WO2017081878A1 - 給電制御回路 - Google Patents
給電制御回路 Download PDFInfo
- Publication number
- WO2017081878A1 WO2017081878A1 PCT/JP2016/066427 JP2016066427W WO2017081878A1 WO 2017081878 A1 WO2017081878 A1 WO 2017081878A1 JP 2016066427 W JP2016066427 W JP 2016066427W WO 2017081878 A1 WO2017081878 A1 WO 2017081878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- channel fet
- load
- storage battery
- power
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
Definitions
- the present invention relates to a power supply control circuit that controls power supply from a storage battery, and more particularly, to a circuit intended to reduce standby power consumption.
- Patent Documents 1 to 3 various electric circuits that suppress discharge during standby of the storage battery and reduce consumption of the storage battery have been introduced (for example, see Patent Documents 1 to 3 below). These all employ a microcomputer chip equipped with a timer or the like to control power supply, and in order to operate the microcomputer, among DC / DC converters and the like, the power consumption is particularly small. It was necessary to select value-added products. Among them, there is also provided a technology that employs a self-holding circuit using a one-shot multivibrator or a flip-flop, and stops power supply to a load driver or its control device on the condition that the operation does not exist for a certain period of time ( For example, see Patent Document 4 below).
- the above-described conventional technique has a problem that not only a small amount of power is required for the power supply control even during standby.
- batteries of vehicles and electrical equipment that are not used on a daily basis such as batteries for electric vehicles used for hobbies, such standby power consumption becomes a significant factor that leads to power loss when it is desired to use them. I can't deny that.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a power supply control circuit that can be left for a longer period without replenishing the capacity of the battery.
- the power supply control circuit made to achieve the above object is a power supply control circuit that is connected to a storage battery and one or a plurality of loads that are supplied with power from the storage battery and controls power supply from the storage battery to the load.
- An operation detecting means for detecting an operation state of a load, a P-channel FET (Field Effect Transistor) for supplying power of the storage battery to the load, an N-channel FET for controlling on / off of the P-channel FET, and the N-channel FET
- a control signal supply circuit for controlling on / off of the N-channel FET, the control signal supply circuit comprising a capacitor for maintaining a power supply control signal equal to or higher than the on-voltage of the N-channel FET for a set period at the gate of the N-channel FET, Means for controlling the power supply to the gate of the N-channel FET at the ON voltage or higher during operation of the load
- a self-holding signal for holding a signal for a set period is supplied at least once in the set period
- the power supply control circuit according to the present invention made to achieve the above object is connected to a storage battery, one or a plurality of loads fed from the storage battery, and a switch for supplying / shutting off power from the storage battery to the load.
- a power supply control circuit that controls power supply from a storage battery to the load, an operation detection unit that detects an operation state of the load, a P-channel FET that supplies power of the storage battery to the load, and on / off of the P-channel FET An N-channel FET to be controlled, and a control signal supply circuit for controlling on / off of the N-channel FET.
- the control signal supply circuit turns on the N-channel FET between the storage battery and GND when the power is supplied.
- a voltage dividing resistor that forms a voltage dividing point equal to or higher than the voltage, and the voltage dividing point and the N channel FET gate when the power is supplied A capacitor for maintaining a power supply control signal equal to or higher than the on-voltage of the N-channel FET for a set period, and the operation detecting means is connected to the gate of the N-channel FET during the operation of the load.
- a self-holding signal that holds the power supply control signal for a set period can be supplied once or more in the set period.
- the switch for supplying and shutting off the power is preferably an automatic return switch.
- the load is an electric motor of an electric vehicle or an electric motor and a motor driver thereof, and a detection target of the operation detection unit is a power supply control circuit configuration that is a throttle operation of the electric vehicle or an operation of a load accompanying the operation. You can also.
- the supply period of the self-holding signal is set to be equal to or shorter than a set period in which the gate of the N-channel FET is held at the ON voltage or more by the self-holding signal.
- the power supply control circuit of the present invention it is possible to adopt a very simple circuit configuration including only elements with low power consumption without using a so-called microcomputer system with relatively high power consumption. Note that a single circuit adopting the above circuit configuration can be shared not only with an electric device but also with its driver. Further, by using an automatic return switch as a switch for supplying and shutting off the power, it is possible to save power for the power supply control circuit.
- the operation detection unit supplies a self-holding signal that maintains the power supply control signal for a specified time during the operation of the load, and thus does not cause power consumption when the load is left unattended. .
- FIG. 1 is connected to a battery (storage battery 1) of an electric vehicle, an electric motor (first load) 2 and a motor driver (including a second load, controller) 3 fed from the storage battery 1, and the storage battery 1 is a power supply control circuit that controls power supply from 1 to the electric motor 2 and the motor driver 3.
- Examples of the power supply control circuit include a device (operation detection means) for detecting an operation state such as the electric motor 2, the motor driver 3 or the throttle device 4, and the storage battery 1 with the load (the electric motor 2 and the motor driver).
- P channel FET hereinafter referred to as “feed FET”
- N channel FET hereinafter referred to as “feed control FET”
- feed control FET for controlling on / off of the feed FET u1 (same drain / source connection / cutoff).
- a control signal supply circuit 5 for controlling on / off of the power supply control FET u2.
- This example includes an automatic return switch (hereinafter referred to as “power switch”) 6 that supplies driving power to the power supply control circuit from the storage battery 1 and shuts it off.
- the control signal supply circuit 5 generates an activation signal by an operation of turning on the power switch 6.
- the power supply FETu1 has a source connected to the positive terminal of the storage battery 1 and a drain connected as a power source for the electric motor 2 and its motor driver 3.
- the source and gate of the power supply FETu1 are connected via a resistor (hereinafter referred to as “bias resistor”) r1.
- the power supply control FETu2 has a source connected to GND and a gate connected to the output of the control signal supply circuit 5.
- the feeding FET u1 and the feeding control FET u2 are connected via a resistor (hereinafter referred to as “drain resistor”) r2 between the former gate and the latter drain.
- the control signal supply circuit 5 of this example is connected to the storage battery 1 via the power switch 6 (see FIG. 4). That is, the power switch 6 has one end connected to the positive terminal of the storage battery 1 and the other end connected as a power source for the control signal supply circuit 5.
- the control signal supply circuit 5 connects a pair of voltage dividing resistors r3 and r4 that form a voltage dividing point P1 higher than the ON voltage of the power supply control FETu2 between the storage battery 1 and GND, and the voltage dividing point A capacitor c, a diode (hereinafter referred to as “charging diode”) d1 and a resistor (hereinafter referred to as “protective resistor”) r5 are connected in series between P1 and the gate (gate) of the power supply control FETu2. At that time, the charging diode d1 has one end of the capacitor c connected to the anode and one end of the protective resistor r5 connected to the cathode.
- the control signal supply circuit 5 connects a diode (hereinafter referred to as “discharge diode”) d2 between the anode of the charging diode d1 and GND, and a resistor between the cathode of the charging diode d1 and GND.
- R6 (hereinafter referred to as "control bias resistor") is connected.
- the discharge diode d2 has a cathode connected to the anode of the charging diode d1 and an anode connected to GND.
- the automatic return switch is kept on (closed contact) only during the operation period, and is automatically turned off (contact opened) when the automatic return switch is released.
- the power switch 6 can be a toggle switch or the like instead of the automatic return switch.
- the voltage dividing resistors r3 and r4 are relatively high. It is desirable to select an element having resistance, and the capacitor c should be set so as to obtain an appropriate setting period t1.
- the power supply control circuit can be configured as a module to which the automatic return switch is externally attached.
- the example of the power supply control circuit is configured as described above, and the circuit also has a function as an amplifier circuit as a whole, and when the electric current consumption of the electric motor 2 is small (for example, up to about 5 amperes).
- the drain current of the power supply FET u1 can be used for controlling and driving the electric motor 2 and its motor driver 3 (see, for example, FIG. 3B).
- the consumption current of the electric motor 2 is relatively large (about 5 amperes to several hundred amperes) and a large amount of power that cannot be covered by the power supply FETu1
- a large-capacity relay switch (connector) is driven by a control circuit of an operating motor driver, and the electric motor 2 and its motor driver 3 can be controlled and driven by a current passing through the relay (for example, FIG. 3). (See (A)).
- a DC power source for example, about 50 V to several hundreds V
- an intermediate voltage for example, about 18V
- the capacitor c is charged during the ON period of the power switch 6, whereby a power supply control signal equal to or higher than the ON voltage is generated at the gate terminal of the power supply control FETu2, and the power supply control FETu2 is supplied to the power supply control FETu2.
- a drain current flows.
- the gate voltage of the power supply FETu1 drops, a power supply signal is generated at the self-holding point, the power supply FETu1 is turned on, and a circuit capable of supplying a drain current of several amperes to the power supply FETu1 is configured. Then, power is supplied to the electric motor 2 and its motor driver 3 (see, for example, FIG. 3B).
- the control signal supply circuit 5 has a self-holding function, and the power supply control signal is maintained for a set period t1 by charging the capacitor c, and the activation signal is turned on again by turning on the power switch 6 within the set period t1.
- self-holding point P2 the power supply control FETu2 and the power supply FETu1 As a result, the power supply to the electric motor 2 and its motor driver 3 is cut off.
- the throttle device 4 in this example supplies a driver's operation input to the controller of the motor driver 3, and the motor driver 3 supplies the driver's operation input to the self-holding point P2 as the self-holding signal.
- the self-holding signal is, for example, a signal that can maintain the capacitor c at an on-voltage with a cycle shorter than the set period t1 (set period t2) only during a period when the throttle device 4 is open.
- the motor driver 3 includes a power supply circuit that supplies power to the electric motor 1 and a controller that controls the operation of the power supply circuit based on the operation input.
- the supply of the start signal by turning on the power switch 6 again or the supply of the self-holding signal in the cycle of the set period t2 by, for example, a throttle operation within the set period t1 is performed. If not applied to the cathode of d1, no current flows through the power supply FETu1, the power supply control FETu2, and the control signal supply circuit 5, and if the resistance value of the voltage dividing resistor is set high, the storage battery 1 This discharge can be suppressed from several microamperes to several nanoamperes, and even when left for a long period of time, a power source for use again can be secured. Moreover, since the throttle device 4 that supplies the self-holding signal supplies the self-holding signal only during the operation of the load, there is no possibility of consuming the power of the storage battery 1 during standby.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Direct Current Feeding And Distribution (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本発明は、バッテリーの能力を補充することなく、より長い期間の放置を可能とする給電制御回路を提供するものであり、その構成は、蓄電池1及びそこから給電される負荷に接続され給電を制御する給電制御回路において、前記負荷の運転状況を検知する運転検知手段と、前記蓄電池1の電力を前記負荷に供給するPチャネルFETu1と、当該PチャネルFETu1のオンオフを制御するNチャネルFETu2と、当該NチャネルFETu2のオンオフを制御する制御信号供給回路5を備え、前記制御信号供給回路5は、前記NチャネルFETu2のゲートに前記NチャネルFETu2のオン電圧以上の給電制御信号を設定期間維持するコンデンサcを備え、前記運転検知手段は、前記負荷の運転時において前記NチャネルFETu2のゲートに前記オン電圧以上の給電制御信号を設定期間保持する自己保持信号を当該設定期間に一度以上供給するものである。
Description
本発明は、蓄電池からの給電を制御する給電制御回路に関するものであって、特に、待機電力の消費量を削減することを目的とした回路に関する。
従来、蓄電池の待機時における放電を抑制し、蓄電池の消費を節減する電気回路が種々紹介されている(例えば下記特許文献1乃至特許文献3参照)。
これらは、いずれも給電を制御するために、タイマ等を備えたマイクロコンピュータチップを採用したものであって、マイコンを動作させるためには、DC/DCコンバータ等のうち、特に消費電力の小さい高付加価値品を選択することが必要であった。
なかには、ワンショットマルチバイブレータやフリップフロップを用いた自己保持回路を採用し、操作が一定時間存在しないことを要件として、負荷のドライバやその制御装置への給電を停止する技術も提供されている(例えば下記特許文献4参照)。
これらは、いずれも給電を制御するために、タイマ等を備えたマイクロコンピュータチップを採用したものであって、マイコンを動作させるためには、DC/DCコンバータ等のうち、特に消費電力の小さい高付加価値品を選択することが必要であった。
なかには、ワンショットマルチバイブレータやフリップフロップを用いた自己保持回路を採用し、操作が一定時間存在しないことを要件として、負荷のドライバやその制御装置への給電を停止する技術も提供されている(例えば下記特許文献4参照)。
しかしながら、上記従来の技術では、待機時にあっても前記給電制御に要する電力が少なからず消費されると言う問題がある。
殊に、趣味に使用される電動車両のバッテリー等、日常的に使用されない車両や電気機器のバッテリーについては、その様な待機電力の消費が、使用したい時の電力消失につながる重大な要因となることは否めない。
殊に、趣味に使用される電動車両のバッテリー等、日常的に使用されない車両や電気機器のバッテリーについては、その様な待機電力の消費が、使用したい時の電力消失につながる重大な要因となることは否めない。
本発明は、上記実情に鑑みてなされたものであって、バッテリーの能力を補充することなく、より長い期間の放置を可能とする給電制御回路の提供を目的とする。
上記目的を達成するためになされた本発明による給電制御回路は、蓄電池及び当該蓄電池から給電される一又は複数の負荷に接続され前記蓄電池から前記負荷への給電を制御する給電制御回路において、前記負荷の運転状況を検知する運転検知手段と、前記蓄電池の電力を前記負荷に供給するPチャネルFET(Field Effect Transistor)と、当該PチャネルFETのオンオフを制御するNチャネルFETと、当該NチャネルFETのオンオフを制御する制御信号供給回路を備え、前記制御信号供給回路は、前記NチャネルFETのゲートに前記NチャネルFETのオン電圧以上の給電制御信号を設定期間維持するコンデンサを備え、前記運転検知手段は、前記負荷の運転時において前記NチャネルFETのゲートに前記オン電圧以上の給電制御信号を設定期間保持する自己保持信号を当該設定期間に一度以上供給することを特徴とする。
上記目的を達成するためになされた本発明による給電制御回路は、蓄電池、当該蓄電池から給電される一又は複数の負荷及び前記蓄電池から前記負荷への電源の供給・遮断を行うスイッチに接続され前記蓄電池から前記負荷への給電を制御する給電制御回路において、前記負荷の運転状況を検知する運転検知手段と、前記蓄電池の電力を前記負荷に供給するPチャネルFETと、当該PチャネルFETのオンオフを制御するNチャネルFETと、当該NチャネルFETのオンオフを制御する制御信号供給回路を備え、前記制御信号供給回路は、前記電源の供給時において前記蓄電池とGNDとの間に前記NチャネルFETのオン電圧以上の分圧点を形成する分圧抵抗器と、前記電源の供給時において前記分圧点と前記NチャネルFETのゲートとの間に前記NチャネルFETのオン電圧以上の給電制御信号を設定期間維持するコンデンサを備え、前記運転検知手段は、前記負荷の運転時において前記NチャネルFETのゲートに前記オン電圧以上の給電制御信号を設定期間保持する自己保持信号を前記当該設定期間に一度以上供給する構成とすることができる。
前記電源の供給・遮断を行うスイッチは、自動戻りスイッチであることが望ましい。
前記負荷は、電動車両の電動モーター又は電動モーター及びそのモータードライバであり、前記運転検知手段の検知対象は、前記電動車両のスロットル操作又はそれに伴う負荷の動作である給電制御回路の構成を採ることもできる。
尚、前記自己保持信号の供給周期は、当該自己保持信号によって前記NチャネルFETのゲートを前記オン電圧以上に保持する設定期間以下とする。
前記負荷は、電動車両の電動モーター又は電動モーター及びそのモータードライバであり、前記運転検知手段の検知対象は、前記電動車両のスロットル操作又はそれに伴う負荷の動作である給電制御回路の構成を採ることもできる。
尚、前記自己保持信号の供給周期は、当該自己保持信号によって前記NチャネルFETのゲートを前記オン電圧以上に保持する設定期間以下とする。
本発明による給電制御回路によれば、電力消費が比較的多い所謂マイクロコンピュータシステムを用いることなく電力消費量が少ない素子のみからなる極めて単純な回路構成を採ることができる。尚、前記回路構成を採用した単一の回路を、電気機器のみならずそのドライバと共用することもできる。
また、前記電源の供給・遮断を行うスイッチとして自動戻りスイッチを用いることによって、前記給電制御回路の電源をも節約することができる。
また、前記電源の供給・遮断を行うスイッチとして自動戻りスイッチを用いることによって、前記給電制御回路の電源をも節約することができる。
以上の構成を採ることによって、長時間使用しない可能性が高い電気機器に搭載された蓄電池の消耗を待機電源のレベルから削減でき、使用中に一定期間放置された場合であっても、自動的に所謂スリープモードに移行することによって節電を図ることが可能となる他、製造コストも削減できるというメリットがある。
また、当該回路構成によれば、前記運転検知手段は、前記負荷の運転時において給電制御信号を規定時間維持する自己保持信号を供給するので、当該負荷の放置時における電源消耗の原因とはならない。
また、当該回路構成によれば、前記運転検知手段は、前記負荷の運転時において給電制御信号を規定時間維持する自己保持信号を供給するので、当該負荷の放置時における電源消耗の原因とはならない。
以下、本発明による給電制御回路の実施の形態を図面に基づき詳細に説明する。
図1に示す例は、電動車両のバッテリー(蓄電池1)、当該蓄電池1から給電される電気モーター(第1負荷)2及びモータードライバ(第2負荷、コントローラを含む)3に接続され、前記蓄電池1から前記電気モーター2や前記モータードライバ3への給電を制御する給電制御回路である。
図1に示す例は、電動車両のバッテリー(蓄電池1)、当該蓄電池1から給電される電気モーター(第1負荷)2及びモータードライバ(第2負荷、コントローラを含む)3に接続され、前記蓄電池1から前記電気モーター2や前記モータードライバ3への給電を制御する給電制御回路である。
この給電制御回路の例は、前記電気モーター2、前記モータードライバ3又はスロットル装置4等の運転状況を検知する装置(運転検知手段)と、前記蓄電池1を前記負荷(電気モーター2及び前記モータードライバ3等)に供給するPチャネルFET(以下「給電FET」という)u1と、当該給電FETu1のオン・オフ(ドレイン-ソース間の同通・遮断)を制御するNチャネルFET(以下「給電制御FET」という)u2と、当該給電制御FETu2のオンオフを制御する制御信号供給回路5を備える。
この例は、当該給電制御回路へ前記蓄電池1から駆動電力を供給し遮断する自動戻りスイッチ(以下「電源スイッチ」という)6を備える。
当該制御信号供給回路5は、当該電源スイッチ6をオンとする操作によって起動信号を発生する。
当該制御信号供給回路5は、当該電源スイッチ6をオンとする操作によって起動信号を発生する。
この例では、前記給電FETu1は、ソースが前記蓄電池1の正端子に接続され、ドレインが前記電気モーター2及びそのモータードライバ3の電源として接続される。
前記電源FETu1のソース-ゲート間は、抵抗器(以下「バイアス抵抗器」という)r1を介在して接続する。
一方、前記給電制御FETu2は、ソースがGNDに接続され、ゲートが前記制御信号供給回路5の出力に接続される。
前記給電FETu1と前記給電制御FETu2は、前者のゲートと後者のドレインとの間に抵抗器(以下「ドレイン抵抗器」という)r2を介在して接続する。
前記電源FETu1のソース-ゲート間は、抵抗器(以下「バイアス抵抗器」という)r1を介在して接続する。
一方、前記給電制御FETu2は、ソースがGNDに接続され、ゲートが前記制御信号供給回路5の出力に接続される。
前記給電FETu1と前記給電制御FETu2は、前者のゲートと後者のドレインとの間に抵抗器(以下「ドレイン抵抗器」という)r2を介在して接続する。
この例の前記制御信号供給回路5は、前記電源スイッチ6を介して前記蓄電池1に接続される(図4参照)。
即ち、前記電源スイッチ6は、一端が前記蓄電池1の正端子に接続され、他端が前記制御信号供給回路5の電源として接続される。
前記制御信号供給回路5は、前記蓄電池1とGNDとの間に前記給電制御FETu2のオン電圧以上の分圧点P1を形成する一対の分圧抵抗器r3,r4を接続し、前記分圧点P1と前記給電制御FETu2のゲート(ゲート)との間に、コンデンサc、ダイオード(以下「充電ダイオードという)d1及び抵抗器(以下「保護抵抗器」という)r5を直列接続する。その際、前記充電ダイオードd1は、アノードに前記コンデンサcの一端を接続し、カソードに前記保護抵抗器r5の一端を接続する。
即ち、前記電源スイッチ6は、一端が前記蓄電池1の正端子に接続され、他端が前記制御信号供給回路5の電源として接続される。
前記制御信号供給回路5は、前記蓄電池1とGNDとの間に前記給電制御FETu2のオン電圧以上の分圧点P1を形成する一対の分圧抵抗器r3,r4を接続し、前記分圧点P1と前記給電制御FETu2のゲート(ゲート)との間に、コンデンサc、ダイオード(以下「充電ダイオードという)d1及び抵抗器(以下「保護抵抗器」という)r5を直列接続する。その際、前記充電ダイオードd1は、アノードに前記コンデンサcの一端を接続し、カソードに前記保護抵抗器r5の一端を接続する。
また、前記制御信号供給回路5は、前記充電ダイオードd1のアノードとGNDとの間にダイオード(以下「放電ダイオード」という)d2を接続し、前記充電ダイオードd1のカソードとGNDとの間に抵抗器(以下「制御バイアス抵抗器」という)r6を接続する。
尚、前記放電ダイオードd2は、カソードを前記充電ダイオードd1のアノードに接続し、アノードをGNDに接続する。
尚、前記放電ダイオードd2は、カソードを前記充電ダイオードd1のアノードに接続し、アノードをGNDに接続する。
ここで、前記自動戻りスイッチとは、操作している期間のみオン状態(接点を閉じた状態)を保ち、当該自動戻りスイッチから手を離すと、自動的にオフ状態(接点を開いた状態)となるスイッチである。
前記電源スイッチ6は、自動戻りスイッチに替えてトグルスイッチなどを用いることもできるが、前記給電制御回路による蓄電池1の電力消費を抑える上では、前記分圧抵抗器r3,r4について、比較的高い抵抗を持つ素子を選択することが望ましく、前記コンデンサcについても適正な設定期間t1を得るように設定すべきである。
前記給電制御回路は、当該自動戻りスイッチを外付けするモジュールとして構成することもできる。
前記電源スイッチ6は、自動戻りスイッチに替えてトグルスイッチなどを用いることもできるが、前記給電制御回路による蓄電池1の電力消費を抑える上では、前記分圧抵抗器r3,r4について、比較的高い抵抗を持つ素子を選択することが望ましく、前記コンデンサcについても適正な設定期間t1を得るように設定すべきである。
前記給電制御回路は、当該自動戻りスイッチを外付けするモジュールとして構成することもできる。
この給電制御回路の例は、以上の如く構成され、その回路は、全体として増幅回路としての機能も兼ね備えており、前記電気モーター2の消費電流が小さい(例えば5アンペア程度まで)の場合には、前記給電FETu1のドレイン電流を、前記電気モーター2及びそのモータードライバ3の制御及び駆動に用いることができる(例えば図3(B)参照)。
一方、前記電気モーター2の消費電流が比較的大きく(5アンペア~数百アンペア程度)前記給電FETu1では賄えない大きな電力が必要となる場合には、前記給電FETu1のドレイン電流又は当該ドレイン電流で動作するモータードライバの制御回路で大容量のリレースイッチ(接続器)を駆動し、当該リレーを通過した電流で前記電気モーター2及びそのモータードライバ3の制御及び駆動を行うことができる(例えば図3(A)参照)。
一方、前記電気モーター2の消費電流が比較的大きく(5アンペア~数百アンペア程度)前記給電FETu1では賄えない大きな電力が必要となる場合には、前記給電FETu1のドレイン電流又は当該ドレイン電流で動作するモータードライバの制御回路で大容量のリレースイッチ(接続器)を駆動し、当該リレーを通過した電流で前記電気モーター2及びそのモータードライバ3の制御及び駆動を行うことができる(例えば図3(A)参照)。
この例では、この給電制御回路の前記電源スイッチ6をオンにすると、前記制御信号供給回路5の電源として直流電源(例えば50V~数百V程度)が供給され、前記分圧点に中間電圧(例えば18V程度)が発生し、前記電源スイッチ6のオン期間で前記コンデンサcが充電されることで、前記給電制御FETu2のゲート端子にオン電圧以上の給電制御信号が発生し、前記給電制御FETu2にドレイン電流が流れる。
その結果、前記給電FETu1のゲート電圧が降下して前記自己保持点に給電信号が発生し、当該給電FETu1がオンとなり、前記給電FETu1に数アンペアのドレイン電流を流すことが可能な回路が構成され、前記電気モーター2及びそのモータードライバ3に電源が供給される(例えば図3(B)参照)。
その結果、前記給電FETu1のゲート電圧が降下して前記自己保持点に給電信号が発生し、当該給電FETu1がオンとなり、前記給電FETu1に数アンペアのドレイン電流を流すことが可能な回路が構成され、前記電気モーター2及びそのモータードライバ3に電源が供給される(例えば図3(B)参照)。
前記制御信号供給回路5は、自己保持機能を備え、前記コンデンサcの充電によって前記給電制御信号は設定期間t1維持され、当該設定期間t1内に、再度の電源スイッチ6のオン操作による前記起動信号の供給、又はスロットル操作などによる前記自己保持信号の供給が、例えば、前記充電ダイオードd1のカソード(以下「自己保持点P2」という)に対してなされなければ、前記給電制御FETu2及び前記給電FETu1がオフとなり、前記電気モーター2及びそのモータードライバ3への電源供給が遮断される。
一方、当該設定期間t1内に、再度の電源スイッチ6のオン操作による前記起動信号の供給、又はスロットル操作による前記自己保持信号の供給が、前記自己保持点P2に対してなされれば、前記給電制御信号は確実に保持され、前記給電制御FETu2及び前記給電FETu1がオンとなり、前記電気モーター2及びそのモータードライバ3への電源供給が継続される。
尚、この例では、前記自己保持信号の供給に際してダイオードd3を介在した。
尚、この例では、前記自己保持信号の供給に際してダイオードd3を介在した。
この例の前記スロットル装置4は、前記モータードライバ3のコントローラへ運転者の操作入力を供給し、前記モータードライバ3は、当該運転者の操作入力を前記自己保持信号として前記自己保持点P2へ供給する。
前記自己保持信号は、例えば、当該スロットル装置4が開かれている期間に限り、前記設定期間t1より短い周期(設定期間t2)で、前記コンデンサcをオン電圧に維持できる信号を前記自己保持信号として前記自己保持点P2へ供給する。
尚、前記モータードライバ3は、前記電気モーター1へ電力を供給する電源回路と、前記操作入力に基づいて当該電源回路の動作を制御するコントローラを備える。
前記自己保持信号は、例えば、当該スロットル装置4が開かれている期間に限り、前記設定期間t1より短い周期(設定期間t2)で、前記コンデンサcをオン電圧に維持できる信号を前記自己保持信号として前記自己保持点P2へ供給する。
尚、前記モータードライバ3は、前記電気モーター1へ電力を供給する電源回路と、前記操作入力に基づいて当該電源回路の動作を制御するコントローラを備える。
以上の動作の結果、当該設定期間t1内に、再度の電源スイッチ6のオン操作による前記起動信号の供給、又は例えばスロットル操作による設定期間t2周期での前記自己保持信号の供給が、前記充電ダイオードd1のカソードに対してなされなければ、前記給電FETu1、前記給電制御FETu2及び前記制御信号供給回路5に電流が流れない状態となり、前記分圧抵抗器の抵抗値を高く設定すれば、前記蓄電池1の放電を、数マイクロアンペアから数ナノアンペアにまで抑えることが可能となり、長期間における放置にあっても、再び使用する際の電源を確保できることとなる。
しかも、前記自己保持信号を供給するスロットル装置4は、前記負荷の運転時においてのみ当該自己保持信号を供給するので、待機時において蓄電池1の電力を消費する虞はない。
しかも、前記自己保持信号を供給するスロットル装置4は、前記負荷の運転時においてのみ当該自己保持信号を供給するので、待機時において蓄電池1の電力を消費する虞はない。
Claims (4)
- 蓄電池及び当該蓄電池から給電される一又は複数の負荷に接続され前記蓄電池から前記負荷への給電を制御する給電制御回路において、
前記負荷の運転状況を検知する運転検知手段と、
前記蓄電池の電力を前記負荷に供給するPチャネルFETと、
当該PチャネルFETのオンオフを制御するNチャネルFETと、
当該NチャネルFETのオンオフを制御する制御信号供給回路を備え、
前記制御信号供給回路は、
前記NチャネルFETのゲートに前記NチャネルFETのオン電圧以上の給電制御信号を設定期間維持するコンデンサを備え、
前記運転検知手段は、前記負荷の運転時において前記NチャネルFETのゲートに前記オン電圧以上の給電制御信号を設定期間保持する自己保持信号を当該設定期間に一度以上供給することを特徴とする給電制御回路。 - 蓄電池、当該蓄電池から給電される一又は複数の負荷及び前記蓄電池から前記負荷への電源の供給・遮断を行うスイッチに接続され前記蓄電池から前記負荷への給電を制御する給電制御回路において、
前記負荷の運転状況を検知する運転検知手段と、
前記蓄電池の電力を前記負荷に供給するPチャネルFETと、
当該PチャネルFETのオンオフを制御するNチャネルFETと、
当該NチャネルFETのオンオフを制御する制御信号供給回路を備え、
前記制御信号供給回路は、
前記電源の供給時において前記蓄電池とGNDとの間に前記NチャネルFETのオン電圧以上の分圧点を形成する分圧抵抗器と、
前記電源の供給時において前記分圧点と前記NチャネルFETのゲートとの間に前記NチャネルFETのオン電圧以上の給電制御信号を設定期間維持するコンデンサを備え、
前記運転検知手段は、前記負荷の運転時において前記NチャネルFETのゲートに前記オン電圧以上の給電制御信号を設定期間保持する自己保持信号を当該設定期間に一度以上供給することを特徴とする給電制御回路。 - 前記電源の供給・遮断を行うスイッチは、自動戻りスイッチであることを特徴とする前記請求項2に記載の給電制御回路。
- 前記負荷は、電動車両の電動モーター又は電動モーター及びそのモータードライバであり、前記運転検知手段の検知対象は、前記電動車両のスロットル操作又はそれに伴う負荷の動作であることを特徴とする前記請求項1乃至前記請求項3のいずれかに記載の給電制御回路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-222718 | 2015-11-13 | ||
JP2015222718A JP2017093204A (ja) | 2015-11-13 | 2015-11-13 | 給電制御回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017081878A1 true WO2017081878A1 (ja) | 2017-05-18 |
Family
ID=58694866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066427 WO2017081878A1 (ja) | 2015-11-13 | 2016-06-02 | 給電制御回路 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017093204A (ja) |
WO (1) | WO2017081878A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023013176A1 (ja) * | 2021-08-04 | 2023-02-09 | ソニーセミコンダクタソリューションズ株式会社 | 充電装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020048257A (ja) * | 2018-09-14 | 2020-03-26 | トヨタ自動車株式会社 | 送電装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0946900A (ja) * | 1995-07-27 | 1997-02-14 | Nec Data Terminal Ltd | 電源制御回路 |
JP2001037078A (ja) * | 1999-07-16 | 2001-02-09 | Alps Electric Co Ltd | 低消費電力型車載制御機器 |
US20150123641A1 (en) * | 2013-11-05 | 2015-05-07 | Abbott Diabetes Care Inc. | Systems, devices, and methods for control of a power supply connection |
-
2015
- 2015-11-13 JP JP2015222718A patent/JP2017093204A/ja active Pending
-
2016
- 2016-06-02 WO PCT/JP2016/066427 patent/WO2017081878A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0946900A (ja) * | 1995-07-27 | 1997-02-14 | Nec Data Terminal Ltd | 電源制御回路 |
JP2001037078A (ja) * | 1999-07-16 | 2001-02-09 | Alps Electric Co Ltd | 低消費電力型車載制御機器 |
US20150123641A1 (en) * | 2013-11-05 | 2015-05-07 | Abbott Diabetes Care Inc. | Systems, devices, and methods for control of a power supply connection |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023013176A1 (ja) * | 2021-08-04 | 2023-02-09 | ソニーセミコンダクタソリューションズ株式会社 | 充電装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2017093204A (ja) | 2017-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5734472B1 (ja) | 車載電子制御装置 | |
WO2017169395A1 (ja) | 電源システム | |
JP2010110091A (ja) | 負荷駆動装置 | |
WO2017081878A1 (ja) | 給電制御回路 | |
US7436159B1 (en) | Compound power supply | |
US8773089B2 (en) | Regulator capable of rapidly recovering an output voltage and a load current thereof | |
JP2006185811A (ja) | リレー駆動回路 | |
KR20120116675A (ko) | 백업전원을 이용한 mcu 전원 유지회로 | |
KR101952098B1 (ko) | 전동식 부스터 시스템의 전원 안정화 장치 및 그 방법 | |
JP5472633B2 (ja) | 車両用電源回路 | |
JP2008081114A (ja) | 制御装置 | |
WO2011040277A1 (ja) | 負荷駆動装置 | |
WO2021033630A1 (ja) | スイッチ装置 | |
JP2013247823A (ja) | 半導体装置 | |
US10523044B2 (en) | Device for controlling the electrical power supply of a circuit for a vehicle, comprising a battery and corresponding assembly | |
JP2018050355A (ja) | 車載用非常電源装置 | |
US20170338742A1 (en) | Parallel high side switches for a buck converter | |
JP6147317B2 (ja) | 給電制御装置 | |
JP2006114446A (ja) | リレー駆動回路 | |
WO2023102885A1 (zh) | 电路结构及启动电源装置 | |
CN110249273B (zh) | 控制电路和电路控制方法 | |
WO2018066499A1 (ja) | 車載機器 | |
JP4449860B2 (ja) | 電源供給用スイッチ装置とそれを用いた電子機器 | |
WO2016111161A1 (ja) | 電流制御装置 | |
JP2016130119A (ja) | 電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16863842 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16863842 Country of ref document: EP Kind code of ref document: A1 |