WO2023102885A1 - 电路结构及启动电源装置 - Google Patents

电路结构及启动电源装置 Download PDF

Info

Publication number
WO2023102885A1
WO2023102885A1 PCT/CN2021/137023 CN2021137023W WO2023102885A1 WO 2023102885 A1 WO2023102885 A1 WO 2023102885A1 CN 2021137023 W CN2021137023 W CN 2021137023W WO 2023102885 A1 WO2023102885 A1 WO 2023102885A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
module
power supply
circuit structure
voltage
Prior art date
Application number
PCT/CN2021/137023
Other languages
English (en)
French (fr)
Inventor
雷云
张智锋
林建平
Original Assignee
深圳市华思旭科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华思旭科技有限公司 filed Critical 深圳市华思旭科技有限公司
Priority to PCT/CN2021/137023 priority Critical patent/WO2023102885A1/zh
Priority to CN202180092284.XA priority patent/CN116802958A/zh
Publication of WO2023102885A1 publication Critical patent/WO2023102885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the technical field of vehicle circuit control, in particular to a circuit structure and a starting power supply device.
  • Vehicles have always been one of the important means of transportation for human beings.
  • the vehicle emergency start power supply products on the market need to install a special anti-reverse charging module in the circuit to prevent the power supply from being reversely charged by the vehicle, resulting in damage to the power supply.
  • This kind of setting method requires more electronic components and parts, and the material cost is higher.
  • the application discloses a circuit structure, which can reduce the material cost while preventing the power supply from being reversely charged by the vehicle.
  • the circuit structure includes:
  • a switch module a power supply and a processing module
  • the switch module is used to electrically connect the first electrode of the power supply and the second electrode of the target load device respectively, and the third electrode of the power supply is also used to electrically connect the target load device the fourth electrode, the processing module is connected to the switch module;
  • the power supply can supply power to the target load device
  • the switch module includes a parasitic component, and when the processing module controls the switch module to turn off, the difference between the voltage of the target load device and the voltage drop of the parasitic component is less than or equal to the voltage of the power supply.
  • the voltage between the second electrode and the fourth electrode is stable, because the voltage value between the first electrode and the third electrode is greater than or equal to the second electrode and the voltage value between the fourth electrode, the vehicle cannot reversely charge the power supply, that is to say, the circuit structure provided by the present application does not require an anti-reverse charging module, which saves material costs.
  • the parasitic components are respectively electrically connected to the first electrode of the power supply and the second electrode of the target load device.
  • the parasitic component includes at least one parasitic diode, and the conduction direction of the parasitic diode is from the target load device to the power supply.
  • the switch module includes a MOS transistor, and when the MOS transistor is turned on, the power supply can supply power to the target load device;
  • the MOS transistor includes the parasitic component, and the conduction direction of the parasitic component is opposite to the conduction direction of the MOS transistor when the switch module is turned on.
  • the circuit between the first electrode and the second electrode and the circuit between the third electrode and the fourth electrode do not have an anti-reverse charging module, and the anti-reverse charging module is used for Preventing or limiting charging of the vehicle to the power source.
  • the power supply includes 4 strings of batteries.
  • the voltage of the power supply is greater than 13.8V.
  • the target load device includes a target vehicle adapted to the circuit structure, and the circuit structure is capable of supplying power to the target vehicle to start the target vehicle.
  • the circuit structure further includes a drive module, the drive module is electrically connected to the switch module and the processing module, and the processing module is configured to send a first control signal to the drive module, the The driving module controls the switch module to turn on according to the first control signal.
  • the circuit structure further includes a voltage detection module, the voltage detection module is electrically connected to the second electrode and the fourth electrode, and is used to obtain a voltage between the second electrode and the fourth electrode. the voltage between, the processing module generates the first control signal according to the voltage.
  • the processing module is further configured to generate a second control signal, and the driving module signal to turn off the switch module.
  • the circuit structure further includes a current detection module, the current detection module is respectively electrically connected to the third electrode and the fourth electrode, and is used to obtain a voltage between the third electrode and the fourth electrode.
  • the processing module generates the first control signal according to the current.
  • the processing module is further configured to generate a second control signal, and the driving module signal to turn off the switch module.
  • the circuit structure further includes a power supply module, the power supply module is electrically connected to the first electrode and the processing module, and is used to supply power to the processing module.
  • the present application further provides a starting power supply device, the power starting device includes the circuit structure as described in the first aspect.
  • FIG. 1 is a schematic diagram of a circuit structure framework provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a circuit structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic circuit diagram of a power supply module provided in an embodiment of the present application.
  • FIG. 4 is a schematic circuit diagram of a processing module provided in an embodiment of the present application.
  • FIG. 5 is a schematic circuit diagram of a voltage detection module provided in an embodiment of the present application.
  • FIG. 6 is a schematic circuit diagram of a current detection module provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a power starting device provided in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a power starting device provided in another embodiment of the present application.
  • circuit structure-1 switch module-11, parasitic component-111, power supply-12, first electrode-121, third electrode-122, processing module-13, drive module-14, voltage detection module-15, Current detection module-16, power supply module-17, target load device-2, second electrode-21, fourth electrode-22, starting power supply device-3, body-31, battery clip-32.
  • the present application provides a circuit structure 1, please refer to Fig. 1, Fig. 1 is a schematic diagram of a circuit structure framework provided by an embodiment of the present application.
  • the circuit structure 1 includes: a switch module 11, a power supply 12 and a processing module 13, the switch module 11 is used to electrically connect the first electrode 121 of the power supply 12 and the second electrode 21 of the target load device 2, respectively,
  • the third electrode 122 of the power supply 12 is also used to electrically connect the fourth electrode 22 of the target load device 2, and the processing module 13 is connected to the switch module 11; wherein, when the processing module 13 controls the When the switch module 11 is turned on, the power supply 12 can supply power to the target load device 2;
  • the switch module 11 includes a parasitic component 111, and when the processing module 13 controls the switch module 11 to turn off, the target load device
  • the difference between the voltage of 2 and the voltage drop of the parasitic component 111 is less than or equal to the voltage of the power supply 12 .
  • the power supply 12 can supply power to the target load device 2 through the switch module 11, and it can also effectively prevent the target load device 2 from being unable to reversely charge the power supply 12, resulting in damage to the power supply. 12 cases.
  • this embodiment utilizes the existence of the parasitic component 111 in the switch module 11, and sets the voltage of the power supply 12 to be greater than The difference between the voltage of the target load device 2 and the voltage drop of the parasitic component 111, thus, when the voltage of the target load device 2 exceeds the voltage of the power source 12, because the voltage of the power source 12 is greater than the Even if there is a difference between the voltage of the target load device 2 and the voltage drop of the parasitic component 111 , the target load device 2 cannot reversely charge the power source 12 .
  • the circuit structure 1 is applied to a starting power supply, and the target load device 2 may at least include an engine in a vehicle.
  • the power supply 12 is designed with 4 strings of batteries.
  • the normal working voltage range of the power supply 12 is 14.2V-16.8V.
  • the second electrode 21 and the fourth electrode 22 are usually electrodes at both ends of the motor of the target load device 2 , that is, the power supply 12 supplies power to the motor of the target load device 2 .
  • the highest voltage is 14.5V.
  • the voltage drop of the parasitic components in the switch module 11 is about 0.6V.
  • the power supply 12 supplies power to the engine of the target load device 2 to start the engine, the voltage of the engine (take 14.5V as an example) is higher than the voltage of the power supply 12 (take 14.2V as an example) , when it is possible to reverse charge the power supply 12 through the switch module 11, since the difference between the voltage of the engine and the voltage drop of the parasitic component (take 0.6V as an example) is 13.8V, it is less than the voltage of the power supply 12 14.2V V, so the target load device 2 cannot reverse charge the power supply 12 at this time.
  • the present application provides The circuit structure 1 does not require an anti-reverse charging module, which saves material costs.
  • the operating voltage of the engine is greater than the operating voltage of other components on the target load device 2, therefore, as long as the voltage between the first electrode 121 and the third electrode 122 is not affected , the second electrode 21 and the fourth electrode 22 may also be electrodes at both ends of other components on the target load device 2 , which is not limited in the present application.
  • the parasitic component 111 is electrically connected to the first electrode 121 of the power source 12 and the second electrode 21 of the target load device 2 respectively.
  • the switch module 11 generally includes a plurality of field effect transistors (Metal-Oxide-Semiconductor, MOS), and the parasitic component 111 is generally formed in the MOS transistors, for example, common parasitic diodes. It can be understood that the parasitic component 111 has corresponding electrical properties. In this embodiment, when the parasitic component 111 is a parasitic diode, the parasitic component 111 plays the role of anti-reverse and generating a voltage drop.
  • MOS Metal-Oxide-Semiconductor
  • the parasitic component 111 includes at least one parasitic diode, and the conduction direction of the parasitic diode is from the target load device 2 to the power supply 12 .
  • the voltage drop of the parasitic diode is 0.5V or 0.6V or 0.7V.
  • the maximum voltage between the second electrode 21 and the fourth electrode 22 is 14.5V, and the processing module 13 controls the switching module 11 After being turned off, the target load device 2 cannot reverse charge the power supply 12 .
  • the switch module 11 includes a MOS transistor, and when the MOS transistor is turned on, the power supply 12 can supply power to the target load device 2; the MOS transistor includes the parasitic component 111 , the conduction direction of the parasitic component 111 is opposite to the conduction direction of the MOS transistor when the switch module 11 is turned on.
  • the switch module 11 may include a group of MOS transistors, and the normal conduction direction of multiple MOS transistors in a group of MOS transistors is the same, and the normal conduction direction is that the power supply 12 conducts to the target load device 2 .
  • multiple MOS transistors are connected in parallel with each other.
  • the switch module 11 has and only includes one group of MOS transistors.
  • the two connecting ends of the MOS transistor (taking NMOS as an example, the two connecting ends can be the drain and the source) are connected to the first electrode 121 and the second electrode 21 correspondingly, the control end of the MOS transistor is connected to the processing module, and each MOS transistor There are parasitic diodes in all of them, and the two ends of the parasitic diodes are correspondingly connected to the two connection ends of the MOS transistors, and the conduction direction of the parasitic diodes is opposite to the normal conduction direction of the MOS transistors.
  • the circuit between the first electrode 121 and the second electrode 21 and the circuit between the third electrode 122 and the fourth electrode 22 do not have an anti-reverse charging module , the anti-reverse charging module is used to prevent or restrict the vehicle from charging the power supply.
  • circuit structure 1 provided in the present application does not require a special anti-reverse charging module, which saves material costs.
  • the target load device 2 includes a target vehicle adapted to the circuit structure 1, and the circuit structure 1 can supply power to the target vehicle to start the target vehicle.
  • the circuit structure 1 can be applied to a vehicle emergency start power supply as a circuit structure in a vehicle emergency start power supply.
  • the vehicle emergency start power supply can provide emergency start power for the target vehicle through the circuit structure 1, and, when the target vehicle is started, the circuit structure 1 can prevent the target vehicle from charging the power supply 12 in reverse , so as to avoid damage to the power supply 12.
  • the circuit structure 1 further includes a driving module 14, and the driving module 14 is electrically connected to the switching module 11 and the processing module 13 respectively.
  • the module 13 is configured to send a first control signal to the driving module 14, and the driving module 14 controls the switch module 11 to turn on according to the first control signal.
  • the processing module 13 when the voltage between the second electrode 21 and the fourth electrode 22 is small, the processing module 13 generates the first control signal according to the voltage, so that the driving module 14 controls The switch module 11 is turned on, and the power supply 12 supplies power to the target load device 2 to ensure the normal operation of the target load device 2 .
  • the circuit structure 1 further includes a voltage detection module 15, and the voltage detection module 15 is electrically connected to the second electrode 21 and the fourth electrode 22 respectively. , for obtaining the voltage between the second electrode 21 and the fourth electrode 22, and the processing module 13 generates the first control signal according to the voltage.
  • the processing module 13 when the current between the third electrode 122 and the fourth electrode 22 is small, the processing module 13 generates the first control signal according to the current, so that the driving module 14 controls the The switch module 11 is turned on, and the power supply 12 supplies power to the target load device 2 to ensure normal startup of the target load device 2 .
  • the processing module 13 when the voltage between the second electrode 21 and the fourth electrode 22 is greater than a preset voltage threshold, the processing module 13 is further configured to generate a second control signal, the The driving module 14 turns off the switch module 11 according to the second control signal.
  • the drive module 14 turns off the switch module 11 according to the second control signal, so that the power supply 12 stops supplying power to the target load device 2, so that the second electrode 21 and the The voltage between the fourth electrodes 22 is maintained at a certain level or reduced to prevent excessive voltage from causing damage to the target load device 2 .
  • the preset voltage threshold may vary with the actual situation, and the logic of the processing module 13 controlling the driving module 14 may also be different, which is not discussed in this application. limit.
  • the circuit structure 1 further includes a current detection module 16, and the current detection module 16 is electrically connected to the third electrode 122 and the fourth electrode 22 respectively. , for obtaining the current between the third electrode 122 and the fourth electrode 22, and the processing module 13 generates the first control signal according to the current.
  • the processing module 13 when the current between the third electrode 122 and the fourth electrode 22 is small, the processing module 13 generates the first control signal according to the current, so that the driving module 14 controls The switch module 11 is turned on, and the power supply 12 supplies power to the target load device 2 to ensure the normal operation of the target load device 2 .
  • the processing module 13 is further configured to generate a second control signal, the The driving module 14 turns off the switch module 11 according to the second control signal.
  • the drive module 14 turns off the switch module 11 according to the second control signal, so that the power supply 12 stops supplying power to the target load device 2, so that the third electrode 122 and the second electrode 122
  • the current between the four electrodes 22 is maintained at a certain level or reduced to prevent excessive current from causing damage to the target load device 2 .
  • the preset current threshold may vary with the actual situation, and the logic of the processing module 13 controlling the driving module 14 may also be different, which is not discussed in this application. limit.
  • the circuit structure 1 further includes a power supply module 17, and the power supply module 17 is respectively electrically connected to the first electrode 121 and the processing module 13 for Provide power to the processing module 13 .
  • the power supply module 17 is required to process the current or voltage provided by the power supply 12 .
  • the power supply module 17 is electrically connected to the first electrode 121, and the voltage value provided by the first electrode 121 is reduced to 5V by the power supply module 17 and transmitted to the processing module 13, In order to make the processing module 13 work normally.
  • FIG. 2 is a schematic diagram of a circuit structure provided in an implementation manner of the present application. It should be noted that the electronic components and electrical connection methods shown in FIG. 2 are only an implementation mode provided by the present application, which does not mean that the present application limits the circuit structure of the circuit structure 1 . In addition, in the circuit diagrams provided in the present application, nodes represented by the same symbols are electrically connected together, such as GND, BAT+, and the like.
  • Fig. 3 is a schematic circuit diagram of a power supply module provided in an embodiment of the present application
  • Fig. 4 is a schematic circuit diagram of a processing module provided in an embodiment of the present application
  • FIG. 6 is a schematic circuit diagram of a current detection module provided in an embodiment of the application.
  • U5 is a low dropout regulator (LDO) voltage stabilizing device, which is used to stabilize a high voltage to 5V to provide power to the processing module 13;
  • U6 is the processing module 13, responsible for detecting the power supply The input voltage between the first electrode 121 and the third electrode 122 of 12, and the magnitude of the detection circuit current, and after processing the relevant detection value, judge whether to turn on or turn off the ignition control MOS;
  • U1 is a DC-DC step-down chip, Complete the reduction of the cell voltage to 5V and stabilize the voltage output.
  • U2 is an isolation module, which is responsible for isolating and boosting the 5V voltage to 12V output for providing NMOS driving voltage;
  • U3 is the driving module 14, used to control the NMOS driving voltage Quickly turn on or off;
  • Q1, Q3, Q7, and Q10 are the loop output control power MOS, which is used to turn on the ignition and discharge output of 4 strings of batteries or turn off the output;
  • R2, R21 form a partial voltage detection circuit, which is used to detect the battery of the target load equipment The magnitude of the voltage value;
  • J1 is the sampling resistor for the magnitude of the loop current.
  • BAT- is electrically connected to CAR-
  • the gates of Q1, Q3, Q7, and Q10 are electrically connected to the output port of the driving module 14, and the output port of the driving module 14 is used to control Q1, Q3, Q7, Q10 On and off, so that whether BAT+ and CAR+ are turned on.
  • the power supply 12 is used to supply power to the target load device 2, so that the target load device 2 starts normally.
  • the MOS transistor includes the parasitic diode, and the conduction direction of the parasitic diode is opposite to that of the MOS transistor.
  • FIG. 7 is a schematic diagram of a starting power supply device provided in an embodiment of the present application.
  • the starting power supply device 3 includes the circuit structure 1 as described above.
  • the circuit structure 1 please refer to the above description, which will not be repeated here.
  • the starting power supply device 3 includes a main body 31 and a battery clip 32 , and at least part of the circuit structure 1 is disposed in the main body 31 .
  • the battery clip 32 includes two clips, and the two clips are respectively clipped on the second electrode 21 and the fourth electrode 22 of the target load device 2 .
  • the starting power supply device 3 can also have other structures.
  • FIG. 8 is a schematic diagram of a starting power supply device provided in another embodiment of the present application. .
  • the starting power supply device 3 includes a body 31 and a battery clip 32, a part of the structure of the starting power supply device 3 is arranged on the battery clip 32, and another part of the structure is arranged in the body 31, for example, the power supply 12 is arranged in the body 31, and the processing module 13 And the switch module 11 can be arranged on the battery clip 32 .
  • the body 31 and the battery clip 32 are connected detachably or non-detachably. This application is not limited to this.

Abstract

本申请提供一种电路结构及启动电源装置,电路结构包括:开关模块、电源及处理模块,开关模块用于分别电连接电源的第一电极及目标负载设备的第二电极,电源的第三电极还用于电连接目标负载设备的第四电极,处理模块与开关模块连接;其中,当处理模块控制开关模块开启时,电源能够为目标负载设备供电;开关模块包括寄生组件,当处理模块控制开关模块关闭时,目标负载设备的电压和寄生组件的压降之差小于或等于电源的电压。第二电极和第四电极之间的电压稳定,由于第一电极和第三电极之间的电压值大于或等于第二电极和第四电极之间的电压值,车辆无法对电源反向充电,也就是说,本申请提供的电路结构不需要防反充电模块,节省了物料成本。

Description

电路结构及启动电源装置 技术领域
本申请涉及车辆电路控制技术领域,尤其是涉及一种电路结构及启动电源装置。
背景技术
车辆一直以来都是人类重要的交通工具之一。目前,市面上的车辆应急启动电源产品,在回路中需要设置专门的防反充电模块,用于防止电源被车辆反向充电,导致电源损坏。此种设置方式,需要较多的电子元器件,物料成本较高。
发明内容
本申请公开了一种电路结构,能够在防止电源被车辆反向充电的同时,减少物料成本。
第一方面,所述电路结构包括:
开关模块、电源及处理模块,所述开关模块用于分别电连接所述电源的第一电极及目标负载设备的第二电极,所述电源的第三电极还用于电连接所述目标负载设备的第四电极,所述处理模块与所述开关模块连接;
其中,当所述处理模块控制所述开关模块开启时,所述电源能够为所述目标负载设备供电;
所述开关模块包括寄生组件,当所述处理模块控制所述开关模块关闭时,所述目标负载设备的电压和所述寄生组件的压降之差小于或等于所述电源的电压。
当所述车辆正常启动后,所述第二电极和所述第四电极之间的电压稳定,由于所述第一电极和所述第三电极之间的电压值大于或等于所述第二电极和所述第四电极之间的电压值,所述车辆无法对所述电源反向充电,也就是说,本申请提供的所述电路结构不需要防反充电模块,节省了物料成本。
可选的,所述寄生组件分别电连接所述电源的第一电极及目标负载设备的第二电极。
可选的,所述寄生组件包括至少一个寄生二极管,所述寄生二极管的导通方向为从所述目标负载设备向所述电源导通。
可选的,所述开关模块包括MOS管,所述MOS管导通时,所述电源能够向所述目标负载设备供电;
所述MOS管包括所述寄生组件,所述寄生组件的导通方向和所述开关模块开启时所述MOS管的导通方向相反。
可选的,所述第一电极和所述第二电极之间的电路以及所述第三电极和所述第四电极之间的电路不存在防反充电模块,所述防反充电模块用于防止或限制所述车辆向所述电源充电。
可选的,所述电源包括4串电芯。
可选的,所述处理模块控制所述开关模块开启时所述电源的电压大于13.8V。
可选的,所述目标负载设备包括与所述电路结构适配的目标车辆,所述电路结构能够向所述目标车辆供电,以启动所述目标车辆。
可选的,所述电路结构还包括驱动模块,所述驱动模块分别与所述开关模块及所述处理 模块电连接,所述处理模块用于向所述驱动模块发送第一控制信号,所述驱动模块根据所述第一控制信号控制所述开关模块开启。
可选的,所述电路结构还包括电压检测模块,所述电压检测模块分别电连接于所述第二电极和所述第四电极,用于获取所述第二电极和所述第四电极之间的电压,所述处理模块根据电压产生所述第一控制信号。
可选的,当所述第二电极和所述第四电极之间的电压大于预设电压阈值时,所述处理模块还用于产生第二控制信号,所述驱动模块根据所述第二控制信号关断所述开关模块。
可选的,所述电路结构还包括电流检测模块,所述电流检测模块分别电连接于所述第三电极和所述第四电极,用于获取所述第三电极和所述第四电极之间的电流,所述处理模块根据电流产生所述第一控制信号。
可选的,当所述第三电极和所述第四电极之间的电流大于预设电流阈值时,所述处理模块还用于产生第二控制信号,所述驱动模块根据所述第二控制信号关断所述开关模块。
可选的,所述电路结构还包括供电模块,所述供电模块分别与所述第一电极和所述处理模块电连接,用于为所述处理模块供电。
第二方面,本申请还提供了一种启动电源装置,所述电源启动装置包括如第一方面所述的电路结构。
附图说明
为了更清楚的说明本申请实施方式中的技术方案,下面将对实施方式中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的电路结构框架示意图。
图2为本申请一实施方式提供的电路结构示意图。
图3为本申请一实施方式提供的供电模块电路示意图。
图4为本申请一实施方式提供的处理模块电路示意图。
图5为本申请一实施方式提供的电压检测模块电路示意图。
图6为本申请一实施方式提供的电流检测模块电路示意图。
图7为本申请一实施方式提供的电源启动装置示意图。
图8为本申请另一实施方式提供的电源启动装置示意图。
标号说明:电路结构-1、开关模块-11、寄生组件-111、电源-12、第一电极-121、第三电极-122、处理模块-13、驱动模块-14、电压检测模块-15、电流检测模块-16、供电模块-17、目标负载设备-2、第二电极-21、第四电极-22、启动电源装置-3、本体-31、电瓶夹-32。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请提供了一种电路结构1,请参阅图1,图1为本申请一实施方式提供的电路结构框 架示意图。所述电路结构1包括:开关模块11、电源12及处理模块13,所述开关模块11用于分别电连接所述电源12的第一电极121及所述目标负载设备2的第二电极21,所述电源12的第三电极122还用于电连接所述目标负载设备2的第四电极22,所述处理模块13与所述开关模块11连接;其中,当所述处理模块13控制所述开关模块11开启时,所述电源12能够为所述目标负载设备2供电;所述开关模块11包括寄生组件111,当所述处理模块13控制所述开关模块11关闭时,所述目标负载设备2的电压和所述寄生组件111的压降之差小于或等于所述电源12的电压。
在本实施方式中,即可以实现所述电源12通过所述开关模块11向所述目标负载设备2供电,也可以有效避免所述目标负载设备2无法向所述电源12反向充电导致损坏电源12的情况。具体地,由于所述电源12适配的所述目标负载设备2的电压是确定的,本实施方式利用所述开关模块11中所述寄生组件111的存在,并且设置所述电源12的电压大于所述目标负载设备2的电压和所述寄生组件111的压降之差,从而,在所述目标负载设备2的电压超过所述电源12的电压情况下,因所述电源12的电压大于所述目标负载设备2的电压和所述寄生组件111的压降之差,所述目标负载设备2也无法向所述电源12反向充电。
可选地,所述电路结构1应用于启动电源,所述目标负载设备2至少可以包括车辆中的发动机。所述电源12用4串电芯设计,所述电源12对所述目标负载设备2供电时,所述电源12的正常工作电压范围是14.2V-16.8V。所述第二电极21和所述第四电极22通常为所述目标负载设备2的发动机两端的电极,也就是说,所述电源12为所述目标负载设备2的发动机供电。所述目标负载设备2的发动机正常工作时,最高电压为14.5V。所述开关模块11中寄生组件的压降约为0.6V。可以理解的,倘若所述电源12向所述目标负载设备2的发动机供电使之启动工作后,发动机的电压(以14.5V为例)高于所述电源12的电压(以14.2V为例),有可能通过开关模块11对所述电源12反向充电时,由于发动机的电压与所述寄生组件的压降(以0.6V为例)的差值为13.8V小于所述电源12的电压14.2V,所以此时所述目标负载设备2无法对所述电源12反向充电。
在本实施方式中,当所述目标负载设备2正常启动后,所述第二电极21和所述第四电极22之间的电压稳定,由于所述第一电极121和所述第三电极122之间的电压值大于或等于所述第二电极21和所述第四电极22之间的电压值,所述目标负载设备2无法对所述电源12反向充电,也就是说,本申请提供的所述电路结构1不需要防反充电模块,节省了物料成本。
需要说明的是,在所述目标负载设备2启动过程中,可能出现故障等导致所述第二电极21和所述第四电极22之间的电压或电流可能发生变化,此时,需要紧急开启或关闭所述电源12为所述目标负载设备2供电,或切断供电。
通常情况下,发动机的工作电压大于所述目标负载设备2上的其他部件的工作电压,因此,只要不影响所述第一电极121和所述第三电极122之间的电压值大于或等于14V,所述第二电极21和所述第四电极22还可以是所述目标负载设备2上的其他部件两端的电极,本申请对此不加以限制。
在一种可能的实施方式中,请再次参阅图1,所述寄生组件111分别电连接所述电源12的第一电极121及目标负载设备2的第二电极21。
可选地,所述开关模块11中通常包括由多个场效应晶体管(Metal-Oxide-Semiconductor,MOS),而MOS管中通常形成有所述寄生组件111,例如,常见的寄生二极管。可以理解的,所述寄生组件111具有相应的电气性质,在本实施方式中,当所述寄生组件111为寄生二极管时,所述寄生组件111起到防反、产生压降的作用。
在一种可能的实施方式中,所述寄生组件111包括至少一个寄生二极管,所述寄生二极管的导通方向为从所述目标负载设备2向所述电源12导通。
可选地,所述寄生二极管的压降为0.5V或0.6V或0.7V。在本实施方式中,当所述目标负载设备2正常运作时,所述第二电极21和所述第四电极22之间的电压最大为14.5V,所述处理模块13控制所述开关模块11关闭后,所述目标负载设备2无法对所述电源12反向充电。
在一种可能的实施方式中,所述开关模块11包括MOS管,所述MOS管导通时,所述电源12能够向所述目标负载设备2供电;所述MOS管包括所述寄生组件111,所述寄生组件111的导通方向和所述开关模块11开启时所述MOS管的导通方向相反。
在一种示例中,所述开关模块11可以包括一组MOS管,一组MOS管中的多个MOS管的正常导通方向一致,正常导通方向为电源12向目标负载设备2导通。可选地,多个MOS管间相互并联。可选地,所述开关模块11有且仅包括一组MOS管。MOS管的两个连接端(以NMOS为例,两个连接端可以为漏极和源极)对应连接第一电极121和第二电极21,MOS管的控制端连接处理模块,而各个MOS管中均存在寄生二极管,且寄生二极管的两端对应连接MOS管的两个连接端,寄生二极管的导通方向与MOS管的正常导通方向相反。
在一种可能的实施方式中,所述第一电极121和所述第二电极21之间的电路以及所述第三电极122和所述第四电极22之间的电路不存在防反充电模块,所述防反充电模块用于防止或限制所述车辆向所述电源充电。
如此,本申请提供的所述电路结构1不需要专门设置防反充电模块,节省了物料成本。
在一种可能的实施方式中,所述目标负载设备2包括与所述电路结构1适配的目标车辆,所述电路结构1能够向所述目标车辆供电,以启动所述目标车辆。在一种示例中,所述电路结构1可以应用于车辆应急启动电源,作为车辆应急启动电源里的电路结构。车辆应急启动电源通过所述电路结构1,可以为所述目标车辆提供应急启动的电能,而且,当所述目标车辆启动后,电路结构1能够防止所述目标车辆向所述电源12反向充电,以避免对电源12造成损坏。
在一种可能的实施方式中,请再次参阅图1,所述电路结构1还包括驱动模块14,所述驱动模块14分别与所述开关模块11及所述处理模块13电连接,所述处理模块13用于向所述驱动模块14发送第一控制信号,所述驱动模块14根据所述第一控制信号控制所述开关模块11开启。
可以理解的,过低的电压会影响所述目标负载设备2的正常运行。在本实施方式中,当所述第二电极21和所述第四电极22之间的电压较小时,所述处理模块13根据电压产生所述第一控制信号,从而使得所述驱动模块14控制所述开关模块11开启,所述电源12为所述目标负载设备2供电,以保证所述目标负载设备2的正常运行。
在一种可能的实施方式中,请再次参阅图1,所述电路结构1还包括电压检测模块15,所述电压检测模块15分别电连接于所述第二电极21和所述第四电极22,用于获取所述第二电极21和所述第四电极22之间的电压,所述处理模块13根据电压产生所述第一控制信号。
可选地,当所述第三电极122和所述第四电极22之间的电流较小时,所述处理模块13根据电流产生所述第一控制信号,从而使得所述驱动模块14控制所述开关模块11开启,所述电源12为所述目标负载设备2供电,以保证所述目标负载设备2的正常启动。在一种可能的实施方式中,当所述第二电极21和所述第四电极22之间的电压大于预设电压阈值时,所述处理模块13还用于产生第二控制信号,所述驱动模块14根据所述第二控制信号关断所述 开关模块11。
可选地,当所述第二电极21和所述第四电极22之间的电压大于预设电压阈值时,也就是说,所述第二电极21和所述第四电极22之间的电压较大时,所述驱动模块14根据所述第二控制信号关断所述开关模块11,使得所述电源12停止为所述目标负载设备2供电,从而使得所述第二电极21和所述第四电极22之间的电压维持在一定水平或降低,防止过大的电压对所述目标负载设备2造成损坏。
可以理解的,在其他可能的实施方式中,所述预设电压阈值可以随实际情况发生变化,所述处理模块13控制所述驱动模块14的逻辑也可以是不同的,本申请对此不加以限制。
在一种可能的实施方式中,请再次参阅图1,所述电路结构1还包括电流检测模块16,所述电流检测模块16分别电连接于所述第三电极122和所述第四电极22,用于获取所述第三电极122和所述第四电极22之间的电流,所述处理模块13根据电流产生所述第一控制信号。
同理,过低的电流会影响所述目标负载设备2的正常运行。在本实施方式中,当所述第三电极122和所述第四电极22之间的电流较小时,所述处理模块13根据电流产生所述第一控制信号,从而使得所述驱动模块14控制所述开关模块11开启,所述电源12为所述目标负载设备2供电,以保证所述目标负载设备2的正常运行。
在一种可能的实施方式中,当所述第三电极122和所述第四电极22之间的电流大于预设电流阈值时,所述处理模块13还用于产生第二控制信号,所述驱动模块14根据所述第二控制信号关断所述开关模块11。
同理,当所述第三电极122和所述第四电极22之间的电流大于预设电流阈值时,也就是说,所述第三电极122和所述第四电极22之间的电流较大时,所述驱动模块14根据所述第二控制信号关断所述开关模块11,使得所述电源12停止为所述目标负载设备2供电,从而使得所述第三电极122和所述第四电极22之间的电流维持在一定水平或降低,防止过大的电流对所述目标负载设备2造成损坏。
可以理解的,在其他可能的实施方式中,所述预设电流阈值可以随实际情况发生变化,所述处理模块13控制所述驱动模块14的逻辑也可以是不同的,本申请对此不加以限制。
在一种可能的实施方式中,请再次参阅图1,所述电路结构1还包括供电模块17,所述供电模块17分别与所述第一电极121和所述处理模块13电连接,用于为所述处理模块13供电。
可选地,所述电源12提供的电流或电压通常较大,无法直接为所述处理模块13等模块直接供电,因此,需要所述供电模块17对所述电源12提供的电流或电压进行处理。在本实施方式中,所述供电模块17与所述第一电极121电连接,所述第一电极121提供的电压值通过所述供电模块17降至5V,并传输至所述处理模块13,以使得所述处理模块13正常工作。
可以理解的,在其他可能的实施方式中,只要不影响所述处理模块13正常工作,例如,额外提供电流或电压为所述处理模块13供电,本申请对所述供电模块17的设置方式不加以限制。
在一种可能的实施方式中,请一并参阅图2,图2为本申请一实施方式提供的电路结构示意图。需要说明的是,图2中出现的电子元器件及电连接方式仅仅为本申请提供的一种实施方式,并不代表本申请限制了所述电路结构1的电路结构。此外,本申请提供的电路图中,相同标号所代表的节点是电连接在一起的,例如GND、BAT+等。
在本实施方式中,请一并参阅图3-图6,图3为本申请一实施方式提供的供电模块电路 示意图;图4为本申请一实施方式提供的处理模块电路示意图;图5为本申请一实施方式提供的电压检测模块电路示意图;图6为本申请一实施方式提供的电流检测模块电路示意图。
可选地,U5为低压差线性(low dropout regulator,LDO)稳压器件,用于将高电压稳定到5V提供至所述处理模块13供电;U6为所述处理模块13,负责检测所述电源12的第一电极121和第三电极122之间的输入电压,以及检测回路电流大小,并在处理相关检测值后,判断是否开启或关闭打火控制MOS;U1为DC-DC降压芯片,完成将电芯电压降低至5V并稳定电压输出,U2为隔离模块,负责将5V电压隔离升压至12V输出,用于提供NMOS驱动电压;U3为所述驱动模块14,用于控制NMOS驱动电压快速开启或关闭;Q1、Q3、Q7、Q10为回路输出控制功率MOS,用于开启4串电芯打火放电输出或关闭输出;R2、R21组成分压检测电路,用于检测目标负载设备电瓶电压值大小;J1为回路电流大小采样电阻。
其中,BAT-与CAR-电连接,Q1、Q3、Q7、Q10的栅极与所述驱动模块14的输出端口电连接,所述驱动模块14的输出端口用于控制Q1、Q3、Q7、Q10的通断,从而使得BAT+与CAR+是否导通。当BAT+与CAR+导通时,所述电源12用于为目标负载设备2供电,以使得所述目标负载设备2正常启动。
可选地,在本实施方式中,所述MOS管包括所述寄生二极管,所述寄生二极管的导通方向和MOS管的导通方向相反。
本申请还提供了一种启动电源装置3,请一并参阅图7,图7为本申请一实施方式提供的启动电源装置示意图。所述启动电源装置3包括如上文所述的电路结构1。可选地,所述电路结构1请参阅上文描述,在此不再赘述。
在本实施方式中,所述启动电源装置3包括本体31及电瓶夹32,所述电路结构1至少部分结构设置于所述本体31内。所述电瓶夹32包括两个夹子,两个夹子分别夹设于所述目标负载设备2的所述第二电极21和第四电极22。可以理解的,在其他可能的实施方式中,所述启动电源装置3还可以是其他结构,示例性地,请一并参阅图8,图8为本申请另一实施方式提供的启动电源装置示意图。所述启动电源装置3包括本体31和电瓶夹32,启动电源装置3中一部分结构设置于电瓶夹32,另一部分结构设置于本体31内,比如电源12设置于所述本体31内,处理模块13和开关模块11可以设置于电瓶夹32。本体31和电瓶夹32之间可拆卸连接或不可拆卸连接。本申请对此不加以限制。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请的核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (15)

  1. 一种电路结构,其特征在于,所述电路结构包括:
    开关模块、电源及处理模块,所述开关模块用于分别电连接所述电源的第一电极及目标负载设备的第二电极,所述电源的第三电极还用于电连接所述目标负载设备的第四电极,所述处理模块与所述开关模块连接;
    其中,当所述处理模块控制所述开关模块开启时,所述电源能够为所述目标负载设备供电;
    所述开关模块包括寄生组件,当所述处理模块控制所述开关模块关闭时,所述目标负载设备的电压和所述寄生组件的压降之差小于或等于所述电源的电压。
  2. 如权利要求1所述的电路结构,其特征在于,所述寄生组件分别电连接所述电源的第一电极及目标负载设备的第二电极。
  3. 如权利要求1所述的电路结构,其特征在于,所述寄生组件包括至少一个寄生二极管,所述寄生二极管的导通方向为从所述目标负载设备向所述电源导通。
  4. 如权利要求1所述的电路结构,其特征在于,所述开关模块包括MOS管,所述MOS管导通时,所述电源能够向所述目标负载设备供电;
    所述MOS管包括所述寄生组件,所述寄生组件的导通方向和所述开关模块开启时所述MOS管的导通方向相反。
  5. 如权利要求1所述的电路结构,其特征在于,所述第一电极和所述第二电极之间的电路以及所述第三电极和所述第四电极之间的电路不存在防反充电模块,所述防反充电模块用于防止或限制所述车辆向所述电源充电。
  6. 如权利要求1所述的电路结构,其特征在于,所述电源包括4串电芯。
  7. 如权利要求1所述的电路结构,其特征在于,所述处理模块控制所述开关模块开启时所述电源的电压大于13.8V。
  8. 如权利要求1所述的电路结构,其特征在于,所述目标负载设备包括与所述电路结构适配的目标车辆,所述电路结构能够向所述目标车辆供电,以启动所述目标车辆。
  9. 如权利要求1所述的电路结构,其特征在于,所述电路结构还包括驱动模块,所述驱动模块分别与所述开关模块及所述处理模块电连接,所述处理模块用于向所述驱动模块发送第一控制信号,所述驱动模块根据所述第一控制信号控制所述开关模块开启。
  10. 如权利要求9所述的电路结构,其特征在于,所述电路结构还包括电压检测模块,所述电压检测模块分别电连接于所述第二电极和所述第四电极,用于获取所述第二电极和所述第四电极之间的电压,所述处理模块根据电压产生所述第一控制信号。
  11. 如权利要求10所述的电路结构,其特征在于,当所述第二电极和所述第四电极之间的电压大于预设电压阈值时,所述处理模块还用于产生第二控制信号,所述驱动模块根据所述第二控制信号关断所述开关模块。
  12. 如权利要求9所述的电路结构,其特征在于,所述电路结构还包括电流检测模块,所述电流检测模块分别电连接于所述第三电极和所述第四电极,用于获取所述第三电极和所述第四电极之间的电流,所述处理模块根据电流产生所述第一控制信号。
  13. 如权利要求12所述的电路结构,其特征在于,当所述第三电极和所述第四电极之间的电流大于预设电流阈值时,所述处理模块还用于产生第二控制信号,所述驱动模块根据所述第二控制信号关断所述开关模块。
  14. 如权利要求1所述的电路结构,其特征在于,所述电路结构还包括供电模块,所述供电模块分别与所述第一电极和所述处理模块电连接,用于为所述处理模块供电。
  15. 一种启动电源装置,其特征在于,所述启动电源装置包括如权利要求1-14任意一项所述的电路结构。
PCT/CN2021/137023 2021-12-10 2021-12-10 电路结构及启动电源装置 WO2023102885A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/137023 WO2023102885A1 (zh) 2021-12-10 2021-12-10 电路结构及启动电源装置
CN202180092284.XA CN116802958A (zh) 2021-12-10 2021-12-10 电路结构及启动电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137023 WO2023102885A1 (zh) 2021-12-10 2021-12-10 电路结构及启动电源装置

Publications (1)

Publication Number Publication Date
WO2023102885A1 true WO2023102885A1 (zh) 2023-06-15

Family

ID=86729438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137023 WO2023102885A1 (zh) 2021-12-10 2021-12-10 电路结构及启动电源装置

Country Status (2)

Country Link
CN (1) CN116802958A (zh)
WO (1) WO2023102885A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050891A1 (en) * 2011-08-30 2013-02-28 Mitsumi Electric Co., Ltd. Semiconductor integrated circuit, protection circuit, and battery pack
CN203707759U (zh) * 2013-12-13 2014-07-09 国网湖南省电力公司常德检修公司 一种防反充电tv并列电路
CN104426139A (zh) * 2013-08-30 2015-03-18 深圳市海洋王照明工程有限公司 电池防反充保护电路
CN107968641A (zh) * 2017-12-29 2018-04-27 生迪智慧科技有限公司 负载开关电路、电池组件及多电源系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050891A1 (en) * 2011-08-30 2013-02-28 Mitsumi Electric Co., Ltd. Semiconductor integrated circuit, protection circuit, and battery pack
CN104426139A (zh) * 2013-08-30 2015-03-18 深圳市海洋王照明工程有限公司 电池防反充保护电路
CN203707759U (zh) * 2013-12-13 2014-07-09 国网湖南省电力公司常德检修公司 一种防反充电tv并列电路
CN107968641A (zh) * 2017-12-29 2018-04-27 生迪智慧科技有限公司 负载开关电路、电池组件及多电源系统

Also Published As

Publication number Publication date
CN116802958A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
US9515554B2 (en) Power supply that charges an electric storage by regenerative power generated by a generator and supplies power to a load
US9843184B2 (en) Voltage conversion apparatus
US9570978B2 (en) Power supply control device for inductive loads
US20180287494A1 (en) Bidirectional dc-dc converter
JP5911502B2 (ja) バッテリー電力経路管理装置及び方法
US9350238B2 (en) Power supply device for vehicle including a boosting converter circuit
US9726136B2 (en) Device for maintaining voltage during startup for a motor vehicle
US10855271B2 (en) Control device for semiconductor switch, and electrical power system
US10410815B2 (en) Driver circuit for the operation of a relay
EP3996225B1 (en) Power supply switching control system
WO2023102885A1 (zh) 电路结构及启动电源装置
CN113949127B (zh) 一种用于系统供电的供电管理电路及控制方法
WO2011040277A1 (ja) 負荷駆動装置
CN216721181U (zh) 电路结构及启动电源装置
WO2017081878A1 (ja) 給電制御回路
JP7279570B2 (ja) 電圧測定装置
CN106274757B (zh) 一种具有高低压供电转换电路的电控液压助力转向系统
US9819257B2 (en) DC-to-DC converter input node short protection
US10680603B2 (en) Isolation and voltage regulation circuit
JP6147317B2 (ja) 給電制御装置
US20120154958A1 (en) Use of a jfet as a failsafe shutdown controller
JP2004229476A (ja) 電源装置
US20170338742A1 (en) Parallel high side switches for a buck converter
EP4091885A1 (en) Vehicle power distribution circuit and vehicle power system incorporating the same
JP4420142B1 (ja) 車両用電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092284.X

Country of ref document: CN