JP4511007B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP4511007B2
JP4511007B2 JP2000297892A JP2000297892A JP4511007B2 JP 4511007 B2 JP4511007 B2 JP 4511007B2 JP 2000297892 A JP2000297892 A JP 2000297892A JP 2000297892 A JP2000297892 A JP 2000297892A JP 4511007 B2 JP4511007 B2 JP 4511007B2
Authority
JP
Japan
Prior art keywords
well
type
semiconductor device
lateral mosfet
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000297892A
Other languages
English (en)
Other versions
JP2002110813A (ja
Inventor
高雄 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2000297892A priority Critical patent/JP4511007B2/ja
Priority to US09/963,533 priority patent/US20020038896A1/en
Publication of JP2002110813A publication Critical patent/JP2002110813A/ja
Application granted granted Critical
Publication of JP4511007B2 publication Critical patent/JP4511007B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板に形成された同一ウェル内にエンハンスメント型ラテラルMOSFETとデプレッション型ラテラルMOSFETを有する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
半導体装置として、半導体基板上に形成された縦型MOSFETと、当該半導体基板に形成されたウェル内に形成されたデプレッション型ラテラルMOSFETとを備える半導体装置がある。例えば、特許第2077155号公報や特開平10−233506号公報に記載されている。この種の半導体装置について、図面を参照して説明する。図6〜図8は、この種の半導体装置の従来の製造方法を工程純に示すチップ断面図である。先ず、図6(a)に示すように、高不純物濃度のN 型半導体基板22上に、低不純物濃度のN 型エピタキシャル層23を形成し、前記N 型エピタキシャル層23上に酸化膜24を形成する。次いで、周知のリソグラフィ技術を用い、Pウェルの形成したい部分の酸化膜3を除去する。
【0003】
次いで、図6(b)に示すように、前記酸化膜24をマスクにして、前記N型エピタキシャル層23にP型不純物として硼素をイオン注入する。そして、熱処理を行うと、Pウェル25が形成される。その後、前記酸化膜24を除去し、図示は省略するが選択的なマスクを用いた選択的なウェット酸化技術により、図6(c)に示すように、前記N 型エピタキシャル層23の表面に選択的に酸化膜26を形成する。この酸化膜26は、寄生MOSFETの動作抑制をさせる為に、通常形成されているものであり、フィールド酸化膜と呼ばれているものである。続いて、図6(d)に示すように、デプレッション型ラテラルMOSFETを形成する前記Pウェル25の一部領域を開口したフォトレジスト27を形成し、前記フォトレジスト27をマスクにして、N型不純物として砒素又は燐をイオン注入する。この硼素又は燐はデプレッション型ラテラルMOSFETのしきい値電圧調整用の不純物である。これにより、前記Pウェル25内にデプレッション型ラテラルMOSFETのチャネル領域となるN型領域28が形成される。
【0004】
その後、図7(a)に示すように、前記フォトレジスト27を除去し、表面を酸化処理してゲート酸化膜29a,29b,29cを形成する。さらに、前記ゲート酸化膜29a,29b,29c上に、N型不純物が拡散されたポリシリコンからなるゲート電極30a,30b,30cを形成する。ここで、ゲート電極30aがデプレッション型ラテラルMOSFETのゲートであり、ゲート電極30bがエンハンスメント型ラテラルMOSFETのゲートであり、ゲート電極30cが縦型MOSFETのゲートである。続いて、図7(b)に示すように、前記Pウェル25を覆うフォトレジスト31を形成し、当該フォトレジスト31とゲート電極30cをマスクにして、P型不純物として硼素をイオン注入する。そして、前記フォトレジスト31を除去した後、熱処理を行い、図7(c)に示すように、前記ゲート電極30c間にP型領域32を形成する。このP型領域32は、縦型MOSFETのボディ領域になる。
【0005】
続いて、図7(d)に示すように、前記Pウェル25及びゲート電極30cを覆い、前記P型領域32の中央領域のみを開口したフォトレジスト33を形成し、当該フォトレジスト33をマスクにして、P型不純物として硼素を高濃度にイオン注入する。そして、前記フォトレジスト33を除去した後、熱処理を行い、前記P型領域32内に高濃度のP 型領域34を形成する。このP 型領域34は、縦型MOSFETの寄生バイポーラトランジスタの動作を抑制させるものである。さらに、前記P 型領域34上に選択的にフォトレジスト35を形成し、前記フォトレジスト35及びゲート電極30a,30b,30c及び前記酸化膜26をマスクにして、N型不純物として砒素をイオン注入する。そして、前記フォトレジスト35を除去後、熱処理を行い、図8(a)に示すように、N型領域36a,36b,36c,36d,36eを形成する。ここで、N 型領域36aとN 型領域36bは、デプレッション型ラテラルMOSFETのドレインとソースになる。N 型領域36cとN 型領域36dは、エンハンスメント型ラテラルMOSFETのドレインとソースになる。N 型領域36eは、縦型MOSFETのソースになる。次いで、全面に層間絶縁膜37を形成し、その上にコンタクト領域を開口したフォトレジスト38を形成し、当該フォトレジスト38をマスクにし、ドレイン及びソース領域上の層間絶縁膜37をエッチングする。
【0006】
しかる上で、図8(b)に示すように、前記フォトレジスト38を除去後、全面にアルミ電極39を形成する。そして、前記アルミ電極39上に選択的にフォトレジスト40を形成し、このフォトレジスト40をマスクにして、前記アルミ電極39をエッチングし、図8(c)に示すように、個々のアルミ電極39a,39b,39c,39d,39eを形成する。その後、前記フォトレジスト40を除去し、また前記半導体基板22の裏面に裏面電極41を形成する。ここで、アルミ電極39aとアルミ電極39bは、デプレッション型ラテラルMOSFETのドレイン電極とソース電極になる。また、アルミ電極39cとアルミ電極39dは、エンハンスメント型ラテラルMOSFETのドレイン電極とソース電極になる。アルミ電極39eは、縦型MOSFETのソース電極になる。裏面電極41は、縦型MOSFETのドレイン電極になる。
【0007】
【発明が解決しようとする課題】
以上説明した製造方法によって形成される従来の半導体装置は、NチャネルMOSFET又はPチャネルMOSFETだけで回路を構成しなければならないという制約があるものの、縦型MOSFETの製造工程に対して、若干の工程を追加するだけで製造すること出来るので、製造コストを低く出来るというメリットを有している。しかしながら、このような従来の半導体装置では、デプレッション型ラテラルMOSFETのしきい値電圧のばらつきが大きく、回路設計がし難いという問題点がある。このしきい値電圧のばらつきが回路動作上許容できない場合には、しきい値電圧が大きく外れたものは特性不良になり、選別歩留まりが悪化するという問題点がある。
【0008】
ここで、従来のデプレッション型ラテラルMOSFETのしきい値電圧のばらつきが大きくなる理由を説明する。例えば、エンハンスメント型ラテラルMOSFETのしきい値電圧を1V、デプレッション型ラテラルMOSFETのしきい値電圧を−1Vとした場合、Pウェル25の表面濃度は、約1E16〜1E17cm-3であり、N型領域28の表面濃度は、N型領域28とPウェル25で形成されるpn接合の深さ等によって変わるが、約1E13〜1E15cm-3になる。仮に、Pウェル25の表面濃度を1E16cm-3、N型領域28の表面濃度1E13cm-3とすると、Pウェル25の表面の硼素不純物濃度を1E16cm-3とし、N型領域表面の砒素又は燐の不純物濃度を1.001E16cm-3としなければならなくなる。すなわち、N型領域28の濃度(1E13cm-3)は、砒素濃度(1.001E16cm-3)−Pウェルの硼素濃度(1E16cm-3)となる。この場合、硼素濃度が1%ばらついて、例えば1.002E16cm-3になると、N型領域28の濃度は2E13cm-3(すなわち1.002E16−1E16cm-3=0.002E16cm-3=2E13cm-3)となり、もとの1E13cm-3に比較して100%ばらつくことになる。
【0009】
しきい値電圧は、ほぼ濃度の対数と比例している為、デプレッション型ラテラルMOSFETのしきい値電圧は、エンハンスメント型ラテラルMOSFETのしきい値電圧に比べて、大幅にばらつくことになる。pn接合部から発生する空乏層がゲート酸化膜29まで到達し、これ以上延びることが出来なくなってしまう程度までpn接合を浅くすれば、pn接合部分の電荷中和が空乏層だけでは成立しなくなり、ゲート電極30aに正電荷が印加された状態で電荷中和が成立するようになる。この正電荷を蓄える電圧分だけ、デプレッション型ラテラルMOSFETのしきい値電圧が正側にシフトする。したがって、同一しきい値電圧に設定しようとした場合、pn接合が浅い程N型領域の濃度が高くなり、しきい値電圧がばらつきにくくなる。しかしながら、前記した従来の製造方法においては、N型領域28の形成後に、縦型MOSFETのP型領域32とP 型領域34を形成する為の熱処理があり、この熱処理量は、1140℃,数十分程度の比較的大きなものであるため、N型領域28が深く拡散されてしまい、pn接合を浅くするのが困難であり、前記したようなしきい値電圧のばらつきを抑制することが難しいという問題が生じている。
【0010】
本発明の主な目的は、同一ウェル内に形成されたエンハンスメント型ラテラルMOSFETとデプレッション型ラテラルMOSFETを有する半導体装置において、当該デプレッション型ラテラルMOSFETのしきい値電圧ばらつきの小さい半導体装置及びその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、半導体基板に設けられた第1導電型のウェル内にエンハンスメント型ラテラルMOSFETとデプレッション型ラテラルMOSFETを有する半導体装置において、エンハンスメント型ラテラルMOSFETのチャネル部におけるウェルの主面は半導体基板の表面に等しく、デプレッション型ラテラルMOSFETのチャネル部におけるウェルの主面半導体基板の表面よりも凹んだ面に形成されていることを特徴とする。ここで、前記凹んだ面の領域の前記ウェル内に前記デプレッション型ラテラルMOSFETのしきい値調整用の第2導電型の不純物拡散層が形成されるとともに、前記凹んだ面上にゲート絶縁膜及びゲート電極が形成されていることを特徴とする。
【0012】
また、本発明は、半導体基板に第1導電型のウェルを形成する工程と、前記ウェル内にデプレッション型ラテラルMOSFETを形成する工程を含む半導体装置の製造方法であって、前記ウェルの前記デプレッション型ラテラルMOSFETの形成領域にしきい値電圧調整用の第2導電型の不純物拡散層を形成する工程と、前記第2導電型の不純物拡散層の表面を酸化して酸化膜を形成し、前記ウェルと前記不純物拡散層とで形成されるpn接合深さを浅くさせる工程と、前記酸化膜を除去して第2導電型の不純物拡散層の表面をウェルの表面よりも凹んだ面にする工程とを含み、エンハンスメント型ラテラルMOSFETはウェルの凹んでいない領域に形成し、デプレッション型ラテラルMOSFETは凹んだ面に形成することを特徴とする。
【0013】
本発明によれば、ウェル及びしきい値電圧調整の不純物拡散層を形成した後に、当該不純物拡散層のウェル表面に酸化膜を形成することにより、酸化膜に接するウェル表面の不純物濃度が低下し、かつ当該ウェルと不純物拡散層とで形成されるpn接合の深さが浅くなる。これにより、デプレッション型ラテラルMOSFETは、ゲート絶縁膜が形成される領域の表面が半導体基板の他の領域の表面よりも凹んだ状態のMOSFETとして形成されることになり、また同時に、デプレッション型ラテラルMOSFETのしきい値電圧のばらつきが低減されることになる。
【0014】
【発明の実施の形態】
次に、添付した図面を参照しながら、本発明の実施の形態を以下に詳述する。図1は、本発明の一実施形態としての半導体装置を製造工程純に示すチップ断面図である。先ず、図1(a)に示すように、シリコン等の高不純物濃度のN 型半導体基板1上に、低不純物濃度のN 型エピタキシャル層2を形成する。また、前記N 型エピタキシャル層2上に酸化膜3を形成し、周知のリソグラフィ技術を用い、後述するPウェル5の形成したい部分の酸化膜3を除去する。そして、前記酸化膜3をマスクにして、前記N 型エピタキシャル層2に対し注入量1.5E13cm-2でP型不純物として硼素をイオン注入する。続いて、図1(b)に示すように、リソグラフィ技術を用いて、前記酸化膜3を覆い、デプレッション型ラテラルMOSFETを形成する領域を開口したフォトレジスト4を形成する。そして、前記フォトレジスト4をマスクにして、前記N 型エピタキシャル層2に対し注入量6.0E12cm-2でN型不純物として砒素をイオン注入する。この砒素はデプレッション型ラテラルMOSFETのしきい値電圧調整用不純物である。しかる後、前記フォトレジスト4を除去し、1140℃,240分の熱処理を行うと、図1(c)に示すように、Pウェル5とデプレッション型ラテラルMOSFETのチャネル部になるN型領域6が形成される。
【0015】
その後、前記酸化膜3を除去し、図1(d)に示すように、1000℃の選択ウェット酸化技術により基板の表面に酸化膜7aと酸化膜7bを同時形成する。前記酸化膜7a,7bの膜厚は、1μmである。前記酸化膜7aは、寄生MOSFETの動作抑制をさせる為に、通常形成されているものであり、フィールド酸化膜と呼ばれているものである。また、酸化膜7bは本発明において特徴とされるものであり、前記N型領域6の表面を覆うように形成される。この結果、前記酸化膜7bは前記N型領域6の厚さ方向の表面側を酸化し、酸化時の偏析や酸化自体による酸化膜と半導体界面位置が移動するとによって、N型領域6の実質的な深さを浅くし、N型領域6とPウェル5とで構成されるpn接合が浅くなる。また、酸化膜7bに接する部分の硼素の不純物濃度は、酸化時の偏析によって薄くなっているので、後工程の熱処理後においても前記pn接合深さは、あまり深くならない。
【0016】
続いて、図1(e)に示すように、前記酸化膜7bを開口したフォトレジスト8を形成する。そして、前記フォトレジスト8をマスクにして、前記酸化膜7bのみを除去する。その後、図2(a)に示すように、前記フォトレジスト7を除去し、厚さ300A(オングストローム)のゲート酸化膜9a,9b,9cを形成し、さらに前記ゲート酸化膜9a,9b,9c上に、N型不純物に拡散されたポリシリコンからなるゲート電極10a,10b,10cを形成する。ここで、ゲート電極10aはデプレッション型ラテラルMOSFETのゲートであり、ゲート電極10bはエンハンスメント型ラテラルMOSFETのゲートであり、ゲート電極10cは縦型MOSFETのゲートである。次いで、図2(b)に示すように、前記Pウェル5の領域を覆うフォトレジスト11を形成し、前記フォトレジスト11とゲート電極10cをマスクにして、P型不純物としての硼素をイオン注入する。そして、図2(c)に示すように、前記フォトレジスト11を除去した後、1140℃,数十分の熱処理を行い、P型領域12を形成する。このP型領域12は、縦型MOSFETのボディ領域になる。次いで、前記P型領域12の中央領域を開口したフォトレジスト13を形成し、前記フォトレジスト13をマスクにして、P型不純物としての硼素をイオン注入する。
【0017】
そして、図2(d)に示すように、前記フォトレジスト13を除去した後、1000℃,数十分の熱処理を行い、P 型領域14を形成する。このP 型領域14は、縦型MOSFETの寄生バイポーラトランジスタの動作を抑制させるものである。次いで、前記P 領域14上にフォトレジスト15を形成し、前記フォトレジスト15及びゲート電極10a,10b,10c及び酸化膜7aをマスクにして、N型不純物としての砒素をイオン注入する。次いで、図3(a)に示すように、前記フォトレジスト15を除去した後、1000℃,数十分の熱処理を行い、N 型領域16a,16b,16c,16d,16eを形成する。ここで、N 型領域16aとN 型領域16bは、デプレッション型ラテラルMOSFETのドレインとソースになる。N 型領域16cとN 型領域16dは、エンハンスメント型ラテラルMOSFETのドレインとソースになる。N 型領域16eは、縦型MOSFETのソースになる。しかる上で、全面に層間絶縁膜17を形成し、その上にコンタクト領域を開口したフォトレジスト18を形成する。
【0018】
そして、図3(b)に示すように、前記フォトレジスト18をマスクにし、ドレイン及びソース領域上の前記層間絶縁膜17をエッチングする。次いで、フォトレジスト18を除去した後、全面にアルミ電極19を形成する。次いで、前記アルミ電極19上にフォトレジスト20を形成し、このフォトレジスト20をマスクにして、前記アルミ電極19をエッチングし、図3(c)に示すように、個々のアルミ電極19a,19b,19c,19d,19eを形成する。また、前記フォトレジスト20を除去した後、前記N 型シリコン基板1の裏面に裏面電極21を形成する。ここで、アルミ電極19aとアルミ電極19bは、デプレッション型ラテラルMOSFETのドレイン電極とソース電極になる。アルミ電極19cとアルミ電極19dは、エンハンスメント型ラテラルMOSFETのドレイン電極とソース電極になる。アルミ電極19eは、縦型MOSFETのソース電極になる。裏面電極21は、縦型MOSFETのドレイン電極になる。
【0019】
以上の工程を経て形成した半導体装置では、エンハンスメント型ラテラルMOSFETのしきい値電圧は約1V、デプレッション型ラテラルMOSFETのしきい値電圧は約−1Vになる。ここで、図1(e)の工程において説明したように、デプレッション型ラテラルMOSFETの形成領域において、N型領域6の表面を酸化して酸化膜7bを形成しているので、Pウェル5とN型領域6で形成されるpn接合を浅くすることが出来る。また、その後に、図2(a)の工程において、前記酸化膜7bを除去し、露呈されたN型領域6の表面にゲート酸化膜9aを形成し、さらにその上にゲート電極10aを形成している。そのため、デプレッション型ラテラルMOSFETのチャネル部の表面は、Pウェル5の他の領域の表面、すなわち前記半導体基板1の表面よりも凹んだ状態に形成されることになる。そして、前記したようにpn接合が浅くなると、pn接合部から発生する空乏層は、ゲート酸化膜9aまで到達し、これ以上延びることが出来なくなってしまう。この状態では、pn接合部分の電荷中和が空乏層だけでは成立しなくなり、ゲート電極10aに正電荷が印加された状態で電荷中和が成立するようになる。
【0020】
そのため、その正電荷を蓄える電圧分だけ、デプレッション型ラテラルMOSFETのしきい値電圧が正側にシフトする。このシフトによって、同一しきい値電圧では、pn接合を浅くするほど、N型領域6の不純物濃度を高く出来る。このN型領域6の不純物濃度が高いほど、不純物濃度に対するしきい値電圧の変化が少なくなり、ウェハ面内のしきい値電圧ばらつきが小さくなるという効果が得られる。また、同じ理由により、N型領域6を形成する為のイオン注入量に対するしきい値電圧変化も小さくなり、イオン注入装置の注入量ばらつきによって発生する製造ロット間のしきい値電圧ばらつきが小さくなる(しきい値電圧のコントロール性が良くなる)という効果が得られる。
【0021】
図4に前記実施形態で説明した本発明の製造方法と、図6〜図8を参照して説明した従来の製造方法によってそれぞれ試作した半導体装置における、イオン注入量としきい値電圧の関係を示す。従来の製造方法に比べて、本発明の製造方法方が、イオン注入に対するしきい値電圧の傾きが約1/2に低減しており、製造ロット間のしきい値電圧ばらつきを1/2程度にする事が出来ることが確認された。
【0022】
図5に、本発明の製造方法と、従来の製造方法によってそれぞれ試作した半導体装置における、ウェハ面内のしきい値電圧ばらつきを示す。従来の製造方法に比べて、本発明の製造方法の方が、ウェハ面内のしきい値電圧ばらつきが約1/2に低減していることが確認された。
【0023】
なお、本発明の製造方法で製造された半導体装置における、前記N型領域 の不純物濃度及びpn接合深さがどの程度であるかは、分析サイズが小さいために解析は困難であったが、図4及び図5に示した特性において、しきい値電圧の傾き、及びしきい値電圧のばらつきがそれぞれ1/2になっていることから、砒素濃度に対するN型領域6の不純物濃度のばらつきは、従来の製造方法のものに比較して1/2程度になっているものと推測される。
【0024】
また、前記実施形態での製造工程において、N型領域6を形成する為の砒素不純物のイオン注入工程がPウェル5を形成するための熱処理(1140℃,240分)工程の前に行われているのは、Pウェル5を形成するための熱処理量がばらついたとき、N型領域6の実効不純物濃度(砒素の不純物濃度から硼素の不純物濃度を引いた不純物濃度)のばらつきが少なくなるようにして、少しでも、デプレッション形ラテラルMOSFETのしきい値電圧ばらつきが小さくなるようにした為である。しかし、この熱処理量ばらつきに対するしきい値電圧ばらつきは、しきい値電圧ばらつき全体の10%程度以下しかないため、ゲート電極10aを形成する工程の前に、N型領域6を形成する為の砒素不純物のイオン注入を行えば、ほぼ同等の効果が得られる。
【0025】
さらに本発明は、縦型MOSFETの構造がトレンチ構造の場合でも、適用が可能である。また、前記実施形態において、N 型半導体基板1を逆導電型のP 型半導体基板に変更すれば、縦型MOSFETをIGBT(絶縁ゲート型バイポーラトランジスタ)にすることも可能であり、縦型MOSFETに限定される発明ではない。なお、その他の構成において、本発明は前記実施形態に限定されず、本発明の技術思想の範囲内において、各構成は適宜変更され得ることは明らかである。
【0026】
【発明の効果】
以上説明したように、本発明の半導体装置の製造方法によれば、半導体基板に設けた同一ウェルにエンハンスメント型ラテラルMOSFETとデプレッション型ラテラルMOSFETを構成する場合に、デプレッション型ラテラルMOSFETのしきい値電圧調整用の不純物拡散層とウェルとで形成されるpn接合の深さを浅くする為の酸化膜を形成し、かつ当該酸化膜を除去する工程を含んでおり、本発明の半導体装置では、かかる酸化膜が除去されたことによるウェル表面の凹部が存在しているので、製造されるデプレッション型ラテラルMOSFETにおいては、pn接合部分の電荷中和が空乏層だけでは成立しなくなり、しきい値電圧がシフトする。そのため、そのシフト分だけ、しきい値電圧調整用の不純物拡散層の不純物濃度を高めることが出来、不純物濃度ばらつきに対するデプレッション形ラテラルMOSFETのしきい値電圧ばらつきが小さくなるという効果を有する
【図面の簡単な説明】
【図1】本発明の半導体装置の製造方法の一実施形態を工程順に示すチップ断面図のその1である。
【図2】本発明の製造方法を工程順に示すチップ断面図のその2である。
【図3】本発明の製造方法を工程順に示すチップ断面図のその3である。
【図4】本発明と従来の試作結果を比較したイオン注入量としきい値電圧の関係を示す特性図である。
【図5】本発明と従来の試作結果を比較したウェハ面内のしきい値電圧ばらつきを示す特性図である。
【図6】従来の半導体装置の製造工程の一例を工程順に示すチップ断面図のその1である。
【図7】従来の半導体装置の製造工程の一例を工程順に示すチップ断面図のその2である。
【図8】従来の半導体装置の製造工程の一例を工程順に示すチップ断面図のその3である。
【符号の説明】
1 N 型半導体基板
2 エピタキシャル層
3 酸化膜
4 フォトレジスト
5 Pウェル
6 N型領域
7a,7b 酸化膜
8 フォトレジスト
9a,9b,9c ゲート酸化膜
10a,10b,10cゲート電極
11 フォトレジスト
12 P型領域
13 フォトレジスト
14 P+型領域
15 フォトレジスト
16a,16b,16c,16d,16e N 型領域
17 層間絶縁膜
18 フォトレジスト
19,19a,19b,19c,19d,19e アルミ電極
20 フォトレジスト
21 裏面電極
22 N 型半導体基板
23 N 型エピタキシャル層
24 酸化膜
25 Pウェル
26 酸化膜
27 フォトレジスト
28 N型領域
29a,29b,29c ゲート酸化膜
30a,30b,30c ゲート電極
32 P型領域
33 フォトレジスト
34 P 型領域
35 フォトレジスト
36a,36b,36c,36d,36e N 型領域
37 層間絶縁膜
38 フォトレジスト
39,39a,19b,19c,19d,19e アルミ電極
40 フォトレジスト
41 裏面電極

Claims (7)

  1. 半導体基板に設けられた第1導電型のウェル内にエンハンスメント型ラテラルMOSFETとデプレッション型ラテラルMOSFETを有する半導体装置において、前記エンハンスメント型ラテラルMOSFETのチャネル部における前記ウェルの主面は前記半導体基板の表面に等しく、前記デプレッション型ラテラルMOSFETのチャネル部における前記ウェルの主面は前記半導体基板の表面よりも凹んだ面に形成されていることを特徴とする半導体装置。
  2. 前記凹んだ面の領域の前記ウェル内に前記デプレッション型ラテラルMOSFETのしきい値調整用の第2導電型の不純物拡散層が形成されるとともに、前記凹んだ面上にゲート絶縁膜及びゲート電極が形成されていることを特徴とする請求項1に記載の半導体装置。
  3. 半導体基板に第1導電型のウェルを形成する工程と、前記ウェル内にエンハンスメント型ラテラルMOSFETとデプレッション型ラテラルMOSFETを形成する工程を含む半導体装置の製造方法であって、前記ウェルの前記デプレッション型ラテラルMOSFETの形成領域にしきい値電圧調整用の第2導電型の不純物拡散層を形成する工程と、前記第2導電型の不純物拡散層の表面を酸化して酸化膜を形成し、前記ウェルと前記不純物拡散層とで形成されるpn接合深さを浅くさせる工程と、前記酸化膜を除去して前記第2導電型の不純物拡散層の表面を前記ウェルの表面よりも凹んだ面にする工程とを含み、前記エンハンスメント型ラテラルMOSFETは前記ウェルの凹んでいない領域に形成し、前記デプレッション型ラテラルMOSFETは前記凹んだ面に形成することを特徴とする半導体装置の製造方法。
  4. 前記ウェル形成用の不純物と、前記しきい値電圧調整用の不純物をそれぞれ半導体基板にイオン注入し、その後、熱処理により、前記各不純物を活性化して前記ウェル及び前記不純物拡散層を形成することを特徴とする請求項3に記載の半導体装置の製造方法。
  5. 前記不純物拡散層の表面の酸化膜は、厚さ5000A(オングストローム)以上の膜厚に形成するウエット酸化法により形成することを特徴とする請求項3または4に記載の半導体装置の製造方法。
  6. 前記不純物拡散層の表面の酸化膜は、前記半導体基板上に形成するフィールド酸化膜の形成工程と同時に行うことを特徴とする請求項3ないし5のいずれかに記載の半導体装置の製造方法。
  7. 前記ウェルの形成用の不純物が硼素、前記しきい値電圧調整用の不純物が砒素であることを特徴とする請求項3ないし6のいずれかに記載の半導体装置の製造方法。
JP2000297892A 2000-09-29 2000-09-29 半導体装置及びその製造方法 Expired - Fee Related JP4511007B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000297892A JP4511007B2 (ja) 2000-09-29 2000-09-29 半導体装置及びその製造方法
US09/963,533 US20020038896A1 (en) 2000-09-29 2001-09-27 Semiconductor device including a depletion type lateral mosfet and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297892A JP4511007B2 (ja) 2000-09-29 2000-09-29 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2002110813A JP2002110813A (ja) 2002-04-12
JP4511007B2 true JP4511007B2 (ja) 2010-07-28

Family

ID=18779932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297892A Expired - Fee Related JP4511007B2 (ja) 2000-09-29 2000-09-29 半導体装置及びその製造方法

Country Status (2)

Country Link
US (1) US20020038896A1 (ja)
JP (1) JP4511007B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755107B2 (en) 2008-09-24 2010-07-13 Skyworks Solutions, Inc. Bipolar/dual FET structure including enhancement and depletion mode FETs with isolated channels
CN113224158A (zh) * 2020-02-04 2021-08-06 联芯集成电路制造(厦门)有限公司 半导体晶体管及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291381A (en) * 1976-01-26 1977-08-01 Nec Corp Field effect type semiconductor device
JPH04237168A (ja) * 1991-01-21 1992-08-25 Olympus Optical Co Ltd Mis型半導体装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274278B1 (en) * 1987-01-05 1994-05-25 Seiko Instruments Inc. MOS field effect transistor and method of manufacturing the same
US4939390A (en) * 1989-01-06 1990-07-03 Vitesse Semiconductor Corporation Current-steering FET logic circuit
US5424226A (en) * 1994-04-11 1995-06-13 Xerox Corporation Method of fabricating NMOS and PMOS FET's in a CMOS process
US5622880A (en) * 1994-08-18 1997-04-22 Sun Microsystems, Inc. Method of making a low power, high performance junction transistor
US6465842B2 (en) * 1998-06-25 2002-10-15 Kabushiki Kaisha Toshiba MIS semiconductor device and method of fabricating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291381A (en) * 1976-01-26 1977-08-01 Nec Corp Field effect type semiconductor device
JPH04237168A (ja) * 1991-01-21 1992-08-25 Olympus Optical Co Ltd Mis型半導体装置の製造方法

Also Published As

Publication number Publication date
US20020038896A1 (en) 2002-04-04
JP2002110813A (ja) 2002-04-12

Similar Documents

Publication Publication Date Title
JP3528420B2 (ja) 半導体装置およびその製造方法
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JP3185656B2 (ja) 横型電界効果トランジスタおよびその製造方法
US9673297B2 (en) Vertical power MOSFET and methods of forming the same
JP2005026664A (ja) 半導体装置およびその製造方法
JP2003158178A (ja) 半導体装置およびその製造方法
US6238985B1 (en) Semiconductor device and method for fabricating the same
US7517759B2 (en) Method of fabricating metal oxide semiconductor device
JP3448546B2 (ja) 半導体装置とその製造方法
JP3279151B2 (ja) 半導体装置及びその製造方法
JP2009272453A (ja) トランジスタ、半導体装置及びその製造方法
JP3892588B2 (ja) 半導体装置およびその製造方法
JPH09129868A (ja) 半導体装置及びその製造方法
JPH1167787A (ja) 半導体装置の製造方法
JP5135920B2 (ja) 半導体装置の製造方法
US6621118B2 (en) MOSFET, semiconductor device using the same and production process therefor
JP4511007B2 (ja) 半導体装置及びその製造方法
US6734070B1 (en) Method of fabricating a semiconductor device with field-effect transistors having shallow source and drain junctions
JPH0738095A (ja) 半導体装置及びその製造方法
JP2007027175A (ja) 半導体装置及びその製造方法
JP2002270824A (ja) 半導体集積回路装置の製造方法
JP3031282B2 (ja) 半導体装置
JP3714396B2 (ja) 半導体装置の製造方法
JP2741042B2 (ja) 半導体装置およびその製造方法
JP3123598B2 (ja) Lsi及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees