JP4507541B2 - 無線標識装置および方位探知方式 - Google Patents

無線標識装置および方位探知方式 Download PDF

Info

Publication number
JP4507541B2
JP4507541B2 JP2003328275A JP2003328275A JP4507541B2 JP 4507541 B2 JP4507541 B2 JP 4507541B2 JP 2003328275 A JP2003328275 A JP 2003328275A JP 2003328275 A JP2003328275 A JP 2003328275A JP 4507541 B2 JP4507541 B2 JP 4507541B2
Authority
JP
Japan
Prior art keywords
peripheral
beacon device
phase signal
radio beacon
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003328275A
Other languages
English (en)
Other versions
JP2005091285A (ja
Inventor
知重 古樋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003328275A priority Critical patent/JP4507541B2/ja
Publication of JP2005091285A publication Critical patent/JP2005091285A/ja
Application granted granted Critical
Publication of JP4507541B2 publication Critical patent/JP4507541B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

本発明は、例えば人、乗物等の相対位置を検知するのに用いて好適な無線標識装置および該無線標識装置を用いた方位探知方式に関する。
一般に、方位探知用の無線標識装置として、航空機の航行援助に用いられるドップラーVOR(Doppler VHF Omni-directional radio range:以下、DVORという)の地上装置が知られている(例えば、特許文献1、非特許文献1参照)。
特公平6−75102号公報 電子情報通信学会,「アンテナ工学ハンドブック」,オーム社,1980年10月,p.376-378
このような従来技術によるDVORの地上装置では、中央に1個のアルホードアンテナ(中心アンテナ)を配置すると共に、該中心アンテナの周囲には搬送波アンテナを中心として直径約13m(約5波長)の円周上に50個のアルホードアンテナ(周辺アンテナ)を等間隔に配置している。
ここで、中心アンテナは、全方位に対して一定の基準位相信号として搬送波を30Hzで振幅変調した振幅変調波(AM波)を放射する。一方、円周上に配置した50個の周辺アンテナは、例えば1秒間に円周上を30回転する速度で順次給電されるアンテナが切換り、搬送波に対して例えば9960Hz高い周波数をもった副搬送波を順次放射する。このとき、副搬送波を放射する周辺アンテナと空間上の任意の地点との間の距離は周期的に変化するから、この任意の地点で受信した副搬送波は、ドップラー効果によって周波数が周期的に変化し(ドップラー周波数偏移が生じ)、30Hzの周波数変調波(FM波)を構成する。また、このFM波はDVOR局を基準とした方位毎に位相が変化するから、50個の周辺アンテナはFM波からなる可変位相信号を放射する。
そして、基準位相信号と可変位相信号とは、磁北の0°に対して互いの位相が一致するように調整されているから、航空機はこれら2つの信号を受信して同一周波数(30Hz)で変調されたAM波とFM波との位相を比較することによって、現在の方位を知ることができる。
ところで、従来技術によるDVORの地上装置では、中心アンテナからAM波を送信するためのキャリア送信機と50個の周辺アンテナからFM波を送信するためのサイドバンド送信機との2種類の送信機を備える構成としている。このため、装置全体が複雑、大型化して高価な設備になる傾向があるのに加え、中心アンテナと周辺アンテナとにそれぞれ給電するから、消費電力が大きいという問題があった。
また、従来技術では、可変位相信号を放射する側波帯アンテナに順次給電を行うディストリビュータ等からなる給電部を備えると共に、該給電部は、隣接する周辺アンテナ間および周辺アンテナと中心アンテナとの間の相互結合を最小にするために、50個の周辺アンテナに対して互いの位相を精密に合わせる必要があった。このため、給電部と周辺アンテナとの間の給電ケーブルの長さ寸法をケーブル毎に微調整する必要があり、ケーブルの調整作業に長時間を要すると共に、熟練した技術が必要になるという問題があった。
本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、小型で消費電力が小さいのに加え、熟練技術による調整等が不要な無線標識装置および該無線標識装置を用いた方位探知方式を提供することにある。
上述した課題を解決するために、請求項1の発明は、全方位に対して一定の基準位相信号を放射する中心素子と、該中心素子を中心とした円周上に配置され円周に沿って放射する素子が順次切換りドップラー周波数偏移を用いて方位毎に位相が変化する可変位相信号を放射する複数の周辺素子とからなる無線標識装置において、前記複数の周辺素子は無給電で前記中心素子との放射結合によって誘起される電流を用いて前記可変位相信号を放射する構成とし、前記複数の周辺素子は、ドップラー周波数偏移により生じる周波数変調の変調指数が0次ベッセル関数の零点付近に設定された可変位相信号を放射する位置に配置したことを特徴としている。
請求項2の発明では、前記中心素子と複数の周辺素子とは接地板に立設されたモノポール素子によって形成している。
請求項3の発明では、前記接地板と複数の周辺素子との間にはそれぞれスイッチング素子を接続して設け、該スイッチング素子を用いて周辺素子と接地板との間を接続または遮断し、他の周辺素子に比べて強い放射を行う周辺素子を選択する構成としている。
請求項4の発明では、前記接地板と複数の周辺素子との間にはそれぞれ可変リアクタンス素子を接続して設け、該可変リアクタンス素子を用いて周辺素子と接地板との間のリアクタンス値を変化させ、他の周辺素子に比べて強い放射を行う周辺素子を選択する構成としている。
請求項の発明では、前記中心素子は、前記複数の周辺素子のうち強い放射を行う周辺素子が円周上を回転移動するときの周波数に対して有理数倍の周波数をもった基準位相信号を放射する構成としている。
請求項の発明では、前記中心素子は、振幅変調された基準位相信号を放射する構成としている。
請求項の発明では、前記基準位相信号には情報信号を重畳する構成としている。
また、請求項の発明では、本発明の無線標識装置を用いて方位探知方式を構成している。
請求項1の発明によれば、複数の周辺素子は無給電で中心素子との放射結合によって誘起される電流を用いて可変位相信号を放射する構成としたから、周辺素子に対して給電を行う必要がなく、装置の構成を簡略化して安価に提供できると共に、消費電力を低減することができる。また、周辺素子に対する電流誘起は周辺素子と中心素子との空間結合を利用するから、位相調整に要する労力を軽減することができる。
また、複数の周辺素子は、ドップラー周波数偏移により生じる周波数変調の変調指数が0次ベッセル関数の零点付近に設定された可変位相信号を放射する位置に配置したから、可変位相信号から基準位相信号の搬送波と同一の周波数成分を省くことができる。このため、受信機は、基準位相信号と可変位相信号とが加わった受信信号に対して、例えば帯域阻止フィルタを用いて搬送波周辺の周波数成分を抑圧した後に、可変位相信号を復調することができる。このため、受信機は、基準位相信号に妨げられることなく可変位相信号を正確に復調することができる。
請求項2の発明によれば、中心素子と複数の周辺素子とは接地板に立設されたモノポール素子によって形成したから、ダイポール素子を用いた場合に比べて素子の長さ寸法を短くすることができ、装置全体を小型化することができる。
請求項3の発明によれば、接地板と複数の周辺素子との間にはそれぞれスイッチング回路を接続して設け、該スイッチング回路を用いて周辺素子と接地板との間を接続または遮断する構成としたから、周辺素子と接地板との間の接続、遮断を切換えることによって、周辺素子の電気長を変化させることができる。これにより、各周辺素子の電気長をそれぞれ設定することができるから、他の周辺素子に比べて強い放射を行う周辺素子を選択することができる。このため、スイッチング回路の接続、遮断を順次切換えることによって、強い放射を行う周辺素子を円周に沿って移動させることができ、ドップラー周波数偏移が生じる可変位相信号を放射することができる。
請求項4の発明によれば、接地板と複数の周辺素子との間にはそれぞれ可変リアクタンス回路を接続して設け、該可変リアクタンス回路を用いて周辺素子と接地板との間のリアクタンス値を変化させる構成としたから、周辺素子と接地板との間のリアクタンス値を変化させることによって、周辺素子の電気長を変化させることができる。これにより、各周辺素子の電気長をそれぞれ設定することによって、他の周辺素子に比べて強い放射を行う周辺素子を選択することができるから、可変リアクタンス回路によるリアクタンス値を順次変化させることによって、強い放射を行う周辺素子を円周に沿って移動させることができ、ドップラー周波数偏移が生じる可変位相信号を放射することができる。
請求項の発明によれば、中心素子は、複数の周辺素子のうち強い放射を行う周辺素子が円周上を回転移動するときの周波数に対して有理数倍の周波数で変調された基準位相信号を放射する構成としたから、例えば複数の周辺素子を駆動するための発振器を用いて基準位相信号を変調することができ、装置の全体構成を簡略化することができる。
請求項の発明によれば、中心素子は振幅変調された基準位相信号を放射する構成としたから、無指向性の中心素子を用いることにより、全方位に対して変化しない一定の基準位相信号を放射することができる。
請求項の発明によれば、基準位相信号には情報信号を重畳する構成としたから、基準位相信号を用いて個々の無線標識装置を識別する情報信号を送信することができる。
請求項の発明によれば、本発明の無線標識装置を用いて方位探知方式を構成するから、例えば受信側で電波到来方向を探知する方式に比べて、送信側となる無線標識装置で方位毎に異なる情報をもつ可変位相信号を放射することができ、受信側のアンテナおよび回路構造を簡略化することができる。このため、無線標識装置をインフラとして設置することにより、多数の受信機で方位探知を行うシステムを容易に構築することができる。
また、方位の情報としてドップラー効果による周波数偏移を用いるから、振幅の偏移を用いる場合に比べて、受信機付近にある散乱体によって引き起こされるマルチパスによって振幅変動が生じる状況でも、時間軸上での振幅変動が小さければ正しい方位情報を伝達することができる。
以下、本発明の実施の形態による無線標識装置を、添付図面を参照しつつ詳細に説明する。
まず、図1ないし図7は第1の実施の形態を示し、図において、1は本実施の形態による無線標識装置で、該無線標識装置1は後述するアンテナ部2、可変リアクタンス制御部8および高周波回路部13によって大略構成されている。
2は基準位相信号Saと可変位相信号Sbを放射するアンテナ部で、該アンテナ部2は、導電性金属材料からなる円形の接地板3と、該接地板3の中心に配置された中心素子4と、該中心素子4を中心として一定半径の円周上に等間隔に配置された例えば12個の周辺素子5と、該各周辺素子5に接続された可変リアクタンス回路6とによって構成されている。
ここで、接地板3は、基準位相信号Saの搬送波の波長λcに対して例えば0.77×λcの半径をもった円盤状に形成されている。また、中心素子4と周辺素子5とは、いずれも接地板3の表面側に垂直に直立した状態で立設され、λc/4の長さ寸法をもったモノポールアンテナによって構成されている。そして、周辺素子5は、後述するように可変位相信号Sbの変調指数mfが0次ベッセル関数Jo(x)の零点に一致するように、中心素子4を中心として例えば0.383×λcの半径rをもった円周上に配置されている。
また、中心素子4には、図2に示すように、給電ケーブルをなす同軸ケーブル7の中心導体7Aが接続されると共に、該同軸ケーブル7の外部導体7Bは接地板3に接続され、接地板3をグランド電位に保持している。
一方、周辺素子5には、図3に示すように可変リアクタンス回路6が接続され、該可変リアクタンス回路6は、周辺素子5とグランド(接地板3)との間に接続された可変容量ダイオード6Aと、該可変容量ダイオード6Aに並列接続された抵抗6Bおよびコンデンサ6Cとによって構成されている。そして、可変容量ダイオード6Aのカソードには、抵抗6Bを介して後述の可変リアクタンス制御部8から制御信号S1としての直流電圧が印加される。
このとき、可変容量ダイオード6Aの容量が直流電圧の値に応じて変化するから、可変リアクタンス回路6は、直流電圧に応じて周辺素子5とグランドとの間のリアクタンス値を可変に設定することができる。このため、可変リアクタンス回路6を制御することによって、各周辺素子5の実効的な電気長を個別に変更することができるから、各周辺素子5は、他の周辺素子5や中心素子4との放射結合の大きさおよび位相を変更することができる。この結果、可変リアクタンス回路6によりリアクタンス値を適当に選択することによって、12個の周辺素子5のうち単一の周辺素子5と中心素子4との間で放射結合を生じさせることができる。
8はアンテナ部2に接続された可変リアクタンス制御部で、該可変リアクタンス制御部8は、一定周期のパルス信号S2を発生させるパルス発生器9と、該パルス発生器9からのパルス信号S2を分周する分周器10と、前記パルス発生器9と分周器10とからの信号S2,S3に基づき可変リアクタンス回路6を制御する可変リアクタンス制御装置11とによって大略構成されている。また、可変リアクタンス制御装置11には各可変リアクタンス回路6のリアクタンス値を記憶したリアクタンス値テーブル12が接続されている。
ここで、パルス発生器9は、例えば角周波数ωr(例えばωr=2π×30Hz)に周辺素子5の数n(n=12)を掛けた値の角周波数ω0(例えばω0=2π×360Hz)をもったパルス信号S2を出力し、分周器10はパルス信号S2を1/nに分周し、角周波数ωrの信号S3を出力する。
また、可変リアクタンス制御装置11は、リアクタンス値テーブル12に記録されたリアクタンス値に基づき可変リアクタンス回路6に直流電圧からなる制御信号S1を出力し、可変リアクタンス回路6を制御している。このとき、リアクタンス値テーブル12には、12個の周辺素子5のうち実質的に単一の周辺素子5にのみ高周波電流が誘起されるようなリアクタンス値が記憶されている。このため、任意の1個の周辺素子5に高周波電流が誘起されるときには、残余の周辺素子5に誘起される高周波電流は十分に小さくなる。そして、可変リアクタンス制御装置11は、パルス発生器9から出力されるパルス信号S2に同期して制御信号S1を出力し、パルス発生器9が出力する1パルス毎に、各可変リアクタンス回路6に印加する電圧を接地板3を上方(表面側)からみて反時計回りに1個ずつずらしていく(移動させる)。
これにより、高周波電流が誘起される周辺素子5が円周上を1個ずつ移動する。このとき、周辺素子5の配置は中心素子4に対して回転対称性を有することから、周辺素子5に誘起される電流は、中心素子4に給電される高周波電流に対して位相と振幅のみが異なり、その位相差と振幅比はいずれの周辺素子5が選択された場合でも等しくなっている。
また、可変リアクタンス制御装置11は、分周器10からの基準信号S3に同期して基準となる周辺素子5(例えば磁北側に位置する周辺素子5)を選択し、該周辺素子5を基準にして高周波電流が誘起される周辺素子5を回転移動させる構成となっている。
13は中心素子4に高周波電流を給電する高周波回路部で、該高周波回路部13は、角周波数ωcの搬送波を発生させる搬送波発振器14と、該搬送波発振器14からの搬送波を振幅変調する振幅変調器15と、該振幅変調器15によって変調された振幅変調波を増幅して中心素子4に給電する増幅器16とによって概略構成されている。また、振幅変調器15には正弦波発生器17を介して分周器10が接続されると共に、例えば無線標識装置1を特定する情報信号S4を発生させる情報信号発生器18が接続されている。
そして、振幅変調器15は、角周波数ωcの搬送波を正弦波発生器17から出力される角周波数ωrの変調波によって振幅変調する。このとき、角周波数ωrの位相は、可変リアクタンス制御部8による基準信号S3に同期している。即ち、例えば分周器10が出力するパルス(基準信号S3)の立ち上がり時刻と、振幅変調器15が出力する振幅変調波の包絡線の交流成分が零点を負から正へ通過する時刻とは一致している。これにより、中心素子4から放射する基準位相信号Saと高周波電流が誘起される周辺素子5の移動周期を同期させている。
なお、振幅変調器15は、正弦波発生器17から出力される変調波に加えて、情報信号発生器18から出力される各無線標識装置1を特定する情報信号S4も重畳して振幅変調している。
本実施の形態による無線標識装置1は上述の如き構成を有するもので、次に無線標識装置1と受信機Qとを用いた方位探知方式について図1ないし図5を参照しつつ説明する。なお、中心素子4および各周辺素子5はそれぞれ無指向性で、十分に広帯域なアンテナであるものとする。また、情報信号S4の重畳は考えないものとする。
まず、中心素子4に対して高周波回路部13から高周波電流を給電する。このとき、各周辺素子5に接続された可変リアクタンス回路6は可変リアクタンス制御部8によってそれぞれのリアクタンス値が設定されているから、複数の周辺素子5のうち実質的に1個の周辺素子5にのみ中心素子4との放射結合による高周波電流が誘起される。
このとき、中心素子4に励振される電流Icは以下の数1の式で表すことができる。
Figure 0004507541
但し、電流Icの絶対的な大きさは適当に規格化しているものとする。また、振幅変調器15は、分周器10による基準信号S3を用いて振幅変調を行うから、振幅変調の角周波数ωaは、放射源が回転移動する角周波数ωrに一致している。数1より、中心素子4からの放射波(基準位相信号Sa)のスペクトルは、図5に示すように模式的に表すことができる。なお、図5では変調度maは1に比べて非常に小さい(ma≪1)ものとしている。
一方、一般に角周波数ωの電磁波を放射する送信源Pが速度vで移動するとき、静止した受信機Qでの受信波の角周波数は、ドップラー効果による周波数偏移を受ける。このときの角周波数偏移の大きさをΔωとすると、このΔωは以下の数2の式で表すことができる。
Figure 0004507541
但し、数式中の矢印はベクトルを表している。また、ePQは送信源Pから受信機Qに向う単位ベクトルを表し、cは光速を表すと共に、a・bはベクトルaとベクトルbとのスカラー積を表している。
ここで、図4に示すように、周辺素子5が半径rの円周上に十分に密な状態で配置されていると考えると、円周上に配置された12個の周辺素子5が配設順に放射を行うから、あたかも放射源(送信源P)が半径rの円周上を滑らかに移動するものと考えることができる。このとき、放射源は、可変リアクタンス制御部8によって、円周上を角周波数ωrで移動する。
一方、周辺素子5の配列の直径2rに対して受信機Qは十分に離れているものとする。また、図4に示すように、周辺素子5の配列を含む平面内で中心素子4を原点Oとする直交座標系(x,y)および極座標系(R,θ)を設定する。そして、時刻0において放射を行う周辺素子5(送信源P)がθ=πの方向に配置され、受信機Qがθ=αの方位に位置するものとする。このとき、放射源の速度vは、直交座標系では以下の数3の式で表すことができる。
Figure 0004507541
なお、添字のxyは直交座標系での表現であることを示している。また、送信源Pから受信機Qに向う単位ベクトルePQは、図4より以下の数4の式のように表すことができる。
Figure 0004507541
このため、数2から数4により、受信機Qにおける受信波の角周波数偏差の大きさは、以下の数5の式で表すことができる。
Figure 0004507541
この数5により、周辺素子5からの放射波の周波数偏移は、その位相が受信機Qの相対方位αに依存する。また、数1より、中心素子4からの放射波の振幅変調の位相は、受信機Qの相対方位αに依存しない。このため、周辺素子5からの放射波(可変位相信号Sb)と中心素子4からの放射波(基準位相信号Sa)との位相差は相対方位αに対応するから、受信機Qでは、両者の位相を比較して位相差を検出することによって、送信側から見た受信機Qの相対方位αを知ることができる。
次に、可変位相信号Sbの変調指数mfと搬送波との関係について図4ないし図7を参照しつつ検討する。
まず、受信機Qによって受信される受信波として数6の式に示す周波数変調波ifを考える。
Figure 0004507541
ここで、数6はベッセル関数を用いて以下の数7の式のように表すことができる。
Figure 0004507541
このとき、変調指数mfが0次ベッセル関数Jo(x)の零点に一致するように選択すると、数7より、搬送波周波数の成分(右辺第1項)が消去されることが分かる。
一方、周辺素子5からの放射波(可変位相信号Sb)と変調指数mfとの関係について検討する。
基準位相信号Saの振幅変調の変調度maが非常に小さい(ma≪1)ものとすると、中心素子4に誘起される電流Ic′は、数1から搬送波成分だけを考えればよいから、以下の数8の式で表すことができる。
Figure 0004507541
ここで、プライム記号(′)は振幅変調における側波帯成分を無視していることを表している。このとき、周辺素子5のうち実質的に電流が誘起される素子に誘起される電流Ip′は、中心素子4に誘起される電流Ic′に対して大きさ(振幅)と位相だけが異なる。このため、周辺素子5に誘起される電流Ip′は以下の数9の式で表すことができる。
Figure 0004507541
このとき、電流Ip′によって電磁波の放射が生じる周辺素子5は円周上を移動するから、この回転移動を考慮した周辺素子5からの放射波(可変位相信号Sb)のドップラー角周波数ωは、数5と数9とに基いて以下の数10の式で表すことができる。
Figure 0004507541
このため、このドップラー角周波数ωを時間tで積分することによって、ドップラー周波数偏移を考慮した放射波の振幅Ip'(d)は、以下の数11の式のように表せる。
Figure 0004507541
従って、周辺素子5からの放射波をなす可変位相信号Sbは、数11の式で表現される周波数変調波となることが分かる。このため、数6と数11とを比較することによって、放射波の変調指数mfは以下の数12の式で表すことができる。
Figure 0004507541
ここで、λcは搬送波の周波数に対応した波長である。この結果、周辺素子5を配置する円周の半径rと搬送波の周波数(波長λc)を適宜設定することによって、放射波(可変位相信号Sb)の変調指数mfを0次ベッセル関数Jo(x)の零点に一致させることができる。
本実施の形態では、半径rを搬送波の波長λcの約0.383倍(r≒0.383×λc)に設定することによって、変調指数mfを0次ベッセル関数Jo(x)の零点に一致する値(mf≒2.4)に設定している。この結果、周辺素子5から放射される周波数変調波(可変位相信号Sb)は、図6に示すように、中心素子4から放射される振幅変調波(基準位相信号Sa)の搬送波の周波数成分を持たなくなる。
このとき、受信機Qにおける受信波のスペクトルは、模式的に図7に示すようになる。図7中で、中心素子4からの放射波(基準位相信号Sa)のスペクトル成分は、主に搬送波成分(ω=ωc)に集中するのに対し、変調度maが非常に小さい(ma≪1)から、振幅変調の側波帯成分(ω=ω±ωr)は非常に小さくなる(図5参照)。
一方、周辺素子5からの放射波(可変位相信号Sb)のスペクトル成分は、周波数変調の変調指数mfを0次ベッセル関数Jo(x)の零点に一致する値(mf=2.4)に設定されているから、搬送波成分(ω=ωc)は非常に小さい。また、変調指数mfが2.4に設定されているから、周辺素子5からの放射波の殆どのパワーは次数4以下の側波帯成分に分布する。この結果、周辺素子5からの放射波のスペクトル成分は、そのパワーの大部分が1次から4次までの側波帯成分(ω=ω±nωr:但し、n=1,2,3,4)に分布する。
以上の結果から、受信機Qは周辺素子5の放射波による周波数変調波(可変位相信号Sb)を周波数復調するときには、受信波からフィルタ等を用いて搬送波成分をカット(除去)しても正確な復調が可能となる。
特に、本実施の形態による無線標識装置1では、周辺素子5は中心素子4との放射結合を用いて可変位相信号Sbを放射するから、受信機Qは基準位相信号Saと可変位相信号Sbとが混在した受信波を受信する。しかし、本実施の形態では、変調指数mfを0次ベッセル関数Jo(x)の零点に一致する値に設定したから、中心素子4による基準位相信号Saは角周波数ωcの搬送波成分と角周波数ωc±ωrの振幅変調の側波帯成分とによって構成されるのに対し、周辺素子5による可変位相信号Sbは搬送波成分を除いた側波帯成分(ωc±nωr:n=1〜4)によって構成される。このため、基準位相信号Saと可変位相信号Sbとが混在しても、各信号Sa,Sbの周波数成分が異なるから、これらの信号Sa,Sbを正確に復調することができる。
かくして、本実施の形態では、無線標識装置1を用いることによって、中心素子4からは常に角周波数ωrで振幅変調された中心角周波数ωcの振幅変調波(基準位相信号Sa)を放射することができると共に、ある時刻においては実質的に1個の周辺素子5からのみ放射波を放射させることができる。このとき、周辺素子5からの放射波は中心素子4からの振幅変調波に対して振幅と位相だけが異なる。また、電流が誘起される周辺素子5は円周上を移動するから、実効的に周辺素子5による放射源は円周上を回転しているものとみなすことができる。
このため、周辺素子5からの放射波(可変位相信号Sb)は実効的なドップラー効果による周波数偏移を伴う。このとき、周波数偏移の周期は電流が誘起される周辺素子5の回転周期に一致すると共に、周波数偏移の位相は無線標識装置1から見た受信機Qの方位に依存する。この結果、受信機Qが無線標識装置1からの送信波を受信したときに、例えば包絡線振幅に基いて基準位相信号Saを検出すると共に、周波数偏移に基いて可変位相信号Sbを検出し、これらの信号Sa,Sbの位相差を知ることによって、無線標識装置1から見た方位を知ることができる。
特に、本実施の形態では、複数の周辺素子5は無給電で中心素子4との放射結合によって誘起される電流を用いて可変位相信号Sbを放射する構成としたから、周辺素子5は中心素子4との放射結合を利用して可変位相信号Sbを放射することができ、給電系を中心素子4用の1系統だけ設ければよい。このため、無線標識装置1の構成を簡略化し安価に提供できると共に、消費電力を低減することができる。また、周辺素子5に対する電流誘起は周辺素子5と中心素子4との空間結合を利用するから、位相調整に要する労力を軽減することができる。
また、中心素子4と複数の周辺素子5とは接地板3に立設されたモノポール素子によって形成したから、例えばダイポール素子を用いた場合に比べて素子の長さ寸法を短くすることができ、装置全体を小型化することができる。
しかも、接地板3と複数の周辺素子5との間にはそれぞれ可変リアクタンス回路6を接続して設け、該可変リアクタンス回路6を用いて周辺素子5と接地板3との間のリアクタンス値を変化させる構成としたから、周辺素子5と接地板3との間のリアクタンス値に応じて周辺素子5の電気長を変化させることができる。これにより、各周辺素子5の電気長をそれぞれ設定し、他の周辺素子5に比べて強い放射を行う周辺素子5を選択することができるから、可変リアクタンス回路6によるリアクタンス値を順次変化させることによって、強い放射を行う周辺素子5を円周に沿って移動させることができ、ドップラー周波数偏移が生じる可変位相信号Sbを放射することができる。
また、複数の周辺素子5はドップラー周波数偏移により生じる周波数変調の変調指数mfが0次ベッセル関数Jo(x)の零点付近に設定された可変位相信号Sbを放射する構成としたから、可変位相信号Sbから基準位相信号Saの搬送波と同一の周波数成分を省くことができる。このため、受信機Qは、基準位相信号Saと可変位相信号Sbとが加わった受信波に対して、例えば帯域阻止フィルタを用いて搬送波周辺の周波数成分を抑圧した後に、可変位相信号Sbを復調することができる。このため、受信機Qは、基準位相信号Saに妨げられることなく可変位相信号Sbを正確に復調することができる。
一方、中心素子4は複数の周辺素子5のうち強い放射を行う周辺素子5が円周上を回転移動するときの周波数(角周波数ω0=n×ωr)に対して有理数倍(1/n)の周波数(角周波数ωr)で振幅変調された基準位相信号Saを放射する構成としたから、例えば複数の周辺素子5を駆動するための発振器(パルス発生器9)を用いて基準位相信号Saを変調することができ、無線標識装置1の全体構成を簡略化することができる。
また、中心素子4は振幅変調された基準位相信号Saを放射する構成としたから、無指向性の中心素子4を用いることにより、全方位に対して変化しない一定の基準位相信号Saを容易に放射することができる。
しかも、基準位相信号Saには情報信号S4を重畳する構成としたから、基準位相信号Saを用いて個々の無線標識装置1を識別する情報信号S4を送信することができる。
さらに、受信機Q側で電波到来方向の探知を行う方位探知方式に比べた場合、本実施の形態による方位探知方式では送信機側(無線標識装置1)で方位毎に異なる情報をもつ信号(基準位相信号Sa,可変位相信号Sb)を放射するから、受信機Q側に電波の到来方向を知るための手段を設ける必要がなく、受信機Q側のアンテナおよび回路構成を簡略化することができる。このため、例えば無線標識装置1をインフラとして設置し、多数の受信機Qを用いるシステムを容易に構成することができる。
また、方位の情報として振幅の偏移を利用する方位探知方式と比べて場合、本実施の形態による方位探知方式ではドップラー効果による周波数偏移を用いるから、受信機Qの付近にある散乱体によってマルチパスによる受信波の振幅変動が生じる状況でも、時間軸上での振幅変動が小さければ正しい方位情報を得ることができる。
次に、図8は本発明の第2の実施の形態を示し、本実施の形態の特徴は、接地板と複数の周辺素子との間にはそれぞれスイッチング回路を接続して設け、該スイッチング回路を用いて周辺素子と接地板との間を接続または遮断し、他の周辺素子に比べて強い放射を行う周辺素子を選択する構成としたことにある。なお、本実施の形態では第1の実施の形態と同一の構成要素の同一の符号を付し、その説明を省略するものとする。
21は周辺素子5と接地板3と同電位のグランドとの間に接続されたスイッチング回路で、該スイッチング回路21は、周辺素子5とグランドとの間に接続されたコンデンサ21Aと、該コンデンサ21に並列接続され可変リアクタンス制御部8からの制御信号S1に応じて開成、閉成されるスイッチ21Bとによって構成されている。そして、スイッチ21Bの開,閉に応じて周辺素子5とグランドとの間のリアクタンス値を可変に設定することができるから、スイッチング回路21を制御することによって、各周辺素子5の実効的な電気長を個別に変更することができ、各周辺素子5は、他の周辺素子5や中心素子4との放射結合の大きさおよび位相を変更することができる。この結果、スイッチング回路21の開成、閉成を選択することによって、12個の周辺素子5のうち単一の周辺素子5と中心素子4との間で放射結合を生じさせることができる。
かくして、本実施の形態でも第1の実施の形態とほぼ同様の作用効果を得ることができるが、本実施の形態では、接地板3と複数の周辺素子5との間にはそれぞれスイッチング回路21を接続して設けたから、スイッチング回路21を用いて周辺素子5と接地板3との間の接続、遮断を切換えることによって、周辺素子5の電気長を変化させることができる。これにより、各周辺素子5の電気長をそれぞれ設定することができるから、他の周辺素子5に比べて強い放射を行う単一の周辺素子5を選択することができる。このため、スイッチング回路21の接続、遮断を順次切換えることによって、強い放射を行う周辺素子5を円周に沿って移動させることができ、ドップラー周波数偏移が生じる可変位相信号Sbを放射することができる。
なお、前記各実施の形態では、中心素子4と周辺素子5とには接地板3に立設されたモノポール素子(モノポールアンテナ)を用いるものとした。しかし、本発明はこれに限らず、例えば中心素子と周辺素子とにはダイポール素子(ダイポールアンテナ)を用いる構成としてもよい。
また、前記各実施の形態による方位探知方式は、無線標識装置1が小型、安価、低消費電力な構成とすることができるから、航空機の航行援助に限らず、例えば人、乗物等の相対位置を簡易に検知するシステムに適用することが可能である。
第1の実施の形態による無線標識装置を示すブロック図である。 図1中の中心素子を拡大して示す断面図である。 図1中の周辺素子を拡大して示す断面図である。 図1中のアンテナ部を受信機と一緒に示す平面図である。 基準位相信号のスペクトルを示す特性線図である。 可変位相信号のスペクトルを示す特性線図である。 受信波のスペクトルを示す特性線図である。 第2の実施の形態による周辺素子を拡大して示す断面図である。
符号の説明
1 無線標識装置
2 アンテナ部
3 接地板
4 中心素子
5 周辺素子
6 可変リアクタンス回路
8 可変リアクタンス制御部
9 パルス発生器
10 分周器
13 高周波回路部
21 スイッチング回路
Q 受信機

Claims (8)

  1. 全方位に対して一定の基準位相信号を放射する中心素子と、該中心素子を中心とした円周上に配置され円周に沿って放射する素子が順次切換りドップラー周波数偏移を用いて方位毎に位相が変化する可変位相信号を放射する複数の周辺素子とからなる無線標識装置において
    記複数の周辺素子は無給電で前記中心素子との放射結合によって誘起される電流を用いて前記可変位相信号を放射する構成とし、
    前記複数の周辺素子は、ドップラー周波数偏移により生じる周波数変調の変調指数が0次ベッセル関数の零点付近に設定された可変位相信号を放射する位置に配置したことを特徴とする無線標識装置。
  2. 前記中心素子と複数の周辺素子とは接地板に立設されたモノポール素子によって形成してなる請求項1に記載の無線標識装置。
  3. 前記接地板と複数の周辺素子との間にはそれぞれスイッチング回路を接続して設け、該スイッチング回路を用いて周辺素子と接地板との間を接続または遮断し、他の周辺素子に比べて強い放射を行う周辺素子を選択する構成としてなる請求項2に記載の無線標識装置。
  4. 前記接地板と複数の周辺素子との間にはそれぞれ可変リアクタンス回路を接続して設け、該可変リアクタンス回路を用いて周辺素子と接地板との間のリアクタンス値を変化させ、他の周辺素子に比べて強い放射を行う周辺素子を選択する構成としてなる請求項2に記載の無線標識装置。
  5. 前記中心素子は、前記複数の周辺素子のうち強い放射を行う周辺素子が円周上を回転移動するときの周波数に対して有理数倍の周波数をもった基準位相信号を放射する構成としてなる請求項1,2,3またはに記載の無線標識装置。
  6. 前記中心素子は、振幅変調された基準位相信号を放射する構成としてなる請求項に記載の無線標識装置。
  7. 前記基準位相信号には情報信号を重畳する構成としてなる請求項1,2,3,4,5またはに記載の無線標識装置。
  8. 前記請求項1ないしのうちいずれかに記載の無線標識装置を用いた方位探知方式。
JP2003328275A 2003-09-19 2003-09-19 無線標識装置および方位探知方式 Expired - Fee Related JP4507541B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328275A JP4507541B2 (ja) 2003-09-19 2003-09-19 無線標識装置および方位探知方式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328275A JP4507541B2 (ja) 2003-09-19 2003-09-19 無線標識装置および方位探知方式

Publications (2)

Publication Number Publication Date
JP2005091285A JP2005091285A (ja) 2005-04-07
JP4507541B2 true JP4507541B2 (ja) 2010-07-21

Family

ID=34457905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328275A Expired - Fee Related JP4507541B2 (ja) 2003-09-19 2003-09-19 無線標識装置および方位探知方式

Country Status (1)

Country Link
JP (1) JP4507541B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506156B2 (ja) * 2003-11-26 2010-07-21 株式会社村田製作所 ドップラー方探装置
EP2287626B1 (en) 2006-06-13 2013-05-29 Kabushiki Kaisha Toshiba Phase correction device, in particular for Doppler-VOR antenna array
JP4738384B2 (ja) * 2006-06-13 2011-08-03 株式会社東芝 位相補正装置、dvor装置および位相補正方法
KR101337438B1 (ko) * 2012-12-24 2013-12-05 (주)비젼알에프텍 위상 지연 보상 장치 및 방법
CN112073347B (zh) * 2020-08-19 2023-02-28 中国民用航空总局第二研究所 一种基于软件定义无线电技术的dvor信号的解析系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142478A (ja) * 1987-11-28 1989-06-05 Toshiba Corp サイドバンドアンテナによる2次輻射抑圧回路
JPH052075A (ja) * 1991-06-25 1993-01-08 Sony Corp レーザドツプラ速度計
JPH06104643A (ja) * 1992-07-10 1994-04-15 Hewlett Packard Co <Hp> 位相累算装置
JPH06303026A (ja) * 1992-12-09 1994-10-28 Matsushita Electric Ind Co Ltd 移動無線用アンテナ
JPH0720583U (ja) * 1990-12-19 1995-04-11 株式会社光電製作所 無線方向探知機
JPH07131239A (ja) * 1993-10-28 1995-05-19 Hitachi Ltd 多重円形配列アレーアンテナ
JP2001509892A (ja) * 1997-02-03 2001-07-24 ノキア テレコミュニカシオンス オサケ ユキチュア ドップラー方向探知機及びこれを用いた位置決定方法
JP2002118414A (ja) * 2000-10-06 2002-04-19 Atr Adaptive Communications Res Lab アレーアンテナの制御装置及び制御方法
JP2005517326A (ja) * 2002-02-01 2005-06-09 アイピーアール・ライセンシング・インコーポレーテッド 不規則に配置されたアレー・アンテナ
JP2005156373A (ja) * 2003-11-26 2005-06-16 Murata Mfg Co Ltd ドップラー方探装置および方位探知方式

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142478A (ja) * 1987-11-28 1989-06-05 Toshiba Corp サイドバンドアンテナによる2次輻射抑圧回路
JPH0720583U (ja) * 1990-12-19 1995-04-11 株式会社光電製作所 無線方向探知機
JPH052075A (ja) * 1991-06-25 1993-01-08 Sony Corp レーザドツプラ速度計
JPH06104643A (ja) * 1992-07-10 1994-04-15 Hewlett Packard Co <Hp> 位相累算装置
JPH06303026A (ja) * 1992-12-09 1994-10-28 Matsushita Electric Ind Co Ltd 移動無線用アンテナ
JPH07131239A (ja) * 1993-10-28 1995-05-19 Hitachi Ltd 多重円形配列アレーアンテナ
JP2001509892A (ja) * 1997-02-03 2001-07-24 ノキア テレコミュニカシオンス オサケ ユキチュア ドップラー方向探知機及びこれを用いた位置決定方法
JP2002118414A (ja) * 2000-10-06 2002-04-19 Atr Adaptive Communications Res Lab アレーアンテナの制御装置及び制御方法
JP2005517326A (ja) * 2002-02-01 2005-06-09 アイピーアール・ライセンシング・インコーポレーテッド 不規則に配置されたアレー・アンテナ
JP2005156373A (ja) * 2003-11-26 2005-06-16 Murata Mfg Co Ltd ドップラー方探装置および方位探知方式

Also Published As

Publication number Publication date
JP2005091285A (ja) 2005-04-07

Similar Documents

Publication Publication Date Title
US11867865B1 (en) Omni-inducer
US11394253B2 (en) Systems, methods and apparatuses for guidance and alignment in electric vehicles wireless inductive charging systems
US9494706B2 (en) Omni-inducer transmitting devices and methods
US20160380487A1 (en) Systems, methods and apparatuses for guidance and alignment in electric vehicles wireless inductive charging systems
US5045859A (en) Phase reference navigation system and method
JP2007010639A (ja) アクティブタグ装置
JP2006023261A (ja) アクテイブタグ装置
JPS5845201B2 (ja) 回転放射パタンを電子的に発生するアンテナ
CN1322631C (zh) 通信系统
JP4507541B2 (ja) 無線標識装置および方位探知方式
JP2005351877A (ja) 自律的移動支援装置
KR20040028470A (ko) 빔 가변 안테나
KR20140132142A (ko) 회전 분할 다중화를 이용한 무선 통신용 송신기 및 수신기와 이를 이용한 신호 송수신 방법
US11867864B2 (en) Open metal detector
EP2815249B1 (en) Method and apparatus for estimating a distance and a location through near-field multi-frequency radio transmissions
JP4506156B2 (ja) ドップラー方探装置
US11145971B1 (en) Poynting vector synthesis via coaxially rotating electric and magnetic dipoles
JP2579724B2 (ja) ダブルサイドバンドドプラvorにおける近接位相誤差補正装置
JP4738384B2 (ja) 位相補正装置、dvor装置および位相補正方法
US20140349598A1 (en) Signal Carrier Modulation Using a Polarization Switchable Antenna
US20110163610A1 (en) Planar tri-mode cavity
JPS6046843B2 (ja) 電力分割兼変調装置
US9722724B1 (en) Antenna and transceiver for transmitting a secure signal
Skrypnik et al. Direction-Measuring Short-Range Navigation Systems
Setiawan et al. Design of 1x2 Circular Ring Microstrip Antenna for Position Detection Application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees