である。
センサ装置25用の励起ユニット13として、場合によってはより高次のオーバートーン用の発振回路が用いられることも有利である。これによって、測定装置の製造を安価に行うことができるようになる。または、センサ装置25用の励起ユニット13として、圧電材料11の全共振スペクトルを記録する回路網解析器が用いられることが好ましい。これによって、さらなる評価を行うためにさらなる共振周波数(基音またはオーバートーンの)が提供される。
本発明による、センサのセンサ層の導電率の変化を用いてセンサに対する環境影響を検出するための装置の概略図である。 図1のセンサの上面図である。 本発明によるセンサのさらなる実施形態の断面図である。 有効電極面が拡大したことに起因する、計算された周波数偏移を示す関数プロットである。 図1の本発明による装置を用いた第1の測定を示す図である。 温度補償が改善された、図2bの測定を示す図である。 センサのセンサ層の導電率の変化を検出することによってセンサに対する環境影響を検出するための装置の概略図である。 本発明によるセンサ装置の概略断面図である。
符号の説明
1 センサに対する環境影響を検出するための装置
3 センサ層
3a、3b 異なるセンサ層
5 センサ
5o 図3の上側センサ
5u 図3の下側センサ
7 第1の励起電極
9 第2の励起電極
11 圧電材料
13 電位を生成するための励起ユニット
15 環境影響(たとえば光子または化学物質)
17 周波数測定装置
19 圧電材料のシリンダ断面
21 配線
23 センサに対する環境影響を検出するための機構
25 環境影響を検出するためのセンサ装置
27 第3の励起電極
29 切替手段

Claims (32)

  1. センサのセンサ層の導電率の変化を検出することによって前記センサに対する環境影響を検出するための装置であって、前記センサは、第1の励起電極および第2の励起電極と、該第1の励起電極および該第2の励起電極の間に設けられている圧電材料と、前記センサ層であって、前記第1の励起電極および前記圧電材料に少なくとも部分的に接している、センサ層と、電位を生成するための励起ユニットであって、前記電位は、前記第1の励起電極および前記第2の励起電極を介して前記圧電材料に供給されることができ、それにより、前記圧電材料が前記励起電極および前記センサ層によって振動するように励起されることができる、励起ユニットと、周波数測定装置と、を有し、
    前記センサ層は、酸化物セラミック材料、非酸化物セラミック材料、または半導体材料から形成され、前記材料の導電率の変化によって、該センサ層の領域周辺の有効電極面が変化し、該有効電極面によって、前記圧電材料が振動するように励起されることができ、
    前記圧電材料の振動次数の共振周波数のみが、前記周波数測定装置を用いて検出可能であることを特徴とする、装置。
  2. 前記励起ユニットは、発振回路または回路網解析器によって構成されていることを特徴とする、請求項1に記載の環境影響を検出するための装置。
  3. 前記励起電極は、金属、非酸化物セラミック、酸化物セラミック、または貴金属から形成されることを特徴とする、請求項1または2に記載の装置。
  4. 前記励起電極は、前記圧電材料に直接接していることを特徴とする、請求項1ないし3のいずれか1項に記載の装置。
  5. 前記第1の励起電極は、一方の面において前記圧電材料に接しており、該一方の面は、前記第2の励起電極が前記圧電材料に接している面と同じ大きさであることを特徴とする、請求項1ないし4のいずれか1項に記載の装置。
  6. 前記第1の励起電極は、一方の面において前記圧電材料に接しており、該一方の面は、前記第2の励起電極が前記圧電材料に接している面よりも大きいかまたは小さいことを特徴とする、請求項1ないし5のいずれか1項に記載の装置。
  7. 単数または複数の前記励起電極は、円形面において前記圧電材料に接していることを特徴とする、請求項1ないし6のいずれか1項に記載の装置。
  8. 前記第1の励起電極は、前記第2の励起電極と同じ形状寸法を有することを特徴とする、請求項1ないし7のいずれか1項に記載の装置。
  9. 前記圧電材料は、石英、ランガサイト、ランガサイトの同形化合物またはGaPOから形成されているか、または、1000℃までの温度であっても動作可能である圧電材料であることを特徴とする、請求項1ないし8のいずれか1項に記載の装置。
  10. 前記圧電材料は、基本形状がシリンダであることを特徴とする、請求項1ないし9のいずれか1項に記載の装置。
  11. 前記センサ層は、前記励起電極および/または前記圧電材料に直接接していることを特徴とする、請求項1ないし10のいずれか1項に記載の装置。
  12. 前記センサ層は、円形状に構成されていることを特徴とする、請求項1ないし11のいずれか1項に記載の装置。
  13. 前記センサ層は、酸化物セラミック材料、非酸化物セラミック材料、または半導体材料、ZnO、ZnS、TiO、Se、CeO、遷移金属の酸化物を含有することを特徴とする、請求項1ないし12のいずれか1項に記載の装置。
  14. 前記周波数測定装置として周波数カウンタを有することを特徴とする、請求項1ないし13のいずれか1項に記載の装置。
  15. 前記周波数測定装置を用いて、一次、三次、五次、またはより高次の振動次数が検出可能であることを特徴とする、請求項1ないし14のいずれか1項に記載の装置。
  16. センサに対する環境影響を検出するための方法であって、前記センサは、第1の励起電極および第2の励起電極と、該第1の励起電極および該第2の励起電極の間に設けられている圧電材料と、前記第1の励起電極および前記圧電材料に少なくとも部分的に接するセンサ層と、を有する方法において、前記センサ層は、酸化物セラミック材料、非酸化物セラミック材料、または半導体材料から形成されており、該材料の導電率の変化によって、該センサ層の領域周辺の有効電極面が変化し、該有効電極面によって前記圧電材料が振動するように励起されることができる方法であって、以下の工程:
    工程1.圧電材料内で基音を生成すること、
    工程2.工程1の振動次数の共振周波数を測定すること、
    工程3.前記センサ層の導電率が変化し、かつ、前記センサ層の導電率の変化によって、前記第1の励起電極の有効電極面が変化するように、前記センサ層に対して環境影響を及ぼすこと、
    工程4.環境影響が及んだ後の振動次数を測定すること、
    工程5.共振周波数差を算出することであって、該共振周波数差は、工程1の振動次数の共振周波数と、環境影響による変化後の振動次数の共振周波数との差により構成される、算出すること、および
    工程6.環境影響の大きさを共振周波数差と相関させること、
    を含むことを特徴とする、方法。
  17. オーバートーンも、前記圧電材料内で生成されかつ測定され、該オーバートーンは、環境影響の種類または大きさを検出する際に同様に考慮されることを特徴とする、請求項16に記載の方法。
  18. オーバートーンの共振周波数は、前記圧電材料の振動挙動の温度補償に用いられることを特徴とする、請求項16または17に記載の方法。
  19. 前記環境影響を及ぼすことは、前記センサ層を高エネルギー光線によって照射することを含むことを特徴とする、請求項17または18に記載の方法。
  20. 環境影響は、化学的物質または生物学的物質が前記センサ層に対して作用すること、または、温度の変化であることを特徴とする、請求項16ないし19のいずれか1項に記載の方法。
  21. 前記励起ユニットにより周期性を有して発生される信号が、前記圧電材料に供給されることを特徴とする、請求項16ないし20のいずれか1項に記載の方法。
  22. 前記励起ユニットにより周期性を有して発生される方形波信号、正弦波信号、または三角波信号が、前記圧電材料に供給されることを特徴とする、請求項16ないし20のいずれか1項に記載の方法。
  23. 第1のセンサを形成する、請求項1に記載の装置を有する装置において、環境影響を検出するための第2のセンサを特徴とし、
    前記第2のセンサは、第1の励起電極および対向する第2の励起電極と、該励起電極間に設けられている圧電材料と、センサ層と、を有し、該センサ層は、前記第2の励起電極を少なくとも部分的に覆っているが該第2の励起電極よりも大きくはなく、前記センサ層は、酸化物セラミック材料、非酸化物セラミック材料、または半導体材料から形成され、前記センサ層は、前記圧電材料が前記励起電極のみによって振動するように励起されることができるように、かつ、前記圧電材料の振動次数の共振周波数が周波数測定装置によって検出可能になるように、設けられている、装置
  24. 前記第1のセンサの前記圧電材料は、前記第2のセンサの圧電材料と同一であることを特徴とする、請求項23に記載の装置
  25. 前記第1および第2のセンサの前記励起電極を形成する材料は同一であることを特徴とする、請求項23または24に記載の装置
  26. 前記第1のセンサの前記センサ層を形成する材料は、前記第2のセンサの前記センサ層を形成する第2の材料と同一であることを特徴とする、請求項23ないし25のいずれか1項に記載の装置
  27. 前記第1のセンサの前記センサ層を形成する形状寸法は、前記第2のセンサの前記センサ層を形成する形状寸法と同一であることを特徴とする、請求項23ないし26のいずれか1項に記載の装置
  28. 請求項1ないし12のいずれか1項に記載の装置であって、
    前記第1の励起電極は、前記圧電材料の第1の側に設けられており、前記第2の励起電極は、前記圧電材料の対向する第2の側に設けられており、第1の側に前記センサ層は、第1の部分面(A1)において前記第1の励起電極に接するとともに、第2の部分面(A2)において前記圧電材料に接しており、
    それにより、前記圧電材料は、電位を生成するための励起ユニットからの電位によって前記励起電極および前記センサ層を介して振動するように励起されることができ、また、前記圧電材料の振動次数の共振周波数は、周波数測定装置によって検出可能になり、
    前記圧電材料の前記第2の側には、第3の励起電極が設けられており、該第3の励起電極は、面(A3)において前記圧電材料に接しており、前記面(A3)は、前記センサ層の前記部分面(A2)と少なくとも同じ大きさであるとともに、該部分面(A2)を前記面(A3)に投影する際に前記部分面(A2)は前記面(A3)によって完全に覆われており、前記第1の励起電極、前記第2の励起電極および前記第3の励起電極は、切替手段に電気的に接続されることができ、該切替手段が、第1の切替位置において前記第2の励起電極および前記第3の励起電極を導電的に接続することができ、それにより、前記センサ層の導電率が検出可能になり、また、前記切替手段が、第2の切替位置において前記第1の励起電極および前記第3の励起電極を導電的に接続することができ、それにより、振動特性の変化が、環境影響の物質の付着物および堆積物によって測定可能となる、装置。
  29. 前記第1の励起電極は、前記圧電材料の第1の側において、円板の形態で構成されていることを特徴とする、請求項28に記載の装置。
  30. 前記第2の励起電極は、円板の形態で構成されており、前記第3の励起電極は、円形リングの形態で構成されていることを特徴とする、請求項28または29に記載の装置。
  31. 前記センサ層は、前記第1の励起電極に直接接しており、かつ円形状であることを特徴とする、請求項28に記載の装置。
  32. 前記圧電材料は、シリンダの形状で構成されており、前記第1の励起電極、前記第2の励起電極、および前記第3の励起電極、ならびに前記圧電材料および前記圧電材料は、共通の対称軸を有していることを特徴とする、請求項28ないし31のいずれか1項に記載の装置。
JP2005510852A 2003-11-13 2003-11-13 センサ、センサ機構、および測定方法 Expired - Fee Related JP4527663B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2003/003774 WO2005052570A1 (de) 2003-11-13 2003-11-13 Sensor, sensoranordnung und messverfahren

Publications (2)

Publication Number Publication Date
JP2007533953A JP2007533953A (ja) 2007-11-22
JP4527663B2 true JP4527663B2 (ja) 2010-08-18

Family

ID=34624716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005510852A Expired - Fee Related JP4527663B2 (ja) 2003-11-13 2003-11-13 センサ、センサ機構、および測定方法

Country Status (8)

Country Link
US (1) US20070251321A1 (ja)
EP (1) EP1695074B1 (ja)
JP (1) JP4527663B2 (ja)
AT (1) ATE384260T1 (ja)
AU (1) AU2003292967A1 (ja)
CA (1) CA2549837A1 (ja)
DE (2) DE50309050D1 (ja)
WO (1) WO2005052570A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616123B2 (ja) * 2005-08-23 2011-01-19 セイコーインスツル株式会社 分析用マイクロセンサ
US8215171B1 (en) * 2008-08-26 2012-07-10 University Of South Florida Uniform mass sensitivity thickness shear mode quartz resonator
GB2481832B (en) * 2010-07-08 2014-07-09 Aber Instr Ltd Analysis of a dielectric medium
JP5131939B2 (ja) 2010-08-26 2013-01-30 株式会社村田製作所 圧電デバイス
WO2014123519A1 (en) 2013-02-06 2014-08-14 Empire Technology Development Llc Devices, systems, and methods for detecting odorants
WO2014123523A1 (en) * 2013-02-06 2014-08-14 Empire Technology Development Llc Chemical sensor array and methods of making and using the same
US20160077057A1 (en) * 2013-04-16 2016-03-17 Empire Technology Development Llc Graded structure films
CN103399085A (zh) * 2013-08-19 2013-11-20 上海理工大学 基于氧化锌纳米线阵列的兰克赛体声波高温气体传感器
WO2015116104A1 (en) * 2014-01-30 2015-08-06 Empire Technology Development Llc Crystal oscillators and methods for fabricating the same
DE102016210819A1 (de) 2016-06-16 2017-12-21 Technische Universität Clausthal Verfahren und Vorrichtung zur Beseitigung von gasförmigen Reizstoffen aus der Luft

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565942A (en) * 1983-07-01 1986-01-21 Murata Manufacturing Co., Ltd. Energy trapped piezoelectric resonator liquid sensor
EP0332935A1 (de) * 1988-03-14 1989-09-20 Siemens Aktiengesellschaft Sensomaterial zur Messung des Partialdruckes von Gasen oder Dämpfen und Gassensor
JPH04148844A (ja) * 1990-10-12 1992-05-21 Sanyo Electric Co Ltd 酸素ガスセンサ
JP3166290B2 (ja) * 1992-04-03 2001-05-14 エヌオーケー株式会社 ガスセンサ
JPH06129973A (ja) * 1992-10-20 1994-05-13 Matsushita Electric Ind Co Ltd 窒素酸化物検出素子
JPH08189887A (ja) * 1995-01-06 1996-07-23 Toshiba Corp ガス検出方法及びガス検出装置
GB9511734D0 (en) * 1995-06-09 1995-08-02 Aromascan Plc Intergrated sensor
JPH09250979A (ja) * 1996-03-14 1997-09-22 Toshiba Corp ガス検出装置
US5852229A (en) * 1996-05-29 1998-12-22 Kimberly-Clark Worldwide, Inc. Piezoelectric resonator chemical sensing device
US6033852A (en) * 1996-09-27 2000-03-07 University Of Maine Monolithic piezoelectric sensor (MPS) for sensing chemical, biochemical and physical measurands
SE520046C2 (sv) * 1997-11-24 2003-05-13 Sense Ab Q Förfarande för att mäta växelverkan mellan en målmolekyl och en receptormolekyl med piezoelektrisk kristallmikrovåg
US6370955B1 (en) * 1999-06-15 2002-04-16 Massachusetts Institute Of Technology High-temperature balance
CA2357522A1 (en) * 2001-09-20 2003-03-20 Michael Thompson Enhancement of acoustic wave sensor response by electrode modification

Also Published As

Publication number Publication date
DE50309050D1 (de) 2008-03-06
AU2003292967A1 (en) 2005-06-17
CA2549837A1 (en) 2005-06-09
EP1695074A1 (de) 2006-08-30
EP1695074B1 (de) 2008-01-16
DE10394364A5 (de) 2007-05-03
WO2005052570A1 (de) 2005-06-09
US20070251321A1 (en) 2007-11-01
ATE384260T1 (de) 2008-02-15
JP2007533953A (ja) 2007-11-22

Similar Documents

Publication Publication Date Title
Hierlemann et al. CMOS-based chemical microsensors
JP4527663B2 (ja) センサ、センサ機構、および測定方法
US6955787B1 (en) Integrated biological and chemical sensors
JP2019528575A (ja) 露出可能なセンシング層を有するウエハ処理機器
JP2001502060A (ja) ガスセンサ電極装置
WO2005095947A1 (ja) 環境差異検出装置
US20080022755A1 (en) Gas Detection Method and Gas Sensor
JPH08313470A (ja) ガス混合物中のメタンの検出法
Hamidon et al. Fabrication of high temperature surface acoustic wave devices for sensor applications
JP2012047536A (ja) 電流検出装置
US9239266B2 (en) Terahertz wave detecting device, camera, imaging apparatus and measuring apparatus
JP5231914B2 (ja) 酸化性活性化学種センサ、酸化性活性化学種存在量の測定方法及び酸化性活性化学種存在量の測定装置
WO2004095013A1 (en) A thin semiconductor film gas sensor device
JP2006220508A (ja) ガスセンサ
US20140361169A1 (en) Terahertz wave detecting device, camera, imaging apparatus and measuring apparatus
Vasagiri et al. A survey of MEMS cantilever applications in determining volatile organic compounds
Joseph et al. Design and optimization of a multichannel quartz crystal microbalance sensor array for multiple target gas detection
JP2007010361A (ja) 電圧駆動素子
JP6650564B2 (ja) 物理量センサおよびその製造方法
JP6212815B2 (ja) 水分濃度センサ及び水分濃度の測定方法
US6796166B1 (en) All polymer humidity sensor based on laser carbonized polyimide substrate
JP2015055521A (ja) 雰囲気センサおよびその製造方法
JP5408580B2 (ja) 匂いセンシングシステム
JP2010048696A (ja) 表面弾性波型ガスセンサ
JP4328664B2 (ja) 化学バイオセンサおよびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees