JP4513562B2 - リレー駆動回路 - Google Patents

リレー駆動回路 Download PDF

Info

Publication number
JP4513562B2
JP4513562B2 JP2004379805A JP2004379805A JP4513562B2 JP 4513562 B2 JP4513562 B2 JP 4513562B2 JP 2004379805 A JP2004379805 A JP 2004379805A JP 2004379805 A JP2004379805 A JP 2004379805A JP 4513562 B2 JP4513562 B2 JP 4513562B2
Authority
JP
Japan
Prior art keywords
circuit
relay
energization
constant voltage
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004379805A
Other languages
English (en)
Other versions
JP2006185811A (ja
Inventor
浩一 佐藤
富久夫 石川
康一 塚田
博文 杢屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Denso Electronics Corp
Original Assignee
Denso Corp
Anden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Anden Co Ltd filed Critical Denso Corp
Priority to JP2004379805A priority Critical patent/JP4513562B2/ja
Priority to US11/300,288 priority patent/US20060139839A1/en
Publication of JP2006185811A publication Critical patent/JP2006185811A/ja
Application granted granted Critical
Publication of JP4513562B2 publication Critical patent/JP4513562B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H2047/025Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay with taking into account of the thermal influences, e.g. change in resistivity of the coil or being adapted to high temperatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)

Description

本発明は、リレーを駆動するリレー駆動回路に関する。
従来、この種のリレー駆動回路として、定電圧でリレーを駆動してリレー接点を保持させるようにしたものがある。
しかしながら、このように定電圧で駆動した場合、以下の問題が生じる。リレー接点を保持する保持力は、リレーの起磁力で決定され、この起磁力は、リレーコイルに流れる電流×リレーコイルの巻き数で表される。ここで、リレーの雰囲気温度が変化した場合、図8に示すように、リレーコイルの抵抗値は雰囲気温度の上昇に伴って上昇する。このため、雰囲気温度が最高温度(図8の場合、120℃)としたときでもリレー接点を保持させるに必要な起磁力を得るには、例えば6Vで定電圧駆動する必要があり(図8の定電圧起磁力(6V)のグラフ参照)、それよりも低い温度のときには、過剰な起磁力が発生し、消費電力をロスしてしまうことになる。一方、定電圧駆動する場合の定電圧を上記した電圧よりも低い電圧とすると、雰囲気温度−起磁力の特性は図の下方に全体的に移動する(例えば、図8の定電圧起磁力(4.3V)のグラフ参照)。このため、雰囲気温度の上昇に伴ってリレーコイルの抵抗値が増大すると、リレーコイルに流れる電流が減少し、リレー接点を保持する保持力が低下してリレーがオフしてしまうことになる。
このような問題を解決するため、本出願人は、定電圧駆動ではなく、定電流駆動によりリレー接点を保持させるものを提案している(特願2003−413742)。定電流駆動とした場合には、リレーの雰囲気温度が上昇してリレーコイルの抵抗値が増大したとしても、起磁力=リレーコイルに流れる電流×リレーコイルの巻き数の関係から、起磁力は変化しない(例えば、図8の定電流起磁力のグラフ参照)。したがって、定電流駆動とすることにより、過剰な起磁力の発生がなく、またリレーコイルがオフしてしまうのを防止することができる。
しかしながら、上記出願のものでは、小型化、回路の簡素化等の観点から定電流でリレーを駆動するための専用の電源を持たず、リレーを駆動するトランジスタで構成されたリレードライバ部の電圧降下方式によりリレー接点を保持させるに必要な電圧を作り出し、それによって定電流駆動を行っていた。このような電圧降下方式では、リレードライバ部での電圧降下が大きくなるため、リレードライバ部での消費電力のロスが大きくなり、またリレードライバ部での発熱が大きくなるという問題があった。
そこで、本発明は、定電流駆動によりリレー接点を保持する場合の消費電力のロスの低減および発熱の低減を図ることを目的とする。
上記目的を達成するため、請求項1ないし8に記載の発明では、電源(10)から定電圧を生成する定電圧電源回路(30)と、リレー(20)を動作させるときに、電源(10)によりリレー(20)に初期通電を行ってリレー(20)のリレー接点(22)を吸引させ、この吸引後に定電圧電源回路(30)で生成された定電圧を電源としてリレー(20)に定電流を流してリレー接点(22)を吸引された状態に保持させる回路(40、50、60、110、120、130、140、150、160、170)と、を備えたリレー駆動回路を特徴としている。
このように定電圧電源回路(30)で生成された定電圧を電源としてリレー(20)を定電流駆動することにより、雰囲気温度が変化しても安定したリレー接点(22)の保持を行うことができ、また上記した電圧降下方式により保持用の電圧を作り出すものに比べて、消費電力のロスを低減するとともにその発熱も低減することができる。
なお、請求項7に記載の発明のように、定電圧電源回路(30)をスイッチングレキュレータにより構成すれば、その定電圧電源回路(30)での消費電力のロスを低減するとともに低発熱化を図ることができる。
また、請求項8に記載の発明のように、定電圧電源回路(30)を、リレー(20)のリレーコイル(21)の抵抗値を示す情報に基づいてリレーコイル(21)の抵抗値が上昇したときに定電圧を上昇させるように構成すれば、リレー(20)雰囲気温度が上昇してリレーコイル(21)の抵抗値が上昇したとしても、定電流による通電時の電源出力が不足しないようにすることができる。この場合、リレーコイル(21)の抵抗値を示す情報としては、リレーコイル(21)の電圧、リレーコイル(21)の温度、リレーコイル(21)に流れる電流とすることができる。
なお、この「発明が解決しようとする課題」の欄および「特許請求の範囲」において、各手段に付した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
本発明の第1実施形態に係る車両用のリレー駆動回路の構成を図1に示す。このリレー駆動回路は、車両の負荷(例えば、ヘッドライトなど)を動作させるためのリレー20を駆動するのに用いられる。リレー20は、リレーコイル21とリレー接点22とから構成されている。
リレー駆動回路は、電源としての車載バッテリ10のバッテリ電圧(例えば12V)より低い定電圧(例えば4〜6.5V)を生成する定電圧電源回路としての低保持通電用の電源回路30と、バッテリ電圧によりリレー20に初期通電を行う初期通電回路40と、電源回路30で生成された定電圧を電源としてリレー20に定電流を流して低保持通電を行う低保持通電回路50と、外部入力スイッチ70がオンしたときに初期通電回路40によりリレー20に初期通電を行い、所定時間(初期通電によってリレー接点22を完全に吸引させるに必要な時間)経過後に低保持通電回路50によりリレー20に低保持通電を行うように初期通電回路40および低保持通電回路50を制御する制御回路60とを備えている。なお、この実施形態では、電源回路30で生成された定電圧を電源としてリレー20に定電流を流してリレー接点22を保持状態にすることを低保持通電という。
以下、上記した制御回路60、初期通電回路40、低保持通電回路50、電源回路30について具体的に説明する。
制御回路60は、図1に示すように、外部入力スイッチ70がオンしたとき所定時間の間端子Aからハイレベルの信号を出力し、また外部入力スイッチ70がオンしている間端子Bからハイレベルの信号を出力する。
この制御回路60は、図2に示すように、抵抗61、62と、インバータ63、64と、カウンタ回路65と、アンドゲート66と、オアゲート67と、発振器(OSC)68とから構成されている。この図2に示す構成において、外部入力スイッチ70がオンすると、インバータ63の出力がハイレベルになり、それが端子Bを介して出力される。また、それぞれのカウンタ回路65のリセットが解除され、最終段のカウンタ回路65の出力がローレベル、インバータ63の出力がハイレベルとなり、アンドゲート66から端子Aを介してハイレベルの信号が出力される。アンドゲート66の出力がハイレベルになると、インバータ64の出力がローレベルとなり、オアゲート67を介して、発振器68の出力が初段のカウンタ回路65に入力される。複数のカウンタ回路65がそれぞれのタイマ時間を計時すると、最終段のカウンタ回路65の出力がハイレベルとなり、アンドゲート66の出力がローレベルになる。また、それによってインバータ64の出力がハイレベルになるため、オアゲート67が閉じ、発振器68の出力がカウンタ回路65に入力されなくなる。
したがって、上記した動作により、外部入力スイッチ70がオンすると、カウンタ回路65が計時する所定時間の間のみ、端子Aからハイレベルの信号が出力され、また外部入力スイッチ70がオンしている間、端子Bからハイレベルの信号が出力される。
初期通電回路40は、Nチャネル型のMOSトランジスタ41と、Pチャネル型のMOSトランジスタ42と、抵抗43、44と、ダイオード45とからなり、制御回路60の端子Aからの信号がハイレベルであると、トランジスタ41、42がオンし、バッテリ電圧によりリレー20に初期通電を行ってリレー接点22を完全に吸引させる。なお、ダイオード45は、電流の回り込み防止のために設けられている。
低保持通電回路50は、基準となる定電流を生成する定電流基準回路51と、リレー20に定電流を流すPチャネル型のMOSトランジスタ52とから構成されている。
定電流基準回路51は、Pチャネル型のMOSトランジスタ511と、カレントミラー回路を構成する一対のNチャンネル型のMOSトランジスタ512、513と、制御回路60の端子Bからの信号によりオンオフするNチャネル型のMOSトランジスタ514と、外部入力スイッチ70がオフしているときに演算増幅器516の反転入力端子の電位を接地レベルにするNチャンネル型のMOSトランジスタ515と、演算増幅器516と、抵抗517〜523とから構成されている。なお、抵抗523は、調整抵抗となっている。
この定電流基準回路51において、外部入力スイッチ70がオフしているときは、トランジスタ515がオンし、演算増幅器516の反転入力端子の電位が接地レベルになるため、演算増幅器516の出力がオンし、トランジスタ511がオフしている。したがって、外部入力スイッチ70がオフしているときには、トランジスタ511には定電流が流れない。また、カレントミラー回路を構成するトランジスタ512、513のそれぞれのゲートが高インピーダンスの抵抗517を介して接地されている。このことによっても外部入力スイッチ70がオフしているときにはトランジスタ511は確実にオフされる。
制御回路60の端子Bからの信号がハイレベルになると、トランジスタ514がオンし、演算増幅器516は、反転入力端子と非反転入力端子の電圧が等しくなるようにトランジスタ511のゲート電圧を制御する。この場合、カレントミラー回路を構成するトランジスタ512と513のカレントミラー比を例えば1:1に設定しておくと、トランジスタ512には、トランジスタ513に流れる電流と等しい電流が流れる。そして、その電流によりトランジスタ512と抵抗518との接続点に生じる電圧が演算増幅器516の反転入力端子に入力される。また、電源回路30から出力された定電圧を抵抗519、523により分圧した一定の電圧が演算増幅器516の非反転入力端子に入力される。演算増幅器516は、反転入力端子と非反転入力端子の電圧が等しくなるようにトランジスタ511のゲート電圧を制御するので、トランジスタ511に流れる電流が変化しても、その変化がなくなるようにトランジスタ511のゲート電圧が制御され、トランジスタ511には定電流が流れることになる。
また、定電流基準回路51のトランジスタ511とリレー20に定電流を流すトランジスタ52はカレントミラー回路を構成しており、そのカレントミラー比を1:n(例えば1:1000)に設定しておくと、トランジスタ52には、トランジスタ511に流れる定電流のn倍の定電流が流れる。この定電流がリレー20に流れ、このことによってリレー20の低保持通電が行われる。この低保持通電時の電圧は、リレー接点22のオンを保持できる復帰電圧相当のものである。その電圧は、電源回路30により生成される。
電源回路30は、図3に示すように、電源出力制御回路31、電源出力回路32、フィードバック電圧生成回路33とから構成されている。なお、図において、Cは電源端子、Dは低保持通電用の電源出力端子、Eはフィードバック端子である。このフィードバック端子Eは、リレーコイル21の電圧をモニタするポイントFに接続されている。
電源出力制御回路31は、演算増幅器311と、発振器312と、駆動回路313とから構成され、電源出力回路32は、トランジスタ321と、平滑回路322とから構成されている。発振器312は、演算増幅器311の出力電圧に応じたデューティ比の発振信号を出力し、それによって駆動回路313はトランジスタ321をスイッチングする。このトランジスタ321のスイッチングによって出力されるバッテリ電圧を平滑回路32にて平滑した電圧が定電圧として端子Dから出力される。つまり、この電源回路30は、スイッチングレギュレータにより構成されたものとなっている。なお、この電源回路30としては、高効率な定電圧電源であれば、他の構成のものであってもよい。
また、この電源回路30のフィードバック端子Eには、リレーコイル21の電圧が入力される。フィードバック電圧生成回路33は、フィードバック端子Eから入力されたリレーコイル21の電圧を抵抗331、332により分圧した電圧と、基準電源333の電圧との和をフィードバック電圧として生成し、電源出力制御回路31の演算増幅器311に出力する。演算増幅器311は、端子Dから出力された定電圧とフィードバック電圧生成回路33から出力されたフィードバック電圧とが等しくなるように、発振器312を制御する電圧を出力する。したがって、リレーコイル21の電圧が雰囲気温度により変化したとしても、上記したフィードバック電圧生成回路33、演算増幅器311等の作動により、リレーコイル21の電圧に応じた定電圧が端子Dから出力されることになる。
次に、上記したリレー駆動回路の作動について説明する。
外部入力スイッチ70がオンすると、制御回路60は、端子Aから所定時間の間ハイレベルの信号を出力し、端子Bから外部入力スイッチ70がオンしている間ハイレベルの信号を出力する。
端子Aからハイレベル信号が出力されると、初期通電回路40のトランジスタ41、42がオンし、バッテリ電圧によりリレー20に初期通電が行われる。このことによって、リレー接点22が完全に吸引される。このとき、低保持通電回路50においても、基準となる定電流を生成し、トランジスタ52から定電流を流すように動作している。
そして、外部入力スイッチ70がオンしてから所定時間が経過すると、制御回路60の端子Aから出力される信号がローレベルになるため、初期通電回路40のトランジスタ41、42がオフし、リレー20への初期通電が終了し、低保持通電回路50による低保持通電に切り替わる。この場合、定電流基準回路51が基準となる定電流を生成し、トランジスタ52からリレー20に定電流を供給する。このことによって、リレー接点22は、初期通電によって吸引された状態に保持される。
このように定電流でリレー20を駆動するようにした場合、雰囲気温度が変化するとリレーコイル21の電圧が変化する。つまり、雰囲気温度が上昇すると、図8に示したようにリレーコイル21の抵抗値が増大するため、リレーコイル21に流れる定電流×リレーコイル21の抵抗値の関係により、リレーコイル21の電圧が上昇する。この場合、電源回路30から出力される定電圧を一定にしておくと、低保持通電時の電源出力が不足(飽和)する可能性がある。そこで、この実施形態では、電源回路30において、リレーコイル21の電圧をモニタし、リレーコイル21の電圧に応じた定電圧を出力するというフィードバック制御を行っている。このフィードバック制御により、雰囲気温度が上昇してリレーコイル21の電圧が上昇したときには、電源回路30から出力される定電圧が上昇するので、低保持通電時の電源出力が不足しないようことができる。
以上述べたように、この実施形態によれば、バッテリ電圧より低い定電圧を生成する低保持通電用の電源回路30を有し、外部入力スイッチ70がオンしたときに初期通電回路40がバッテリ電圧によりリレー20に初期通電を行ってリレー接点22を完全に吸引させ、所定時間経過後に低保持通電回路50が電源回路30で生成された定電圧を電源としてリレー20に定電流を流し低保持通電を行うようにしているから、定電圧で低保持通電を行った場合のように雰囲気温度によって起磁力が変化することはないので、安定したリレー接点22の保持を行うことができる。
また、この実施形態によれば、バッテリ電圧より低い定電圧を生成する低保持通電用の電源回路30で生成された定電圧を電源としてリレー20に定電流を流して低保持通電を行っているため、リレードライバ部の電圧降下方式により低保持電圧を作り出すものに比べて、リレードライバ部(この実施形態では、トランジスタ52)での消費電力のロスを低減するとともにその発熱も低減することができる。
また、この実施形態によれば、電源回路30をスイッチングレギュレータで構成しているため、電源回路30での消費電力のロスを低減するとともに低発熱化を図ることができる。
また、この実施形態によれば、電源回路30において、リレーコイル21の電圧をモニタし、リレーコイル21の電圧に応じた定電圧を出力するようにしているから、雰囲気温度が上昇してリレーコイル21の電圧が上昇したとしても、低保持通電時の電源出力が不足しないようにすることができる。
なお、上記した実施形態において、制御回路60は、外部入力スイッチ70がオンしている間、端子Bからハイレベルの信号を出力するものを示したが、端子Aからの出力がハイレベルからローレベルに変化した時から外部入力スイッチ70がオンしている間、端子Bからハイレベルの信号を出力するようにしてもよい。
また、上記した実施形態では、電源回路30において、リレーコイル21の電圧をモニタし、リレーコイル21の電圧に応じた定電圧を出力するものを示したが、リレーコイル21の抵抗値の上昇に応じて電源回路30から出力される定電圧が高くなればよいため、他の手段でリレーコイル21の抵抗値の上昇を検出し、それに応じた定電圧を出力させるようにしてもよい。
例えば、リレーコイル21の温度を検出し、リレーコイル21の温度に応じた定電圧を出力させるようにしてもよい。この場合の構成を図4に示す。図に示すようにリレーコイル21の近傍にその温度を検出する温度検出手段としてサーミスタ80を設け、リレーコイル21の温度が上昇したときにそれに応じた電圧が電源回路30に入力され、図1に示したのと同様の作動によって、電源回路30からリレーコイル21の温度に応じた定電圧が出力される。
また、リレーコイル21の電圧や温度ではなく、リレーコイル21に流れる電流を電流検出手段(例えば、リレーコイル21に直列に接続したシャント抵抗)により、リレーコイル21に流れる電流を検出し、リレーコイル21に流れる電流に応じた定電圧が出力されるようにしてもよい。
(第2実施形態)
本発明の第2実施形態に係る車両用のリレー駆動回路の構成を図5に示す。このリレー駆動回路は、複数のリレー20を駆動するように構成されたもので、第1実施形態で示したのと同一構成の電源回路30と、電源切替回路110と、定電流基準回路120と、制御回路130と、フィードバック回路140とを備えるとともに、複数のリレーの個別の駆動回路(以下、チャンネルという)毎に、初期通電回路150と、低保持通電回路160と、リレーオフ回路170と、リレー駆動用トランジスタ180とを備えたものとなっている。
なお、初期通電回路150と、低保持通電回路160と、リレーオフ回路170は、それぞれアナログスイッチにより構成されており、制御回路130からの制御信号がハイレベルのときに、入出力間が導通するようになっている。なお、アナログスイッチとしては、例えば、図6に示すように、Pチャネル型のMOSトランジスタと、Nチャネル型のMOSトランジスタと、インバータとから構成されたものとすることができる。
また、この実施形態における定電流基準回路120は、定電流源121と、Nチャンネル型のMOSトランジスタ122と、演算増幅器123と、抵抗124と、基準電源125とから構成されている。演算増幅器123は、トランジスタ122のドレイン電圧と基準電源125の電圧とが等しくなるようにトランジスタ122のゲート電圧を制御するので、トランジスタ122には、基準となる定電流が流れる。
また、この定電流基準回路120のトランジスタ122と各チャンネルのリレー駆動用トランジスタ180は、第1実施形態と同様、カレントミラー回路を構成しており、低保持通電時には、カレントミラー比1:nに応じ、定電流基準回路120のトランジスタ122に流れる定電流のn倍の定電流がリレー駆動用トランジスタ180に流れる。
制御回路130は、各チャンネルのリレー20の駆動用に設けられた外部入力スイッチ191、192…のオンオフにより、各チャンネル毎の出力端子G、H、Iの出力、各チャンネル共通の出力端子Jを備えている。この制御回路130は、リレー20を動作させないときは、I端子の出力のみをハイレベルにし、外部入力スイッチ191、192…のいずれかがオンすると、I端子の出力をローレベルにするとともに、オンとなった外部入力スイッチに対応したJ端子およびG端子の出力を所定時間(第1実施形態と同様、リレー接点22を完全に吸引させるに必要な時間)ハイレベルにし、所定時間経過後にJ端子およびG端子の出力をローレベルにするとともにH端子の出力をハイレベルにする。
この制御回路130の具体的な一例を図7に示す。図に示すように制御回路130の各チャンネル毎に設けられた回路は、図2に示すものと同様の構成となっている。すなわち、図2に示すものと同様、抵抗131、132と、インバータ133、134と、カウンタ回路135と、アンドゲート136と、オアゲート137を有し、外部入力スイッチ191がオンすると、端子Gから所定時間の間ハイレベルとなる信号を出力する。なお、発振器138は、各チャンネルに対して共通に用いられている。
また、この図6に示す構成では、インバータ133の出力とアンドゲート136の出力のアンドをとるアンドゲートが設けられている。このため、端子Gからハイレベル信号が出力されなくなったときに、端子Hからハイレベルとなる信号が出力される。また、端子Iからは外部入力スイッチ191がオフしている間ハイレベルとなる信号が出力される。また、各チャンネルの端子Gに出力される信号がオアゲート1301を介して端子Jから出力される。したがって、各チャンネルのいずれかの端子Gからハイレベルが出力されている間、端子Jからもハイレベルの信号が出力される。
このような制御回路130の動作によって、図5に示す各回路がどのように動作するかについて以下説明する。なお、以下の説明では、外部入力スイッチ191のオンオフにより、複数のリレー20のうち1つのリレー20を動作させる場合について説明する。
外部入力スイッチ191がオフしていると、制御回路130は、I端子からハイレベルの信号を出力する。この出力によってリレーオフ回路170がオンし、リレー駆動用トランジスタ180のゲートが接地される。このため、リレー駆動用トランジスタ180はオフし、リレー20には通電が行われない。
この状態から外部入力スイッチ191がオンすると、制御回路130は、I端子の出力をローレベルにするとともに、J端子およびG端子の出力を所定時間ハイレベルにする。このことにより、電源切替回路110のトランジスタ111、112がオンし、バッテリ10による通電に切り替えられる。また、初期通電回路150がオンし、リレー駆動用トランジスタ180がオンする。したがって、バッテリ10から電源切替回路110、リレー20、リレー駆動用トランジスタ180を介して初期通電が行われ、リレー接点22が完全に吸引される。
その後、所定時間が経過すると、制御回路130は、J端子およびG端子の出力をローレベルにするとともにH端子の出力をハイレベルにする。このことにより、電源切替回路110のトランジスタ111、112がオフするため、電源回路30からの通電に切り替えられる。また、低保持通電回路160がオンする。その結果、電源回路30からリレー20、リレー駆動用トランジスタ180を介して低保持通電が行われる。このとき、リレー駆動用トランジスタ180には、定電流基準回路120のトランジスタ122に流れる定電流のn倍の定電流が流れる。このことによって、リレー接点22は、初期通電によって吸引された状態に保持される。
なお、他のチャンネルについても、初期通電回路150と、低保持通電回路160と、リレーオフ回路170と、リレー駆動用トランジスタ180が備えられており、上記したのと同様の動作が行われる。
このように複数のリレー20を駆動する場合に、電源回路30と、電源切替回路110と、定電流基準回路120とをそれぞれのチャンネルに対して共通に用いているため、回路構成を簡素化することができる。
また、この実施形態では、リレーコイル21の電圧をモニタし、リレーコイル21の電圧に応じた定電圧を出力するようにするため、ダイオード141、142…によるダイオードオア回路と、フィードバック回路140が設けられている。ダイオードオア回路141、142…は、各チャンネルのリレーコイル21の下流側のうち最も低い電圧を検出し、フィードバック回路140は、その検出した電圧を反転型の増幅回路で反転増幅する。このように反転増幅するのは、リレーコイル21の抵抗値が上昇するにつれてリレーコイル21の下流側の電圧が低下することになるため、リレーコイル21の抵抗値が上昇するにつれて上昇した電圧を得るようにするためである。
したがって、フィードバック回路140の出力電圧を電源回路30のE端子に入力することにより、第1実施形態と同様、リレーコイル21の抵抗値の上昇に応じて電源回路30から出力される定電圧を高くすることができる。
なお、リレーコイル21の抵抗値の上昇の検出は、電圧による検出のみならず、リレーコイル21の温度、リレーコイル21に流れる電流を検出により行うようにしてもよい。
上記した第2実施形態によれば、第1実施形態と同様、電源回路30、リレー駆動用トランジスタ180での消費電力のロスを低減するとともに発熱も低減することができる。
なお、上記した第1、第2実施形態では、外部入力スイッチがオンしたときの最初のみに初期通電を行ってリレー接点22を完全に吸引させるものを示したが、初期通電を定期的に行ってリレー接点22を繰り返し吸引させるリフレッシュ駆動を行うようにしてもよい。
また、上記した第1、第2実施形態では、初期通電を行ってから所定時間経過後に低保持通電を行うものを示したが、その所定時間は、初期通電によってリレー接点22が吸引されるに必要な時間であり、必ずしも固定の時間である必要はなく、何らかの条件で可変となる時間であってもよい。
また、上記した第1、第2実施形態の各種トランジスタは、それぞれで示したMOSトランジスタ、バイポーラに限られるものではなく、リレー駆動回路の回路構成に応じて適宜変更されていてもよい。
また、上記した第1、第2実施形態では、制御回路130をハード的に構成するものを示したが、マイクロコンピュータを用いてソフト的に制御するようにしてもよい。
また、本発明は、車両用のリレー駆動回路に限らず、他の用途のリレー駆動回路にも適用することができる。
本発明の第1実施形態に係る車両用のリレー駆動回路の構成を示す図である。 図1中の制御回路60の具体的な構成を示す図である。 図1中の電源回路30の具体的な構成を示す図である。 本発明の第1実施形態に係る車両用のリレー駆動回路の変形例を示す図である。 本発明の第2実施形態に係る車両用のリレー駆動回路の構成を示す図である。 図5中の初期通電回路150、低保持通電回路160およびリレーオフ回路170の構成を示す図である。 図5中の制御回路130の具体的な構成を示す図である。 従来のリレー駆動回路の問題を説明するための図である。
符号の説明
10…車載バッテリ、20…リレー、21…リレーコイル、22…リレー接点、30…電源回路、40…初期通電回路、50…低保持通電回路、60…制御回路、70、191、192…外部入力スイッチ、110…電源切替回路、120…定電流基準回路、130…制御回路、140…フィードバック回路、150…初期通電回路、160…低保持通電回路、170…リレーオフ回路、180…リレー駆動用トランジスタ。

Claims (8)

  1. 電源(10)から定電圧を生成する定電圧電源回路(30)と、
    リレー(20)を動作させるときに、前記電源(10)により前記リレー(20)に初期通電を行って前記リレー(20)のリレー接点(22)を吸引させ、この吸引後に前記定電圧電源回路(30)で生成された定電圧を電源として前記リレー(20)に定電流を流して前記リレー接点(22)を前記吸引された状態に保持させる回路(40、50、60、110、120、130、140、150、160、170)と、を備えたことを特徴とするリレー駆動回路。
  2. 電源(10)から定電圧を生成する定電圧電源回路(30)と、
    前記電源(10)によりリレー(20)に初期通電を行って前記リレー(20)のリレー接点(22)を吸引させる初期通電回路(40)と、
    前記定電圧電源回路(30)で生成された定電圧を電源として前記リレー(20)に定電流を流して前記リレー接点(22)を前記吸引された状態に保持させる保持用通電回路(50)と、
    前記リレー(20)を動作させるときに、前記初期通電回路(40)により前記リレー(20)に初期通電を行い、所定時間が経過した後に前記保持用通電回路(50)により前記リレー(20)に前記定電流を流すように、前記初期通電回路(40)および前記保持用通電回路(50)を制御する制御回路(60)と、を備えたことを特徴とするリレー駆動回路。
  3. 前記保持用通電回路(50)は、基準となる定電流が第1のトランジスタ(511)に流れるように前記定電流を生成する定電流基準回路(51)と、前記第1のトランジスタ(511)とカレントミラー回路を構成し前記第1のトランジスタ(511)に流れる電流の所定倍の定電流を前記リレー(20)に流す第2のトランジスタ(52)とを有することを特徴とする請求項2に記載のリレー駆動回路。
  4. 電源(10)から定電圧を生成する定電圧電源回路(30)と、
    リレー(20)に前記電源(10)により通電を行うか前記定電圧を電源として通電を行うかを切り替える電源切替回路(110)と、
    前記リレー(20)に初期通電を行って前記リレー(20)のリレー接点(22)を吸引させる初期通電回路(150)と、
    前記定電圧電源回路(30)で生成された定電圧を電源として前記リレー(20)に定電流を流して前記リレー接点(22)を前記吸引された状態に保持させる保持用通電回路(120、160)と、
    前記リレー(20)を動作させるときに、前記電源切替回路(110)により前記電源(10)による通電に切り替えて、前記初期通電回路(150)により前記リレー(20)に初期通電を行い、所定時間が経過した後に、前記電源切替回路(110)により前記定電圧による通電に切り替えて、前記保持用通電回路(120、160)により前記リレー(20)に前記定電流を流すように、前記電源切替回路(110)、前記初期通電回路(150)および前記保持用通電回路(120、160)を制御する制御回路(130)と、を備えたことを特徴とするリレー駆動回路。
  5. 前記リレー(20)に通電を行うための通電用トランジスタ(180)を備え、前記初期通電回路(150)および前記保持用通電回路(120、160)は、前記通電用トランジスタ(180)を制御してそれぞれの通電を行うことを特徴とする請求項4に記載のリレー駆動回路。
  6. 前記保持用通電回路(120、160)は、基準となる定電流がトランジスタ(122)に流れるように構成された定電流基準回路(120)を有し、この定電流基準回路(120)の前記トランジスタ(122)は前記通電用トランジスタ(180)とカレントミラー回路を構成しており、前記定電圧による通電時に、前記通電用トランジスタ(180)には、前記定電流基準回路(120)のトランジスタ(122)に流れる電流の所定倍の定電流が流れるようになっているを特徴とする請求項5に記載のリレー駆動回路。
  7. 前記定電圧電源回路(30)は、スイッチングレキュレータにより構成されていることを特徴とする請求項1ないし6のいずれか1つに記載のリレー駆動回路。
  8. 前記定電圧電源回路(30)は、前記リレー(20)のリレーコイル(21)の抵抗値を示す情報に基づいて前記リレーコイル(21)の抵抗値が上昇したときに前記定電圧を上昇させるように構成されていることを特徴とする請求項1ないし7のいずれか1つに記載のリレー駆動回路。
JP2004379805A 2004-12-28 2004-12-28 リレー駆動回路 Expired - Fee Related JP4513562B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004379805A JP4513562B2 (ja) 2004-12-28 2004-12-28 リレー駆動回路
US11/300,288 US20060139839A1 (en) 2004-12-28 2005-12-15 Constant current relay drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379805A JP4513562B2 (ja) 2004-12-28 2004-12-28 リレー駆動回路

Publications (2)

Publication Number Publication Date
JP2006185811A JP2006185811A (ja) 2006-07-13
JP4513562B2 true JP4513562B2 (ja) 2010-07-28

Family

ID=36611203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379805A Expired - Fee Related JP4513562B2 (ja) 2004-12-28 2004-12-28 リレー駆動回路

Country Status (2)

Country Link
US (1) US20060139839A1 (ja)
JP (1) JP4513562B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032378A (ko) * 2007-05-18 2010-03-25 파나소닉 주식회사 릴레이 구동 회로 및 이를 이용한 전지 팩
US8094427B2 (en) * 2009-01-15 2012-01-10 Leach International Corporation System for precisely controlling the operational characteristics of a relay
US20130009464A1 (en) * 2010-03-23 2013-01-10 A123 Systems, Inc. System and Method for Controlling a Battery Pack Output Contactor
CN102709117B (zh) * 2011-03-28 2014-10-08 上海西艾爱电子有限公司 继电器节能驱动电路
JP2013101843A (ja) 2011-11-09 2013-05-23 Denso Corp リレー駆動装置
CN102693872B (zh) * 2012-06-25 2015-04-22 福州大学 基于低电压电容的交流接触器控制器及控制方法
DE102012218983A1 (de) * 2012-10-18 2014-04-24 Robert Bosch Gmbh Ansteuerschaltung für mindestens zwei Schütze und ein Verfahren zum Betrieb mindestens zweier Schütze
US9437381B2 (en) * 2013-03-14 2016-09-06 Tyco Electronics Corporation Electric vehicle support equipment having a smart plug with a relay control circuit
US10211444B2 (en) 2013-09-06 2019-02-19 Johnson Controls Technology Company System and method for venting pressurized gas from a battery module
JP6512192B2 (ja) * 2016-08-04 2019-05-15 オンキヨー株式会社 リレー駆動回路
CN108183048B (zh) * 2018-02-05 2019-08-16 广东美的制冷设备有限公司 继电器驱动电路与空调器
CN110970262A (zh) * 2019-12-31 2020-04-07 合肥美的智能科技有限公司 功率继电器的驱动控制装置和方法
JP7349475B2 (ja) * 2021-06-22 2023-09-22 シャープ株式会社 リレー制御回路および電源回路
DE102022212030A1 (de) * 2022-11-14 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bestimmen eines Haltespannungsnennwerts eines Relais, Verfahren zum Schalten eines Relais unter Verwendung eines derart bestimmten Haltespannungsnennwerts, Recheneinheit, Anordnung und Ladekabel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020419A (ja) * 1983-07-15 1985-02-01 松下電工株式会社 リレ−駆動回路
JPS61187304A (ja) * 1985-02-15 1986-08-21 Togami Electric Mfg Co Ltd 直流電磁石装置
JPH06260068A (ja) * 1993-02-26 1994-09-16 Honda Lock Mfg Co Ltd 電磁スイッチの制御回路
JP2002237410A (ja) * 2001-02-08 2002-08-23 Denso Corp 電磁弁駆動回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318154A (en) * 1980-10-16 1982-03-02 General Electric Company Fast relay turn on circuit with low holding current
JPS6421536U (ja) * 1987-07-27 1989-02-02
JP4413724B2 (ja) * 2003-12-11 2010-02-10 アンデン株式会社 リレー装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020419A (ja) * 1983-07-15 1985-02-01 松下電工株式会社 リレ−駆動回路
JPS61187304A (ja) * 1985-02-15 1986-08-21 Togami Electric Mfg Co Ltd 直流電磁石装置
JPH06260068A (ja) * 1993-02-26 1994-09-16 Honda Lock Mfg Co Ltd 電磁スイッチの制御回路
JP2002237410A (ja) * 2001-02-08 2002-08-23 Denso Corp 電磁弁駆動回路

Also Published As

Publication number Publication date
JP2006185811A (ja) 2006-07-13
US20060139839A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4513562B2 (ja) リレー駆動回路
CN107370340B (zh) 电流检测电路和包括该电流检测电路的dcdc转换器
JP4482913B2 (ja) 電磁弁及び電磁弁駆動回路
JP4022208B2 (ja) 線形および飽和領域で動作可能なパワーmosfet用電流センス
KR19980071516A (ko) 기준전압 발생회로
JP2012226572A (ja) チャージポンプ型の昇圧システム及び半導体チップ
JP2009205846A (ja) 車両用点灯制御装置
JP2003333837A (ja) 電源装置
JP4462734B2 (ja) 駆動信号供給回路
JP6447573B2 (ja) 電源装置および電子制御装置
JP4017850B2 (ja) 電源回路
JP5605263B2 (ja) 負荷駆動装置
US20060032238A1 (en) Optical transmitter with forward controlled peltier device
JP2001222331A (ja) 定電圧レギュレータの消費電流特性、リップルリジェクション特性切り替えシステム及び方法
JP2020005085A (ja) スイッチング素子の駆動回路
WO2017081878A1 (ja) 給電制御回路
JP2019517238A (ja) Dc−dcコンバータのための電力段
JP4289195B2 (ja) 電源装置
JP6365424B2 (ja) ブートストラップ・プリドライバ
JP2020188374A (ja) 電磁弁駆動装置
US20100090754A1 (en) Boosting circuit
JP5072729B2 (ja) Led駆動用チャージポンプ回路
JP4074844B2 (ja) チャージポンプ式電源回路とその駆動方法
JP2007104823A (ja) チャージポンプ回路
JP4714317B2 (ja) 定電圧回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Ref document number: 4513562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160521

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees