JP4498103B2 - Tn型液晶表示装置 - Google Patents
Tn型液晶表示装置 Download PDFInfo
- Publication number
- JP4498103B2 JP4498103B2 JP2004327582A JP2004327582A JP4498103B2 JP 4498103 B2 JP4498103 B2 JP 4498103B2 JP 2004327582 A JP2004327582 A JP 2004327582A JP 2004327582 A JP2004327582 A JP 2004327582A JP 4498103 B2 JP4498103 B2 JP 4498103B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- carbon atoms
- film
- cellulose acylate
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CCCCCCCCCCCCCCCCCCC[C@@]1C(C2)COC(*)*2(C)C1 Chemical compound CCCCCCCCCCCCCCCCCCC[C@@]1C(C2)COC(*)*2(C)C1 0.000 description 31
- JGLLKZLRFYVZTG-UHFFFAOYSA-N C=C=C1C=CC=C1 Chemical compound C=C=C1C=CC=C1 JGLLKZLRFYVZTG-UHFFFAOYSA-N 0.000 description 1
- VRIBUTBXDVBLSM-UHFFFAOYSA-N CCCN(C(c1ccccc1)=O)c1ccccc1 Chemical compound CCCN(C(c1ccccc1)=O)c1ccccc1 VRIBUTBXDVBLSM-UHFFFAOYSA-N 0.000 description 1
- IXKHCAWXUWNMPG-UHFFFAOYSA-N CN(C(C(CC1)CCC1C(N(C)c1ccccc1)=O)=O)c1ccccc1 Chemical compound CN(C(C(CC1)CCC1C(N(C)c1ccccc1)=O)=O)c1ccccc1 IXKHCAWXUWNMPG-UHFFFAOYSA-N 0.000 description 1
- NVWGJFFWOIIBOT-UHFFFAOYSA-N CN(C(C1CCCCC1)OC)c1ccccc1 Chemical compound CN(C(C1CCCCC1)OC)c1ccccc1 NVWGJFFWOIIBOT-UHFFFAOYSA-N 0.000 description 1
- MFYZAWSGBIKMHN-UHFFFAOYSA-N CN(C(CC1)CCC1C(N(C1CCCCC1)C1CC=CCC1)=O)C(C1CCCCC1)=O Chemical compound CN(C(CC1)CCC1C(N(C1CCCCC1)C1CC=CCC1)=O)C(C1CCCCC1)=O MFYZAWSGBIKMHN-UHFFFAOYSA-N 0.000 description 1
- LCOPCEDFGGUYRD-UHFFFAOYSA-N CN(C(c1ccccc1)=O)c1ccccc1 Chemical compound CN(C(c1ccccc1)=O)c1ccccc1 LCOPCEDFGGUYRD-UHFFFAOYSA-N 0.000 description 1
- QNQHWGFFPQDBPW-QGZVFWFLSA-N OC1=CC(OC2CCCCC2)=CC[C@H]1C(c1ccccc1)=O Chemical compound OC1=CC(OC2CCCCC2)=CC[C@H]1C(c1ccccc1)=O QNQHWGFFPQDBPW-QGZVFWFLSA-N 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
現在主流であるTNモードのTFT液晶表示装置においては、光学補償フイルムを偏光板と液晶セルの間に挿入し、表示品位の高い液晶表示装置を実現している(例えば、特許文献1参照)。
本発明者の研究により、透明ポリマーフイルムの光学特性を特殊に制御することで、使用者だけが視認出来る光学補償フイルムを得るに至った。
(1)TNモードの液晶セル、その両側に配置された二枚の偏光板およびバックライトからなり、二枚の偏光板がいずれも偏光膜およびその両側に配置された二枚の透明保護膜からなるTN型液晶表示装置であって、
透明保護膜の少なくとも一枚がセルロースアシレートフイルムおよび円盤状液晶性化合物から形成された光学異方性層を有する光学補償フイルムであって、セルロースアシレートフイルムの面内のレターデーション値および厚み方向のレターデーション値が下記式(I)および(II)を満足し、さらに光学異方性層において円盤状液晶性化合物の円盤状構造単位の面がセルロースアシレートフイルム表面に対して傾き、且つ円盤状構造単位の面とセルロースアシレートフイルム表面とのなす角度が光学異方性層の深さ方向において変化していることにより、上下の視野角および左右の視野角の一方が110°乃至170°であり、他方が50°乃至90°であることを特徴とするTN型液晶表示装置:
(I)0<Re(630)<10
(II)|Rth(630)|<25
[式中、Re(λ)は、波長λnmで測定したセルロースアシレートフイルムの面内のレターデーション値(単位:nm)であり;Rth(λ)は、波長λnmで測定したセルロースアシレートフイルムの厚み方向のレターデーション値(単位:nm)である]。
(V)(Rth(A)−Rth(0))/A<−1.0
(VI)0.01<A<30
[式中、Rth(A)は、波長630nmで測定したレターデーション低下剤をA質量%含有するセルロースアシレートフイルムの厚み方向のレターデーション値であり;Rth(0)は、波長630nmで測定したレターデーション低下剤を含有しない以外は上記と同様に作製したセルロースアシレートフイルムの厚み方向のレターデーション値であり;そして、Aは、セルロースアシレートに対するレターデーション低下剤の添加量(質量%)である]。
(3)セルロースアシレートのアシル置換度が2.85乃至3.00である(1)に記載のTN型液晶表示装置。
主なポリマーフイルムの平均屈折率の値は、以下の通りです。
セルロースアシレートフイルム: 1.48
シクロオレフィンポリマーフイルム:1.52
ポリカーボネートフイルム: 1.59
ポリメチルメタクリレートフイルム:1.49
ポリスチレンフイルム: 1.59
平均屈折率の仮定値と膜厚を入力することで、KOBRA21ADHはnx、ny、nzを算出する。
さらに、本明細書において、「実質的に平行」とは、厳密な角度よりも±5゜未満の範囲内であることを意味する。この範囲は、±4゜未満であることが好ましく、±3゜未満であることがさらに好ましく、±2゜未満であることが最も好ましい。
偏光板の保護膜は、一般にセルロースアシレートフイルムからなる。上記の光学補償フイルムを偏光板の一方の保護膜として用いると、偏光板の構成要素の数を増加することなく、偏光板に光学補償機能を追加するができる。
上記の光学補償フイルムおよび上記の光学補償フイルムを保護膜として用いた偏光板は、TN(Twisted Nematic)型の液晶表示装置に有利に用いることができる。
透明ポリマーフイルムのレターデーションは小さいことが望ましい。
具体的には、波長630nmにおける面内のレターデーションRe(630)が10nm以下 (0<Re(630)<10)でかつ、膜厚方向のレターデーションRth(630)の絶対値が25nm以下(|Rth|<25nm)であることがのぞましい。さらにのぞましくは、0<Re(630)<5かつ|Rth|<20nmであり、0<Re(630)<2かつ|Rth|<15nmであることが特に好ましい。
この光学特性を満足する透明ポリマーフイルムであれば、特に制限はない。ポリマーとしては、セルロースアシレート、ノルボルネン系ポリマー、ポリカーボネート、ポリスチレン、ポリビニルアルコール、ポリエチレン、ポリプロピレンが使用できる。
セルロースアシレートフイルムの場合、上記光学特性を実現するために、セルロースアシレートが面内および膜厚方向に配向するのを抑制する化合物を用いて光学的異方性を十分に低下させ、ReとRthを共にゼロに近くなるようにすることが好ましい。
透明ポリマーフイルムは、セルロースアシレートからなることが特に好ましい。
セルロースアシレート原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報2001−1745(7頁〜8頁)に記載のセルロースを用いることができる。
また、本発明で好ましく用いられるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価され、その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜3.0であることが好ましく、1.0〜2.0であることがさらに好ましく、1.0〜1.6であることが最も好ましい。
本発明のセルロースアシレート溶液には、各調製工程において用途に応じた種々の添加剤(例えば、光学的異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、光学特性調整剤など)を加えることができ、これらについて以下に説明する。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。 また、実際にセルロースアシレートフイルムの作製にあたってこれらの化合物がセルロースアシレートとよく相溶し、フイルムが白濁したりすることなく、フイルムの物理的強度も十分であるものであることが好ましい。
本発明のセルロースアシレートフイルムの光学的異方性、とくに下記式(i)で表されるフイルム膜厚方向のレターデーションRthを低下させる化合物を、下記式(i)、(ii)をみたす範囲で少なくとも一種含有することがのぞましい。
(i)(Rth(A)−Rth(0))/A<−1.0
(ii)0.01<A<30
上記式(i)、(ii)は
(i)(Rth(A)−Rth(0))/A<−2.0
(ii)0.05<A<25
であることがよりのぞましく、
(ii)(Rth(A)−Rth(0))/A<−3.0
(iii)0.1<A<20
であることがさらに好ましい。
セルロースアシレートフイルムの光学的異方性を低下させる化合物について説明する。
本発明の発明者らは、鋭意検討した結果、フイルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制する化合物を用いて光学的異方性を十分に低下させ、ReとRthともゼロに近くなるようにした。このためには光学的異方性を低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
本発明のセルロースアシレートフイルムを作製するにあたっては、上述のようにフイルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制して光学異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0ないし7である化合物が好ましい。logP値が7を超える化合物は、セルロースアシレートとの相溶性に乏しく、フイルムの白濁や粉吹きを生じやすい。また、logP値が0よりも小さな化合物は親水性が高いために、セルロースアセテートフイルムの耐水性を悪化させる場合がある。logP値としてさらに好ましい範囲は1ないし6であり、特に好ましい範囲は1.5ないし5である。
光学異方性を低下させる化合物は、芳香族基を含有しても良いし、含有しなくても良い。また光学異方性を低下させる化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることがさらに好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
光学異方性を低下させる化合物の添加量は、セルロースアシレートの0.01ないし30質量%であることが好ましく、1ないし25質量%であることがより好ましく、5ないし20質量%であることが特に好ましい。
光学異方性を低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
光学異方性を低下させる化合物を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
一般式(1)の化合物について説明する。
R11−13について詳しく説明する。R11−13は好ましくは炭素数が1ないし20、さらに好ましくは炭素数が1ないし16、特に好ましくは、炭素数が1ないし12である脂肪族基である。ここで、脂肪族基とは、好ましくは脂肪族炭化水素基であり、さらに好ましくは、アルキル基(鎖状、分岐状および環状のアルキル基を含む。)、アルケニル基またはアルキニル基である。例として、アルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、t−ブチル、ペンチル、t−アミル、ヘキシル、オクチル、デシル、ドデシル、エイコシル、2−エチルヘキシル、シクロペンチル、シクロヘキシル、シクロヘプチル、2,6−ジメチルシクロヘキシル、4−t−ブチルシクロヘキシル、シクロペンチル、1−アダマンチル、2−アダマンチル、ビシクロ[2.2.2]オクタン−3−イルなどが挙げられ、アルケニル基としては、例えば、ビニル、アリル、プレニル、ゲラニル、オレイル、2−シクロペンテン−1−イル、2−シクロヘキセン−1−イルなどが挙げられ、アルキニル基としては、例えば、エチニル、プロパルギルなどが挙げられる。
R11−13で表される脂肪族基は置換されていてもよく、置換基の例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、またはヨウ素原子)、アルキル基(直鎖、分岐、環状のアルキル基で、ビシクロアルキル基、活性メチン基を含む)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基、N−アシルカルバモイル基、N−スルホニルカルバモイル基、N−カルバモイルカルバモイル基、N−スルファモイルカルバモイル基、カルバゾイル基、カルボキシ基またはその塩、オキサリル基、オキサモイル基、シアノ基、カルボンイミドイル基(Carbonimidoyl基)、ホルミル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、(アルコキシもしくはアリールオキシ)カルボニルオキシ基、カルバモイルオキシ基、スルホニルオキシ基、アミノ基、(アルキル、アリールまたはヘテロ環)アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、イミド基、(アルコキシもしくはアリールオキシ)カルボニルアミノ基、スルファモイルアミノ基、セミカルバジド基、アンモニオ基、オキサモイルアミノ基、N−(アルキルもしくはアリール)スルホニルウレイド基、N−アシルウレイド基、N−アシルスルファモイルアミノ基、4級化された窒素原子を含むヘテロ環基(例えばピリジニオ基、イミダゾリオ基、キノリニオ基、イソキノリニオ基)、イソシアノ基、イミノ基、(アルキルまたはアリール)スルホニル基、(アルキルまたはアリール)スルフィニル基、スルホ基またはその塩、スルファモイル基、N−アシルスルファモイル基、N−スルホニルスルファモイル基またはその塩、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基等が挙げられる。
これらの基はさらに組み合わされて複合置換基を形成してもよく、このような置換基の例としては、エトキシエトキシエチル基、ヒドロキシエトキシエチル基、エトキシカルボニルエチル基などを挙げることができる。また、R11−13は置換基としてリン酸エステル基を含有することもでき、一般式(1)の化合物は同一分子中に複数のリン酸エステル基を有することも可能である。
Q1、Q2およびQ3として好ましくは芳香族炭化水素環または芳香族へテロ環である。芳香族炭化水素環として好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。特に好ましくはベンゼン環である。
一般式(16)として好ましくは下記一般式(17)で表される化合物である。
これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じで も異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
本発明の多価アルコールエステルは、2価以上の多価アルコールと1種以上のモノカルボン酸とのエステルである。多価アルコールエステル化合物としては以下のものが例としてあげられる。
好ましい多価アルコールの例としては、例えばアドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
本発明の多価アルコールエステルにおけるモノカルボン酸としては、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いるとセルロースアシレートフイルムの透湿度、含水率、保留性を向上させる点で好ましい。
カルボン酸エステル化合物としては、以下の化合物を例としてあげることができる。具体的には、フタル酸エステル及びクエン酸エステル等、フタル酸エステルとしては、例えばジメチルフタレート、ジエチルフタレート、ジシクロヘキシルフタレート、ジオクチルフタレート及びジエチルヘキシルフタレート等、またクエン酸エステルとしてはクエン酸アセチルトリエチル及びクエン酸アセチルトリブチルを挙げることが出来る。またその他、オレイン酸ブチル、リシノール酸メチルアセチル、セバチン酸ジブチル、トリアセチン、トリメチロールプロパントリベンゾエート等も挙げられる。アルキルフタリルアルキルグリコレートもこの目的で好ましく用いられる。アルキルフタリルアルキルグリコレートのアルキルは炭素原子数1〜8のアルキル基である。アルキルフタリルアルキルグリコレートとしてはメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、プロピルフタリルエチルグリコレート、メチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等を挙げることが出来、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレートが好ましく、特にエチルフタリルエチルグリコレートが好ましく用いられる。またこれらアルキルフタリルアルキルグリコレート等を2種以上混合して使用してもよい。
本発明において用いる多環カルボン酸化合物は分子量が3000以下の化合物であることが好ましく、特に250〜2000以下の化合物であることが好ましい。環状構造に関して、環は、3〜8個の原子から構成されていることが好ましく、特に6員環及び/又は5員環であることが好ましい。これらが炭素、酸素、窒素、珪素あるいは他の原子を含んでいてもよく、環の結合の一部が不飽和結合であってもよく、例えば6員環がベンゼン環、シクロヘキサン環でもよい。本発明の化合物は、このような環状構造が複数含まれているものであり、例えば、ベンゼン環とシクロヘキサン環をどちらも分子内に有していたり、2個のシクロヘキサン環を有していたり、ナフタレンの誘導体あるいはアントラセン等の誘導体であってもよい。より好ましくはこのような環状構造を分子内に3個以上含んでいる化合物であることが好ましい。また、少なくとも環状構造の1つの結合が不飽和結合を含まないものであることが好ましい。具体的には、アビエチン酸、デヒドロアビエチン酸、パラストリン酸などのアビエチン酸誘導体が代表的であり、以下にこれら化合物の化学式を示す。
本発明において用いるビスフェノール誘導体は分子量が10000以下であることが好ましく、この範囲であれば単量体でも良いし、オリゴマー、ポリマーでも良い。また他のポリマーとの共重合体でも良いし、末端に反応性置換基が修飾されていても良い。以下にこれら化合物の化学式を示す。
セルロースアシレートフイルムの波長分散を低下させる化合物(以下波長分散調整剤ともいう)について説明する。本発明のセルロースアシレートフイルムのRthの波長分散を良化させるためには、下記式(iv)で表されるRthの波長分散ΔRth=|Rth4 00−Rth700|を低下させる化合物を、下記式(v)、(vi)をみたす範囲で少な くとも一種含有することがのぞましい。
(iv)ΔRth=|Rth400−Rth700|
(v)(ΔRth(B)−ΔRth(0))/B≦−2.0
(vi)0.01≦B≦30
上記式(v)、(vi)は
(v)(ΔRth(B)−ΔRth(0))/B≦−3.0
(vi)0.05≦B≦25
であることがよりのぞましく、
(v)(ΔRth(B)−ΔRth(0))/B≦−4.0
(vi)0.1≦B≦20
であることがさらにのぞましい。
上述した本発明で好ましく用いられる波長分散調整剤の添加量は、セルロースアシレートの0.01ないし30重量%であることが好ましく、0.1ないし20重量%であることがより好ましく、0.2ないし10重量%であることが特に好ましい。
またこれら波長分散調整剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
またこれら波長分散調整剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
Q1で表される含窒素芳香族ヘテロ環は更に置換基を有してもよく、置換基としては後 述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環して更に環を形成してもよい。
芳香族炭化水素環として好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。特に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
Q2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはナフタレン環、ベンゼン環であり、特に好ましくはベンゼン環である。Q2は更に置換基を有してもよく、後述の置換基Tが好ましい。
一般式(101−A)
R1およびR3として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
一般式(101−B)
一般式(102)
Q1およびQ2で表される芳香族炭化水素環として好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。特に好ましくはベンゼン環である。
Q1およびQ2で表される芳香族ヘテロ環として好ましくは酸素原子、窒素原子あるいは硫黄原子のどれかひとつを少なくとも1つ含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
Q1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、更に好ましくは置換または無置換のベンゼン環である。
Q1およびQ2は更に置換基を有してもよく、後述の置換基Tが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
一般式(102−A)
一般式(102−B)
R10として好ましくは置換または無置換のアルキル基であり、より好ましくは炭素数5〜20の置換または無置換のアルキル基であり、更に好ましくは炭素数5〜12の置換または無置換のアルキル基(ヘキシル基、2−エチルヘキシル基、オクチル基、デシル基、ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換または無置換のアルキル基(2−エチルヘキシル基、オクチル基、デシル基、ドデシル基、ベンジル基)である。
以下に一般式(102)で表される化合物の具体例を挙げる。
一般式(103)
Q1およびQ2は更に置換基を有してもよく、後述の置換基Tが好ましい。置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、イソプロピル、tert−ブチル、オクチル、デシル、ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
一般式(103-A)
一般式(103-B)
一般式(103-C)
本発明のセルロースアシレートフイルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフイルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
上記の光学的に異方性を低下する化合物、波長分散調整剤の他に、本発明のセルロースアシレートフイルムには、各調製工程において用途に応じた種々の添加剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号などに記載されている。さらにまた、赤外吸収染料としては例えば特開2001−194522号に記載されている。またその添加する時期はドープ作製工程において何れで添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。また、セルロースアシレートフイルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号などに記載されているが、これらは従来から知られている技術である。これらの詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている素材が好ましく用いられる。
本発明のセルロースアシレートフイルムにおいては、分子量が3000以下の化合物の総量は、セルロースアシレート重量に対して5〜45%であることがのぞましい。より好ましくは10〜40%であり、さらにのぞましくは15〜30%である。これらの化合物としては上述したように、光学異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、剥離剤、赤外吸収剤などであり、分子量としては3000以下がのぞましく、2000以下がよりのぞましく、1000以下がさらにのぞましい。これら化合物の総量が5%以下であると、セルロースアシレート単体の性質が出やすくなり、例えば、温度や湿度の変化に対して光学性能や物理的強度が変動しやすくなるなどの問題がある。またこれら化合物の総量が45%以上であると、セルロースアシレートフイルム中に化合物が相溶する限界を超え、フイルム表面に析出してフイルムが白濁する(フイルムからの泣き出し)などの問題が生じやすくなる。
本発明では、ソルベントキャスト法によりセルロースアシレートフイルムを製造することが好ましく、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフイルムは製造される。本発明の主溶媒として好ましく用いられる有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテル、および炭素原子数が1〜7のハロゲン化炭化水素から選ばれる溶媒が好ましい。エステル、ケトンおよび、エーテルは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。
[溶解工程]
本発明のセルロースアシレート溶液(ドープ)の調製は、その溶解方法は、室温でもよくさらには冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施される。本発明におけるセルロースアシレート溶液の調製、さらには溶解工程に伴う溶液濃縮、ろ過の各工程に関しては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて22頁〜25頁に詳細に記載されている製造工程が好ましく用いられる。
本発明のセルロースアシレート溶液のドープ透明度としては85%以上であることがのぞましい。より好ましくは88%以上であり、さらに好ましくは90%以上であることがのぞましい。本発明においてはセルロースアシレートドープ溶液に各種の添加剤が十分に溶解していることを確認した。具体的なドープ透明度の算出方法としては、ドープ溶液を1cm角のガラスセルに注入し、分光光度計(UV−3150、島津製作所)で550nmの吸光度を測定した。溶媒のみをあらかじめブランクとして測定しておき、ブランクの吸光度との比からセルロースアシレート溶液の透明度を算出した。
次に、本発明のセルロースアシレート溶液を用いたフイルムの製造方法について述べる。本発明のセルロースアシレートフイルムを製造する方法及び設備は、従来セルローストリアセテートフイルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて乾燥装置のロール群で搬送し乾燥を終了して巻き取り機で所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。本発明のセルロースアシレートフイルムの主な用途である、電子ディスプレイ用の光学部材である機能性保護膜やハロゲン化銀写真感光材料に用いる溶液流延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフイルムへの表面加工のために、塗布装置が付加されることが多い。これらについては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて25頁〜30頁に詳細に記載されており、流延(共流延を含む),金属支持体,乾燥,剥離などに分類され、本発明において好ましく用いることができる。
また、セルロースアシレートフイルムの厚さは10〜120μmが好ましく、20〜100μmがより好ましく、30〜90μmがさらに好ましい。
[セルロースアシレートフイルム物性評価]
本発明のセルロースアシレートフイルムの環境変化による光学性能の変化については、60℃90%RHに240時間処理したフイルムのReおよびRthの変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
また、80℃240時間処理したフイルムのReおよびRthの変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
本発明のセルロースアシレートフイルムにのぞましく用いることができる、Rthを低下させる化合物と、ΔRthを低下させる化合物は、80℃240時間処理したフイルムからの化合物の揮散量が30%以下であることがのぞましい。よりのぞましくは25%以下であり、20%以下であることがさらにのぞましい。
なお、フイルムからの揮散量は、80℃240時間処理したフイルムおよび未処理のフイルムをそれぞれ溶媒に溶かし出し、液体高速クロマトグラフィーにて化合物を検出し、化合物のピーク面積をフイルム中に残存した化合物量として、下記式により算出した。
揮散量(%)= {(未処理品中の残存化合物量)−(処理品中の残存化合物量)}/(未処理品中の残存化合物量)×100
本発明のセルロースアシレートフイルムのガラス転移温度Tgは、80〜165℃である。耐熱性の観点から、Tgが100〜160℃であることがより好ましく、110〜150℃であることが特に好ましい。ガラス転移温度Tgの測定は、本発明のセルロースアシレートフイルム試料10mgを、常温から200度まで昇降温速度5℃/分で示差走査熱量計(DSC2910、T.A.インスツルメント)で熱量測定を行い、ガラス転移温度Tgを算出した。
本発明のセルロースアシレートフイルムのヘイズは0.01〜2.0%であることがのぞましい。よりのぞましくは0.05〜1.5%であり、0.1〜1.0%であることがさらにのぞましい。光学フイルムとしてフイルムの透明性は重要である。ヘイズの測定は、本発明のセルロースアシレートフイルム試料40mm×80mmを、25℃,60%RHであり、ヘイズメーター(HGM−2DP、スガ試験機)でJIS K−6714に従って測定した。
本発明のセルロースアシレートフイルムの面内のレターデーションReおよび膜厚方向のレターデーションRthはともに湿度による変化が小さいことが好ましい。具体的には、25℃10%RHにおけるRth値と25℃80%RHにおけるRth値の差ΔRth(=Rth10%RH−Rth80%RH)が0〜50nmであることが好ましい。より好ましくは0〜40nmであり、さらに好ましくは0〜35nmである。
本発明のセルロースアシレートフイルムの平衡含水率は、偏光板の保護膜として用いる際、ポリビニルアルコールなどの水溶性ポリマーとの接着性を損なわないために、膜厚のいかんに関わらず、25℃80%RHにおける平衡含水率が、0〜4%であることが好ましい。0.1〜3.5%であることがより好ましく、1〜3%であることが特に好ましい。4%以上の平衡含水率であると、光学補償フイルムの支持体として用いる際にレターデーションの湿度変化による依存性が大きくなりすぎてしまい好ましくない。
含水率の測定法は、本発明のセルロースアシレートフイルム試料7mm×35mmを水 分測定器、試料乾燥装置(CA−03、VA−05、共に三菱化学(株))にてカールフィッシャー法で測定した。水分量(g)を試料重量(g)で除して算出した。
本発明の光学補償シートに用いるセルロースアシレートフイルムの透湿度は、JIS規格JISZ0208をもとに、温度60℃、湿度95%RHの条件において測定し、膜厚80μmに換算して400〜2000g/m2・24hであることがのぞましい。500〜1800g/m2・24hであることがより好ましく、600〜1600g/m2・24hであることが特に好ましい。2000g/m2・24hを越えると、フイルムのRe値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまう。また、本発明のセルロースアシレートフイルムに光学異方性層を積層して光学補償フイルムとした場合も、Re値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまい好ましくない。この光学補償シートや偏光板が液晶表示装置に組み込まれた場合、色味の変化や視野角の低下を引き起こす。また、セルロースアシレートフイルムの透湿度が400g/m2・24h未満では、偏光膜の両面などに貼り付けて偏光板を作製する場合に、セルロースアシレートフイルムにより接着剤の乾燥が妨げられ、接着不良を生じる。
セルロースアシレートフイルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄ければ透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を80μmに設け換算する必要がある。膜厚の換算は、(80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm)として求めた。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができ、本発明のセルロースアシレートフイルム試料70mmφを25℃、90%RH及び60℃、95%RHでそれぞれ24時間調湿し、透湿試験装置(KK−709007、東洋精機(株))にて、JIS Z−0208に従って、単位面積あたりの水分量を算出(g/m2)し、透湿度=調湿後重量−調湿前重量で求めた。
本発明のセルロースアシレートフイルムの寸度安定性は、60℃、90%RHの条件下に24時間静置した場合(高湿)の寸度変化率および90℃、5%RHの条件下に24時間静置した場合(高温)の寸度変化率がいずれも0.5%以下であることがのぞましい。
よりのぞましくは0.3%以下であり、さらにのぞましくは0.15%以下である。
具体的な測定方法としては、セルロースアシレートフイルム試料30mm×120mmを2枚用意し、25℃、60%RHで24時間調湿し、自動ピンゲージ(新東科学(株))にて、両端に6mmφの穴を100mmの間隔で開け、パンチ間隔の原寸(L0)とした。1枚の試料を60℃、90%RHにて24時間処理した後のパンチ間隔の寸法(L1)を測定、もう1枚の試料を90℃、5%RHにて24時間処理した後のパンチ間隔の寸法(L2)を測定した。すべての間隔の測定において最小目盛り1/1000mmまで測定した。60℃、90%RH(高湿)の寸度変化率={|L0−L1|/L0}×100、90℃、5%RH(高温)の寸度変化率={|L0−L2|/L0}×100、として寸度変化率を求めた。
(弾性率)
本発明のセルロースアシレートフイルムの弾性率は、200〜500kgf/mm2であることが好ましい。より好ましくは240〜470kgf/mm2であり、さらに好ましくは270〜440kgf/mm2である。具体的な測定方法としては、東洋ボールドウィン製万能引っ張り試験機STM T50BPを用い、23℃・70%雰囲気中、引っ張り速度10%/分で0.5%伸びにおける応力を測定し、弾性率を求めた。
(光弾性係数)
本発明のセルロースアシレートフイルムの光弾性係数は、50×10-13cm2/dyne以下であることが好ましい。30×10-13cm2/dyne以下であることがより好ましく、20×10-13cm2/dyne以下であることがさらに好ましい。具体的な測定方法としては、セルロースアシレートフイルム試料12mm×120mmの長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター(M150、日本分光(株))で測定し、応力に対するレターデーションの変化量から光弾性係数を算出した。
本発明のセルロースアシレートフイルムの評価に当たって、以下の方法で測定して実施した。
試料30mm×40mmを、25℃、60%RHで2時間調湿し、エリプソメーターM−150(日本分光(株)製)において波長780nmから380nmの光をフイルム法線方向に入射させることにより各波長でのReをもとめ、Reの波長分散を測定した。
試料70mm×100mmを、25℃、65%RHで2時間調湿し、自動複屈折計(KOBRA21DH、王子計測(株))にて、垂直入射における入射角を変化させた時の位相差より分子配向軸を算出した。
また、自動複屈折計(KOBRA−21ADH、王子計測機器(株))で軸ズレ角度を測定した。幅方向に全幅にわたって等間隔で20点測定し、絶対値の平均値を求めた。また、遅相軸角度(軸ズレ)のレンジとは、幅方向全域にわたって等間隔に20点測定し、軸ズレの絶対値の大きいほうから4点の平均と小さいほうから4点の平均の差をとったものである。
試料20mm×70mmを、25℃,60%RHにおいて、透明度測定器(AKA光電管比色計、KOTAKI製作所)で可視光(615nm)の透過率を測定した。
試料13mm×40mmを、25℃,60%RHで分光光度計(U−3210、(株)日立製作所)にて、波長300〜450nmにおける透過率を測定した。傾斜幅は72%の波長−5%の波長で求めた。限界波長は、(傾斜幅/2)+5%の波長で表した。吸収端は、透過率0.4%の波長で表す。これより380nmおよび350nmの透過率を評価した。
本発明セルロースアシレートフイルムの表面は、JISB0601−1994に基づく該膜の表面凹凸の算術平均粗さ(Ra)が0.1μm以下、及び最大高さ(Ry)が0.5μm以下であることが好ましい。より好ましくは、算術平均粗さ(Ra)が0.05μm以下、及び最大高さ(Ry)が0.2μm以下である。膜表面の凹と凸の形状は、原子間力顕微鏡(AFM)により評価することが出来る。
本発明のセルロースアシレートフイルムは次の式を満たすことがのぞましい。
|Re(MAX)−Re(MIN)|≦3かつ|Rth(MAX)−Rth(MIN)|≦5
[式中、Re(MAX)、Rth(MAX)−は任意に切り出した1m四方のフイルムの最大レターデーション値、Re(MIN)、Rth(MIN)は最小値である。]
本発明のセルロースアシレートフイルムにおいては、フイルムに添加した各種化合物の保留性が要求される。具体的には、本発明のセルロースアシレートフイルムを80℃/90%RHの条件下に48時間静置した場合のフイルムの質量変化が、0〜5%であることが好ましい。より好ましくは0〜3%であり、さらに好ましくは0〜2%である。
試料を10cm×10cmのサイズに断裁し、23℃、55%RHの雰囲気下で24時間放置後の質量を測定して、80±5℃、90±10%RHの条件下で48時間放置した。処理後の試料の表面を軽く拭き、23℃、55%RHで1日放置後の質量を測定して、以下の方法で保留性を計算した。
保留性(質量%)={(放置前の質量−放置後の質量)/放置前の質量}×100
(カール)
本発明のセルロースアシレートフイルムの幅方向のカール値は、−10/m〜+10/mであることが好ましい。本発明のセルロースアシレートフイルムには後述する表面処理、光学異方性層を塗設する際のラビング処理の実施や配向膜、光学異方性層の塗設や貼合などを長尺で行う際に、本発明のセルロースアシレートフイルムの幅方向のカール値が前述の範囲外では、フイルムのハンドリングに支障をきたし、フイルムの切断が起きることがある。また、フイルムのエッジや中央部などで、フイルムが搬送ロールと強く接触するために発塵しやすくなり、フイルム上への異物付着が多くなり、光学補償フイルムの点欠陥や塗布スジの頻度が許容値を超えることがある。又、カールを上述の範囲とすることで光学異方性層を設置するときに発生しやすい色斑故障を低減できるほか、偏光膜貼り合せ時に気泡が入ることを防ぐことができ、好ましい。
カール値は、アメリカ国家規格協会の規定する測定方法(ANSI/ASCPH1.29−1985)に従い測定することができる。
JISK7128−2:1998の引裂き試験方法に基ずく引裂き強度(エルメンドルフ引裂き法)が、本発明のセルロースアシレートフイルムの膜厚が20〜80μmの範囲において、2g以上が好ましい。より好ましくは、5〜25gであり、更には6〜25gである。又、60μm換算で8g以上が好ましく、より好ましくは8〜15gである。具体的には、試料片50mm×64mmを、25℃、65%RHの条件下に2時間調湿した後に軽荷重引裂き強度試験機を用いて測定できる。
本発明のセルロースアシレートフイルムに対する残留溶剤量が、0.01〜1.5質量%の範囲となる条件で乾燥することが好ましい。より好ましくは0.01〜1.0質量%である。本発明に用いる透明支持体の残留溶剤量は1.5%以下とすることでカールを抑制できる。1.0%以下であることがより好ましい。これは、前述のソルベントキャスト方法による成膜時の残留溶剤量を少なくすることで自由体積が小さくなることが主要な効果要因になるためと思われる。
本発明のセルロースアシレートフイルムの吸湿膨張係数は30×10-5/%RH以下とすることが好ましい。吸湿膨張係数は、15×10-5/%RH以下とすることがより好ましく、10×10-5/%RH以下であることがさらに好ましい。また、吸湿膨張係数は小さい方が好ましいが、通常は、1.0×10-5/%RH以上の値である。吸湿膨張係数は、一定温度下において相対湿度を変化させた時の試料の長さの変化量を示す。この吸湿膨張係数を調節することで、本発明のセルロースアシレートフイルムを光学補償フイルム支持体として用いた際、光学補償フイルムの光学補償機能を維持したまま、額縁状の透過率上昇すなわち歪みによる光漏れを防止することができる。
セルロースアシレートフイルムは、場合により表面処理を行うことによって、セルロースアシレートフイルムと各機能層(例えば、下塗層およびバック層)との接着の向上を達成することができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
本発明のセルロースアシレートフイルムを偏光板の透明保護フイルムとして用いる場合の表面処理の有効な手段の1つとしてアルカリ鹸化処理が上げられる。この場合、アルカリ鹸化処理後のフイルム表面の接触角が55°以下であることがのぞましい。よりのぞましくは50°以下であり、45°以下であることがさらにのぞましい。接触角の評価法はアルカリ鹸化処理後のフイルム表面に直径3mmの水滴を落とし、フイルム表面と水滴のなす角をもとめる通常の手法によって親疎水性の評価として用いることができる。
本発明のセルロースアシレートの光耐久性の指標として、スーパーキセノン光を240時間照射したフイルムの色差ΔE*abが20以下であることがのぞましい。よりのぞましくは18以下であり、15以下であることがさらにのぞましい。色差の測定は、UV3100(島津製作所製)を用いた。測定の仕方は、フイルムを25℃60%RHに2時間以上調湿した後にキセノン光照射前のフイルムのカラー測定を行ない、初期値(L0*、a0*、b0* )を求めた。その後、フイルム単体で、スーパーキセノンウェザーメーターSX−75(スガ試験機(株)製)にて、150W/m2、60℃50%RH条件にてキセノン光を240時間照射した。所定時間の経過後、フイルムを恒温槽から取り出し、25℃60%RHに2時間調湿した後に、再びカラー測定を行い、照射経時後の値(L1*、a1*、b1*)を求めた。これらから、色差ΔE*ab=((L0*−L1*)^2+(a0*−a1*)^2+(b0*−b1*)^2)^0.5を求めた。
本発明のセルロースアシレートフイルムは、その用途として光学用途と写真感光材料に適用される。特に光学用途が液晶表示装置であることが好ましく、液晶表示装置が、二枚の電極基板の間に液晶を担持してなる液晶セル、その両側に配置された二枚の偏光素子、および該液晶セルと該偏光素子との間に少なくとも一枚の光学補償シートを配置した構成であることがさらに好ましい。これらの液晶表示装置としては、TN、IPS、FLC、AFLC、OCB、STN、ECB、VAおよびHANが好ましい。
その際に前述の光学用途に本発明のセルロースアシレートフイルムを用いるに際し、各種の機能層を付与することが実施される。それらは、例えば、帯電防止層、硬化樹脂層(透明ハードコート層)、反射防止層、易接着層、防眩層、光学補償層、配向層、液晶層などである。本発明のセルロースアシレートフイルムを用いることができるこれらの機能層及びその材料としては、界面活性剤、滑り剤、マット剤、帯電防止層、ハードコート層などが挙げられ、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて32頁〜45頁に詳細に記載されており、本発明において好ましく用いることができる。
セルロースアシレートフイルムは、表面処理を施すことが好ましい。具体的方法としては、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理または紫外線照射処理が挙げられる。また、特開平7−333433号明細書に記載のように、下塗り層を設けることも好ましい。
フイルムの平面性を保持する観点から、これら処理においてセルロースアシレートフイルムの温度をTg(ガラス転移温度)以下、具体的には150℃以下とすることが好ましい。
偏光板の透明保護膜として使用する場合、偏光膜との接着性の観点から、酸処理またはアルカリ処理、すなわちセルロースアシレートに対するケン化処理を実施することが特に好ましい。以下、アルカリ鹸化処理を例に、具体的に説明する。
アルカリ溶液の例としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられる。アルカリ溶液の水酸化イオンの規定濃度は、0.1乃至3.0Nの範囲にあることが好ましく、0.5乃至2.0Nの範囲にあることがさらに好ましい。アルカリ溶液の温度は、室温乃至90℃の範囲にあることが好ましく、40乃至70℃の範囲にあることがさらに好ましい。
固体の表面エネルギーは、「ぬれの基礎と応用」(リアライズ社 1989.12.10発行)に記載のように接触角法、湿潤熱法、および吸着法により求めることができる。本発明のセルロースアシレートフイルムの場合、接触角法を用いることが好ましい。
具体的には、表面エネルギーが既知である2種の溶液をセルロースアシレートフイルムに滴下し、液滴の表面とフイルム表面との交点において、液滴に引いた接線とフイルム表面のなす角で、液滴を含む方の角を接触角と定義し、計算によりフイルムの表面エネルギーを算出できる。
配向膜は、液晶性化合物の配向方向を規定する機能を有する。配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。配向膜は、ポリマーのラビング処理により形成することが好ましい。
配向膜は、一種類のポリマーから形成することもできるが、架橋された二種類のポリマーからなる層をラビング処理することにより形成することがさらに好ましい。少なくとも一種類のポリマーとして、それ自体架橋可能なポリマーか、架橋剤により架橋されるポリマーのいずれかを用いることが好ましい。配向膜は、官能基を有するポリマーあるいはポリマーに官能基を導入したものを、光、熱、PH変化等により、ポリマー間で反応させて形成するか;あるいは、反応活性の高い化合物である架橋剤を用いてポリマー間に架橋剤に由来する結合基を導入して、ポリマー間を架橋することにより形成することができる。
配向膜上に形成される液晶性化合物からなる層(光学異方性層)の配向性を考えると、液晶性化合物を配向させたのちに、充分架橋を行なうことも好ましい。
配向膜の架橋は、セルロースアシレートフイルム上に配向膜塗布液を塗布し、加熱乾燥することで行われることが一般的である。この塗布液の加熱温度を低く設定して、後述の光学異方性層を形成する際の加熱処理の段階で配向膜の充分な架橋を行うことが好ましい。
好ましいポリマーの例としては、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビルアルコール及び変性ポリビニルアルコール等の水溶性ポリマーが挙げられる。ゼラチン、ポリビルアルコール及び変性ポリビニルアルコールを用いることが好ましく、ポリビルアルコール及び変性ポリビニルアルコールを用いることがさらに好ましい。
また、重合度の異なるポリビニルアルコールまたは変性ポリビニルアルコールを二種類併用することが最も好ましい。
変性ポリビニルアルコールの例としては、共重合変性、連鎖移動による変性、またはブロック重合による変性をしたポリビニルアルコールなどを挙げることができる。共重合変性する場合の変性基の例としては、COONa、Si(OX)3 、N(CH3 )3 ・Cl、C9 、H19COO、SO3 、Na、C12H25などが挙げられる。連鎖移動による変性をする場合の変性基の例としては、COONa、SH、C12H25などが挙げられる。また、ブロック重合による変性をする場合の変性基の例としては、COOH、CONH2 、COOR、C6 H5 などが挙げられる。
これらの中でも、鹸化度が80乃至100%の範囲にある未変性もしくは変性ポリビニルアルコールが好ましい。また、鹸化度が85乃至95%の範囲にある未変性ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましい。
上記の特定の変性ポリビニルアルコールは、さらに下記一般式で表わされる化合物によるポリビニルアルコールの変性物であることが好ましい。
これらポリマーの合成方法、可視吸収スペクトル測定、および変性基導入率の決定方法等は、特開平8−338913号公報に詳しく記載がある。
これらは上記水溶性ポリマー、特にポリビニルアルコール及び変性ポリビニルアルコール(上記特定の変性物も含む)と併用する場合に好ましい。生産性を考慮した場合、反応活性の高いアルデヒド類、とりわけグルタルアルデヒドの使用が好ましい。
そして、ポリビニルアルコール等の水溶性ポリマーを配向膜形成材料として用いる場合、その塗布液を作製するための溶媒は、消泡作用のあるメタノール等の有機溶媒とするか、あるいは有機溶媒と水の混合溶媒とすることが好ましい。有機溶媒としてメタノールを用いる場合、その比率は質量比で水:メタノールが、0:100〜99:1が一般的であり、0:100〜91:9であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方性層の表面の欠陥が著しく減少する。
塗布方法としては、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、バーコーティング法及びE型塗布法を挙げることができる。この中でも、特にE型塗布法が好ましい。
光学異方性層は、液晶性化合物から形成される。光学異方性層は、セルロースアシレートフイルム上に設けられた配向膜の上に形成することが好ましい。
光学異方性層に用いる液晶性化合物には、棒状液晶性化合物および円盤状液晶性化合物が含まれる。棒状液晶性化合物および円盤状液晶性化合物は、高分子液晶でも低分子液晶でもよく、さらに、低分子液晶が架橋され液晶性を示さなくなったものも含まれる。
光学異方性層は、液晶性化合物および必要に応じて重合性開始剤や任意の成分を含む塗布液を、配向膜の上に塗布することで形成できる。
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
光学異方性層の厚さは、0.1乃至20μmであることが好ましく、0.5乃至15μmであることがさらに好ましく、1乃至10μmであることが最も好ましい。
本発明に用いる液晶性化合物としては、円盤状液晶性化合物を用いることが好ましい。
棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
なお、棒状液晶性化合物には、金属錯体も含まれる。また、棒状液晶性化合物を繰り返し単位中に含む液晶ポリマーも、棒状液晶性化合物として用いることができる。言い換えると、棒状液晶性化合物は、(液晶)ポリマーと結合していてもよい。
棒状液晶性化合物については、季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章および第11章、および液晶デバイスハンドブック日本学術振興会第142委員会編の第3章に記載がある。
棒状液晶性化合物の複屈折率は、0.001乃至0.7の範囲にあることが好ましい。
棒状液晶性化合物は、その配向状態を固定するために、重合性基を有することが好ましい。重合性基(Q)の例を、以下に示す。
棒状液晶性化合物は、短軸方向に対してほぼ対称となる分子構造を有することが好ましい。そのためには、棒状分子構造の両端に重合性基を有することが好ましい。
以下に、棒状液晶性化合物の例を示す。
円盤状(ディスコティック)液晶性化合物の例としては、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physics lett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルなどを挙げることができる。さらに、円盤状液晶性化合物としては、一般的にこれらを分子中心の母核とし、直鎖のアルキル基やアルコキシ基、置換ベンゾイルオキシ基等がその直鎖として放射線状に置換された構造のものも含まれ、液晶性を示す。ただし、分子自身が負の一軸性を有し、一定の配向を付与できるものであればよい。また、本発明において、円盤状液晶性化合物から形成する光学異方性層は、最終的にできた物が前記化合物である必要はなく、例えば、低分子の円盤状液晶性化合物が熱、光等で反応する基を有しており、結果的に熱、光等で反応により重合または架橋し、高分子量化し液晶性を失ったものも含まれる。円盤状液晶性化合物の好ましい例は、特開平8−50206号公報に記載されている。また、円盤状液晶性化合物の重合については、特開平8−27284公報に記載がある。
式中、Dは円盤状コアであり;Lは二価の連結基であり、Pは重合性基であり、そして、nは4乃至12の整数である。
円盤状コア(D)の例を以下に示す。以下の各例において、LP(またはPL)は、二価の連結基(L)と重合性基(P)との組み合わせを意味する。
L1:−AL−CO−O−AL−
L2:−AL−CO−O−AL−O−
L3:−AL−CO−O−AL−O−AL−
L4:−AL−CO−O−AL−O−CO−
L5:−CO−AR−O−AL−
L6:−CO−AR−O−AL−O−
L7:−CO−AR−O−AL−O−CO−
L8:−CO−NH−AL−
L9:−NH−AL−O−
L10:−NH−AL−O−CO−
L12:−O−AL−O−
L13:−O−AL−O−CO−
L14:−O−AL−O−CO−NH−AL−
L15:−O−AL−S−AL−
L16:−O−CO−AR−O−AL−CO−
L17:−O−CO−AR−O−AL−O−CO−
L18:−O−CO−AR−O−AL−O−AL−O−CO−
L19:−O−CO−AR−O−AL−O−AL−O−AL−O−CO−
L20:−S−AL−
L21:−S−AL−O−
L22:−S−AL−O−CO−
L23:−S−AL−S−AL−
L24:−S−AR−AL−
式(III)において、nは4乃至12の整数である。具体的な数字は、円盤状コア(D)の種類に応じて決定される。なお、複数のLとPの組み合わせは、異なっていてもよいが、同一であることが好ましい。
配向させた液晶性化合物を、配向状態を維持して固定することが好ましい。固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01乃至20質量%の範囲にあることが好ましく、0.5乃至5質量%の範囲にあることがさらに好ましい。
液晶性化合物の重合のための光照射は、紫外線を用いることが好ましい。
照射エネルギーは、20mJ/cm2 乃至50J/cm2 の範囲にあることが好ましく、20乃至5000mJ/cm2 の範囲にあることがより好ましく、100乃至800mJ/cm2 の範囲にあることがさらに好ましい。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。保護層を、光学異方性層の上に設けてもよい。
以上のように、セルロースアシレートフイルム上に光学異方性層を設けることにより本発明の光学補償フイルムを作製することができる。
偏光板は、偏光膜およびその両側に配置された二枚の透明保護膜からなる。一方の保護膜として、上記の光学補償フイルムを用いることができる。他方の保護膜は、通常のセルロースアシレートフイルムを用いてもよい。
偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜および染料系偏光膜は、一般にポリビニルアルコール系フイルムを用いて製造する。
光学補償フイルムの透湿性は、ポリマーフイルム(および重合性液晶化合物)の厚み、自由体積、もしくは、親疎水性などにより決定される。
光学補償フイルムを偏光板の保護フイルムとして用いる場合、光学補償フイルムの透湿性は100乃至1000(g/m2 )/24hrsの範囲にあることが好ましく、300乃至700(g/m2 )/24hrsの範囲にあることが更に好ましい。
光学補償フイルムの厚みは、セルロースアシレートフイルムを製膜する場合の、リップ流量とラインスピード、あるいは、延伸、圧縮により調整することができる。使用する主素材により透湿性が異なるので、厚み調整により好ましい範囲にすることが可能である。
光学補償フイルムの自由体積は、製膜の場合、乾燥温度と時間により調整することができる。この場合もまた、使用する主素材により透湿性が異なるので、自由体積調整により好ましい範囲にすることが可能である。
光学補償フイルムの親疎水性は、添加剤により調整することができる。自由体積中に親水的添加剤を添加することで透湿性は高くなり、逆に疎水性添加剤を添加することで透湿性を低くすることができる。
光学補償フイルムの透湿性を調整することにより、光学補償能を有する偏光板を安価に高い生産性で製造することが可能となる。
上記の光学補償フイルム、または光学補償フイルムと偏光膜とを貼り合わせて得られた偏光板は、液晶表示装置、特に透過型液晶表示装置に有利に用いられる。
透過型液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光板からなる。偏光板は、偏光膜およびその両側に配置された二枚の透明保護膜からなる。液晶セルは、二枚の電極基板の間に液晶を担持している。
本発明の光学補償フイルムは、液晶セルと一方の偏光板との間に一枚配置するか、あるいは液晶セルと双方の偏光板との間に二枚配置する。
本発明の偏光板は、液晶セルの両側に配置された二枚の偏光板のうちの少なくとも一方として用いればよい。この際には、光学補償フイルムが液晶セル側となるように本発明の偏光板を配置する。
TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60乃至120゜にねじれ配向している。
TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
本発明の実施の態様として、場合によって視野角を変え、プライバシーを守る観点から、後述のプリズムシートを2枚以上使用し、さらに該プリズムシートを取り外し可能とすることが好ましい。
プリズムシートは後述の従来の使用法とは異なり、溝方向を実質的に一致させ、2枚以上使用することが好ましい。ここでいう実質的とは、±30度以内をいう。
バックライトから出射された光は導光板に形成された光出射機構により、一部の光が導光体の光出射面から出射する。この出射光は観察方向と異なる方向に指向性を有する。このため、必要な方向へと指向性を変更させて光を出射させるために、プリズムシートなどが使用される。このプリズムシートは、実開平3−69184号公報に開示されているように、プリズム面を導光体と反対の側に向けて配置されることが多く、また、プリズムシートは、プリズム稜線の方向が互いに直交するような配置で重ね合わせて使用されることが一般的である。更には、特公平7−27136号公報や特公平7−27137号公報に開示されているように、プリズム面を導光体側に向けて配置されたものも提案されている。特開平7−318729号公報には、導光体の光出射面上に、プリズム列と直交する断面において、各プリズム列の長辺のシート面に対する角度が視点直下位置から離れるに従って大きくなるようなリニアフレネルレンズシートを、レンズ面が出射面となるように配置し、出射光を視点方向に集光させるようにした面光源装置が記載されている。
(セルロースアシレートフイルムの作製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液Aを調製した。
セルロースアシレート溶液A組成
────────────────────────────────────────
置換度2.86のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール 11質量部
────────────────────────────────────────
溶液B組成
────────────────────────────────────────
メチレンクロライド(第1溶媒) 80質量部
メタノール(第2溶媒) 20質量部
光学異方性低下剤(A−19) 40質量部
波長分散制御剤(UV−120) 4重量部
────────────────────────────────────────
セルロースアシレート溶液Aを477質量部に、添加剤溶液B−1の40質量部を添加し、充分に攪拌して、ドープを調製した。ドープを流延口から0℃に冷却したドラム上に流延した。溶媒含有率70質量%の場外で剥ぎ取り、フイルムの巾方向の両端をピンテンター(特開平4−1009号の図3に記載のピンテンター)で固定し、溶媒含有率が3乃至5質量%の状態で、横方向(機械方向に垂直な方向)の延伸率が3%となる間隔を保ちつつ乾燥した。その後、熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み80μmのセルロースアセテートフイルム試料CAF−01を作製した。
作製したCAF−01について、光学特性を測定した。結果は第1表に示す。
尚、光学特性は、エリプソメーター(M−150、日本分光(株)製)を用いて、波長630nmにおけるReレターデーション値およびRthレターデーション値を測定した。
このセルロースアシレートフイルム上に、下記の組成の塗布液を#16のワイヤーバーコーターで28ml/m2 塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。
次に、セルロースアシレートフイルムの長手方向と平行な方向に、形成した膜にラビング処理を実施した。
配向膜塗布液組成
────────────────────────────────────────
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
────────────────────────────────────────
配向膜上に、下記の円盤状(液晶性)化合物41.01g、エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06g、セルロースアシレートブチレート(CAB551−0.2、イーストマンケミカル社製)0.90g、セルロースアシレートブチレート(CAB531−1、イーストマンケミカル社製)0.23g、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45gを、102gのメチルエチルケトンに溶解した塗布液を、#3.6のワイヤーバーで塗布した。これを130℃の恒温ゾーンで2分間加熱し、円盤状化合物を配向させた。次に、60℃の雰囲気下で120W/cm高圧水銀灯を用いて、1分間UV照射し円盤状化合物を重合させた。その後、室温まで放冷した。このようにして、光学異方性層を形成し、光学補償フイルム(KH−01)を作製した。
波長546nmで測定した光学異方性層のReレターデーション値は43nmであった。また、円盤面とセルロースアシレートフイルム表面との間の角度(傾斜角)は平均で42゜であった。
(セルロースアシレートフイルムの作製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液Eを調製した。この際、置換度2.92のセルロースアシレートを用いた。
セルロースアシレート溶液C組成
────────────────────────────────────────
セルロースアセテート 100質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール 11質量部
────────────────────────────────────────
溶液B組成
────────────────────────────────────────
メチレンクロライド(第1溶媒) 80質量部
メタノール(第2溶媒) 20質量部
光学異方性低下剤(A−19) 40質量部
波長分散制御剤(UV−102) 4重量部
────────────────────────────────────────
セルロースアシレート溶液Aを465質量部に、添加剤溶液B−1の40質量部を添加し、充分に攪拌して、ドープを調製した。ドープを流延口から0℃に冷却したドラム上に流延した。溶媒含有率70質量%の場外で剥ぎ取り、フイルムの巾方向の両端をピンテンター(特開平4−1009号の図3に記載のピンテンター)で固定し、溶媒含有率が3乃至5質量%の状態で、横方向(機械方向に垂直な方向)の延伸率が3%となる間隔を保ちつつ乾燥した。その後、熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み80μmのセルロースアセテートフイルム試料CAF−02を作製した。
作製したCAF−02について、光学特性を測定した。結果は第1表に示す。
尚、光学特性は、エリプソメーター(M−150、日本分光(株)製)を用いて、波長630nmにおけるReレターデーション値およびRthレターデーション値を測定した。
さらに、作製したセルロースアシレートフイルムを、1.5Nの水酸化カリウム溶液(40℃)に5分間浸漬した後、硫酸で中和し、純水で水洗、乾燥した。このセルロースアシレートフイルムの表面エネルギーを接触角法により求めたところ、68mN/mであった。
このセルロースアシレートフイルム上に、実施例1で用いた配向膜塗布液を#16のワイヤーバーコーターで28ml/m2 塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。
次に、セルロースアシレートフイルムの遅相軸(波長632.8nmで測定)と45゜の方向に、形成した膜にラビング処理を実施した。
まず、液晶性高分子の合成と、無配向処理基板上でのホメオトロピック配向の確認を行う。
4−ヘプチル安息香酸10mmol、テレフタル酸95mmol、メチルヒドロキノンジアシレート50mmol、カテコールジアシレート50mmol、および酢酸ナトリウム100mgを用いて窒素雰囲気下、270℃で12時間重合を行った。得られた反応生成物をテトラクロロエタンに溶解したのち、メタノールで再沈澱を行って精製し、液晶性ポリエステル22.0gを得た。
この液晶性ポリエステルの対数粘度は0.15、液晶相としてネマチック相をもち、等方相−液晶相転移温度は240℃、ガラス転移点は75℃であった。
前記のようにして得られた液晶性ポリエステルの8wt%テトラクロロエタン溶液を調製した。次いで、スピンコート法により、溶液を配向膜上に塗布した。次いで溶媒を除去した後、190℃で20分間熱処理した。熱処理後、空冷し、液晶性化合物の配向状態を固定化した。得られた光学補償フイルム(KH−02)は、透明で配向欠陥はなく、均一な膜厚(1.55μm)を有していた。
(セルロースアセテートフイルムの作製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
セルロースアセテート溶液組成
────────────────────────────────────────
酢化度60.9%のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール(第3溶媒) 11質量部
────────────────────────────────────────
セルロースアセテート溶液487質量部にレターデーション上昇剤溶液13質量部を混合し、充分に攪拌してドープを調製した。レターデーション上昇剤の添加量は、セルロースアセテート100質量部に対して、1.8質量部であった。
作製したセルロースアセテートフイルム(CAF−H1)について、光学特性と吸湿膨張係数を測定した。結果は第1表に示す。
尚、光学特性は、エリプソメーター(M−150、日本分光(株)製)を用いて、波長630nmにおけるReレターデーション値およびRthレターデーション値を測定した。
このセルロースアセテートフイルム上に、下記の組成の塗布液を#16のワイヤーバーコーターで28ml/m2 塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。
次に、セルロースアセテートフイルムの長手方向と平行な方向に、形成した膜にラビング処理を実施した。
配向膜塗布液組成
────────────────────────────────────────
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
────────────────────────────────────────
配向膜上に、下記の円盤状(液晶性)化合物41.01g、エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06g、セルロースアセテートブチレート(CAB551−0.2、イーストマンケミカル社製)0.90g、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.23g、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45gを、102gのメチルエチルケトンに溶解した塗布液を、#3.6のワイヤーバーで塗布した。これを130℃の恒温ゾーンで2分間加熱し、円盤状化合物を配向させた。次に、60℃の雰囲気下で120W/cm高圧水銀灯を用いて、1分間UV照射し円盤状化合物を重合させた。その後、室温まで放冷した。このようにして、光学異方性層を形成し、光学補償シート(KH−H1)を作製した。
波長546nmで測定した光学異方性層のReレターデーション値は43nmであった。また、円盤面とセルロースアセテートフイルム表面との間の角度(傾斜角)は平均で42゜であった。
尚、光学特性は、エリプソメーター(M−150、日本分光(株)製)を用いて、波長550nmにおけるReレターデーション値およびRthレターデーション値を測定した。
────────────────────────────────────────
フイルム 厚み 光学異方性低下剤 波長分散低下剤 Re Rth
────────────────────────────────────────
実施例1 CAF−01 80μ 12質量部 1.8重量部 2nm 15nm
実施例2 CAF−02 40μ 12重量部 1.8質量部 0nm −5nm
比較例1 CAF−H1 80μ 1.8重量部(Re調整剤) 5nm 130nm
────────────────────────────────────────
延伸したポリビニルアルコールフイルムにヨウ素を吸着させて偏光膜を作製した。ポリビニルアルコール系接着剤を用いて、実施例1で作成した光学補償フイルム(KH−01)を、セルロースアシレートフイルム(CAF―01)が偏光膜側となるように偏光膜の片側に貼り付けた。偏光膜の透過軸と光学補償フイルム(KH―01)の遅相軸とは平行になるように配置した。
市販のセルローストリアシレートフイルム(フジタックTD80UF、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。偏光膜の透過軸と市販のセルローストリアシレートフイルムの遅相軸とは、直交するように配置した。
このようにして偏光板を作製した。
延伸したポリビニルアルコールフイルムにヨウ素を吸着させて偏光膜を作製した。ポリビニルアルコール系接着剤を用いて、実施例2で作成した光学補償フイルム(KH−02)を、セルロースアシレートフイルム(CAF―02)が偏光膜側となるように偏光膜の片側に貼り付けた。偏光膜の透過軸と光学補償フイルム(KH―02)の遅相軸とは直交になるように配置した。
市販のセルローストリアシレートフイルム(フジタックTD80UF、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。偏光膜の透過軸と市販のセルローストリアシレートフイルムの遅相軸とは、直交するように配置した。
このようにして偏光板を作製した。
延伸したポリビニルアルコールフイルムにヨウ素を吸着させて偏光膜を作製した。ポリビニルアルコール系接着剤を用いて、比較例1で作成したセルロースアシレートフイルムを偏光膜の片側に貼り付けた。偏光膜の透過軸とセルロースアシレートフイルム(CAF−H1)の遅相軸とは平行になるように配置した。
市販のセルローストリアシレートフイルム(フジタックTD80UF、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。偏光膜の透過軸と市販のセルローストリアシレートフイルムの遅相軸とは、直交するように配置した。
このようにして偏光板を作製した。
TN型液晶セルを使用した液晶表示装置(6E−A3、シャープ(株)製)に設けられている一対の偏光板を剥がし、代わりに実施例3で作製した偏光板を、光学補償フイルム(KH−01)が液晶セル側となるように粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸と、バックライト側の偏光板の透過軸とが直交するように配置した。
作製した液晶表示装置について、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角を測定した。結果を第2表に示す。
TN型液晶セルを使用した液晶表示装置(6E−A3、シャープ(株)製)に設けられている一対の偏光板を剥がし、代わりに実施例4で作製した偏光板を、光学補償フイルム(KH−02)が液晶セル側となるように粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸と、バックライト側の偏光板の透過軸とが直交するように配置した。
作製した液晶表示装置について、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角を測定した。結果を第2表に示す。
TN型液晶セルを使用した液晶表示装置(6E−A3、シャープ(株)製)について、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角を測定した。結果を第2表に示す。
────────────────────────────────────────
液晶 視野角(コントラスト比が10以上で黒側の階調反転のない範囲)
表示装置 上 下 左右
────────────────────────────────────────
実施例5 70゜ 45゜ 80゜
実施例6 65゜ 60゜ 65゜
比較例3 70゜ 45゜ 160゜
────────────────────────────────────────
(註)黒側の階調反転:L1とL2との間の反転
Claims (3)
- TNモードの液晶セル、その両側に配置された二枚の偏光板およびバックライトからなり、二枚の偏光板がいずれも偏光膜およびその両側に配置された二枚の透明保護膜からなるTN型液晶表示装置であって、
透明保護膜の少なくとも一枚がセルロースアシレートフイルムおよび円盤状液晶性化合物から形成された光学異方性層を有する光学補償フイルムであって、セルロースアシレートフイルムの面内のレターデーション値および厚み方向のレターデーション値が下記式(I)および(II)を満足し、さらに光学異方性層において円盤状液晶性化合物の円盤状構造単位の面がセルロースアシレートフイルム表面に対して傾き、且つ円盤状構造単位の面とセルロースアシレートフイルム表面とのなす角度が光学異方性層の深さ方向において変化していることにより、上下の視野角および左右の視野角の一方が110°乃至170°であり、他方が50°乃至90°であることを特徴とするTN型液晶表示装置:
(I)0<Re(630)<10
(II)|Rth(630)|<25
[式中、Re(λ)は、波長λnmで測定したセルロースアシレートフイルムの面内のレターデーション値(単位:nm)であり;Rth(λ)は、波長λnmで測定したセルロースアシレートフイルムの厚み方向のレターデーション値(単位:nm)である]。 - セルロースアシレートフイルムが、レターデーション低下剤を下記式(V)および(VI)を満足する量で含有していることを特徴とする請求項1に記載のTN型液晶表示装置:
(V)(Rth(A)−Rth(0))/A<−1.0
(VI)0.01<A<30
[式中、Rth(A)は、波長630nmで測定したレターデーション低下剤をA質量%含有するセルロースアシレートフイルムの厚み方向のレターデーション値であり;Rth(0)は、波長630nmで測定したレターデーション低下剤を含有しない以外は上記と同様に作製したセルロースアシレートフイルムの厚み方向のレターデーション値であり;そして、Aは、セルロースアシレートに対するレターデーション低下剤の添加量(質量%)である]。 - セルロースアシレートのアシル置換度が2.85乃至3.00である請求項1に記載のTN型液晶表示装置。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004327582A JP4498103B2 (ja) | 2004-11-11 | 2004-11-11 | Tn型液晶表示装置 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004327582A JP4498103B2 (ja) | 2004-11-11 | 2004-11-11 | Tn型液晶表示装置 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2006138996A JP2006138996A (ja) | 2006-06-01 |
| JP4498103B2 true JP4498103B2 (ja) | 2010-07-07 |
Family
ID=36619879
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004327582A Expired - Fee Related JP4498103B2 (ja) | 2004-11-11 | 2004-11-11 | Tn型液晶表示装置 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4498103B2 (ja) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4964794B2 (ja) * | 2008-01-22 | 2012-07-04 | 富士フイルム株式会社 | 光学フィルムおよびその製造方法 |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08304631A (ja) * | 1995-05-02 | 1996-11-22 | Mitsubishi Rayon Co Ltd | 液晶表示装置 |
| JP2001163995A (ja) * | 1999-12-06 | 2001-06-19 | Konica Corp | セルロースエステルフィルム及びその製造方法、偏光板保護フィルム |
| JP4067734B2 (ja) * | 2000-03-06 | 2008-03-26 | 富士フイルム株式会社 | セルロースエステル用可塑剤、セルロースエステルフイルムおよびその製造方法 |
| JP2003021838A (ja) * | 2001-07-09 | 2003-01-24 | Casio Comput Co Ltd | 液晶表示装置 |
| JP4248779B2 (ja) * | 2001-08-02 | 2009-04-02 | 富士フイルム株式会社 | 液晶表示装置 |
| JP2004148811A (ja) * | 2002-10-08 | 2004-05-27 | Fuji Photo Film Co Ltd | セルロースアシレートフイルムの製造方法、セルロースアシレートフイルム、並びにそれを用いた光学機能性シート、偏光板、液晶表示装置及びハロゲン化銀写真感光材料 |
| JP2004177570A (ja) * | 2002-11-26 | 2004-06-24 | Fuji Photo Film Co Ltd | 液晶表示装置 |
-
2004
- 2004-11-11 JP JP2004327582A patent/JP4498103B2/ja not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2006138996A (ja) | 2006-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5668016B2 (ja) | 光学フィルム、偏光板、及び液晶表示装置 | |
| JP4404735B2 (ja) | セルロースアシレートフィルム、それを用いた光学補償フィルム、偏光板 | |
| JP4055861B2 (ja) | 透明フイルムおよびそれを用いた液晶表示装置 | |
| JP4771692B2 (ja) | 液晶表示装置 | |
| JP4689286B2 (ja) | 液晶表示装置 | |
| JP4074872B2 (ja) | 光学補償偏光板、画像表示装置、及び液晶表示装置 | |
| JP2006293255A (ja) | 光学フィルム、光学補償フィルム、偏光板、液晶表示装置、および自発光型表示装置 | |
| JP4619108B2 (ja) | 液晶表示装置 | |
| KR20070037711A (ko) | 광학 보상 편광판, 화상 디스플레이 유닛 및 액정디스플레이 유닛 | |
| JP2008112172A (ja) | Ipsモード液晶表示装置用光学補償偏光板、画像表示装置、及び液晶表示装置 | |
| JP4142691B2 (ja) | 液晶表示装置 | |
| JP4914002B2 (ja) | 液晶表示装置 | |
| JP4860333B2 (ja) | 液晶表示装置 | |
| JP4498103B2 (ja) | Tn型液晶表示装置 | |
| JP2006184479A (ja) | 光学補償フィルム及び液晶表示装置 | |
| JP2006220971A (ja) | 光学補償シート、偏光板およびこれを用いた液晶表示装置 | |
| JP2006195363A (ja) | 液晶表示装置、さらにそれに用いる光学補償シート、及び偏光板 | |
| JP2006194923A (ja) | ベンド配向モードの液晶表示装置 | |
| JP2006195140A (ja) | 光学補償シート、偏光板、及び液晶表示装置 | |
| JP2006195205A (ja) | 液晶表示装置及び偏光板 | |
| JP2006178359A (ja) | 光学補償フィルム、偏光板および液晶表示装置 | |
| JP2006243703A (ja) | 液晶表示装置 | |
| JP2006195293A (ja) | 液晶表示装置、光学補償フィルムおよび偏光板 | |
| JP2006195247A (ja) | 液晶表示装置、それに用いる光学補償シートおよび偏光板 | |
| JP2006251373A (ja) | 光学補償シート、偏光板、及び液晶表示装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061206 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070620 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091027 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091113 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100112 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100402 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100413 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4498103 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 4 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |
