WO2011040277A1 - 負荷駆動装置 - Google Patents

負荷駆動装置 Download PDF

Info

Publication number
WO2011040277A1
WO2011040277A1 PCT/JP2010/066220 JP2010066220W WO2011040277A1 WO 2011040277 A1 WO2011040277 A1 WO 2011040277A1 JP 2010066220 W JP2010066220 W JP 2010066220W WO 2011040277 A1 WO2011040277 A1 WO 2011040277A1
Authority
WO
WIPO (PCT)
Prior art keywords
fet
capacitor
voltage
turned
driving device
Prior art date
Application number
PCT/JP2010/066220
Other languages
English (en)
French (fr)
Inventor
崇人 城
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112010003843T priority Critical patent/DE112010003843T8/de
Priority to US13/394,956 priority patent/US20120169318A1/en
Priority to CN2010800385466A priority patent/CN102484472A/zh
Publication of WO2011040277A1 publication Critical patent/WO2011040277A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017545Coupling arrangements; Impedance matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load

Definitions

  • the present invention relates to a load driving device that drives an electric load by a semiconductor switch.
  • Vehicles such as automobiles are equipped with alternators (on-vehicle generators, AC generators) and batteries.
  • alternators on-vehicle generators, AC generators
  • batteries The electric power generated by the alternator in conjunction with the engine is used for charging the battery, and the electric power from the battery is supplied to an electric load mounted on the vehicle.
  • a semiconductor switch such as an FET is interposed in the electric path between the battery and the electric load, and the driving of the electric load is controlled by turning on or off the semiconductor switch.
  • an in-vehicle electronic circuit that drives an electric load such as a lamp by PWM controlling an FET with a microcomputer is disclosed (for example, see Patent Document 1).
  • This invention is made in view of such a situation, and it aims at providing the load drive device which can reduce the electric current for maintaining FET on state rather than before.
  • a load driving device includes an FET that is turned on or off according to the magnitude of a bias voltage.
  • the load driving device that drives an electric load includes a series circuit including a resistor and a capacitor. Is divided to obtain the bias voltage.
  • a load driving device according to the first aspect, further comprising a first switch circuit connected in parallel to the capacitor, wherein the voltage of the capacitor is changed by turning the first switch circuit on or off.
  • the FET is turned off to be turned on or turned on.
  • a load driving device comprising: the second switch circuit connected in series to the series circuit according to the first or second invention; and turning on the second switch circuit, whereby the capacitor And the FET is turned on.
  • a load driving device is characterized in that, in the third aspect of the invention, the load driving device further comprises a control unit that controls the second switch circuit to be periodically turned on or off.
  • the load driving device wherein the detection circuit for detecting the voltage of the capacitor is compared with the voltage detected by the detection circuit and the threshold voltage to turn on the second switch circuit. Or a control unit for controlling to turn off.
  • a series circuit including a resistor and a capacitor is provided, and a voltage (for example, a voltage supplied from a battery) is divided by the series circuit to obtain a bias voltage.
  • the FET is turned on or off according to the magnitude of the bias voltage. For example, the FET can be turned on by increasing the bias voltage, and the FET can be turned off by decreasing the bias voltage. Since the series circuit that generates the bias voltage includes a capacitor, current hardly flows through the capacitor once the capacitor is charged with a voltage necessary for the bias voltage. Compared to the case where current always flows as in the conventional case, the current for maintaining the FET in the on state can be reduced.
  • the first switch circuit connected in parallel with the capacitor is provided, and the FET is turned off or on by changing the voltage of the capacitor by turning on or off the first switch circuit.
  • the first switch circuit can be configured by, for example, a single-stage or multi-stage FET. For example, when the first switch circuit is turned on, both ends of the capacitor are short-circuited via the first switch circuit, so that the voltage of the capacitor is lowered, the bias voltage is reduced, and the FET can be turned off. Further, when the first switch circuit is turned off, both ends of the capacitor are opened via the first switch circuit, so that the capacitor is charged, the bias voltage increases, and the FET can be turned on. Thereby, the current for maintaining the FET in the on state can be reduced, and the on / off of the FET can be controlled to control the driving of the electric load.
  • the second switch circuit connected in series to the series circuit is provided, and the second switch circuit is turned on to charge the capacitor and turn on the FET.
  • the second switch circuit can be constituted by, for example, a single-stage or multi-stage FET.
  • a control unit for controlling the second switch circuit to be periodically turned on or off.
  • the control unit periodically turns on the second switch circuit to charge the capacitor to turn on the FET.
  • the on / off cycle can be set so that, for example, the charge charged in the capacitor is discharged due to a leakage current or the like, and the bias voltage does not become smaller than a voltage at which the FET cannot be kept on. As a result, unnecessary current consumption can be reduced while maintaining the FET in the ON state.
  • a detection circuit that detects the voltage of the capacitor, and a control unit that compares the voltage detected by the detection circuit with the threshold voltage and controls to turn on or off the second switch circuit.
  • the control unit turns on the second switch circuit in accordance with the detected voltage of the capacitor to charge the capacitor to turn on the FET.
  • the threshold voltage can be set so that, for example, the voltage charged in the capacitor is discharged due to a leakage current or the like, and the bias voltage does not become lower than a voltage at which the FET cannot be kept on. As a result, unnecessary current consumption can be reduced while maintaining the FET in the ON state.
  • the current for maintaining the FET in the on state can be reduced as compared with the conventional case.
  • FIG. 6 is a circuit diagram illustrating an example of a configuration of a load driving device according to a second embodiment.
  • FIG. 6 is a circuit diagram illustrating an example of a configuration of a load driving device according to a third embodiment.
  • FIG. 1 is a circuit diagram showing an example of a configuration of a load driving device 100 according to the present embodiment.
  • the load driving device 100 includes a p-channel FET 11 as an FET that is turned on or off according to the magnitude of the bias voltage Vgs, a series circuit 12 including a resistor 122 and a capacitor 121 including a resistor and a capacitor, and a capacitor 121 in parallel.
  • the p-channel FET 15, the resistor 16, the resistor 17 and the n-channel FET 18 as the connected first switch circuit, and the n-channel FET 14 and the n-channel FET 14 as the second switch circuit connected in series to the series circuit 12 are turned on or A microcomputer 10 or the like as a control unit that controls to turn off is provided.
  • the source of the FET 11 is connected to the battery voltage + V via the fuse 2, and the electric load 1 is connected to the drain of the FET 11.
  • a connection node between the capacitor 121 and the resistor 122 of the series circuit 12 including the capacitor 121 and the resistor 122 is connected to the gate of the FET 11.
  • the series circuit 12 is connected in series with a FET 14 as a second switch circuit.
  • a voltage obtained by dividing the battery voltage + V by the capacitor 121 and the resistor 122 (the voltage Vc of the capacitor 121) is applied as the bias voltage Vgs between the gate and the source of the FET 11.
  • Both ends of the capacitor 121 are connected to the source and drain of the FET 15 constituting the first switch circuit.
  • a connection node between the resistor 16 and the resistor 17 is connected to the gate of the FET 15.
  • the resistor 17 is connected to the FET 18 constituting the first switch circuit.
  • the gate of the FET 18 is connected to the port 1 of the microcomputer 10 as a control unit.
  • the gate of the FET 14 is connected to the port 2 of the microcomputer 10.
  • a Zener diode 20 is connected between the gate and source of the FET 11 to protect the FET from overvoltage or noise.
  • a Zener diode 19 is connected between the gate and source of the FET 15 to protect the FET from overvoltage or noise.
  • the FET 18 When a required positive voltage is output from the port 1 of the microcomputer 10, the FET 18 is turned on, the gate potential of the FET 15 is lowered, and the FET 15 is turned on. In this case, both ends of the capacitor 121 are short-circuited via the source / drain of the FET 15, and the voltage of the capacitor 121 decreases.
  • the FET 18 when no voltage is output from the port 1 (in the case of zero potential), the FET 18 is turned off, the gate potential of the FET 15 is increased, and the FET 15 is turned off. In this case, both ends of the capacitor 121 are opened via the source / drain of the FET 15, the capacitor 121 is charged, and the voltage of the capacitor 121 rises.
  • the FET 14 When a required positive voltage is output from the port 2 of the microcomputer 10, the FET 14 is turned on, the capacitor 121 is charged, and the voltage of the capacitor 121 rises. On the other hand, when no voltage is output from the port 2 (in the case of zero potential), the FET 14 is turned off and the capacitor 121 is not charged.
  • a voltage obtained by dividing the battery voltage + V by the series circuit 12 including the resistor 122 and the capacitor 121 is used as the bias voltage Vgs of the FET 11 that drives the electric load. If the bias voltage Vgs is greater than a predetermined threshold, the FET 11 is turned on, and if the bias voltage Vgs is smaller than the predetermined threshold, the FET 11 is turned off. Since the series circuit 12 that generates the bias voltage Vgs includes the capacitor 121, current hardly flows through the capacitor 121 once the capacitor 121 is charged with the voltage Vc necessary for the bias voltage Vgs.
  • the current for maintaining the FET 11 in the ON state can be reduced as compared with the conventional case where a constant current (for example, about several mA to several tens of mA) flows.
  • a constant current for example, about several mA to several tens of mA
  • the FET 14, FET 15, FET 18 and the like can be omitted.
  • the voltage Vc of the capacitor 121 is changed to turn the FET 11 off or on.
  • the FET 18 and the FET 15 are turned on, both ends of the capacitor 121 are short-circuited via the FET 15, so that the voltage of the capacitor 121 is lowered, the bias voltage Vgs is reduced, and the FET 11 can be turned off.
  • FET 18 and FET 15 are turned off, both ends of the capacitor 121 are opened via the FET 15, so that the capacitor 121 is charged and the bias voltage Vgs is increased, so that the FET 11 can be turned on.
  • the current for maintaining the FET 11 in the on state can be reduced, and the driving of the electric load can be controlled by controlling the on / off of the FET 11.
  • the capacitor 121 is charged by turning on the FET 14 and the FET 11 is turned on.
  • the configuration includes one FET 14, but the second switch circuit can also be configured by a multi-stage FET. As a result, it is possible to prevent the voltage charged in the capacitor 121 from being reduced due to, for example, a leakage current and the bias voltage Vgs becoming small.
  • FIG. 2 is a time chart showing the operation of the load driving device 100 according to the present embodiment.
  • the microcomputer 10 outputs a rectangular pulse waveform (high, low) at a predetermined timing from the port 2. That is, a positive voltage is periodically output from the port 2.
  • the FET 14 is turned on and the capacitor 121 is charged.
  • the voltage Vc of the capacitor 121 that is, the bias voltage Vgs
  • Vth the threshold value
  • the FET 14 When the positive voltage output from the port 2 is stopped, the FET 14 is turned off and the charging of the capacitor 121 is stopped.
  • the electric charge charged in the capacitor 121 decreases due to the leakage current flowing through the FET 11 and the like, and the voltage Vc (that is, the bias voltage Vgs) of the capacitor 121 decreases.
  • the FET 11 Before the voltage Vc of the capacitor 121 (that is, the bias voltage Vgs) becomes smaller than the threshold value Vth, the FET 11 can be kept on by outputting a positive voltage from the port 2 and restarting the charging of the capacitor 121. .
  • the above-mentioned predetermined timing can be set so that the electric charge charged in the capacitor 121 is discharged due to a leakage current or the like, and the bias voltage Vc does not become lower than a voltage at which the FET 11 cannot be kept on.
  • the predetermined timing can be stored in the microcomputer 10 in advance. Thereby, unnecessary current consumption can be reduced by the capacitor 121 while the FET 11 is kept on.
  • FIG. 3 is a circuit diagram showing an example of the configuration of the load driving device 110 according to the second embodiment.
  • the rectangular pulse waveform output from the port 2 is output at a preset timing.
  • the rectangular pulse waveform is output from the port 2 according to the voltage Vc of the capacitor 121. It can also be output.
  • the microcomputer 10 includes a port 3 as a detection circuit that detects the voltage of the capacitor 121.
  • the microcomputer 10 compares the detected voltage Vc of the capacitor 121 with the threshold voltage.
  • the threshold voltage can be set so that, for example, the voltage charged in the capacitor 121 is discharged due to a leakage current or the like, and the bias voltage Vgs does not become smaller than a voltage at which the FET 11 cannot be kept on.
  • the microcomputer 10 intermittently outputs a positive voltage from the port 2 so that the voltage Vc of the capacitor 121 does not become smaller than the threshold voltage. As a result, the FET 14 is intermittently turned on, the capacitor 121 is charged, and the FET 11 is turned on. Thereby, unnecessary current consumption can be reduced while maintaining the FET 11 in the on state.
  • the FET 14 instead of turning on the FET 14 intermittently or at a predetermined timing, the FET 14 may be always turned on. Even in this case, once the capacitor 121 is charged and the voltage Vc of the capacitor 121 becomes equal to the battery voltage + V, no current flows through the series circuit 12, so that unnecessary current consumption can be suppressed.
  • FIG. 4 is a circuit diagram showing an example of the configuration of the load driving device 120 according to the third embodiment.
  • the FET 14 is not provided.
  • FET 18 and FET 15 are turned off, and both ends of capacitor 121 are opened.
  • the bias voltage Vgs of the FET 11 becomes larger than a predetermined threshold value. The FET 11 is turned on.
  • the series circuit 12 that generates the bias voltage Vgs includes the capacitor 121, current hardly flows through the capacitor 121 once the capacitor 121 is charged with the voltage Vc necessary for the bias voltage Vgs. Thereby, compared with the case where the electric current always flows like the past, the electric current for maintaining FET11 in an ON state can be reduced.
  • the series circuit includes one resistor and one capacitor, but may further include other elements such as a resistor and a capacitor.
  • a capacitor may be used instead of the resistor 16.
  • a similar configuration is realized by replacing the p-channel FET with the n-channel FET, replacing the n-channel FET with the p-channel FET, and replacing the positive voltage and the ground level potential with the ground level and the negative voltage. be able to.
  • the configuration is provided with one electric load, but is not limited thereto, and a plurality of electric loads can be provided.
  • one FET can be provided for a plurality of electric loads whose driving can be controlled simultaneously.
  • the gates of the FETs can be combined into one to control the on state or the off state of each FET with one series circuit 12.

Abstract

FETをオン状態に維持するための電流を従来よりも低減することができる負荷駆動装置を提供する。 FET11のソースは、ヒューズ2を介してバッテリ電圧+Vに接続され、FET11のドレインには電気負荷1を接続してある。FET11のゲートには、コンデンサ121と抵抗122で構成される直列回路12のコンデンサ121と抵抗122との接続ノードが接続されている。直列回路12には、FET14を直列に接続している。コンデンサ121の両端には、FET15のソース、ドレインが接続されている。FET15のゲートには、抵抗16と抵抗17との接続ノードが接続されている。抵抗17には、FET18を接続している。

Description

負荷駆動装置
 本発明は、半導体スイッチにより電気負荷を駆動する負荷駆動装置に関する。
 自動車などの車両は、オルタネータ(車載発電機、交流発電機)及びバッテリなどを備えている。エンジンに連動してオルタネータで発電された電力は、バッテリの充電に利用されるとともに、バッテリからの電力は、車両に搭載された電気負荷に供給される。
 バッテリから電気負荷へ電力を供給するには、バッテリと電気負荷との間の電路にFET等の半導体スイッチを介装し、半導体スイッチをオン又はオフすることにより、電気負荷の駆動を制御する。例えば、マイコンでFETをPWM制御してランプなどの電気負荷を駆動する車載電子回路が開示されている(例えば、特許文献1参照)。
特開2003-154903号公報
 しかしながら、特許文献1の車載電子回路にあっては、複数の抵抗の直列回路でバッテリ電圧を分圧したバイアス電圧をFETのゲートに印加する。このため、FETをオン状態に維持するためには、常に所要のバイアス電圧を生成すべく常時直列回路に電流が流れることになる。一方で、バッテリの容量は限られているため、バッテリの消費電力を抑えるためには、不要な消費電流をできるだけ低減することが望まれる。
 本発明は、斯かる事情に鑑みてなされたものであり、FETをオン状態に維持するための電流を従来よりも低減することができる負荷駆動装置を提供することを目的とする。
 第1発明に係る負荷駆動装置は、バイアス電圧の大小に応じてオン又はオフするFETを備え、電気負荷を駆動する負荷駆動装置において、抵抗及びコンデンサを含む直列回路を備え、該直列回路により電圧を分圧して前記バイアス電圧とすることを特徴とする。
 第2発明に係る負荷駆動装置は、第1発明において、前記コンデンサに並列に接続された第1のスイッチ回路を備え、該第1のスイッチ回路をオン又はオフすることにより、前記コンデンサの電圧を変化させて前記FETをオフ状態又はオン状態するようにしてあることを特徴とする。
 第3発明に係る負荷駆動装置は、第1発明又は第2発明において、前記直列回路に直列に接続された第2のスイッチ回路を備え、該第2のスイッチ回路をオンすることにより、前記コンデンサを充電して前記FETをオン状態にするようにしてあることを特徴とする。
 第4発明に係る負荷駆動装置は、第3発明において、前記第2のスイッチ回路を周期的にオン又はオフすべく制御する制御部を備えることを特徴とする。
 第5発明に係る負荷駆動装置は、第3発明において、前記コンデンサの電圧を検出する検出回路と、該検出回路で検出した電圧と閾値電圧とを比較して、前記第2のスイッチ回路をオン又はオフすべく制御する制御部とを備えることを特徴とする。
 第1発明にあっては、抵抗及びコンデンサを含む直列回路を備え、直列回路により電圧(例えば、バッテリから供給される電圧)を分圧してバイアス電圧とする。バイアス電圧の大小に応じてFETはオン又はオフとなる。例えば、バイアス電圧を大きくしてFETをオンさせ、バイアス電圧を小さくしてFETをオフさせることができる。バイアス電圧を生成する直列回路にはコンデンサが含まれているので、一旦コンデンサにバイアス電圧に必要な電圧が充電された後は、コンデンサに電流がほとんど流れない。従来のように常時電流が流れている場合に比べて、FETをオン状態に維持するための電流を低減することができる。
 第2発明にあっては、コンデンサに並列に接続された第1のスイッチ回路を備え、第1のスイッチ回路をオン又はオフすることにより、コンデンサの電圧を変化させてFETをオフ状態又はオン状態にする。第1のスイッチ回路は、例えば、1段又は多段のFETにより構成することができる。例えば、第1のスイッチ回路がオンすれば、コンデンサの両端は第1のスイッチ回路を介して短絡されるのでコンデンサの電圧は低下し、バイアス電圧が小さくなりFETをオフ状態にさせることができる。また、第1のスイッチ回路がオフすれば、コンデンサの両端は第1のスイッチ回路を介して開放されるのでコンデンサは充電され、バイアス電圧が大きくなりFETをオン状態にさせることができる。これにより、FETをオン状態に維持するための電流を少なくすることができるとともに、FETのオン又はオフを制御して電気負荷の駆動を制御することができる。
 第3発明にあっては、直列回路に直列に接続された第2のスイッチ回路を備え、第2のスイッチ回路をオンすることにより、コンデンサを充電してFETをオン状態にする。第2のスイッチ回路は、例えば、1段又は多段のFETにより構成することができる。これにより、コンデンサに充電された電圧が、例えば、漏れ電流により低下してバイアス電圧が小さくなることを防止することができる。
 第4発明にあっては、第2のスイッチ回路を周期的にオン又はオフすべく制御する制御部を備える。制御部は、第2のスイッチ回路を周期的にオンしてコンデンサを充電してFETをオン状態にする。オン・オフする周期は、例えば、コンデンサに充電された電荷が漏れ電流等により放電し、バイアス電圧がFETをオン状態に維持することができなくなる電圧よりも小さくならないように設定することができる。これにより、FETをオン状態に維持しつつ不要な消費電流を低減することができる。
 第5発明にあっては、コンデンサの電圧を検出する検出回路と、検出回路で検出した電圧と閾値電圧とを比較して、第2のスイッチ回路をオン又はオフすべく制御する制御部とを備える。制御部は、検出したコンデンサの電圧に応じて第2のスイッチ回路をオンしてコンデンサを充電してFETをオン状態にする。閾値電圧は、例えば、コンデンサに充電された電圧が漏れ電流等により放電し、バイアス電圧がFETをオン状態に維持することができなくなる電圧よりも小さくならないように設定することができる。これにより、FETをオン状態に維持しつつ不要な消費電流を低減することができる。
 本発明によれば、FETをオン状態に維持するための電流を従来よりも低減することができる。
本実施の形態に係る負荷駆動装置の構成の一例を示す回路図である。 本実施の形態に係る負荷駆動装置の動作を示すタイムチャートである。 実施の形態2に係る負荷駆動装置の構成の一例を示す回路図である。 実施の形態3に係る負荷駆動装置の構成の一例を示す回路図である。
 以下、本発明に係る負荷駆動装置をその実施の形態を示す図面に基づいて説明する。図1は本実施の形態に係る負荷駆動装置100の構成の一例を示す回路図である。負荷駆動装置100は、バイアス電圧Vgsの大小に応じてオン又はオフするFETとしてのpチャネルFET11、抵抗及びコンデンサを含む直列回路としての抵抗122とコンデンサ121との直列回路12、コンデンサ121に並列に接続された第1のスイッチ回路としてのpチャネルFET15、抵抗16、抵抗17及びnチャネルFET18、直列回路12に直列に接続された第2のスイッチ回路としてのnチャネルFET14、nチャネルFET14をオン又はオフすべく制御する制御部としてのマイコン10などを備えている。
 図1に示すように、FET11のソースは、ヒューズ2を介してバッテリ電圧+Vに接続され、FET11のドレインには電気負荷1を接続してある。FET11のゲートには、コンデンサ121と抵抗122で構成される直列回路12のコンデンサ121と抵抗122との接続ノードが接続されている。また、直列回路12には、第2のスイッチ回路としてのFET14を直列に接続している。これにより、コンデンサ121と抵抗122でバッテリ電圧+Vが分圧された電圧(コンデンサ121の電圧Vc)がFET11のゲート・ソース間にバイアス電圧Vgsとして印加される。
 コンデンサ121の両端には、第1のスイッチ回路を構成するFET15のソース、ドレインが接続されている。FET15のゲートには、抵抗16と抵抗17との接続ノードが接続されている。抵抗17には、第1のスイッチ回路を構成するFET18を接続している。
 FET18のゲートは、制御部としてのマイコン10のポート1に接続されている。FET14のゲートは、マイコン10のポート2に接続されている。FET11のゲート・ソース間には、過電圧又はノイズ等からFETを保護するためのツェナーダイオード20を接続してある。また、FET15のゲート・ソース間には、過電圧又はノイズ等からFETを保護するためのツェナーダイオード19を接続してある。
 マイコン10のポート1より、所要の正電圧を出力すると、FET18がオン状態となり、FET15のゲート電位が下がりFET15がオン状態となる。この場合、コンデンサ121の両端は、FET15のソース・ドレインを介して短絡され、コンデンサ121の電圧は低下する。一方、ポート1より電圧が出力されない場合(ゼロ電位の場合)、FET18がオフ状態となり、FET15のゲート電位が上がりFET15がオフ状態となる。この場合、コンデンサ121の両端は、FET15のソース・ドレインを介して開放され、コンデンサ121は充電され、コンデンサ121の電圧は上昇する。
 マイコン10のポート2より、所要の正電圧を出力すると、FET14がオン状態となり、コンデンサ121は充電され、コンデンサ121の電圧は上昇する。一方、ポート2より電圧が出力されない場合(ゼロ電位の場合)、FET14がオフ状態となり、コンデンサ121の充電は行われない。
 上述のように、電気負荷を駆動するFET11のバイアス電圧Vgsとして、抵抗122及びコンデンサ121を含む直列回路12によりバッテリ電圧+Vを分圧した電圧を用いる。バイアス電圧Vgsが所定の閾値より大きくなればFET11はオン状態となり、バイアス電圧Vgsが所定の閾値より小さくなればFET11はオフ状態となる。バイアス電圧Vgsを生成する直列回路12にはコンデンサ121が含まれているので、一旦コンデンサ121にバイアス電圧Vgsに必要な電圧Vcが充電された後は、コンデンサ121に電流がほとんど流れない。これにより、従来のように常時電流(例えば、数mA~十数mA程度)が流れている場合に比べて、FET11をオン状態に維持するための電流を低減することができる。特にFET11のオン状態での使用時間が長い装置ほど、省電力効果が大きくなる。なお、FET14、FET15、FET18などを省略することもできる。
 また、従来のような抵抗のみの直列回路によるバイアス回路の場合には、抵抗値を大きくすることにより、直列回路に流れる電流を抑えることも可能であるが、抵抗値を大きくすることにより、ノイズによる影響が大きくなりFETが誤動作し易くなるという問題、あるいは、バイアス電圧が小さくなりFETをオン状態にすることが困難となるなどの問題が生じるが、本実施の形態では、このような問題が生じることもない。
 また、FET15、FET18の2段のFETにより構成されたスイッチ回路を備える場合、FET18及びFET15をオン又はオフすることにより、コンデンサ121の電圧Vcを変化させてFET11をオフ状態又はオン状態にすることができる。例えば、FET18及びFET15がオンすれば、コンデンサ121の両端はFET15を介して短絡されるのでコンデンサ121の電圧は低下し、バイアス電圧Vgsが小さくなりFET11をオフ状態にさせることができる。また、FET18及びFET15がオフすれば、コンデンサ121の両端はFET15を介して開放されるのでコンデンサ121は充電され、バイアス電圧Vgsが大きくなりFET11をオン状態にさせることができる。これにより、FET11をオン状態に維持するための電流を少なくすることができるとともに、FET11のオン又はオフを制御して電気負荷の駆動を制御することができる。
 また、FET14を備える場合、FET14をオンすることにより、コンデンサ121を充電してFET11をオン状態にする。なお、図1の例では、FET14を1つ備える構成であるが、第2のスイッチ回路は、多段のFETにより構成することもできる。これにより、コンデンサ121に充電された電圧が、例えば、漏れ電流により低下してバイアス電圧Vgsが小さくなることを防止することができる。
 図2は本実施の形態に係る負荷駆動装置100の動作を示すタイムチャートである。図2に示すように、マイコン10はポート2から所定のタイミングの矩形状のパルス波形(ハイ、ロー)を出力する。すなわち、ポート2からは周期的に正電圧が出力される。ポート2から正電圧が出力されると、FET14がオン状態となり、コンデンサ121が充電される。これにより、コンデンサ121の電圧Vc(すなわち、バイアス電圧Vgs)が閾値Vthより大きくなるとFET11がオフ状態からオン状態になる。
 ポート2から正電圧の出力が停止すると、FET14がオフ状態となり、コンデンサ121への充電が停止する。コンデンサ121に充電された電荷は、FET11等を通じて流れる漏れ電流により減少し、コンデンサ121の電圧Vc(すなわち、バイアス電圧Vgs)が低下する。コンデンサ121の電圧Vc(すなわち、バイアス電圧Vgs)が閾値Vthより小さくなる前に、ポート2から正電圧を出力してコンデンサ121への充電を再開することによりFET11をオン状態に維持することができる。
 上述の所定のタイミングは、コンデンサ121に充電された電荷が漏れ電流等により放電し、バイアス電圧VcがFET11をオン状態に維持することができなくなる電圧よりも小さくならないように設定することができる。そして、所定のタイミングは、予めマイコン10に記憶させておくことができる。これにより、FET11をオン状態に維持しつつ、コンデンサ121により不要な消費電流を低減することができる。
 ポート1から正電圧が出力されると、FET18及びFET15がオン状態となり、コンデンサ121に充電した電荷はFET15を介して放電され、コンデンサ121の電圧Vcは低下する。これによりバイアス電圧Vgsは低下し、FET11をオフ状態として電気負荷1への駆動を停止することができる。
実施の形態2
 図3は実施の形態2に係る負荷駆動装置110の構成の一例を示す回路図である。上述の実施の形態では、ポート2から出力する矩形状のパルス波形を、予め設定したタイミングで出力する構成であったが、コンデンサ121の電圧Vcに応じて、ポート2から矩形状のパルス波形を出力することもできる。図3に示すように、実施の形態2では、コンデンサ121の電圧を検出する検出回路としてのポート3をマイコン10に備える。
 マイコン10は、検出したコンデンサ121の電圧Vcと閾値電圧とを比較する。閾値電圧は、例えば、コンデンサ121に充電された電圧が漏れ電流等により放電し、バイアス電圧VgsがFET11をオン状態に維持することができなくなる電圧よりも小さくならないように設定することができる。マイコン10は、コンデンサ121の電圧Vcが閾値電圧より小さくならないように、ポート2から正電圧を断続的に出力する。これにより、FET14を断続的にオンしてコンデンサ121を充電してFET11をオン状態にする。これにより、FET11をオン状態に維持しつつ不要な消費電流を低減することができる。
 上述の実施の形態において、FET14を断続的又は所定のタイミングでオンさせる代わりに、FET14を常時オンとしてもよい。この場合でも、一旦コンデンサ121が充電され、コンデンサ121の電圧Vcがバッテリ電圧+Vと等しくなれば、直列回路12には電流が流れなくなるので不要な消費電流を抑えることができる。
実施の形態3
 図4は実施の形態3に係る負荷駆動装置120の構成の一例を示す回路図である。上述の実施の形態との相違点は、FET14を具備しない点である。図4に示すように、ポート1から電圧が出力されない場合(ゼロ電位の場合)、FET18及びFET15はオフとなり、コンデンサ121の両端は開放される。この場合、電気負荷を駆動するFET11のバイアス電圧Vgsとして、抵抗122及びコンデンサ121を含む直列回路12によりバッテリ電圧+Vを分圧した電圧を用いているので、バイアス電圧Vgsが所定の閾値より大きくなりFET11がオン状態となる。バイアス電圧Vgsを生成する直列回路12にはコンデンサ121が含まれているので、一旦コンデンサ121にバイアス電圧Vgsに必要な電圧Vcが充電された後は、コンデンサ121に電流がほとんど流れない。これにより、従来のように常時電流が流れている場合に比べて、FET11をオン状態に維持するための電流を低減することができる。
 ポート1から正電圧を出力した場合、FET18及びFET15はオンとなり、コンデンサ121はFET15により短絡される。コンデンサ121に充電した電荷はFET15を介して放電され、コンデンサ121の電圧Vcは低下する。これによりバイアス電圧Vgsは低下し、FET11をオフ状態として電気負荷1への駆動を停止することができる。
 上述の実施の形態では、直列回路は抵抗とコンデンサとを各1つ含むが、さらに他の素子、例えば、抵抗、コンデンサなどを含めることもできる。
 上述の実施の形態において、抵抗16に代えてコンデンサを用いてもよい。
 上述の実施の形態において、pチャネルFETをnチャネルFETに代え、nチャネルFETをpチャネルFETに代え、正電圧と接地レベル電位を、接地レベルと負電圧に代えることで同様の構成を実現することができる。
 上述の実施の形態では、1つの電気負荷を備える構成であったが、これに限定されるものではなく、電気負荷は複数備えることができる。この場合、同時に駆動を制御することができる複数の電気負荷に対して1つのFETを設けることができる。また、電気負荷駆動用のFETを複数備える場合には、各FETのゲートを1つに纏めて1つの直列回路12で各FETのオン状態又はオフ状態を制御することもできる。
 開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 電気負荷
 10 マイコン(制御部)
 11 pチャネルFET(FET)
 12 直列回路
 121 コンデンサ
 122 抵抗
 14 nチャネルFET(第2のスイッチ回路)
 15 pチャネルFET(第1のスイッチ回路)
 18 nチャネルFET(第1のスイッチ回路)
 
 

Claims (5)

  1.  バイアス電圧の大小に応じてオン又はオフするFETを備え、電気負荷を駆動する負荷駆動装置において、
     抵抗及びコンデンサを含む直列回路を備え、
     該直列回路により電圧を分圧して前記バイアス電圧とすることを特徴とする負荷駆動装置。
  2.  前記コンデンサに並列に接続された第1のスイッチ回路を備え、
     該第1のスイッチ回路をオン又はオフすることにより、前記コンデンサの電圧を変化させて前記FETをオフ状態又はオン状態にするようにしてあることを特徴とする請求項1に記載の負荷駆動装置。
  3.  前記直列回路に直列に接続された第2のスイッチ回路を備え、
     該第2のスイッチ回路をオンすることにより、前記コンデンサを充電して前記FETをオン状態にするようにしてあることを特徴とする請求項1又は請求項2に記載の負荷駆動装置。
  4.  前記第2のスイッチ回路を周期的にオン又はオフすべく制御する制御部を備えることを特徴とする請求項3に記載の負荷駆動装置。
  5.  前記コンデンサの電圧を検出する検出回路と、
     該検出回路で検出した電圧と閾値電圧とを比較して、前記第2のスイッチ回路をオン又はオフすべく制御する制御部と
     を備えることを特徴とする請求項3に記載の負荷駆動装置。
     
     
PCT/JP2010/066220 2009-09-29 2010-09-17 負荷駆動装置 WO2011040277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010003843T DE112010003843T8 (de) 2009-09-29 2010-09-17 Lastansteuervorrichtung
US13/394,956 US20120169318A1 (en) 2009-09-29 2010-09-17 Load driving device
CN2010800385466A CN102484472A (zh) 2009-09-29 2010-09-17 负载驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009225227A JP2011077698A (ja) 2009-09-29 2009-09-29 負荷駆動装置
JP2009-225227 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040277A1 true WO2011040277A1 (ja) 2011-04-07

Family

ID=43826101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066220 WO2011040277A1 (ja) 2009-09-29 2010-09-17 負荷駆動装置

Country Status (5)

Country Link
US (1) US20120169318A1 (ja)
JP (1) JP2011077698A (ja)
CN (1) CN102484472A (ja)
DE (1) DE112010003843T8 (ja)
WO (1) WO2011040277A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133580B2 (ja) * 2012-11-28 2017-05-24 Necプラットフォームズ株式会社 トランジスタ駆動制御回路、トランジスタ駆動制御システム、及び、トランジスタ駆動制御方法
JP6315321B2 (ja) * 2014-04-07 2018-04-25 株式会社ケーヒン 燃料噴射制御装置
JP6724539B2 (ja) * 2016-05-16 2020-07-15 住友電装株式会社 負荷駆動装置
CN116225143B (zh) * 2023-03-13 2023-10-27 河北盛马电子科技有限公司 开门柜自动售货机控制电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204231A (ja) * 1996-01-25 1997-08-05 Harness Sogo Gijutsu Kenkyusho:Kk 自動車用電力制御回路
JP2002344297A (ja) * 2001-05-17 2002-11-29 Denso Corp 電気負荷の駆動装置
JP2009147496A (ja) * 2007-12-12 2009-07-02 Yazaki Corp 負荷制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154903A (ja) 2001-11-19 2003-05-27 Auto Network Gijutsu Kenkyusho:Kk 車載電子回路
US20040212421A1 (en) * 2003-02-25 2004-10-28 Junichi Naka Standard voltage generation circuit
CN101235787A (zh) * 2007-01-29 2008-08-06 刘伟亮 摩托车电源开关熄火电路
JP2009232597A (ja) * 2008-03-24 2009-10-08 Yazaki Corp 負荷制御装置、及び半導体スイッチング素子駆動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204231A (ja) * 1996-01-25 1997-08-05 Harness Sogo Gijutsu Kenkyusho:Kk 自動車用電力制御回路
JP2002344297A (ja) * 2001-05-17 2002-11-29 Denso Corp 電気負荷の駆動装置
JP2009147496A (ja) * 2007-12-12 2009-07-02 Yazaki Corp 負荷制御装置

Also Published As

Publication number Publication date
US20120169318A1 (en) 2012-07-05
DE112010003843T5 (de) 2012-09-13
DE112010003843T8 (de) 2012-11-29
CN102484472A (zh) 2012-05-30
JP2011077698A (ja) 2011-04-14

Similar Documents

Publication Publication Date Title
JP4483751B2 (ja) 電源逆接続保護回路
JP5113616B2 (ja) リレー駆動回路、及びそれを用いた電池パック
WO2010052947A1 (ja) 車両用電源装置
US10065521B2 (en) System and method for using solar power to supplement power in a DC electrical system
US10256623B2 (en) Power control device
JP4655850B2 (ja) 電源供給制御回路
CN108123623B (zh) 整流器以及使用了该整流器的交流发电机
US11329474B2 (en) Switching controller with adaptive overheating protection
US11381168B2 (en) Switching power supply device
WO2011040277A1 (ja) 負荷駆動装置
WO2007052473A1 (ja) 電力供給制御装置
JP5588370B2 (ja) 出力回路、温度スイッチic、及び、電池パック
JP7145745B2 (ja) スイッチ装置
JP6632851B2 (ja) 入力回路
US8138705B2 (en) Circuit arrangement and method for controlling an electric load
WO2020183901A1 (ja) 通電制御装置
WO2017159035A1 (ja) 放電回路および蓄電装置
JP2017073872A (ja) チャージポンプ回路
JP2013247823A (ja) 半導体装置
JP7002423B2 (ja) スイッチ回路
JP2011130641A (ja) 車両用電源装置
US20230102188A1 (en) Overcurrent protection circuit, semiconductor device, electronic apparatus, and vehicle
JP2017019363A (ja) 車両用電源制御装置
JP4420142B1 (ja) 車両用電源装置
JP5219391B2 (ja) モータ拘束検出回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038546.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820396

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13394956

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100038430

Country of ref document: DE

Ref document number: 112010003843

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820396

Country of ref document: EP

Kind code of ref document: A1