JP4524953B2 - 窒化物半導体基板の製造方法および窒化物半導体装置の製造方法 - Google Patents

窒化物半導体基板の製造方法および窒化物半導体装置の製造方法 Download PDF

Info

Publication number
JP4524953B2
JP4524953B2 JP2001149099A JP2001149099A JP4524953B2 JP 4524953 B2 JP4524953 B2 JP 4524953B2 JP 2001149099 A JP2001149099 A JP 2001149099A JP 2001149099 A JP2001149099 A JP 2001149099A JP 4524953 B2 JP4524953 B2 JP 4524953B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
substrate
layer
base material
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001149099A
Other languages
English (en)
Other versions
JP2002338398A (ja
Inventor
昌宏 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001149099A priority Critical patent/JP4524953B2/ja
Publication of JP2002338398A publication Critical patent/JP2002338398A/ja
Application granted granted Critical
Publication of JP4524953B2 publication Critical patent/JP4524953B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Device Packages (AREA)
  • Recrystallisation Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物半導体基板の製造方法、および可視発光ダイオード装置や青紫色レーザ装置や高速トランジスタなどの窒化物半導体装置が形成された窒化物半導体基板の製造方法に関する。
【0002】
【従来の技術】
GaN、InN、AlN等の窒化物半導体は、青色や緑色のLEDや、青色半導体レーザ、高温動作可能な高速トランジスタなどに用いる材料として好適である。
【0003】
サファイア基板上に窒化物半導体層を成長し、サファイア基板と窒化物半導体層との界面に強いレーザ光を当てることで、窒化物半導体層を母材基板界面で局所的に加熱し、分解させ、母材基板から窒化物半導体層を剥離させる技術(以下レーザリフトオフと呼ぶ)が検討されている。
【0004】
例えば、特開2000−25222号公報には、レーザリフトオフを用いて、シリコンなどのホスト基板上に窒化物半導体装置を転写する方法が示されている。以下、図22を用いて従来の転写技術の説明を行う。図22(a)の母材基板1はサファイアである。母材基板1上にGaN層2を成長する(図22(b))。なお、GaN層2に変えて窒化物半導体の積層構造を成長して、半導体装置を形成しても良い。GaN層2を、接着剤35を介してホスト基板36に接着させる(図22(c))。母材基板1を通して、GaN層2にレーザ光10を照射する。レーザ光10は、母材基板1のサファイアが透過可能で、GaN層2に吸収される波長とする。レーザ光10として、例えば、Nd:YAGレーザの3次以上の高調波光や、KrFエキシマレーザ光を用いることができる。照射部は金属Ga11を生じて、母材基板1とGaN層2とが分離される(図22(d))。レーザ光10をスキャンして、窒化物半導体層全面に照射すると、GaN層2と母材基板1とが全面で分離され、母材基板1からホスト基板36にGaN層2を転写できる(図22(e))。
【0005】
また、ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス第38巻L217ページ〜L219ページ(Japanese Journal of Applied Physics Vol.38,L217−L219)には、窒化物半導体層の厚さを200μmから300μmとして、ホスト基板などを用いずにレーザリフトオフを行い、単体のGaN基板を得る方法が示されている。
【0006】
【発明が解決しようとする課題】
サファイア基板と窒化物半導体層の界面にレーザ光を当てることで、窒化物半導体層を分解させる際、0.3J/cm2以上もの非常に強い光が照射されるため、サファイア基板と窒化物半導体層との界面は非常に高温となる。例えば、GaNの比熱は3.8J/mol/Kであり、光を吸収して1/e(eは自然対数の底)となるGaNの厚さはおよそ0.1μmであるので、GaNが光を吸収する領域(以降単に光吸収領域という)の熱容量はおよそ7×10―7J/Kとなる。照射されたレーザ光がすべて光吸収領域の熱上昇に使われた場合、温度上昇は約10000℃にも達する。実際には、レーザ光のパルスが有限の幅を有するため熱が光吸収領域以外にもサファイア基板中や窒化物半導体層中に放散することと、GaN分解のために熱が消費されることなどのため、界面近傍の温度は数1000℃程度の温度になる。
【0007】
サファイア基板の融点は2046℃であるため、それ以上の温度ではサファイア基板も溶融し、照射後固化する際に、GaN層と付着してしまうことがあった。このようになると、GaN層の分離がスムーズに行われず、局所的に付着した部分に熱膨張係数差によるストレスが集中する。その結果、GaN層やサファイア基板にクラックが生じ、大面積の分離ができない。また、溶融後固化して付着したときの、サファイア基板とGaN層の付着は不均一である。そのため、照射後に、サファイア基板とGaN層の熱膨張係数差によるストレスがGaN層やサファイア基板に不均一に加わって、GaN層にクラックが生じることがある。
【0008】
また、GaNが分解するとき、金属Gaと窒素ガスが発生する。このとき、界面がGaの沸点より高い温度以上に加熱されると高圧のGaガスと窒素ガスが発生する。なお、Gaの1気圧における沸点は2403℃である。例えば、1気圧、2500℃で、1cm3のGaNが分解されると、約16000cm3の金属Gaガスと、約8000cm3の窒素ガスが発生する。このように、発生するガスの総量は分解したGaNの約20000倍以上にも達するため、界面が膨張して、窒化物半導体層やサファイア基板にクラックが生じることがあり、半導体装置転写や基板作製時に問題となっていた。
【0009】
上記に鑑み、本発明は、レーザ光照射による窒化物半導体基板の製造において、窒化物半導体層にクラックなどを発生させることなく、レーザリフトオフを行う手段を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の窒化物半導体基板の製造方法は、以下に示す構成よりなるものである。
【0011】
本発明の窒化物半導体基板の製造方法は、母材基板上に窒化物半導体層を形成する工程と、前記母材基板と前記窒化物半導体層との界面の温度が前記母材基板の融点未満の温度となるように前記窒化物半導体層に光を照射して前記母材基板と前記窒化物半導体層とを分離する工程とを有するものである。
【0012】
このような構成とすることで、母材基板が溶融して窒化物半導体層と再固着することを防ぎ、効率よく窒化物半導体層を母材基板から分離できる。
【0013】
本発明の窒化物半導体基板の製造方法は、母材基板上に窒化物半導体層を形成する工程と、前記母材基板と前記窒化物半導体層との界面の温度がGaの沸点未満の温度となるように前記窒化物半導体層に光を照射して前記母材基板と前記窒化物半導体層とを分離する工程とを有するものである。
【0014】
このような構成とすることで、発生するGaは液体または固体となるため生じるガスは窒素のみと著しく低減され、窒化物半導体層に生じるクラックを防止することができる。
【0015】
本発明の窒化物半導体基板の製造方法は、母材基板上に窒化物半導体層を形成する工程と、前記窒化物半導体層に光を照射して前記母材基板と前記窒化物半導体層とを分離する工程とを有し、前記の前記母材基板と前記窒化物半導体層とを分離する工程は冷却手段と加熱手段とを有する装置を用いて行われ、前記母材基板と前記窒化物半導体層とを分離する工程は、前記冷却手段を用いて前記母材基板を前記窒化物半導体層側から冷却するものである。
【0016】
このような構成とすると、発生するGaは液体または固体となり、さらに冷却によって発生する窒素の体積が低減されるため、窒化物半導体層に生じるクラックを防止することができる。
【0017】
本発明の窒化物半導体基板の製造方法は、さらに前記母材基板と前記窒化物半導体層とを分離する工程において、前記母材基板または前記窒化物半導体層を、窒素が液化する条件下に設置することが好ましい。この好ましい構成によれば、発生するGaは固体であり、発生した窒素も液化しているため、その体積を著しく低減することができ、窒化物半導体層に生じるクラックを防止することができる。
【0018】
本発明の窒化物半導体基板の製造方法は、母材基板上に窒化物半導体層を形成する工程と、前記母材基板および前記窒化物半導体層にかかる圧力が1気圧より大きくなる条件で前記窒化物半導体層に光を照射して前記母材基板と前記窒化物半導体層とを分離する工程とを有する。
【0019】
このような構成とすることで、発生するGaや窒素の体積を低減することができるので、窒化物半導体層に生じるクラックを防止することができる。
【0020】
本発明の窒化物半導体基板の製造方法は、さらに前記母材基板は、熱膨張係数が前記窒化物半導体層より小さい第1の材料と、熱膨張係数が前記窒化物半導体層より大きい第2の材料とからなり、前記第1の材料および前記第2の材料は、ともに前記の光を透過することが好ましい。この好ましい構成によれば、光を照射しているときの窒化物半導体層中のクラックの発生を防ぐことができる。
【0021】
本発明の窒化物半導体装置の製造方法は、さらに母材基板上に窒化物半導体層を形成する工程が、前記窒化物半導体層を単数または複数層形成して半導体装置を形成する工程であることが好ましい。この好ましい構成によれば、効率よく窒化物半導体層を母材基板から分離できる。
【0022】
本発明の窒化物半導体装置の製造方法は、母材基板上に窒化物半導体層を単数または複数層形成して半導体装置を形成する工程と、前記母材基板と前記窒化物半導体装置との界面の温度が前記母材基板の融点未満の温度となるように前記窒化物半導体層に光を照射して前記母材基板と前記窒化物半導体装置とを分離するものである。
【0023】
この構成により、母材基板が溶融して窒化物半導体装置と再固着することを防ぎ、効率よく窒化物半導体装置を母材基板から分離できる。
【0024】
なお、ここで、窒化物半導体基板とは、例えばGaN基板のような単なる単結晶基板だけをさすのではなく、可視発光ダイオード装置や青紫色レーザ装置や高速トランジスタなどの窒化物半導体装置が形成された窒化物半導体基板をもさす。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0026】
(実施の形態1)
図1から図5を参照しながら、本発明の第1の実施の形態における窒化物半導体基板の製造方法を説明する。
【0027】
図1は、本発明の第1の実施の形態にかかる窒化物半導体基板の製造工程の前半を表す図である。
【0028】
図1(a)の母材基板1は直径2インチ、厚さ400ミクロンのサファイア(酸化アルミニウムの単結晶)であり、表面、裏面ともに鏡面仕上げとなっている。表面の面方位は(0001)面である。
【0029】
母材基板1はサファイアより構成されており、サファイアのバンドギャップは8.7eVであるため、バンドギャップに相当するエネルギーの142.5nmより長波長の光は透過する。そのため、波長248nmのKrFエキシマレーザ光や波長355nmのNd:YAGレーザの3次高調波光を透過することができる。
【0030】
まず、窒化物半導体層の成長を行う。
【0031】
アンモニアと、金属GaとHClを約900℃程度の高温で反応させて生じるGaClとを原料とするハイドライド気相成長法(以下、HVPE法と称する)によりGaNの成長を行った。圧力は大気圧下で成長を行った。成長法は特に限定されるものではないが、上述のHVPE法では、50μm/h程度の成長速度が得られるため、数十μmから数百μmの窒化物半導体の成長に適する。
【0032】
サファイア上へGaNの核形成密度を増加させるため、GaNの成長に先立って基板温度を1000℃に保ち、GaClのみを15分間供給する(以下、このプロセスをGaCl処理と呼ぶ)。なお、核形成密度を増加させる目的では、GaCl処理に替えて低温バッファ層やアンモニアでサファイアを窒化する処理を行っても良いし、これらを組み合わせても良い。
【0033】
GaCl処理後、アンモニアを導入してGaN層2の成長を開始する。母材基板1を構成するサファイアの主面が(0001)面であるため、GaN層2は(0001)面を主面として成長する。
【0034】
GaN層2の厚さが150μmとなるまで成長を行った(図1(b))。
【0035】
室温付近まで基板温度を降下させ、HVPE装置から基板を取り出し、レーザ照射工程を行った。
【0036】
レーザ照射は、図2に示すような装置を用いた。レーザ装置3より発せられたレーザ光10をスキャンミラー4によって2次元に走査する構成となっている。また、集光手段5と開口6とによって、GaN層2上でのレーザ光の径を調整することができる。基板温度は冷却手段7と加熱手段8により温度調整可能である。冷却手段は、例えば冷媒を循環させるパイプとすることができ、冷媒として、液体ヘリウム、液体窒素、アンモニア、フロン、水などを用いることで幅広い温度範囲を実現できる。加熱手段8としては、例えば抵抗線ヒーター等を用いることができる。あるいは、冷却手段7と加熱手段8とを兼ねるペルチェ素子を用いても良い。レーザ装置3は波長355nmのNd:YAGの3次高調波とする。パルス幅は5nsでパルス周期は10Hzとする。レーザ光10はサファイアに対して透明であるので、母材基板1を通して、GaN層2にレーザ光10を照射する。レーザ光10を集光して、GaN層2の位置で2mm径の円形とする。レーザ光10は、母材基板1に入射される直前の位置で0.2J/cm2から2J/cm2の範囲の光密度とする。
【0037】
母材基板1とGaN層2は、互いに熱膨張係数が異なることにより、室温においては反っている。そこで、本実施の形態では、母材基板1とGaN層2の熱膨張係数差による反りを低減するため、母材基板1およびGaN層2は、加熱手段8により500℃に加熱して照射を行う。
【0038】
GaN層2を500℃に加熱して、レーザ光10をスキャンしながら照射を行う(図1(c))。図3にスキャン方法の模式図を示す。図3では、図をわかりやすくするため、スポット37の重なりを現実より離して描写している。スポット37は最外周のみ記載し、光軸の軌跡のみ模式的に示している。GaN層2に、隣り合う照射スポット37が1.5mmずつ重なるように、円形にレーザ光をスキャンを行い、外側から内側にかけて照射をすることで、GaN層2全面にレーザ光を照射できる。
【0039】
レーザパワーを0.5J/cm2として、レーザ光10をGaN層2に照射する。レーザ光10の照射によって、GaN層2の母材基板1との界面が分解し、金属Ga11と窒素ガス(図示せず)が生じる(図1(d))。窒素ガスは、基板を周囲から照射しているため、周囲のGaN層2と母材基板1とが分離した領域を通じて放散される。なお、図1(d)は断面図であるため、母材基板1とGaN層2の空隙の周囲が、金属Ga11で塞がったような図となっているが、上面から観察すると、金属Ga11は点在するように生じているので、窒素を放散することができる。金属Ga11の状態は、照射時は液体である。そのため、GaN層2全体へ照射を行うとGaN層2は母材基板1と、金属Ga11を介して弱く付着するのみとなる(図1(e))。
【0040】
照射後母材基板1およびGaN層2を30℃程度に下げても、金属Ga11は液体であるから、母材基板1を保持して、真空吸引などでGaN層2を持ち上げるだけで、母材基板1からGaN層2が剥離する(図1(f))。なお、25℃以下にすると金属Ga11が固体となるが、Gaは固体でも非常に軟らかい材料である。そのため、GaN層2の厚さがおよそ50μm程度以上あれば、Gaが固体になっても、持ち上げる際にクラックを生じたりしない。
【0041】
金属Ga11が、GaN層2と、母材基板1それぞれに付着しているが、塩酸などの酸を用いて除去することができる(図1(g))。
【0042】
GaN層2中にはクラックなどがないため、GaN層2は、母材基板1とほぼ同じ大きさの、2インチの自立したGaN基板として使用することができる。また、金属Ga11を除去したサファイア基板には、ダメージなどは導入されていないので再度GaN層の成長用に用いることができ、原料費を節減して、低コストでGaN基板を作製できる。
【0043】
なお、母材基板1とGaN層2とを分離するための適切なレーザ光のパワーの範囲は、0.3J/cm2以上1.5J/cm2未満である。
【0044】
以下、レーザパワーが上述の範囲以外の場合について説明する。
【0045】
図4は、0.3J/cm3未満のパワー密度を照射した場合であり、レーザパワーが低いときの照射工程を表す図である。0.3J/cm3未満のパワー密度では、レーザ光10を照射しても、GaN層2の分解は生じない。レーザ照射を行った部分の温度上昇がGaNの分解温度であるおよそ1000℃に達していないため、分解が生じない。そのため、母材基板1とGaN層2とを分離することができない。
【0046】
図5は、レーザパワーが1.5J/cm2以上の場合であり、レーザパワーが高いときの照射工程を示す。図5(a)は照射中の図である。レーザ光10を照射すると、GaN層2が分解し、金属Ga11と窒素(図示せず)が生じるとともに、母材基板1も、発生した熱によって界面の一部が溶融し、溶融サファイア12を生じている。図5(a)中のアルミナ13の生成に関して説明する。照射スポットが移動すると、溶融サファイア12の温度が下がって固化を始める。このとき、溶融サファイア12の周囲にはGaN層2の分解によって生じた金属Ga11や窒素ガスがあるため、溶融サファイア12中に金属Ga11が混入したり、一部は窒素と反応してAlNとなる。また、一部金属Ga11と反応して、AlGa合金やGaの酸化物を形成する。また、サファイア中の酸素の一部は分解して放散する。そのため、溶融サファイア12が再固化するときは単結晶とはならず、Gaや窒素などの不純物を多く含んだ多結晶のアルミナ13となってしまう。アルミナ13は金属Ga11や窒素を取り込んで体積が大きくなり、母材基板1およびGaN層2と付着して析出する。図5(a)中のアルミナ13は、このようにして形成される。
【0047】
アルミナ13は、液相から母材基板1およびGaN層2上に析出したものであるため、付着力も強い。また、アルミナ自身も固く容易に変形しない。しかも、GaN層2と母材基板1がアルミナ13を介して不均一に付着された状態となる。そのため、照射後室温に下げる工程で、ストレスが母材基板1やGaN層2に不均一に加わる。本実施の形態では、GaN層2の方が母材基板1より薄いため、GaN層2にクラックを生じてしまう(図5(b))。しかも、母材基板1の表面には、アルミナ層13が形成されているので、酸処理などの処理ではアルミナ層13を除去できず、母材基板1をGaN成長用に容易に再利用することはできない。なお、図5(b)のGaN層2は、クラックの様子を示すため、ハッチングを省略している。
【0048】
以上の結果を簡単に説明すると、0.3J/cm2で500℃のGaNが分解したことから、GaNの分解温度を1000℃とすれば、0.3J/cm2でおよそ500℃の温度上昇を生じると考えられる。1.5J/cm2ではおよそ2500℃の温度上昇となる。そのため、GaN層2と接する母材基板1の界面は、サファイアの融点の2046℃以上に加熱されていると考えられる。
【0049】
以上示した本実施の形態の製造方法により、レーザ照射により上昇する母材基板と窒化物半導体層の界面の温度を、母材基板の融点以下とすることで、2インチという大面積かつ定型のGaN基板を、クラックなどによる歩留まり低下なしに、低コストで製造できることを示した。
【0050】
なお、クラックのないGaN基板が得られるパワーの範囲は、サファイア基板の裏面が粗面であったり、裏面に層が形成されるなどで、レーザ光の透過率が変化したときなどに変化することはいうまでもない。
【0051】
なお、クラックのないGaN基板が得られるパワーの範囲は、レーザのパルス幅や、パルス波形、レーザビーム形状によっても変化することはいうまでもない。
【0052】
なお、実施の形態1において、母材基板1は、サファイアに変えて、レーザ光10を透過する基板を用いることができる。そのような基板として、スピネル基板やAlN基板がある。基板材料が変わると、その材料の融点が異なるので、照射可能な上限の光密度が変わることはいうまでもない。この際、母材基板表面の融点はGaNの分解温度より高くすることが好ましいことはいうまでもない。
【0053】
(実施の形態2)
図6は、本発明の第2の実施の形態にかかる窒化物半導体装置の製造工程を表す図である。本発明の第2の実施の形態は、前述の第1の実施の形態のGaN基板に半導体装置を形成した場合である。
【0054】
図6(a)の母材基板1は直径2インチ、厚さ400ミクロンのサファイアであり、表面、裏面ともに鏡面仕上げとなっている。表面の面方位は(0001)面である。
【0055】
実施の形態1と同様の方法で、窒化物半導体層の成長を行う。
【0056】
アンモニアと、金属GaとHClを約900℃程度の高温で反応させて生じるGaClとを原料とするハイドライド気相成長法(以下、HVPE法と称する)によりGaNの成長を行う。
【0057】
GaNの成長に先立って基板温度を1000℃に保ち、GaCl処理を15分間行う。GaCl処理後、アンモニアを導入してGaN層2の成長を開始する。なお、GaN層2をn型とするために、成長中にHClの百分の一から一万分の一程度の流量のシランガスを導入する。GaN層2の厚さが150μmとなるまで成長を行う(図6(b))。
【0058】
次に、室温付近まで基板温度を降下させ、HVPE装置から基板を取り出し、レーザ照射工程を行う。
【0059】
レーザ照射工程や用いる装置およびレーザ光10のスキャン方法は、実施の形態1とまったく同じである。
【0060】
GaN層2を500℃に加熱して、レーザ光10を周囲からスキャンしながら照射を行う(図6(c))。
【0061】
0.5J/cm2の適切なレーザパワーのレーザ光10の照射によって、GaN層2の母材基板1との界面が分解し、金属Gaと窒素ガスが生じる。適切なレーザパワーとは、GaN層2と母材基板1との界面の温度を母材基板1の融点以下とするパワーである。GaN層2全体へ照射を行うとGaN層2は母材基板1と、金属Ga11を介して弱く付着するのみとなる(図6(d))。なお、分離を行うために適切なレーザ光のパワー範囲は、実施の形態1と全く同じ事情により、0.3J/cm2以上1.5J/cm2未満である。
【0062】
照射後母材基板1およびGaN層2を室温に下げ、母材基板1を保持して、真空吸引などでGaN層2を持ち上ると、母材基板1からGaN層2が剥離する(図6(e))。以上の工程で、自立した2インチ径のGaN層2が得られる。母材基板1は除去して、以下GaN層2のみを使用する。なお、母材基板1は、表面のGaを除去するための洗浄や研磨の処理を行って、再びGaN層の成長に適用可能である。
【0063】
GaN層2に付着している金属Ga11を、塩酸などの酸を用いて除去する(図6(f))。
【0064】
次に窒化物半導体装置の成長を行う。成長には有機金属気相成長法(以降MOCVD法と略す)を用いる。Ga原料はトリメチルガリウム(以降TMGと略す)であり、Al原料はトリメチルアルミニウム(以降TMAと略す)、In原料はトリメチルインジウム(以降TMIと略す)である。N原料はアンモニアである。原料の輸送ガスは水素または窒素とする。圧力は0.1気圧である。GaNおよびAlGaNの成長時は、輸送ガスを水素として、V族原料のIII族原料に対するモル流量比は4000、成長温度は1050℃とする。TMGとTMAの流量比を制御してAlGaNの混晶比を制御した。InGaNの成長時は、輸送ガスを窒素として、V族原料とIII族原料のモル流量比は10000、成長温度は750℃とする。TMGとTMIの流量比を制御してInGaNの混晶比を制御する。
【0065】
まず輸送ガスを窒素として、GaN層2上にアンドープIn0.2Ga0.8N活性層23を50nmの厚さ形成する。次に輸送ガスを水素として、Mgドープp型Al0.05Ga0.95Nクラッド層24を1μmの厚さ形成し、Mgドープp型GaNコンタクト層25を0.1μmの厚さ成長する(図6(g))。
【0066】
GaN層2に接してTiとAlの多層構造よりなるn電極26を、また、p型GaNコンタクト層25に接してNiとAuの多層構造よりなるp電極27を、いずれも蒸着により形成する(図6(h))。なお、n電極26またはp電極27は、光の取り出し効率を向上させる目的で、100nm程度の厚さで光を透過できる薄い電極としても良い。
【0067】
最後に、劈開やダイシングなどによってGaN層2およびGaN層2上に形成した層構造を分割すると、LEDチップが得られる(図6(i))。
【0068】
以上の工程では、GaN層2や母材基板1にクラックを生じない。そのため、2インチ径を有するGaN層2のほぼ全面からLEDを得ることができる。以上によって完成したLEDは、サファイア基板を有さず、両面に電極が配置されているので、同じ発光層面積では、従来より半導体装置全体の面積を小さくすることができる。そのため、半導体装置の小型化に有利である。また、1枚のウェハから、従来より多くの半導体装置が形成できるため、コスト的にも有利である。
【0069】
すなわち、本実施の形態によって、小型化および低コスト化に有利なLEDを、クラックによる歩留まり低下なしに製造可能な方法を提供できるという効果が得られる。
【0070】
なお、実施の形態2において、LEDに変えてレーザやFETなどの他の窒化物半導体装置も全く同様に形成できることはいうまでもない。特に、形成する窒化物半導体装置をレーザとしたときは、上述のLEDの利点に加えて、共振器端面を劈開によって形成できるという利点がある。
【0071】
なお、実施の形態2において、GaN層2の成長後、引き続いてMOCVD法による窒化物半導体装置の形成を行い、その後にレーザの照射工程を行っても、必要な設備を増やすことなく、同様にLEDが完成できることはいうまでもない。
【0072】
(実施の形態3)
図7から図9を参照しながら、本発明の第3の実施の形態におけるGaN基板の製造方法を説明する。
【0073】
図7は、本発明の第3の実施形態にかかる窒化物半導体基板の製造工程の前半を示す図である。
【0074】
図7(a)の基板は直径2インチ、厚さ300ミクロンのサファイアよりなる母材基板1上に、窒化アルミニウムの単結晶からなるAlN層21が0.5μmの厚さ成長されたものである。窒化アルミニウムの単結晶は、たとえばMOCVD法などで、1000℃で成長させるなどで形成することができる。母材基板1は表面、裏面ともに鏡面仕上げとなっている。表面の窒化アルミニウムの面方位は(0001)面である。
【0075】
窒化アルミニウムのバンドギャップは6.2eVであるため、バンドギャップに相当するエネルギーの193nmより大きな波長の光は透過する。そのため、波長248nmのKrFエキシマレーザ光や波長355nmのNd:YAGレーザの3次高調波光を透過することができる。
【0076】
まず、GaN層2の成長を行う。成長は、実施の形態1と同じ、HVPE法である。圧力は大気圧下で成長を行った。
【0077】
AlNとGaNとは同じ窒化物であり、AlNとGaNとの付着が良いため、GaCl処理などを行わなくても、直接1000℃で単結晶のGaNを成長できる。
【0078】
そこで、AlN層21の上に直接GaN層2を成長し、その膜厚が150μmとなるまで成長を行った(図7(b))。
【0079】
次にレーザ光の照射を行った。照射のための装置や照射条件は実施の形態1と同じであり、GaN層2を500℃に加熱して、レーザ光10をスキャンしながら照射を行った(図7(c))。実施の形態1の図3と同じように、GaN層2の外側から、隣り合う照射スポットが1.5mmずつ重なるようにレーザ光をスキャンした。
【0080】
レーザ光10のパワーを0.5J/cm2として、レーザ光10を母材基板1とAlN層21を透過させて、GaN層2に照射する。レーザ光10の照射によって、GaN層2のAlN層21との界面が分解し、金属Ga11と窒素ガス(図示せず)が生じる(図7(d))。GaN層2全体へ照射を行うと、GaN層2とAlN層21とは、金属Ga11を介して弱く付着するのみとなる(図7(e))。照射後GaN層2を室温付近に下げて、母材基板1を保持しながらGaN層2を持ち上げるだけで、AlN層21からGaN層2が剥離する(図7(f))。
【0081】
金属Ga11は、GaN層2と、AlN層21に付着しているが、塩酸などの酸を用いて除去することができる(図7(g))。GaN層2は、クラックなどがなく、ほぼ母材基板と同じ大きさの2インチであり、GaN層2を自立したGaN基板として使用できる。金属Ga11を除去したAlN層21には、ダメージなどは導入されていないので、再度GaN層の成長用に用いることができ、低コストでGaN基板が製造できる。
【0082】
なお、GaN層2とAlN層21とを分離するための適切なレーザパワーの範囲は、0.3J/cm2以上1.7J/cm2未満である。単結晶のAlNの融点は2450℃であり、サファイアの融点より高いため、実施の形態1に比べ適切なレーザパワーの上限が拡大している。
【0083】
以下、レーザパワーが上述以外の範囲の場合に関して示す。
【0084】
図8は、0.3J/cm3未満のパワー密度を照射した場合であり、レーザパワーが低いときのの照射工程を示す図である。0.3J/cm3未満のパワー密度では、実施の形態1と同様、レーザ光10を照射しても、GaN層2の分解は生じない。そのため、AlN層21とGaN層2とを分離することはできない。
【0085】
図9は、レーザパワーを1.7J/cm2以上とした場合であり、レーザパワーが高いときの照射中の図を示す。GaN層2が分解し、金属Ga11と窒素(図示せず)が生じるが、照射がウェハの中央に及ぶにつれ、照射スポットの形状に沿ってGaN層2が吹き飛んでしまう。そのため、2インチ径のフリースタンディングのGaN基板は得られない。なお、AlN層21上に多結晶の析出などは認められなかった。1.7J/cm2未満では、クラックが生じることなく、1.7J/cm2を閾値として、GaN層2が吹き飛ぶ現象が観察された。
【0086】
この現象について以下に説明する。実施の形態1の結果から推定すると、1.7J/cm2のレーザを照射すると、GaN層2の温度は2500℃程度に加熱されると考えられる。そのため、金属Ga11の沸点である2403℃を越えて、発生したGa11が気体となっていると考えられる。発生するガスが窒素だけでなく、気体のGaも加わるために、界面の温度がGaの沸点を超えると、発生するガスの圧力が著しく高まりGaN層2が吹き飛ぶと考えられる。そのため、金属Ga11が気化するレーザパワーを閾値として、GaN層2が吹き飛ぶ現象が観察されると考えられる。しかも、金属ガスの粘性は高いため、周囲からレーザ照射しているが、発生したガスがGaN層2とAlN基板1との隙間から放散しにくくなり、圧力によってクラックが生じる。
【0087】
以上の本実施の形態の製造方法により、レーザ照射により上昇する母材基板と窒化物半導体層の界面の温度を、Gaの沸点以下とすることで、2インチという大面積かつ定型のGaN基板を、クラックなどによる歩留まり低下なしに、低コストで製造できることを示した。
【0088】
(実施の形態4)
図10は、本発明の第4の実施の形態にかかる窒化物半導体装置の製造工程を表す図である。本発明の第4の実施の形態は、前述の第3の実施の形態のGaN基板に半導体装置を形成した場合である。
【0089】
図10(a)の基板は直径2インチ、厚さ300ミクロンのサファイアよりなる母材基板1上に、窒化アルミニウムの単結晶からなるAlN層21が成長されたものである。表面、裏面ともに鏡面仕上げとなっている。表面の窒化アルミニウムの面方位は(0001)面である。
【0090】
まず、GaN層2の成長を行う。AlN層21の上に直接GaN層2を成長し、その膜厚が150μmとなるまで成長を行った(図10(b))。
【0091】
次にレーザ光の照射を行った。照射のための装置や照射条件は実施の形態3と同じであり、GaN層2を500℃に加熱して、レーザ光10をスキャンしながら照射を行った(図10(c))。実施の形態1の図3と同じように、GaN層2の外側から、隣り合う照射スポットが1.5mmずつ重なるようにレーザ光をスキャンした。
【0092】
レーザ光10のパワーを0.5J/cm2として、レーザ光10を母材基板1とAlN層21とを透過させて、GaN層2に照射する。レーザ光10の照射によって、GaN層2のAlN層21との界面が分解し、金属Gaと窒素ガスが生じる。GaN層2全体へ照射を行うとGaN層2はAlN層21と、金属Ga11を介して弱く付着するのみとなる(図10(d))。照射後GaN層2を30℃程度までに下げて、母材基板1を保持しながらGaN層2を持ち上げるだけで、AlN層21からGaN層2が剥離する(図10(e))。GaN層2は、クラックなどがなく、ほぼ母材基板と同じ大きさの2インチである。一方、AlN層21には、ダメージなどは導入されていないので、金属Ga11を除去して再度GaN層の成長用に用いることができる。以下、GaN層2のみを使用する。
【0093】
なお、GaN層2とAlN層21とを分離するための適切なレーザパワーの範囲は、実施の形態3と全く同じ事情により、0.3J/cm2以上1.7J/cm2未満である。
【0094】
GaN層2に付着している金属Ga11を、塩酸などの酸を用いて除去する(図10(f))。
【0095】
次に窒化物半導体装置の成長を行った。各窒化物半導体層の成長法や窒化物半導体装置の構造は、実施の形態2と同様である。
【0096】
すなわち、輸送ガスを窒素として、GaN層2上にアンドープIn0.2Ga0.8N活性層23を50nmの厚さ形成する。次に輸送ガスを水素として、Mgドープp型Al0.05Ga0.95Nクラッド層24を1μmの厚さ形成し、Mgドープp型GaNコンタクト層25を0.1μmの厚さ成長する(図10(g))。
【0097】
GaN層2に接してTiとAlの多層構造よりなるn電極26を、また、p型GaNコンタクト層25に接してNiとAuの多層構造よりなるp電極27を、蒸着により形成する(図10(h))。
【0098】
最後に、劈開やダイシングなどによってGaN層2およびGaN層2上に形成された層構造を分割すると、LEDチップが得られる(図10(i))。
【0099】
以上の工程では、GaN層2や母材基板1にクラックを生じない。そのため、2インチ径のGaN層2のほぼ全面からLEDを得ることができる。以上によって完成したLEDは、サファイア基板を有さず、両面に電極が配置されているので、同じ発光層面積では、従来より半導体装置全体の面積を小さくすることができる。そのため、半導体装置の小型化に有利である。また、1枚のウェハから、従来より多くの半導体装置が形成できるため、コスト的にも有利である。
【0100】
すなわち、本実施の形態のように、レーザ照射時の母材基板とGaN層の界面の温度をGaの沸点以下とすることによって、小型化および低コスト化に有利なLEDを、クラックによる歩留まり低下なしに製造可能な方法を提供できる。
【0101】
なお、実施の形態4において、LEDに変えてレーザやFETなどの他の窒化物半導体装置も全く同様に形成できることはいうまでもない。特に、形成する窒化物半導体装置をレーザとしたときは、上述のLEDの利点に加えて、共振器端面を劈開によって形成できるという利点がある。
【0102】
なお、実施の形態4において、GaN層2の成長後、引き続いてMOCVD法による窒化物半導体装置の形成を行い、その後にレーザの照射工程を行っても、必要な設備を増やすことなく、同様にLEDが完成できることはいうまでもない。
【0103】
(実施の形態5)
図11〜図13は、本発明の第5の実施の形態における窒化物半導体装置の製造方法を示す図である。
【0104】
図11(a)のウェハ14は直径2インチ、厚さ150ミクロンのサファイアウェハである。また、ウェハ15は直径2インチ厚さ600ミクロンの石英ガラスウェハである。なお、以降の図において、層の左右に波線を設置しているのは、図が、ウェハ内の一半導体装置付近の拡大図であって、左右にも層があることを示すためである。
【0105】
石英ガラスウェハ15を2枚のサファイアウェハ14に挟むように設置し、石英ガラスの軟化点より高く、サファイアの融点よりも低い、約1800℃で加熱する。そうすると、サファイアウェハ14にダメージを与えずに、石英ガラスウェハ15とサファイアウェハ14を融着することができ、1枚の母材基板1を得ることができる(図11(b))。
【0106】
この母材基板1は、石英ガラスウェハ15の両面にサファイアウェハ14を配置することで、主面に垂直な方向の熱膨張係数分布が対称になっている。そのため、室温においても、また加熱時においても反りが発生しない。なお、サファイアの熱膨張係数は7.8×10-6-1、石英ガラスの熱膨張係数は0.5×10-6-1であり、GaNの熱膨張係数は5.6×10-6-1である。GaNより熱膨張係数の小さな石英ガラスとGaNより熱膨張係数が大きなサファイアとを適切な厚さ貼り合わせているため、面方向の熱膨張係数がGaNとほぼ同じである。そのため、母材基板1上に、熱膨張係数差による歪みを加えずGaNを成長させることができる。
【0107】
次に窒化物半導体装置の成長を行う。成長にはMOCVD法を用いる。原料や成長条件は、実施の形態2と同じである。
【0108】
まず輸送ガスを水素として、半導体装置構造形成前に、母材基板1上に600℃の温度でAlN層21を80nmの厚さ形成する。次に、Siドープn型GaNコンタクト層22を3μmの厚さ形成する。引き続いて、輸送ガスを窒素に変えて、アンドープIn0.2Ga0.8N活性層23を50nmの厚さ形成する。再び輸送ガスを水素として、Mgドープp型Al0.05Ga0.95Nクラッド層24を1μmの厚さ形成し、Mgドープp型GaNコンタクト層25を0.1μmの厚さ成長する(図11(c))。
【0109】
塩素ガスを用いたリアクティブイオンエッチングによりn型GaNコンタクト層22の一部を露出させ、n型GaNコンタクト層22に接してTiとAlの多層構造よりなるn電極26を、また、p型GaNコンタクト層25に接してNiとAuの多層構造よりなるp電極27を、蒸着とフォトリソグラフィーにより形成する。半導体装置の大きさは、ほぼ500μmの正方形である。
【0110】
以上でLED半導体装置構造が形成できる(図11(d))。
【0111】
次に、融着工程を行う。
【0112】
あらかじめ、AuSn半田28を、Siサブマウント29上に、LEDの電極パターンとほぼ同形状に配置する。AuSn半田28とn電極26、p電極27が密着するように設置し350℃に加熱することで、Siサブマウント29にLED半導体装置が融着される(図12(e))。なお、AuSn半田の厚さを10μm以上と充分厚くしておけば、n電極26とp電極27の高さが異なることによる、融着への影響はほとんどなくなる。
【0113】
次に、レーザ照射による転写工程を行う。
【0114】
実施の形態1と同じ装置、条件でレーザ照射を行う。半導体装置の大きさが500μmに対し、レーザ光の径が2mmである。そこで、本実施の形態のように、一つの半導体装置だけを転写する場合は、レーザをスキャンする必要はなく、半導体装置が含まれるように一度照射するのみでよい。
【0115】
母材基板1は、Nd:YAGの3倍高調波レーザ光に対して透明なサファイアと石英ガラスからなるため、レーザ光を透過する。また、AlN層21も、ほとんどレーザ光を吸収しないため、レーザ光はn型GaNコンタクト層22の、AlN層21との界面付近に吸収される。
【0116】
本実施の形態では、半導体装置層構造の厚さが4μm程度と薄いため、レーザ照射時の分解温度を低くしてGaガスの発生を防止しなければならないことはもちろんのこと、窒素ガスの発生量に注意する必要がある。このことに関して、以下に説明する。
【0117】
本実施の形態では、レーザの光密度を0.4J/cm2とし、このときのn型GaNコンタクト層が分解される領域は40nm程度である。
【0118】
レーザ照射時、発生する窒素によってn型GaNコンタクト層22が母材基板1から浮く。レーザ照射時の基板温度を500℃とすると、発生する窒素によってn型GaNコンタクト層22が母材基板1から浮く距離は、クラックが生じないと仮定すると120μm程度にもなる。実際には、120μmもの変形に耐えられず、窒化物半導体中にクラックが生じてしまう。
【0119】
そこで、レーザ照射時に冷却手段7に冷却水を導入し、基板温度を摂氏10℃程度に冷却する。このようにして、n型GaNコンタクト層22が母材基板1から浮く量を低減し、クラックを防止することができる。このとき、照射サイズが2mm径であるのに比べて、AlN層21とn型GaNコンタクト層22の距離が40μm程度と小さいため、窒化物半導体層がたわむだけで、クラックは発生しない(図12(f))。なお、AlN層21とn型GaNコンタクト層22との間には金属Ga11を生じている。また、金属Ga11以外の空隙は、分解して生じた窒素ガスで満たされている。
【0120】
窒化物半導体装置を良好に分離するため、サブマウント29の周囲の窒化物半導体をダイヤモンドスクライバでけがく(図13(g))。サブマウント29を母材基板1から引きはずすと、LEDチップがけがきに沿って分割され、サブマウント29にLEDが付着して母材基板1から剥離できる(図13(h))。LEDチップに付着した金属Ga11は、LEDの光を吸収して発光効率を低下させることがあるので、塩酸などに短時間浸して除去しても良い。この際、塩酸で処理する時間を長時間とすると、n電極26のAlが腐食されるので注意が必要である。
【0121】
なお、サファイア基板上に成長した窒化物半導体に室温でレーザを照射すると、サファイア基板や窒化物半導体にクラックが生じてしまい、歩留まり低下の原因となることがある。これは、レーザ照射部と非照射部の境界で熱膨張係数差によるストレスが集中することによる。それに対し、本実施の形態では、GaN半導体装置形成用の母材基板として熱膨張係数がほぼ窒化物半導体に等しい複合材料からなる母材基板1を用いているため、レーザ照射によって、熱膨張係数によるストレスが集中することなく、母材基板1やGaN半導体装置にクラックなどは生じない。また、母材基板1上の全面にLEDを形成し、転写工程を実施した後、母材基板1は再度窒化物半導体層の成長に利用することができ、原料費を節減して低コストでLEDを製造することができる。
【0122】
以上示した本実施の形態のように、レーザ照射時に基板を冷却することで、クラックを発生せず薄膜のGaNを剥離することができ、GaN半導体装置の転写などに利用することが可能である。また、熱膨張係数が制御された複合基板によって、冷却時においても、熱膨張係数差によるストレスを発生させず、レーザ照射可能である。
【0123】
なお、レーザの照射サイズが小さくなると、n型GaNコンタクト層が浮く量を小さくしなければならないので、それだけ低い温度に基板を冷却しなければならない。一方、レーザの照射サイズが大きくなると、基板の温度は高くしても良い。ただし、レーザ照射によって窒化物半導体層や母材基板全体の温度が上昇してしまうため、基板を数100℃に保持して照射する場合においても、レーザパワーなどの条件によっては、基板直上をガスフローするなどして有効な冷却手段によって、基板の温度を面内均一に設定温度に保持する機構が必要であることはいうまでもない。
【0124】
なお、大気中で冷却を行うと水滴などが基板1等に付着して、レーザ光を屈折させるため、レーザ照射に悪影響を及ぼすことがある。これを防ぐには、乾燥空気や乾燥窒素などの雰囲気中に基板1を設置するのが好ましい。
【0125】
なお、実施の形態5ではLED構造を用いたが、他の半導体装置構造や窒化物半導体薄膜でも同様の効果が得られることはいうまでもない。
【0126】
(実施の形態6)
図14、図15は、本発明の第6の実施の形態における窒化物半導体基板の製造方法を示す図である。
【0127】
図14(a)のウェハ14は直径2インチ、厚さ150ミクロンのサファイアウェハである。また、ウェハ15は直径2インチ厚さ600ミクロンの石英ガラスウェハである。
【0128】
図14(b)に示すように、実施の形態5と全く同様の方法で、石英ガラスウェハ15と2枚のサファイアウェハ14とを、約1800℃で加熱融着し、母材基板1を作製する。
【0129】
次に実施の形態2と同じMOCVD法でGaN層の成長を行う。成長条件等は、ドーピングを行わない以外は実施の形態5とは同じで、AlN層21を80nmし、GaN層2を5μm成長する(図14(c))。
【0130】
次に、レーザ照射工程を行う。
【0131】
本実施の形態では、レーザの光密度を0.4J/cm2とし、このときのn型GaNコンタクト層が分解される領域は40nm程度である。本実施の形態では、図3と同じ方法でレーザ光10を基板全面にスキャンする。
【0132】
レーザ照射時に冷却手段7に冷却水を導入し、基板温度を摂氏10℃程度に冷却することで、発生した窒素によってGaN層2が母材基板1から浮く量を低減し、GaN層2に生じるクラックを防止する。
【0133】
レーザ照射によって、AlN層21とGaN層2との間には金属Ga11を生じる。AlN層21とGaN層2とが、軟らかい固体の金属Ga11を介して弱く付着している状態となる(図14(d))。
【0134】
GaN層2は5μm程度と非常に薄いため、剥離の際に、30℃程度に暖めて金属Ga11を液化しておくことが好ましい。GaN層2を均一に吸着できるような、静電吸着などの適切な機構の保持治具31を用いると、GaN層2をAlN層21から分離することができる(図15(e))。
【0135】
GaN層2に付着している金属Ga11は、好ましくはGaN層2が割れないように保持治具31で保持したまま、塩酸などによって除去することができる(図15(f))。
【0136】
以上の方法で分離したGaN層2は基板として用いることができる。例えば、5μmのGaN層2を、ストレス無くGaNを厚く成長させることが可能な下地層基板として用いることが可能である。
【0137】
本実施の形態では、GaN半導体装置形成用の母材基板が、熱膨張係数がほぼ窒化物半導体に等しい母材基板1であるため、レーザ照射によって、熱膨張係数によるストレスが集中することなく、母材基板1やGaN層2にクラックなどは生じない。したがって、GaN層2は、母材基板1とほぼ同じ2インチという大面積で定型である。
【0138】
以上のように、レーザ照射時に基板を冷却することで、クラックを発生せず、従来の方法では作製が非常に困難な、薄膜の大面積のGaN基板の形成が可能である。
【0139】
なお、レーザの照射サイズが小さくなると、GaN層2が浮く量を小さくしなければならないので、それだけ低い温度に基板を冷却しなければならない。一方、レーザの照射サイズが大きくなると、基板の温度は高くしても良い。ただし、レーザ照射によって窒化物半導体層や母材基板全体の温度が上昇してしまうため、基板を数100℃に保持して照射する場合においても、レーザパワーなどの条件によっては、基板直上をガスフローするなどして有効な冷却手段によって、基板の温度を面内均一に設定温度に保持する機構が必要であることはいうまでもない。
【0140】
なお、大気中で冷却を行うと水滴などが基板1等に付着して、レーザ光を屈折させるため、レーザ照射に悪影響を及ぼすことがある。これを防ぐには、乾燥空気や乾燥窒素などの雰囲気中に母材基板1を設置するのが好ましい。
【0141】
(実施の形態7)
図16〜図18を参照しながら、本発明の第7の実施の形態における窒化物半導体装置の製造方法を説明する。実施の形態7は、分離条件が実施の形態5と異なる他は、実施の形態5とほぼ同じ工程である。
【0142】
図16(a)のウェハ14は直径2インチ、厚さ150ミクロンのサファイアウェハである。また、ウェハ15は直径2インチ厚さ600ミクロンの石英ガラスウェハである。
【0143】
図16(b)に示すように、実施の形態3と全く同様の方法で、石英ガラスウェハ15と2枚のサファイアウェハ14とを、約1800℃で加熱融着し、母材基板1を作製する。
【0144】
次に実施の形態5と同じ窒化物半導体装置の成長を行う。成長条件等は実施の形態5と同じで、AlN層21を80nm、Siドープn型GaNコンタクト層22を3μm、アンドープIn0.2Ga0.8N活性層23を50nm、Mgドープp型Al0.05Ga0.95Nクラッド層24を1μm、Mgドープp型GaNコンタクト層25を0.1μm、順次成長する(図16(c))。
【0145】
リアクティブイオンエッチングによりn型GaNコンタクト層22の一部を露出させ、n電極26、p電極27を形成する。半導体装置の大きさは、ほぼ500μmの正方形である。
【0146】
以上でLED構造が形成できる(図16(d))。
【0147】
次の、融着工程も実施の形態5と同様である。すなわち、Siサブマウント29上にパタニングされたAuSn半田28と、n電極26、p電極27が密着するように設置し350℃に加熱することで、Siサブマウント29とLED半導体装置とを融着する。
【0148】
その次に、窒化物半導体装置を有効に分離するためのけがきを、Siサブマウント29の周囲のn型GaNコンタクト層22上に形成する(図17(e))。
【0149】
次に、レーザ照射による転写工程を行う。
【0150】
本実施の形態では、実施の形態5に対して、以下の置き換えを行う。レーザとしては取扱の容易な低出力のレーザを用いる。レーザが低出力であるため、照射サイズを50μmまで集光して、レーザの光密度を0.4J/cm2とする。照射サイズが半導体装置サイズより小さいため、スキャンミラー4を用いて、半導体装置全体に照射を行う。
【0151】
レーザ照射により分解するGaNの量と、発生する窒素の量との比は、温度、圧力が同じで有れば、スポット径によらず同じである。そのため、スポットサイズを小さくすると、スポットサイズと、窒素によりn型GaNコンタクト層22がAlN層21から浮く距離との比は、より大きくなる。その結果、より大きな曲率でn型GaNコンタクト層22が変形するためクラックが非常に生じやすくなってしまう。
【0152】
そのため、本実施の形態では窒素が液化する条件に基板を冷却して照射を行う。
【0153】
冷媒に液体窒素を用いた場合、冷気が発散するためn型GaNコンタクト層22の温度は、若干高い温度になってしまう。そこで、液体窒素はほぼ大気圧程度で冷却管に送り、窒化物半導体層を形成した基板1を、Nd:YAGレーザを透過する窓32を有する容器33に導入し、10気圧に加圧してレーザ光10を照射する(図17(f))。
【0154】
このように加圧することで、発生する窒素の体積を減少させることが可能である。例えば、10気圧の加圧雰囲気中でレーザ照射を行えば、発生する窒素の体積を1気圧の場合の十分の一とすることができる。さらに、本実施の形態のように窒素の臨界温度以下では、加圧圧力を適切にすることで、窒素を液化する条件とすることができる。なお、窒素を含む雰囲気では窒素が液化して母材基板1上に付着することがある。また、母材基板1の温度より高い沸点の気体も母材基板1上に付着することがある。それらを防ぐため、例えば純粋水素雰囲気等の沸点の低い雰囲気で照射を行う。
【0155】
レーザ光10の照射によって、n型GaNコンタクト層22とAlN層21との間には、液化窒素と金属Gaからなる領域34が生じている。
【0156】
本実施の形態においては、窒素が液化する条件に基板を冷却しているため、レーザ光の照射によってGaNが分解したとき、生じる窒素は速やかに液体となる。GaNの分解物は、固体のGaと液体の窒素であり、その体積は、もとのGaNの体積の2倍程度となる。このとき、n型GaNコンタクト層22とAlN層21との距離は80nm程度となり、スポットサイズの50μmに比べ非常に小さい。そのため、窒化物半導体成長層の変形を著しく小さくすることができる。
その結果、クラックの発生を防ぐことが可能である(図18(g))。
【0157】
そして、液体窒素温度のまま、ないしは、窒素が急激に気化しないようにゆっくり温度を上昇させてから、真空吸引などの適切な治具を用いてサブマウント29を母材基板1から引きはずすと、LEDがサブマウント29に付着して母材基板1から剥離できる(図18(h))。LEDに付着した液化窒素と金属Gaからなる領域34のうち、窒素は常温にもどす過程で蒸散する。金属Gaは、常温に到達してから塩酸で除去してもよい。
【0158】
以上のように、レーザ照射時に基板を冷却することで、クラックを発生せず薄膜のGaN半導体装置の転写が可能である。また、母材基板1をサファイアと石英ガラスからなる複合基板としたことによって、液体窒素温度近くの冷却時においても、熱膨張係数差によるストレスに起因するクラックを発生させず、レーザ照射可能である。
【0159】
なお、窒素が液化する条件で照射を行うためには、基板を加圧するほかに、液体ヘリウムなど、より低い温度の冷媒を用いる方法や、液体窒素を高い圧力で77K以下に保ったまま送液し、基板直前でパイプの径を太くして、断熱膨張によって低い温度を達成する方法などを用いても良い。
【0160】
(実施の形態8)
図19〜図21は、本発明の第8の実施の形態における窒化物半導体基板の製造方法を示す図である。
【0161】
図19(a)のウェハ14は直径2インチ、厚さ150ミクロンのサファイアウェハである。また、ウェハ15は直径2インチ厚さ600ミクロンの石英ガラスウェハである。
【0162】
図19(b)に示すように、実施の形態5と全く同様の方法で、石英ガラスウェハ15と2枚のサファイアウェハ14とを、約1800℃で加熱融着し、母材基板1を作製する。
【0163】
次に実施の形態2と同じMOCVD法でGaN層の成長を行う。成長条件等は実施の形態5とドーピングを行わない以外は同じで、AlN層21を80nmし、GaN層2を5μm成長する(図19(c))。
【0164】
次に、レーザ照射工程を行う。
【0165】
本実施の形態では、実施の形態7と同じ取扱の容易な低出力のレーザを用いる。レーザが低出力であるため、照射サイズを50μmまで集光して、レーザの光密度を0.4J/cm2とする。照射サイズが半導体装置サイズより小さいため、スキャンミラー4を用いて、周囲から内側に向けて、GaN層2全体に照射を行う。
【0166】
本実施の形態では窒素が液化する条件に基板を冷却して照射を行う。
【0167】
液体窒素はほぼ大気圧程度で冷却管に送り、窒化物半導体層を形成した基板1を、Nd:YAGレーザを透過する窓32を有する容器33に導入し、10気圧に加圧してレーザ光10を照射する(図20(d))。
【0168】
このように加圧することで、発生する窒素の体積を減少させ、さらに好ましくは、窒素を液化する条件とすることができる。照射中、容器33の内は、例えば純粋水素雰囲気等の窒素をほとんど含まない雰囲気で照射を行う。
【0169】
レーザ光10の照射によって、GaN層2とAlN層21との間には、液化窒素と金属Gaからなる領域34が生じ、クラックを発生させずに、GaN層2とAlN層21とを液化窒素と金属Gaからなる領域34を介して弱く付着させた状態とすることができる(図21(e))。そして、液体窒素温度のまま、ないしは、窒素が急激に気化しないようにゆっくり温度を上昇させてから、適切な保持治具31を用いてGaN層2とAlN層21とを分離することができる。分離したGaN層2とAlN層21上には、室温付近では窒素が発散して金属Ga11が形成されている(図21(f))。
【0170】
金属Ga11は、塩酸などの酸で除去することができる(図21(g))。
【0171】
以上のように、レーザ照射時に基板を冷却することで、クラックを発生せず薄膜で大面積のGaN基板を得ることが可能である。また、母材基板1をサファイアと石英ガラスからなる複合基板としたことによって、液体窒素温度近くの冷却時においても、熱膨張係数差によるストレスに起因するクラックを発生させず、レーザ照射を行うことが可能である。
【0172】
なお、実施の形態1から8において、レーザによって分解される層をGaN層としているが、GaN層に変えてレーザ光を吸収可能なAlGaN層を用いても同様であることはいうまでもない。この場合は、金属Gaに変えてAlGa合金が形成されるので、レーザ照射によるAlGaN層の温度上昇をAlGa合金の沸点以下とする必要があることはいうまでもない。
【0173】
【発明の効果】
以上説明したように、本発明の窒化物半導体基板の製造方法によれば、レーザ照射によって、クラック無く母材基板から窒化物半導体層を剥離する方法を提供でき、窒化物半導体基板や、窒化物半導体装置を量産性よく製造する方法を提供できるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態1における窒化物半導体基板の製造工程を示す図
【図2】本発明の実施の形態におけるレーザ照射のための装置を示す図
【図3】本発明の実施の形態1におけるレーザ照射の方法を示す図
【図4】本発明の実施の形態1において、レーザパワーが低いときの照射工程を示す図
【図5】本発明の実施の形態1において、レーザパワーが高いときの照射工程を示す図
【図6】本発明の実施の形態2における窒化物半導体装置の製造工程を示す図
【図7】本発明の実施の形態3における窒化物半導体基板の製造工程の前半を示す図
【図8】本発明の実施の形態3において、レーザパワーが低いときの照射工程を示す図
【図9】本発明の実施の形態3において、レーザパワーが高いときの照射工程を示す図
【図10】本発明の実施の形態4における窒化物半導体装置の製造工程を示す図
【図11】本発明の実施の形態5における窒化物半導体装置の製造工程を示す図
【図12】本発明の実施の形態5における窒化物半導体装置の製造工程を示す図
【図13】本発明の実施の形態5における窒化物半導体装置の製造工程を示す図
【図14】本発明の実施の形態6における窒化物半導体基板の製造工程を示す図
【図15】本発明の実施の形態6における窒化物半導体基板の製造工程を示す図
【図16】本発明の実施の形態7における窒化物半導体装置の製造工程を示す図
【図17】本発明の実施の形態7における窒化物半導体装置の製造工程を示す図
【図18】本発明の実施の形態7における窒化物半導体装置の製造工程を示す図
【図19】本発明の実施の形態8における窒化物半導体基板の製造工程を示す図
【図20】本発明の実施の形態8における窒化物半導体基板の製造工程を示す図
【図21】本発明の実施の形態8における窒化物半導体基板の製造工程を示す図
【図22】従来の窒化物半導体装置の製造工程を示す図
【符号の説明】
1 母材基板
2 GaN層
3 レーザ装置
4 スキャンミラー
5 集光手段
6 開口
7 冷却手段
8 加熱手段
10 レーザ光
11 金属Ga
12 溶融サファイア
13 アルミナ
14 サファイアウェハ
15 石英ガラスウェハ
21 AlN層
22 n型GaNコンタクト層
23 In0.2Ga0.8N活性層
24 p型Al0.05Ga0.95Nクラッド層
25 p型GaNコンタクト層
26 n電極
27 p電極
28 AuSn半田
29 Siサブマウント
31 保持治具
32 窓
33 容器
34 液体窒素と金属Gaからなる領域
35 接着剤
36 ホスト基板

Claims (3)

  1. 母材基板上に窒化物半導体層を形成する工程と、
    前記窒化物半導体層に光を照射して前記母材基板と前記窒化物半導体層とを分離する工程とを有し、
    前記の前記母材基板と前記窒化物半導体層とを分離する工程は冷却手段と加熱手段とを有する装置を用いて行われ
    前記母材基板と前記窒化物半導体層とを分離する工程は、前記冷却手段を用いて前記母材基板を前記窒化物半導体層側から冷却することを特徴とする窒化物半導体基板の製造方法。
  2. 前記母材基板は、熱膨張係数が前記窒化物半導体層より小さい第1の材料と、熱膨張係数が前記窒化物半導体層より大きい第2の材料とからなり、前記第1の材料および前記第2の材料は、ともに前記の光を透過することを特徴とする請求項1に記載の窒化物半導体基板の製造方法。
  3. 母材基板上に窒化物半導体層を形成する工程が、前記窒化物半導体層を単数または複数層形成して半導体装置を形成する工程であることを特徴とする請求項1に記載の窒化物半導体基板の製造方法。
JP2001149099A 2001-05-18 2001-05-18 窒化物半導体基板の製造方法および窒化物半導体装置の製造方法 Expired - Fee Related JP4524953B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149099A JP4524953B2 (ja) 2001-05-18 2001-05-18 窒化物半導体基板の製造方法および窒化物半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149099A JP4524953B2 (ja) 2001-05-18 2001-05-18 窒化物半導体基板の製造方法および窒化物半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2002338398A JP2002338398A (ja) 2002-11-27
JP4524953B2 true JP4524953B2 (ja) 2010-08-18

Family

ID=18994313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149099A Expired - Fee Related JP4524953B2 (ja) 2001-05-18 2001-05-18 窒化物半導体基板の製造方法および窒化物半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4524953B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI226139B (en) 2002-01-31 2005-01-01 Osram Opto Semiconductors Gmbh Method to manufacture a semiconductor-component
KR101247727B1 (ko) * 2003-01-31 2013-03-26 오스람 옵토 세미컨덕터스 게엠베하 반도체 소자 제조 방법
JP2005064188A (ja) * 2003-08-11 2005-03-10 Sumitomo Electric Ind Ltd 基板の回収方法および再生方法、ならびに半導体ウエハの製造方法
EP1706893A2 (en) * 2003-12-24 2006-10-04 Gelcore LLC Laser lift-off of sapphire from a nitride flip-chip
US7897423B2 (en) 2004-04-29 2011-03-01 Osram Opto Semiconductors Gmbh Method for production of a radiation-emitting semiconductor chip
CN1327486C (zh) * 2004-07-21 2007-07-18 南京大学 利用氢化物汽相外延方法在硅衬底上生长GaN薄膜
JP4801345B2 (ja) * 2004-12-10 2011-10-26 古河機械金属株式会社 レーザ剥離装置、レーザ剥離方法、iii族窒化物半導体自立基板の製造方法
JP4872246B2 (ja) * 2005-06-10 2012-02-08 住友電気工業株式会社 半絶縁性GaAs基板及びエピタキシャル基板
KR101182581B1 (ko) * 2005-09-21 2012-11-27 삼성코닝정밀소재 주식회사 질화갈륨계 반도체 기판 및 이의 제조방법
JP2007116110A (ja) 2005-09-22 2007-05-10 Sanyo Electric Co Ltd 窒化物系半導体素子の製造方法
KR101078060B1 (ko) * 2009-08-26 2011-10-31 서울옵토디바이스주식회사 레이저 리프트 오프 기술을 사용하여 발광 다이오드를 제조하는 방법
US8333860B1 (en) * 2011-11-18 2012-12-18 LuxVue Technology Corporation Method of transferring a micro device
JP5810907B2 (ja) * 2011-12-28 2015-11-11 日亜化学工業株式会社 基板の再生方法及び該再生方法を用いた窒化物半導体素子の製造方法
JP5996254B2 (ja) * 2012-04-26 2016-09-21 株式会社ディスコ リフトオフ方法
JP6136649B2 (ja) 2013-06-28 2017-05-31 日亜化学工業株式会社 発光素子及び発光装置
GB201509766D0 (en) * 2015-06-05 2015-07-22 Element Six Technologies Ltd Method of fabricating diamond-semiconductor composite substrates
WO2021112648A1 (ko) * 2019-12-05 2021-06-10 웨이브로드 주식회사 반도체 발광소자를 제조하는 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022283A (ja) * 1998-07-06 2000-01-21 Matsushita Electric Ind Co Ltd 半導体素子、半導体素子の製造方法及び半導体基板の製造方法
JP2000101139A (ja) * 1998-09-25 2000-04-07 Toshiba Corp 半導体発光素子及びその製造方法並びに半導体発光装置
WO2001023648A1 (en) * 1999-09-30 2001-04-05 Prowtech Inc. Apparatus and method for forming single crystalline nitride substrate using hydride vapor phase epitaxy and laser beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022283A (ja) * 1998-07-06 2000-01-21 Matsushita Electric Ind Co Ltd 半導体素子、半導体素子の製造方法及び半導体基板の製造方法
JP2000101139A (ja) * 1998-09-25 2000-04-07 Toshiba Corp 半導体発光素子及びその製造方法並びに半導体発光装置
WO2001023648A1 (en) * 1999-09-30 2001-04-05 Prowtech Inc. Apparatus and method for forming single crystalline nitride substrate using hydride vapor phase epitaxy and laser beam

Also Published As

Publication number Publication date
JP2002338398A (ja) 2002-11-27

Similar Documents

Publication Publication Date Title
JP4524953B2 (ja) 窒化物半導体基板の製造方法および窒化物半導体装置の製造方法
JP5199525B2 (ja) 窒化物レーザダイオード構造及びその製造方法
JP3962282B2 (ja) 半導体装置の製造方法
US6617261B2 (en) Structure and method for fabricating GaN substrates from trench patterned GaN layers on sapphire substrates
US8809981B2 (en) Method for manufacturing semiconductor device and apparatus for manufacturing same
JP4622720B2 (ja) 窒化物半導体ウエハ又は窒化物半導体素子の製造方法
US8329511B2 (en) Nitride crystal with removable surface layer and methods of manufacture
JP5732684B2 (ja) 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
US8691674B2 (en) Method for producing group 3-5 nitride semiconductor and method for producing light-emitting device
KR101254639B1 (ko) 반도체 발광 소자의 제조 방법
TWI419354B (zh) Iii族氮化物半導體發光元件及其製造方法
JP2004072052A (ja) 半導体装置及びその製造方法
JP4227315B2 (ja) 窒化ガリウム単結晶基板の製造方法
CN1937271B (zh) 氮化物类半导体元件的制造方法
JP2005057220A (ja) 半導体光素子及びその製造方法
JP4595207B2 (ja) 窒化物半導体基板の製造方法
JP4242599B2 (ja) 窒化物半導体装置の製造方法及び窒化物半導体基板の製造方法
JP2003347590A (ja) 半導体装置の製造方法
JP2002053399A (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
JP2013021251A (ja) 半導体発光素子の製造方法
JP2008282942A (ja) 半導体素子及びその製造方法
JP2005251961A (ja) Iii族窒化物単結晶ウエハおよびそれを用いた半導体装置の製造方法
JP2007123858A (ja) 3−5族窒化物半導体の製造方法
JP4015849B2 (ja) 窒化物半導体基板の製造方法
JPH10229218A (ja) 窒化物半導体基板の製造方法および窒化物半導体基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees