JP4524528B2 - エンジンの内部egr率推定装置 - Google Patents

エンジンの内部egr率推定装置 Download PDF

Info

Publication number
JP4524528B2
JP4524528B2 JP2001028821A JP2001028821A JP4524528B2 JP 4524528 B2 JP4524528 B2 JP 4524528B2 JP 2001028821 A JP2001028821 A JP 2001028821A JP 2001028821 A JP2001028821 A JP 2001028821A JP 4524528 B2 JP4524528 B2 JP 4524528B2
Authority
JP
Japan
Prior art keywords
egr rate
internal egr
cylinder
engine
fuel cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001028821A
Other languages
English (en)
Other versions
JP2002227687A (ja
Inventor
鉄也 岩▲崎▼
禎明 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001028821A priority Critical patent/JP4524528B2/ja
Publication of JP2002227687A publication Critical patent/JP2002227687A/ja
Application granted granted Critical
Publication of JP4524528B2 publication Critical patent/JP4524528B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリンダ吸入空気量を高精度に算出するなどのため、吸・排気弁の開閉時期に基づいて内部EGR率を推定する装置に関する。
【0002】
【従来の技術】
従来、スロットル弁の制御により吸入空気量を制御する通常のエンジンでは、スロットル弁開度のステップ的な変化に対応するため、エアフローメータにより計測された吸入空気量に対し、加重平均処理により、1次遅れの関係で、シリンダ吸入空気量を算出している(特開昭61−258942号公報参照)。
【0003】
しかし、吸・排気弁の開閉時期を任意に制御可能な可変動弁エンジンにおいては、該開閉時期、特に吸気弁の閉時期の制御により、シリンダ吸入空気量がステップ的に変化するため、上記方式ではシリンダ吸入空気量を高精度に算出することができない。
そこで、本願出願人は先に、以下のような算出方式を提案した。すなわち、エアフローメータの出力から算出されるマニホールド部へ流入する質量空気量及びシリンダ部へ流出する質量空気量の収支計算を行ってマニホールド部内の質量空気量を算出する。一方、吸気弁及び排気弁の開閉時期に基づいてシリンダに吸入される体積空気量を算出する。そして、前記マニホールド部内の質量空気量と予め判っているマニホールド部容積から算出される空気密度と、前記シリンダに吸入される体積空気量とからシリンダに吸入される質量空気量を算出するものである(特願平11−223682号)。
【0004】
かかる算出方式によれば、精度良くシリンダ吸入空気量を算出できる。
【0005】
【発明が解決しようとする課題】
ところで、上記算出方式では、シリンダに吸入される体積空気量の算出を、吸気弁の閉時期に基づいて算出されたシリンダ容積とシリンダ内新気割合とに基づいて算出される。ここで、前記シリンダ内新気割合は、吸気弁の開時期と排気弁の閉時期とにより定まるオーバーラップ量が大きくなるほど残ガス率(内部EGR率)が大となるので、該内部EGR率に基づいて新気割合を算出している。また、EGR装置(外部EGR)を設けたものでは、そのEGR率により補正して、最終的なシリンダ内新気割合を算出する。
【0006】
このように、シリンダ内新気割合の算出に、吸気弁の開時期と排気弁の閉時期とに基づいて内部EGR率が算出される。
しかしながら、一般的な車両用エンジンでは、減速運転時などに少なくとも一部の気筒への燃料供給を停止する燃料カット制御が行われるが、該燃料カット制御時にも通常運転時と同様に内部EGR率を推定してしまうため、実際の推定値と大きくずれてしまうことがあった。すなわち、燃料カット中は残ガスが発生しないため、燃料供給再開時の内部EGR率は大きく減少しているにもかかわらず、通常運転時と同様に算出してしまうため、新気量を実際値より少なく算出してしまう。このため、該少なめに誤算出されたが新気量に応じて燃料噴射量が少なく設定され、空燃比がリーン化して出力不足となる。
【0007】
本発明は、このような従来の課題に着目してなされたもので、燃料カット制御による影響を考慮して、常時高精度に内部EGR率を推定できるようにすることを目的とする。
【0008】
【課題を解決するための手段】
このため、請求項1に係る発明は、
吸気弁及び排気弁の開閉時期に基づいて内部EGR率を推定するエンジンの内部EGR率推定装置において、
燃料カット開始から燃料供給を再開して通常運転に到るまでの燃料カット制御時と、通常運転時とで、内部EGR率の推定値を切り換えることを特徴とする。
【0009】
請求項1に係る発明によると、
通常運転時は、吸気弁及び排気弁の開閉時期から内部EGRを推定するが、燃料カット制御が行われたときは、燃料カット中に燃焼が停止されて残ガスが減少することに伴い通常運転時より減少する内部EGR率を推定しつつ、燃料供給再開時の内部EGR率を推定する。これにより、通常運転時と異なる実際の状態に則した内部EGR率を推定でき、該内部EGR率の推定値を用いてシリンダ吸入空気量を正確に算出でき、燃料供給再開時の空燃比を適切に制御できる。
【0010】
さらに、請求項に係る発明は、
燃料カット制御時に、燃料カットされる気筒数に応じて、内部EGR率の推定値を切り換えることを特徴とする。
請求項に係る発明によると、 例えば、トルクショック軽減などのため、全気筒燃料カットから半数気筒燃料カット(半数気筒燃料供給再開)を経て全気筒燃料供給再開とするような燃料カット制御を行うような場合でも、燃料カットされる気筒数に応じて、全気筒平均の内部EGR率を高精度に推定することができ、部分的な燃料供給再開直後から吸入空気量に見合った燃料量を供給することが可能になる。
【0011】
また、請求項に係る発明は、燃料カット制御時に、気筒毎に内部EGR率を推定することを特徴とする。
請求項に係る発明によると、 上記のように燃料カット気筒数(燃料供給再開気筒数)を段階的に減少(増加)するような燃料カット制御を行った場合に、気筒毎に異なる内部EGR率を、気筒別に推定することにより、燃料供給再開時の空燃比を気筒毎に調整できる。
【0012】
また、請求項に係る発明は、エンジン停止若しくはアイドル時のエンジン停止指令を判定してから再始動されるまでの間、内部EGR率の推定値を0に維持することを特徴とする。
請求項に係る発明によると、燃料カット制御後以外のエンジン始動時点における内部EGR率の推定値が0に維持されているので、残ガスの無い状態(内部EGR率=0)で算出されたシリンダに対して燃料噴射量が設定されるようにすることができ、以って、燃料不足を防止でき、良好な始動性を確保することができる。
【0013】
また、請求項に係る発明は、
燃料カット制御時は、時系列の加重平均処理を行ってEGR率の推定値を求めることを特徴とする。
請求項に係る発明によると、 燃料カット開始後、残ガスの掃気の遅れに応じて内部EGR率が徐々に減少していき、燃料供給再開時も再開直前の内部EGR率が減少した状態から徐々に増大する。そこで、前記時系列の加重平均処理を行うことにより、かかる内部EGR率の変化に見合った推定値を得ることができる。
【0014】
また、請求項に係る発明は、 吸気弁及び排気弁の開閉時期の少なくとも1つを可変制御する可変動弁装置を備え、吸気弁及び排気弁の開閉時期に基づいてシリンダ吸入空気量を算出するエンジンにおいて、前記シリンダ吸入空気量の算出のため内部EGR率を推定することを特徴とする。
【0015】
請求項に係る発明によると、吸気弁及び排気弁の開閉時期が可変制御されるものでは、該制御に応じて内部EGR率が変化し、該内部EGR率の変化に応じてシリンダ吸入空気量が変化するので、該内部EGR率を燃料カット制御時も含めて高精度に推定することで、シリンダ吸入空気量を高精度に算出することができる。
【0016】
また、請求項に係る発明は、吸気弁閉時期におけるシリンダ容積とシリンダ内新気割合とに基づいてシリンダに吸入される体積空気量を算出し、マニホールド部上流に設けたエアフローメータの出力に基づいて検出される吸気マニホールド部へ流入する質量空気量と、マニホールド部からシリンダへ流出する質量空気量との収支計算を行ってマニホールド部内の質量空気量を算出し、前記シリンダに吸入される体積空気量、マニホールド部内の質量空気量およびマニホールド部容積に基づいて、シリンダに吸入される質量空気量を算出するエンジンにおいて、前記シリンダ内新気割合の算出のため、内部EGR率を推定することを特徴とする。
【0017】
請求項に係る発明によると、吸気弁閉時期におけるシリンダ容積とシリンダ内新気割合とに基づいてシリンダに吸入される体積空気量が算出される。一方、マニホールド部内の圧力、温度と、吸気行程終了時のシリンダ内の圧力、温度が等しいと仮定すれば、マニホールド部内の質量空気量をマニホールド部容積で除算したマニホールド部内の空気密度とシリンダ内の空気密度が等しいので、この関係を用いてシリンダに吸入される質量空気量を算出することができる。このように、マニホールド部の空気の流入量と流出量との収支計算を行いつつシリンダ吸入空気量を算出することで、バルブタイミング(特に吸気弁閉時期)変化に応じてステップ的に変化するシリンダ吸入空気量を応答性よく高精度に算出できる。
【0018】
そして、かかる算出方式によるシリンダ吸入空気量の算出に、本発明に係る内部EGR率の推定値を用いることで、燃料カット制御時も含めてシリンダ吸入空気量を高精度に算出することができる。
【0019】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
図1は本発明の一実施形態を示す可変動弁エンジンを搭載したハイブリッド車両のパワートレインシステム図である。
起動用モータ21で起動されるエンジン1の出力軸は、パウダクラッチ等のクラッチ22を介して走行用モータ23に動力伝達・切り離し自由に接続され、走行用モータ23の出力軸は、変速機24、ディファレンシャルギア25を介して駆動輪26に接続されている。
【0020】
ドライバによるアクセル、ブレーキ、変速機シフト位置などの信号、車速信号、バッテリ充電状態の信号などが車両制御回路27に入力され、該車両制御回路27は、起動用モータ制御回路28、エンジン制御回路29、クラッチ制御回路30、走行用モータ制御回路31、変速機制御回路32を介して各部を制御する。
【0021】
また、本車両では、所定のアイドル条件で燃費および排気浄化性能改善のため、エンジン1を停止するいわゆるアイドルストップを行うようにしている。
図2は同上の可変動弁エンジンのシステム図である。
エンジン1の各気筒のピストン2により画成される燃焼室3には、点火栓4を囲むように、電磁駆動式の吸気弁5及び排気弁6を備えている。7は吸気通路、8は排気通路である。
【0022】
吸気弁5及び排気弁6の電磁駆動装置(可変動弁装置)の基本構造を図3に示す。弁体20の弁軸21にプレート状の可動子22が取付けられており、この可動子22はスプリング23,24により中立位置に付勢されている。そして、この可動子22の下側に開弁用電磁コイル25が配置され、上側に閉弁用電磁コイル26が配置されている。
【0023】
従って、開弁させる際は、上側の閉弁用電磁コイル26への通電を停止した後、下側の開弁用電磁コイル25に通電して、可動子22を下側へ吸着することにより、弁体20をリフトさせて開弁させる。逆に、閉弁させる際は、下側の開弁用電磁コイル25への通電を停止した後、上側の閉弁用電磁コイル26に通電して、可動子22を上側へ吸着することにより、弁体20をシート部に着座させて閉弁させる。
【0024】
尚、本実施形態では、可変動弁装置として、電磁駆動式のものを用いたが、油圧駆動式のもの等を用いることもできる。
図2に戻って、吸気通路7には、マニホールド部の上流に、電制スロットル弁9が設けられている。
吸気通路7にはまた、気筒毎の吸気ポート部分に、電磁式の燃料噴射弁10が設けられている。
【0025】
ここにおいて、吸気弁5、排気弁6、電制スロットル弁9、燃料噴射弁10及び点火栓4の作動は、コントロールユニット11により制御され、このコントロールユニット11には、エンジン回転に同期してクランク角信号を出力しこれによりクランク角位置と共にエンジン回転速度Neを検出可能なクランク角センサ(回転速度センサ)12、アクセル開度(アクセルペダル踏込み量)APOを検出するアクセルペダルセンサ13、吸気通路7のスロットル弁9上流にて吸入空気量(質量流量)Qaを計測する熱線式のエアフローメータ14等から、信号が入力される。
【0026】
このエンジン1では、ポンプロスの低減による燃費向上を目的として、電磁駆動式の吸気弁5及び排気弁6の開閉時期を制御、特に吸気弁5の開時期IVOを上死点近傍のタイミングに設定して、吸気弁5の閉時期IVCを可変制御することにより、アクセル開度APOとエンジン回転速度Neとに基づく要求トルク相当の目標空気量が得られるように、吸入空気量を制御して、実質的にノンスロットル運転を行う。この場合、電制スロットル弁9は、所定の運転条件(高負荷運転時以外)にてマニホールド部に微少な負圧(−50mmHg程度)を得る程度の開度に設定制御する。
【0027】
排気弁6の開時期EVO及び閉時期EVCは、最も熱効率の良いタイミングとなるように制御する。
尚、吸気弁5の閉時期IVCによる吸入空気量の制御によって燃焼状態が悪化する特定運転条件(例えばアイドル運転時や冷機状態での低負荷運転時など)では、吸気弁5の閉時期IVCを下死点近傍に固定し、電制スロットル弁9の開度TVOを可変制御することにより吸入空気量を制御することも可能である。
【0028】
燃料噴射弁10の燃料噴射時期及び燃料噴射量は、エンジン運転条件に基づいて制御するが、燃料噴射量は、基本的には、エアフローメータ14により計測される吸入空気量(質量流量)Qaに基づいて後述のごとく算出されるシリンダ吸入空気量(シリンダ部質量空気量)Ccに対し、所望の空燃比となるように制御する。
【0029】
点火栓4による点火時期は、エンジン運転条件に基づいて、MBT(トルク上の最適点火時期)又はノック限界に制御する。
次に、燃料噴射量等の制御のためのシリンダ吸入空気量(シリンダに吸入される質量空気量)Ccの算出について、図4以下のフローチャート等により、詳細に説明する。
【0030】
ここで、図2中に示すように、エアフローメータ14により計測される吸入空気量(質量流量)をQa(kg/h)とするが、1/3600を乗じて、(g/msec)として扱う。
また、マニホールド部の圧力をPm(Pa)、容積をVm(m3 ;一定)、質量空気量をCm(g)、温度をTm(K)とする。
【0031】
また、シリンダ部の圧力をPc(Pa)、容積をVc(m3)、質量空気量をCc(g)、温度をTc(K)とする。更に、シリンダ内新気割合をη(%)とする。
また、マニホールド部とシリンダ部とで、Pm=Pc、Tm=Tc(圧力及び温度は変化しない)と仮定する。
【0032】
図4は吸気マニホールド部流入空気量算出ルーチンのフローチャートであり、所定時間Δt毎に実行される。
ステップ1では、エアフローメータ14の出力より算出された吸入空気量Qa(質量流量;g/msec)を読み込む。
ステップ2では、吸入空気量Qaの積分計算により、所定時間Δt毎にマニホールド部へ流入する空気量Ca(質量空気量;g)=Qa・Δtを算出する。
【0033】
図5はシリンダ吸入体積空気量算出ルーチンのフローチャートであり、所定時間Δt毎に実行される。
ステップ11では、吸気弁5の閉時期IVC、吸気弁5の開時期IVO、排気弁6の閉時期EVCを検出する。尚、これらは吸気弁5及び排気弁6に対しリフトセンサを設けて直接的に検出してもよいが、コントロールユニット12での制御上の指令値(目標値)を用いることで簡素化できる。
【0034】
ステップ12では、吸気弁5の閉時期IVCから、該閉時期IVCにおけるシリンダ容積Vc1(m3)を算出する。
ステップ13では、シリンダ内新気割合η(%)を算出する。ここで、該シリンダ内新気割合ηを、本発明に係る燃料カット制御を考慮した内部EGR率の推定値を用いて算出する。具体的な算出については、後述する。
【0035】
ステップ14では、前記シリンダ容積Vc1にシリンダ内新気割合ηを乗じて、シリンダ内の体積空気量Vc2(m3)=Vc1・ηを算出する。
ステップ15では、次式のごとく、シリンダ内の体積空気量Vc2(m3)にエンジン回転速度Ne(rpm)を乗じて、Vc変化速度(体積流量;m3/msec)を算出する。
【0036】
Vc変化速度=シリンダ内体積空気量Vc2・エンジン回転速度Ne・K
ここで、Kは単位を揃えるための定数で、K=(1/30)×(1/1000)である。1/30は、Ne(rpm)をNe(180deg/sec)に変換するためのものであり、1/1000は、Vc変化速度(m3/sec)をVc変化速度(m3/msec)に変換するためのものである。
【0037】
また、一部気筒の稼働を停止させる制御を行う場合は、次式による。
Vc変化速度=Vc2・Ne・K・n/N
n/Nは一部気筒の稼働を停止させる場合の稼働率であり、Nは気筒数、nはそのうちの稼働気筒数である。従って、例えば4気筒エンジンで、1気筒の稼働を停止させている場合は、n/N=3/4となる。尚、特定気筒の稼働を停止させる場合は、当該気筒の吸気弁及び排気弁を全閉状態に保持した上で、燃料カットを行う。
【0038】
ステップ16では、Vc変化速度(体積流量;m3/msec)の積分計算により、所定時間Δtあたりにシリンダに吸入される体積空気量Vc(m3)=Vc変化速度・Δtを算出する。
図6は連続計算(マニホールド部吸気収支計算及びシリンダ吸入空気量算出)ルーチンのフローチャートであり、所定時間Δt毎に繰り返し実行される。また、図7には連続計算部をブロック図で示している。
【0039】
ステップ21では、マニホールド部吸気収支計算(マニホールド部質量空気量Cmの収支計算)のため、次式のごとく、マニホールド部内の質量空気量の前回値Cm(n-1)に、図4のルーチンで求めたマニホールド部へ流入する質量空気量Ca(=Qa・Δt)を加算し、また、マニホールド部からシリンダ部へ流出するシリンダ吸入空気量(質量空気量)Cc(n) を減算して、マニホールド部内の質量空気量Cm(n)(g)を算出する。
【0040】
Cm(n) =Cm(n-1) +Ca−Cc(n)
ここで用いるCc(n) は前回のルーチンで次のステップ32により算出されたCcである。
ステップ22では、シリンダ吸入空気量(シリンダ部質量空気量Cc)の算出のため、次式のごとく、図5のルーチンで求めた所定時間Δtあたりのシリンダ吸入空気量(シリンダ部体積空気量)Vcに、マニホールド部質量空気量Cmを掛算し、また、マニホールド部容積Vm(一定値)で除算して、所定時間Δtあたりのシリンダ吸入空気量(シリンダ部質量空気量)Cc(g)を求める。
【0041】
Cc=Vc・Cm/Vm ・・・(1)
この(1)式は、次のように求められる。
気体の状態方程式P・V=C・R・Tより、C=P・V/(R・T)であるので、シリンダ部について、
Cc=Pc・Vc/(R・Tc) ・・・(2)
となる。
【0042】
ここで、Pc=Pm、Tc=Tmと仮定するので、
Cc=Pm・Vc/(R・Tm) ・・・(3)
となる。
一方、気体の状態方程式P・V=C・R・Tより、P/(R・T)=C/Vであるので、マニホールド部について、
Pm/(R・Tm)=Cm/Vm ・・・(4)
となる。
【0043】
この(4)式を(3)式に代入すれば、
Cc=Vc・〔Pm/(R・Tm)〕=Vc・〔Cm/Vm〕
となり、上記(1)式が得られる。
以上のように、ステップ21,22を繰り返し実行することにより、すなわち図7に示すように連続計算することにより、シリンダ吸入空気量であるシリンダ部質量空気量Cc(g)を求めて、出力することができる。尚、ステップ21,22の処理順序は逆でもよい。
【0044】
図8は後処理ルーチンのフローチャートである。
ステップ31では、次式のごとく、シリンダ部質量空気量Cc(g)を加重平均処理して、Cck(g)を算出する。
Cck=Cck×(1−M)+Cc×M
Mは加重平均定数であり、0<M<1である。
【0045】
ステップ32では、加重平均処理後のシリンダ部質量空気量Cck(g)を、燃料噴射が行われるサイクル周期に対応させるため、エンジン回転速度Ne(rpm)を用いて、
Cck(g/cycle)=Cck/(120/Ne)
により、1サイクル(2回転=720deg)毎のシリンダ部質量空気量(g/cycle)に変換する。
【0046】
尚、加重平均処理は、スロットル弁が大きく開いている(全開)時等の吸気の脈動が大きいときに限定して行うと、制御精度と制御応答性を両立させることができる。
図9はこの場合の後処理ルーチンのフローチャートである。ステップ35でシリンダ部質量空気量Cc(g)の変化量ΔCcを算出する。続いてステップ36でこの変化量ΔCcが所定範囲内(所定値Aより大きく所定値Bより小さい)か否かを判定する。所定範囲内の場合は、加重平均処理をする必要ないので、ステップ37でCck(g)=Cc(g)とした後、ステップ32で図8のステップ32と同じに1サイクル(2回転=720deg)毎のシリンダ部質量空気量Cck(g/cycle)に変換する。変化量ΔCcが所定範囲外である場合は、ステップ31で図8のステップ31と同じにシリンダ部質量空気量Cc(g)を加重平均処理してCck(g)を算出し、ステップ32へ進む。
【0047】
次に、前記図5のステップ13でのシリンダ内新気割合ηの具体的な算出方法を、説明する。該シリンダ内新気割合ηの算出に、本発明に係る燃料カット制御を考慮した内部EGR率の推定値が用いられる。
通常運転時には、吸気弁5の開時期IVO、排気弁6の閉時期EVC、また必要により外部EGR率により、シリンダ内新気割合η(%)を算出する。
【0048】
すなわち、通常運転時は、吸気弁5の開時期IVOと排気弁6の閉時期EVCとにより、オーバーラップ量が定まり、オーバーラップ量が多くなる程、残ガス率(内部EGR率)が大となるので、該内部EGR率に基づいてシリンダ内新気割合ηを求める。また、可変動弁エンジンでは、オーバーラップ量の制御により内部EGR率を自在に制御できるので、一般にはEGR装置(外部EGR)は設けないが、設ける場合は、更にそのEGR率により補正して、最終的なシリンダ内新気割合ηを求める。
【0049】
しかし、燃料カット制御を行った場合は、燃料カットされた気筒では、燃焼が行われないので、前記内部EGR率は減少していく。したがって、燃料カットを開始してから燃料供給再開直後までの燃料カット制御時と、通常の燃料供給制御時とで前記シリンダ内新気割合ηひいてはシリンダ吸入空気量の算出に用いる内部EGR率の推定値を切り換える必要がある。
【0050】
以下、上記燃料カット制御を考慮して内部EGR率を推定しつつシリンダ内新気割合ηを演算するルーチンについて説明する。
図10は、燃料供給が再開されるまで全気筒を燃料カットする燃料カット制御を行う第1の実施形態におけるシリンダ内新気割合η演算ルーチンのフローチャートを示す。
【0051】
ステップ101では、吸気弁5の開時期IVO、排気弁6の閉時期EVCに基づいて、基本内部EGR率INEGR0を演算する。
ステップ102では、燃料カット中であるか否かを判定し、燃料カット中と判定されたときは、残ガスが発生しないのでステップ103へ進んで最新の状態における内部EGR率INEGR1を0とし、燃料カット中でないと判定されたときは、燃焼が行われるのでステップ104へ進んで、同じく内部EGR率INEGR1を前記基本内部EGR率INEGR0に設定する。
【0052】
上記のように最新の状態(燃料カット中か否か)のみに応じて内部EGR率を切り換えても、燃料供給再開時に通常運転時と同様に内部EGR率を設定しまうことになって、燃料カット中の影響が考慮されたことにならず、また、燃料カット中の内部EGR率も燃料カット開始と同時に0となるわけではない。
そこで、ステップ105では、次式のように、時系列の加重平均処理を行って、内部EGR率INNEGRを設定する。
【0053】
INEGR=A・INEGR1+(1−A)INEGRold
すなわち、実際には燃料カットを開始して残ガスが完全に掃気されるのに遅れを生じ、燃料供給再開時も再開直前の内部EGR率が減少した状態から徐々に増大するため、かかる内部EGR率の変化に見合った推定値が得られるように、上記の処理を行う。
【0054】
この他の簡易的な処理としては、例えば、燃料カット開始からの経過時間に応じて内部EGR率を減少していき、燃料供給再開後は再開時の内部EGR率を初期値とし、その後の経過時間に応じて増大していき、所定時間後に通常運転時の内部EGR率(INEGR0)となるようにしてもよい。
次に、ステップ106では、エンジン停止中(通常の停止の他、ドライバの意図しないいわゆるエンストを含む)、または、アイドル時にエンジンを停止するアイドルストップ指令が発生中あるいは、その後エンジンが始動される前の状態であるか否かを判定する。なお、前記エンジンの始動の判定は、燃料噴射後の完爆判定を、例えば起動用モータ21によるクランキング後、エンジントルクによって起動用モータ21のトルクが負となる回生状態を検出することで行うことができる。また、エンジン始動の判定を、簡易的に燃料噴射開始で判定してもよい。
【0055】
そして、ステップ106で上記の期間中でないと判定されたときは、ステップ108へ進み、前記ステップ105で推定算出された内部EGR率INEGRを用いて、次式によりシリンダ内新気割合η(%)を算出する。
η=100−INEGR
このようにすれば、燃料カット開始から燃料供給を再開して通常運転に到るまでの燃料カット制御時における内部EGR率INEGRが高精度に推定され、該内部EGR率INEGRを用いてシリンダ内新気割合ηひいてはシリンダ吸入空気量Ccを高精度に算出することができる。
【0056】
また、ステップ106で、いわゆるエンストやアイドルストップを含むエンジン停止状態からエンジンの始動が判定されるまでの期間中と判定された場合は、ステップ107へ進んで、内部EGR率INEGRを0とする。
これにより、始動時の内部EGR率INEGRが0となり、ステップ105での始動後の内部EGR率INEGRの算出が、初期値を0として算出される。すなわち、燃料カット制御後以外の始動時は、残ガスの無い状態(内部EGR率=0)でのシリンダ吸入空気量に対して燃料噴射量が設定されるようにして、燃料不足を防止することにより、良好な始動性を確保することができる。
【0057】
次に、部分的な燃料カットを含む燃料カット制御を行う第2の実施形態におけるシリンダ内新気割合ηの算出を、図11のフローチャートにしたがって説明する。例えば、全気筒燃料カット後、半数気筒の燃料カットに切り換えてから全気筒の燃料供給を再開するような燃料カット制御を行う。
ステップ201で、前記同様に基本内部EGR率INEGR0を算出した後、ステップ202で、現在燃料噴射されている気筒数(燃料カットされている気筒数)を判別する。
【0058】
ステップ203では、最新の状態における内部EGR率INEGR1を次式のように設定する。
INEGR1=INEGR0×(噴射気筒数)/(全気筒数)
これは、全気筒平均の内部EGR率INEGR1を表している。
ステップ204以降は、第1の実施形態における図10のステップ105以降と同一であるので説明を省略する。
【0059】
このようにすれば、部分的な燃料カットを含む燃料カット制御を行うものについても、全気筒平均の内部EGR率INEGRを高精度に推定することができ、部分的な燃料供給再開直後から吸入空気量に見合った燃料量を供給することが可能になる。
次に、同様な部分的な燃料カットを含む燃料カット制御を行うものについて、気筒別に内部EGR率INEGRを推定しつつシリンダ内新気割合を算出する第3の実施形態を、図12に示したフローチャートにしたがって説明する。
【0060】
ステップ301では、前記同様に基本内部EGR率INEGR0を算出する。
ステップ302では、全気筒燃料噴射中でかつ全気筒燃料噴射開始後所定時間経過後かを判定する。
上記判定がNOの場合は、ステップ303へ進み、気筒判別を行う。この気筒判別は、次回燃料噴射行程にある気筒(燃料カット時は、燃料カット時でなければ燃料噴射行程にある気筒)の判別である。
【0061】
ステップ303で、第1気筒(♯1)と判別されたときは、ステップ304〜ステップ310へ進んで、該第1気筒(♯1)における内部EGR率INEGR(♯1)を推定し、シリンダ新気割合η(♯1)を算出する。該ステップ304〜ステップ310での算出方法は、前記第1の実施形態におけるステップ102〜ステップ108と全く同様であるが、各内部EGR率INEGR1(♯1)、INEGRold(♯1)は、第1気筒(♯1)が判別されたときに算出されたものを用いる。
【0062】
第2気筒(♯2)、第3気筒(♯3)、第4気筒(♯4)が判別されたとき(4気筒エンジンの場合)も、それぞれ、ステップ311、ステップ312、ステップ313へ進んで、第1気筒(♯1)の場合(ステップ304〜ステップ310)と同様にして内部EGR率INEGR(♯n)を推定しつつ、シリンダ新気割合η(♯n)を算出する。
【0063】
このようにすれば、気筒別に燃料カット制御時の内部EGR率INEGR(♯n)を推定しつつ、シリンダ新気割合η(♯n)ひいてはシリンダ吸入空気量Ccを高精度に算出することができ、燃料供給再開時の空燃比を気筒毎に調整できる。
また、ステップ302で、全気筒燃料噴射中でかつ全気筒燃料噴射再開後所定時間経過後と判定された場合は、燃料カットの影響が無くなり通常運転に復帰したと判断して、ステップ314へ進み、次式のように通常運転時の内部EGR率推定値(=基本内部EGR率INEGR0)を用いてシリンダ新気割合ηを算出する。
【0064】
η=100−INEGR0
このようにすれば、通常運転時の演算負荷を軽減できる。
なお、上記実施形態では、各吸・排気弁の開閉時期を独立して可変制御できる電磁駆動式の可変動弁装置について示したが、油圧式や電磁ブレーキ式などでカムシャフトのクランクシャフトに対する回転位相を制御することにより、吸・排気弁の開閉時期を制御する可変動弁装置を備えたものにも適用できることは勿論である。
【図面の簡単な説明】
【図1】 本発明の一実施形態にかかる可変動弁エンジンを搭載した車両のシステム構成を示す機能ブロック図。
【図2】 同上の可変動弁エンジンのシステム図。
【図3】 吸排気弁の電磁駆動装置の基本構造図。
【図4】 マニホールド部流入空気量算出ルーチンのフローチャート。
【図5】 シリンダ吸入体積空気量出ルーチンのフローチャート。
【図6】 連続計算(マニホールド部吸気収支計算及びシリンダ吸入空気量算出)ルーチンのフローチャート。
【図7】 連続計算部のブロック図。
【図8】 後処理ルーチンのフローチャート。
【図9】 後処理ルーチンの、他の例のフローチャート。
【図10】 第1の実施形態に係るシリンダ内新気割合演算ルーチンを示すフローチャート。
【図11】 第2の実施形態に係るシリンダ内新気割合演算ルーチンを示すフローチャート。
【図12】 第3の実施形態に係るシリンダ内新気割合演算ルーチンを示すフローチャート。
【符号の説明】
1 エンジン
4 点火栓
5 電磁駆動式の吸気弁
6 電磁駆動式の排気弁
7 吸気通路
8 排気通路
9 燃料噴射弁
10 電制スロットル弁
11 コントロールユニット
12 クランク角センサ
13 アクセルペダルセンサ
14 エアフローメータ

Claims (6)

  1. 吸気弁及び排気弁の開閉時期に基づいて内部EGR率を推定するエンジンの内部EGR率推定装置において、
    燃料カット開始から燃料供給を再開して通常運転に到るまでの燃料カット制御時と、通常運転時とで、内部EGR率の推定値を切り換えると共に、
    燃料カット制御時に、燃料カットされる気筒数に応じて、内部EGR率の推定値を切り換えることを特徴とするエンジンの内部EGR率推定装置。
  2. 吸気弁及び排気弁の開閉時期に基づいて内部EGR率を推定するエンジンの内部EGR率推定装置において、
    燃料カット開始から燃料供給を再開して通常運転に到るまでの燃料カット制御時と、通常運転時とで、内部EGR率の推定値を切り換えると共に、
    燃料カット制御時に、気筒毎に内部EGR率を推定することを特徴とするエンジンの内部EGR率推定装置。
  3. エンジン停止若しくはアイドル時のエンジン停止指令を判定してから再始動されるまでの間、内部EGR率の推定値を0に維持することを特徴とする請求項1または請求項のいずれか1つに記載のエンジンの内部EGR率推定装置。
  4. 吸気弁及び排気弁の開閉時期に基づいて内部EGR率を推定するエンジンの内部EGR率推定装置において、
    燃料カット開始から燃料供給を再開して通常運転に到るまでの燃料カット制御時と、通常運転時とで、内部EGR率の推定値を切り換えると共に、
    燃料カット制御時は、時系列の加重平均処理を行ってEGR率の推定値を求めることを特徴とするエンジンの内部EGR率推定装置。
  5. 吸気弁及び排気弁の開閉時期の少なくとも1つを可変制御する可変動弁装置を備え、吸気弁及び排気弁の開閉時期に基づいてシリンダ吸入空気量を算出するエンジンにおいて、前記シリンダ吸入空気量の算出のため内部EGR率を推定することを特徴とする請求項1〜請求項のいずれか1つに記載のエンジンの内部EGR率推定装置。
  6. 吸気弁閉時期におけるシリンダ容積とシリンダ内新気割合とに基づいてシリンダに吸入される体積空気量を算出し、マニホールド部上流に設けたエアフローメータの出力に基づいて検出される吸気マニホールド部へ流入する質量空気量と、
    マニホールド部からシリンダへ流出する質量空気量との収支計算を行ってマニホールド部内の質量空気量を算出し、前記シリンダに吸入される体積空気量、マニールド部内の質量空気量およびマニホールド部容積に基づいて、シリンダに吸入される質量空気量を算出するエンジンにおいて、前記シリンダ内新気割合の算出のため、内部EGR率を推定することを特徴とする請求項に記載のエンジンの内部EGR率推定装置。
JP2001028821A 2001-02-05 2001-02-05 エンジンの内部egr率推定装置 Expired - Lifetime JP4524528B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028821A JP4524528B2 (ja) 2001-02-05 2001-02-05 エンジンの内部egr率推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028821A JP4524528B2 (ja) 2001-02-05 2001-02-05 エンジンの内部egr率推定装置

Publications (2)

Publication Number Publication Date
JP2002227687A JP2002227687A (ja) 2002-08-14
JP4524528B2 true JP4524528B2 (ja) 2010-08-18

Family

ID=18893256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028821A Expired - Lifetime JP4524528B2 (ja) 2001-02-05 2001-02-05 エンジンの内部egr率推定装置

Country Status (1)

Country Link
JP (1) JP4524528B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277535B2 (ja) 2003-02-19 2009-06-10 トヨタ自動車株式会社 内燃機関の内部egr量推定装置
JP2004251183A (ja) 2003-02-19 2004-09-09 Toyota Motor Corp 内燃機関の制御装置
FR2867232B1 (fr) * 2004-03-05 2006-05-05 Inst Francais Du Petrole Methode d'estimation de la richesse en carburant dans un cylindre d'un moteur a combustion
JP4743169B2 (ja) * 2007-06-13 2011-08-10 トヨタ自動車株式会社 内燃機関制御装置及び方法
JP2009191791A (ja) * 2008-02-15 2009-08-27 Toyota Motor Corp 内燃機関の制御装置
JP4591581B2 (ja) 2008-09-09 2010-12-01 トヨタ自動車株式会社 排気再循環システムの既燃ガス通過量算出方法および既燃ガス通過量算出装置
US10113490B2 (en) 2014-07-11 2018-10-30 Honda Motor Co., Ltd. Control apparatus for internal combustion engine
JP6489085B2 (ja) * 2016-08-10 2019-03-27 トヨタ自動車株式会社 エンジン制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196149A (ja) * 1989-01-26 1990-08-02 Toyota Motor Corp 2サイクル内燃機関の燃料供給制御装置
JPH05133270A (ja) * 1991-11-06 1993-05-28 Nissan Motor Co Ltd エンジンの空気量検出装置
JPH07301144A (ja) * 1994-03-10 1995-11-14 Toyota Motor Corp 内燃機関の吸入空気量演算装置
JP2000161124A (ja) * 1998-11-25 2000-06-13 Nissan Motor Co Ltd 可変動弁エンジンの故障検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196149A (ja) * 1989-01-26 1990-08-02 Toyota Motor Corp 2サイクル内燃機関の燃料供給制御装置
JPH05133270A (ja) * 1991-11-06 1993-05-28 Nissan Motor Co Ltd エンジンの空気量検出装置
JPH07301144A (ja) * 1994-03-10 1995-11-14 Toyota Motor Corp 内燃機関の吸入空気量演算装置
JP2000161124A (ja) * 1998-11-25 2000-06-13 Nissan Motor Co Ltd 可変動弁エンジンの故障検出装置

Also Published As

Publication number Publication date
JP2002227687A (ja) 2002-08-14

Similar Documents

Publication Publication Date Title
US6827051B2 (en) Internal EGR quantity estimation, cylinder intake air quantity calculation, valve timing control, and ignition timing control
US8352153B2 (en) Methods and systems for engine starting
JP2001050091A (ja) 可変動弁エンジンのシリンダ吸入空気量算出装置
US20040149251A1 (en) Apparatus for controlling engine rotation stop by estimating kinetic energy and stop position
JP2001263110A (ja) 可変動弁エンジンの制御装置
JP3747700B2 (ja) 可変動弁エンジンの吸入空気量算出装置
JP2002227694A (ja) エンジンのシリンダ吸入空気量算出装置
US11136927B2 (en) Internal combustion engine system
JP3767426B2 (ja) エンジンのシリンダ吸入空気量算出装置
JP3959957B2 (ja) エンジンの内部egr量推定方法と、該内部egr量推定値を用いた可変動弁制御方法、シリンダ吸入空気量算出方法および点火時期制御方法
JP4524528B2 (ja) エンジンの内部egr率推定装置
JP3614060B2 (ja) 可変動弁エンジンの点火時期制御装置
JP3622538B2 (ja) エンジンの吸入空気量検出装置
JP4000747B2 (ja) 可変動弁エンジンの点火時期制御装置
JP5780391B2 (ja) 内燃機関の燃料噴射制御装置
JP4019866B2 (ja) 内燃機関の制御装置
JP3991925B2 (ja) エンジン制御装置
JP3791267B2 (ja) 可変動弁エンジンの制御装置
JP3724312B2 (ja) 可変動弁エンジンの制御装置
JP3788146B2 (ja) 過給機付き可変動弁エンジンの高負荷運転時制御装置
JP4200712B2 (ja) 内燃機関の可変動弁機構制御装置
JP4258453B2 (ja) 内燃機関の吸気制御装置
JP3915367B2 (ja) 可変動弁エンジンの制御装置
JP3975868B2 (ja) 内燃機関の制御装置
JP3620381B2 (ja) 可変動弁エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4524528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term