JP4771692B2 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP4771692B2
JP4771692B2 JP2004378873A JP2004378873A JP4771692B2 JP 4771692 B2 JP4771692 B2 JP 4771692B2 JP 2004378873 A JP2004378873 A JP 2004378873A JP 2004378873 A JP2004378873 A JP 2004378873A JP 4771692 B2 JP4771692 B2 JP 4771692B2
Authority
JP
Japan
Prior art keywords
group
film
carbon atoms
cellulose acylate
rth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004378873A
Other languages
English (en)
Other versions
JP2006184640A (ja
Inventor
享 杉山
英一郎 網中
元 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2004378873A priority Critical patent/JP4771692B2/ja
Priority to EP05824568A priority patent/EP1831758A4/en
Priority to US11/794,355 priority patent/US8049850B2/en
Priority to CNB2005800451787A priority patent/CN100547466C/zh
Priority to TW094146974A priority patent/TWI405011B/zh
Priority to PCT/JP2005/024262 priority patent/WO2006070936A1/en
Publication of JP2006184640A publication Critical patent/JP2006184640A/ja
Application granted granted Critical
Publication of JP4771692B2 publication Critical patent/JP4771692B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

本発明は優れた表示特性および視野角特性を有する液晶表示装置に関するものである。
従来、セルロースアシレートフィルムはその強靭性と難燃性から写真用支持体や各種光学材料に用いられてきた。特に、近年は液晶表示装置用の光学透明フィルムとして多く用いられている。セルロースアシレートフィルムは、光学的に透明性が高いことと、光学的に等方性が高いことから、液晶表示装置のように偏光を取り扱う装置用の光学材料として優れており、これまで偏光子の保護フィルムや、斜め方向からの見た表示を良化(視野角補償)できる光学補償フィルムの支持体として用いられてきた。
液晶表示装置用の部材のひとつである偏光板には偏光子の少なくとも片側に偏光子の保護フィルムが貼合によって形成されている。一般的な偏光子は延伸されたポリビニルアルコール(PVA)系フィルムをヨウ素または二色性色素で染色することにより得られる。
多くの場合、偏光子の保護フィルムとしてはPVAに対して直接貼り合わせることができる、セルロースアシレートフィルム、なかでもトリアセチルセルロースフィルムが用いられている。この偏光子の保護フィルムは、光学的等方性に優れることが重要であり、偏光子の保護フィルムの光学特性が偏光板の特性を大きく左右する。
最近の液晶表示装置においては、視野角特性の改善がより強く要求されるようになっており、偏光子の保護フィルムや位相差フィルム(光学補償フィルムとも呼ばれる)の支持体などの光学透明フィルムは、より光学的に等方性であることが求められている。光学的に等方性であるとは、光学フィルムの複屈折と厚みの積で表されるレターデーション値が小さいことが重要である。とりわけ、斜め方向からの表示良化のためには、正面方向のレターデーション(Re)だけでなく、膜厚方向のレターデーション(Rth)を小さくする必要がある。具体的には光学透明フィルムの光学特性を評価した際に、フィルム正面から測定したReが小さく、角度を変えて測定してもそのReが変化しないことが要求される。
これまでに、正面のReを小さくしたセルロースアシレートフィルムはあったが、角度によるRe変化が小さい、すなわちRthが小さいセルロースアシレートフィルムは作製が難しかった。そこでセルロースアシレートフィルムの代わりにポリカーボネート系フィルムや熱可塑性シクロオレフィンフィルムを用いて、Reの角度変化の小さい光学透明フィルムの提案がされている(例えば、特許文献1,2,製品としてはZEONOR(日本ゼオン社製)や、ARTON(JSR社製)など)。しかし、これらの光学透明フィルムは、偏光子の保護フィルムとして使用する場合、フィルムが疎水的なためにPVAとの貼合性に問題がある。またフィルム面内全体の光学特性が不均一である問題も残っている。
この解決法として、PVAへの貼合適性に優れるセルロースアシレートフィルムを、より光学的異方性を低下させて改良することが強く望まれている。具体的には、セルロースアシレートフィルムの正面のReをほぼゼロとし、またレターデーションの角度変化も小さい、すなわちRthもほぼゼロとした、光学的に等方性である光学透明フィルムである。
セルロースアシレートフィルムの製造において、一般的に製膜性能を良化するため可塑剤と呼ばれる化合物が添加される。可塑剤の種類としては、リン酸トリフェニル、リン酸
ビフェニルジフェニルのようなリン酸トリエステル、フタル酸エステル類などが開示されている(例えば、非特許文献1参照)。これら可塑剤の中には、セルロースアシレートフィルムの光学的異方性を低下させる効果を有するものが知られており、例えば、特定の脂肪酸エステル類が開示されている(例えば、特許文献3参照)。しかしながら、従来知られているこれらの化合物を用いたセルロースアシレートフィルムの光学的異方性を低下させる効果は十分とはいえない。
また、最近の液晶表示装置においては、表示色味の改善も要求されるようになっている。そのため偏光子の保護フィルムや光学補償フィルムの支持体などの光学透明フィルムは、波長400〜800nmの可視領域でReやRthを小さくするだけでなく、波長によるReやRthの変化、すなわち波長分散を小さくする必要がある。
一般に液晶表示装置(LCD)は、液晶セル、偏光板からなる。偏光板は保護フィルムと偏光膜からなり、ポリビニルアルコールフィルムからなる偏光膜をヨウ素にて染色し、延伸を行い、その両面を保護フィルムにて積層して得られる。透過型液晶表示装置では、この偏光板を液晶セルの両側に取り付け、さらには一枚以上の光学補償シートを配置することもある。反射型液晶表示装置では、反射板、液晶セル、一枚以上の光学補償シート、偏光板の順に配置する。液晶セルは、液晶性分子、それを封入するための二枚の基板および液晶性分子に電圧を加えるための電極層からなる。液晶セルは、液晶性分子の配向状態の違いで、ON、OFF表示を行い、透過および反射型いずれにも適用できる、TN(Twisted Nematic)、IPS(In−Plane Switching)、OCB(Optically Compensatory Bend)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)のような表示モードが提案されている。
この様なLCDの中でも、高い表示品位が必要な用途については、正の誘電率異方性を有するネマチック液晶分子を用い、薄膜トタンジスタにより駆動する90度ねじれネマチック型液晶表示装置(以下、TNモードという)が主に用いられている。しかしながら、TNモードは正面から見た場合には優れた表示特性を有するものの、斜め方向から見た場合にコントラストが低下したり、階調表示で明るさが逆転する階調反転等が起こることにより表示特性が悪くなるという視野角特性を有しており、この改良が強く要望されている。
近年この視野角特性を改良するLCDの方式として、負の誘電率異方性を有するネマチック液晶分子を用い、電圧を印加しない状態で液晶分子の長軸を基板に略垂直な方向に配向させ、これを薄膜トランジスタにより駆動する垂直配向ネマチック型液晶表示装置(以下、VAモードという)が提案されている(特許文献4参照)。このVAモードは、正面から見た場合の表示特性がTNモードと同様に優れているのみならず、視野角補償用位相差フィルムを適用することで広い視野角特性を発現する。VAモードは、正の屈折率異方性を有する一軸配向性位相差フィルムと、フィルム面に垂直な方向に光学軸を有する負の一軸性位相差フィルムを用いることでさらにより広い視野角特性を実現できることも知られている(特許文献4参照)。
しかしながら、上記VAモード液晶表示装置においては、位相差フィルムおよび偏光板を把持する透明保護膜(支持体としての役割も果たす)の光学異方性を適切な値に設計しないと、十分な視野角特性を得ることができない。また、偏光板の構成要素であるPVA膜が熱および湿度により収縮することにより、偏光板を把持するための透明保護膜に応力がかかり、保護膜自身の光学的異方性に変化を生じるため、特に画面の四隅部において光もれ、いわゆるコーナームラと呼ばれる、表示品位を低下させる故障が生じることがあった。
特開2001−318233号公報 特開2002−328233号公報 特開2001−247717号公報 特開平11−258605号公報 プラスチック材料講座、第17巻、日刊工業新聞社、「繊維素系樹脂」、121頁(昭和45年)
そこで、本発明の目的は、優れた表示特性および視野角特性を有する液晶表示装置を提供することにある。
本発明の目的は、下記手段によって達成された。
[1]表面に垂直配向処理を施した上下二枚の基板間に誘電率異方性が負の液晶を挟持し、前記液晶の配向が、電圧無印加時にはほぼ垂直に、所定の電圧を印加した時にはほぼ水平となり、前記所定の電圧より小さい電圧を印加した時には斜めになる配向である液晶パネルと、互いの吸収軸が直交するように前記液晶パネルの両側に配置された第1と第2の偏光板と、前記液晶パネルと前記第1の偏光板の間に設けられた第1の位相差フィルムと、前記液晶パネルと前記第2の偏光板の間に設けられた第2の位相差フィルムとを備え、前記偏光板は、偏光膜と該偏光膜を挟持する一対の保護膜とから構成され、前記保護膜の少なくとも1枚は、
0≦Re(630)≦10かつ|Rth(630)|≦25
を満たすセルロースアシレートフィルムであることを特徴とする液晶表示装置。
[2]前記第1の位相差フィルムが、
50≦Re(589)≦100かつ30≦Rth(589)≦80
を満たし、
前記第2の位相差フィルムが
Re(589)≦20かつ100≦Rth(589)|≦300
を満たすことを特徴とする、[1]に記載の液晶表示装置。
[3]前記セルロースアシレートフィルムが、
0≦Re(630)≦5かつ|Rth(630)|≦10
を満たすことを特徴とする[1]または[2]に記載の液晶表示装置。
[4]前記セルロースアシレートフィルムが、
0≦Re(630)≦3かつ|Rth(630)|≦5
を満たすことを特徴とする[1]〜[3]のいずれかに記載の液晶表示装置。
[5]前記セルロースアシレートフィルムは、膜厚方向のレターデーションRthを低下させる化合物を、下記式(I)、(II)を満たす範囲で少なくとも1種含有することを特徴とする[1]〜[4]のいずれかに記載の液晶表示装置。
(I)(Rth(A)−Rth(0))/A≦−1.0
(II)0.01≦A≦30
ここで、
Rth(A):Rthを低下させる化合物をA%含有したフィルムのRth(nm)
Rth(0):Rthを低下させる化合物を含有しないフィルムのRth(nm)
A:フィルム原料ポリマーの質量を100としたときの化合物の質量(%)
である。
[6]前記セルロースアシレートフィルムは、アシル置換度が2.85〜3.00のセルロースアシレートに、Re(λ)およびRth(λ)を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含むものであることを特徴とする[1]〜[5]のいずれかに記載の液晶表示装置。
[7]前記セルロースアシレートフィルムは、フィルムの|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含むことを特徴とする[1]〜[6]のいずれかに記載の液晶表示装置。
[8]前記セルロースアシレートフィルムの膜厚が10〜120μmであることを特徴とする[1]〜[7]のいずれかに記載の液晶表示装置。
本発明によれば、視野角特性に優れ、コーナームラが軽減された、高い表示品質を有する液晶表示装置を提供することができる。
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本発明において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
本発明においては、セルロースアシレートフィルムについては、平均屈折率として1.48を用いた。
また第1の位相差フィルムについては、平均屈折率として1.52を用いた。
また第2の位相差フィルムについては、平均屈折率として1.6を用いた。
本発明の液晶表示装置は、表面に垂直配向処理を施した上下二枚の基板間に誘電率異方性が負の液晶を挟持し、前記液晶の配向が、電圧無印加時にはほぼ垂直に、所定の電圧を印加した時にはほぼ水平となり、前記所定の電圧より小さい電圧を印加した時には斜めになる配向である液晶パネルと、互いの吸収軸が直交するように前記液晶パネルの両側に配置された第1と第2の偏光板と、前記液晶パネルと前記第1の偏光板の間に設けられた第1の位相差フィルムと、前記液晶パネルと前記第2の偏光板の間に設けられた第2の位相差フィルムとを備えており、前記偏光板は、偏光膜と該偏光膜を挟持する一対の保護膜とから構成されている。前記保護膜の少なくとも1枚は、波長630nmにおける面内のレターデーションRe(630)が10nm以下(0≦Re(630)≦10)でかつ、膜厚方向のレターデーションRth(630)の絶対値が25nm以下(|Rth|≦25nm)である。更に、0≦Re(630)≦5かつ|Rth|≦10nmであることが好ましく、0≦Re(630)≦3かつ|Rth|≦5であることが更に好ましい。本発明では、偏光板の保護膜として、上記範囲のレターデーションを有し、かつ、優れた耐久性を有するセルロースアシレートフィルムを用いることにより、コーナームラを低減しつつ、優れた視野角特性を有するVA((Vertically Aligned))型液晶表示装置を提供することができる。
以下に、上記セルロースアシレートフィルムについて更に説明する。
[セルロースアシレート原料綿]
本発明に用いられるセルロースアシレート原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報2001−1745(7頁〜8頁)に記載のセルロースを用いることができ、本発明において偏光板の保護膜として用いられるセルロースアシレートフィルムに対しては特に限定されるものではない。
[セルロースアシレート置換度]
次に上述のセルロースを原料に製造される本発明において偏光板の保護膜として使用されるセルロースアシレートについて記載する。本発明において使用されるセルロースアシレートはセルロースの水酸基がアシル化されたもので、その置換基はアシル基の炭素原子数が2のアセチル基から炭素原子数が22のものまでいずれも用いることができる。本発明において使用されるセルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基に置換する酢酸および/または炭素原子数3〜22の脂肪酸の結合度を測定し、計算によって置換度を得ることができる。測定方法としては、ASTMのD−817−91に準じて実施することができる。
本発明において使用されるセルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基へのアシル置換度が2.50〜3.00であることがのぞましい。さらには置換度が2.75〜3.00であることがのぞましく、2.85〜3.00であることがよりのぞましい。
セルロースの水酸基に置換する酢酸および/または炭素原子数3〜22の脂肪酸のうち、炭素数2〜22のアシル基としては、脂肪族基でもアリル基でもよく特に限定されず、単一でも2種類以上の混合物でもよい。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよい。これらの好ましいアシル基としては、アセチル基、プロピオニル基、ブタノイル基、へプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、iso−ブタノイル基、tert−ブタノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などを挙げることができる。これらの中でも、アセチル基、プロピオニル基、ブタノイル基、ドデカノイル基、オクタデカノイル基、tert−ブタノイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基などが好ましく、アセチル基、プロピオニル基、ブタノイル基がより好ましい。
本発明者らが鋭意検討した結果、上述のセルロースの水酸基に置換するアシル置換基のうちで、実質的にアセチル基/プロピオニル基/ブタノイル基の少なくとも2種類からなる場合においては、その全置換度が2.50〜3.00の場合にセルロースアシレートフィルムの光学異方性を効果的に低下させることができることがわかった。より好ましいアシル置換度は2.60〜3.00であり、さらにのぞましくは2.65〜3.00である。
[セルロースアシレートの重合度]
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で180〜700であり、セルロースアセテートにおいては、180〜550がより好ましく、180〜400がさらに好ましく、180〜350が特に好ましい。重合度が高すぎるとセルロースアシレートのドープ溶液の粘度が高くなり、流延によりフィルム作製が困難になる。重合度が低すぎると作製したフィルムの強度が低下してしまう。平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。特開平9−95538に詳細に記載されている。
また、本発明で好ましく用いられるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価され、その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜3.0であることが好ましく、1.0〜2.0であることがさらに好ましく、1.0〜1.6であることが最も好ましい。
低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロースアシレートよりも低くなるため有用である。低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。なお、低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロース100質量部に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量部分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。本発明において使用されるセルロースアシレートの製造時に使用される際には、その含水率は2質量%以下であることが好ましく、さらに好ましくは1質量%以下であり、特に好ましくは0.7質量%以下である。一般に、セルロースアシレートは、水を2.5〜5質量%程度含有することが知られている。本発明において、上記好ましい含水率のセルロースアシレートを得るためには、セルロースアシレートを乾燥させればよく、その方法は目的とする含水率になれば特に限定されない。これらのセルロースアシレートについて、その原料綿や合成方法は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)7頁〜12頁に詳細に記載されている。
本発明において使用されるセルロースアシレートは、置換基、置換度、重合度、分子量分布などが前述した範囲であれば、単一あるいは異なる2種類以上のセルロースアシレートを混合して用いることができる。
[セルロースアシレートへの添加剤]
本発明において使用されるセルロースアシレートフィルムを製造するために用いられるセルロースアシレート溶液には、各調製工程において用途に応じた種々の添加剤(例えば、光学的異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、光学特性調整剤など)を加えることができ、これらについて以下に説明する。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。
本発明において使用されるセルロースアシレートフィルムは、光学的異方性、具体的にはRe(λ)およびRth(λ)、特にフィルム膜厚方向のレターデーションRthを低下させる化合物を、下記式(i)、(ii)を満たす範囲で少なくとも1種含有することがのぞましい。
(i)(Rth(A)−Rth(0))/A≦−1.0
(ii)0.01≦A≦30
上記式(i)、(ii)は
(i)(Rth(A)−Rth(0))/A≦−2.0
(ii)0.05≦A≦25
であることがよりのぞましく、
(i)(Rth(A)−Rth(0))/A≦−3.0
(ii)0.1≦A≦20
であることがさらにのぞましい。
ここで、
Rth(A):Rthを低下させる化合物をA%含有したフィルムのRth(nm)
Rth(0):Rthを低下させる化合物を含有しないフィルムのRth(nm)
A:フィルム原料ポリマーの質量を100としたときの化合物の質量(%)
[セルロースアシレートフィルムの光学的異方性を低下させる化合物の構造的特徴]
セルロースアシレートフィルムの光学的異方性を低下させる化合物について説明する。本発明者らは、鋭意検討した結果、フィルム中のセルロースアシレートが面内および膜厚方向に配向することを抑制する化合物を用いて光学的異方性を十分に低下させ、ReがゼロかつRthがゼロに近くなるようにした。このためには光学的異方性を低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
(LogP値)
本発明において使用されるセルロースアシレートフィルムを作製するにあたっては、上述のようにフィルム中のセルロースアシレートが面内および膜厚方向に配向することを抑制して光学異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0〜7である化合物を用いることが好ましい。logP値が7を超える化合物は、セルロースアシレートとの相溶性に乏しく、フィルムの白濁や粉吹きを生じやすい。また、logP値が0よりも小さな化合物は親水性が高いために、セルロースアセテートフィルムの耐水性を悪化させる場合がある。logP値としてさらに好ましい範囲は1〜6であり、特に好ましい範囲は1.5〜5である。
オクタノール−水分配係数(logP値)の測定は、JIS日本工業規格Z7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)、Viswanadhan's fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989).)、Broto's fragmentation法(Eur.J.Med.Chem.− Chim.Theor.,19,71(1984).)などが好ましく用いられるが、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)がより好ましい。ある化合物のlogPの値が測定方法あるいは計算方法により異なる場合に、該化合物が本発明の範囲内であるかどうかは、Crippen's fragmentation法により判断することが好ましい。
[光学的異方性を低下させる化合物の物性]
光学異方性を低下させる化合物は、芳香族基を含有しても良いし、含有しなくても良い。また光学異方性を低下させる化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
光学異方性を低下させる化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。また光学異方性を低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
光学異方性を低下させる化合物の添加量は、セルロースアシレート固形分に対して0.01〜30質量%であることが好ましく、1〜25質量%であることがより好ましく、5〜20質量%であることが特に好ましい。特に、本発明では、アシル置換度が2.85〜3.00のセルロースアシレートに対し、前述の光学異方性を低下させる化合物を少なくとも一種、上記添加量で添加することが好ましい。
光学異方性を低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
光学異方性を低下させる化合物を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
光学異方性を低下させる化合物は、少なくとも一方の側の表面から全膜厚の10%までの部分における該化合物の平均含有率が、該セルロースアシレートフィルムの中央部における該化合物の平均含有率の80−99%であることが好ましい。光学異方性を低下させる化合物の存在量は、例えば、特開平8−57879号公報に記載の赤外吸収スペクトルを用いる方法などにより表面および中心部の化合物量を測定して求めることができる。
以下に本発明で好ましく用いられる、セルロースアシレートフィルムの光学異方性を低下させる化合物の具体例を示すが、本発明はこれら化合物に限定されない。
Figure 0004771692
式中、R11-13はそれぞれ独立に、炭素数が1〜20の脂肪族基を表す。R11-13は互いに連結して環を形成してもよい。
Figure 0004771692
一般式(2)および(3)において、Zは炭素原子、酸素原子、硫黄原子または−NR25−を表し、R25は水素原子またはアルキル基を表す。Zを含んで構成される5または6員環は置換基を有していても良い。Y21-22はそれぞれ独立に、炭素数が1〜20の、エステル基、アルコキシカルボニル基、アミド基またはカルバモイル基を表し、Y21-22は互いに連結して環を形成してもよい。mは1〜5の整数を表し、nは1〜6の整数を表す。
Figure 0004771692
一般式(4)〜(12)において、Y31-70はそれぞれ独立に、炭素数が1〜20のエステル基、炭素数が1〜20のアルコキシカルボニル基、炭素数が1〜20のアミド基、炭素数が1〜20のカルバモイル基またはヒドロキシ基を表し、V31-43はそれぞれ独立に水素原子または炭素数1〜20の脂肪族基を表す。L31-80はそれぞれ独立に、原子数0〜40かつ、炭素数0〜20の2価の飽和の連結基を表す。ここで、L31-80の原子数が0であるということは、連結基の両端にある基が直接に単結合を形成していることを意味する。V31-43およびL31-80は、さらに置換基を有していてもよい。
Figure 0004771692
[式中、R1はアルキル基またはアリール基を表し、R2およびR3は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。R1、R2およびR3の炭素原子数の総和は10以上であり、各々、アルキル基およびアリール基は置換基を有していてもよい。]
Figure 0004771692
[式中、R4およびR5は、それぞれ独立に、アルキル基またはアリール基を表す。R4およびR5の炭素原子数の総和は10以上であり、各々、アルキル基およびアリール基は置換基を有していてもよい。]
Figure 0004771692
[式中、R1、R2およびR3は、それぞれ独立に、水素原子またはアルキル基を表す。Xは下記の連結基群1から選ばれる1種以上の基から形成される2価の連結基を表す。Yは水素原子、アルキル基、アリール基またはアラルキル基を表す。
(連結基群1)単結合、−O−、−CO−、−NR4−、アルキレン基またはアリーレン基を表す。R4は水素原子、アルキル基、アリール基またはアラルキル基を表す。]
Figure 0004771692
(式中、Q1、Q2およびQ3はそれぞれ独立に5〜6員環を表す。XはB、C−R(Rは水素原子または置換基を表す。)、N、P、P=Oを表す。)
Figure 0004771692
(式中、X2はB、C−R(Rは水素原子または置換基を表す。)、Nを表す。R11、R12、R13、R14、R15、R21、R22、R23、R24、R25、R31、R32、R33、R34〜R35は水素原子または置換基を表す。)
Figure 0004771692
[式中、R1はアルキル基またはアリール基を表し、R2およびR3はそれぞれ独立に水素原子、アルキル基またはアリール基を表す。また、アルキル基およびアリール基は置換基を有していてもよい。]
一般式(18)として好ましくは下記一般式(19)で表される化合物である。
Figure 0004771692
上記一般式(19)において、R4、R5およびR6はそれぞれ独立にアルキル基またはアリール基を表す。ここで、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数が1〜20のものが好ましく、1〜15のものがさらに好ましく、1〜12のものが最も好ましい。環状のアルキル基としては、シクロヘキシル基が特に好ましい。アリール基は炭素原子数が6〜36のものが好ましく、6〜24のものがより好ましい。
上記のアルキル基およびアリール基は置換基を有していてもよく、置換基としてはハロゲン原子(例えば、塩素、臭素、フッ素およびヨウ素)、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、ヒドロキシ基、シアノ基、アミノ基およびアシルアミノ基が好ましく、より好ましくはハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、スルホニルアミノ基およびアシルアミノ基であり、特に好ましくはアルキル基、アリール基、スルホニルアミノ基およびアシルアミノ基である。
一般式(1)の化合物について説明する。
一般式(1)において、R11-13はそれぞれ独立に、炭素数が1〜20の脂肪族基を表す。R11-13は互いに連結して環を形成してもよい。
11-13について詳しく説明する。R11-13は好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12である脂肪族基である。ここで、脂肪族基とは、好ましくは脂肪族炭化水素基であり、さらに好ましくは、アルキル基(鎖状、分岐状および環状のアルキル基を含む。)、アルケニル基またはアルキニル基である。例として、アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、tert−アミル基、n−ヘキシル基、n−オクチル基、デシル基、ドデシル基、エイコシル基、2−エチルヘキシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、2,6−ジメチルシクロヘキシル基、4−tert−ブチルシクロヘキシル基、シクロペンチル基、1−アダマンチル基、2−アダマンチル基、ビシクロ[2.2.2]オクタン−3−イル基などが挙げられ、アルケニル基としては、例えば、ビニル基、アリル基、プレニル基、ゲラニル基、オレイル基、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基などが挙げられ、アルキニル基としては、例えば、エチニル基、プロパルギル基などが挙げられる。
11-13で表される脂肪族基は置換されていてもよく、置換基の例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、またはヨウ素原子)、アルキル基(直鎖、分岐、環状のアルキル基で、ビシクロアルキル基、活性メチン基を含む)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基、N−アシルカルバモイル基、N−スルホニルカルバモイル基、N−カルバモイルカルバモイル基、N−スルファモイルカルバモイル基、カルバゾイル基、カルボキシ基またはその塩、オキサリル基、オキサモイル基、シアノ基、カルボンイミドイル基(Carbonimidoyl基)、ホルミル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、(アルコキシもしくはアリールオキシ)カルボニルオキシ基、カルバモイルオキシ基、スルホニルオキシ基、アミノ基、(アルキル、アリールまたはヘテロ環)アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、イミド基、(アルコキシもしくはアリールオキシ)カルボニルアミノ基、スルファモイルアミノ基、セミカルバジド基、アンモニオ基、オキサモイルアミノ基、N−(アルキルもしくはアリール)スルホニルウレイド基、N−アシルウレイド基、N−アシルスルファモイルアミノ基、4級化された窒素原子を含むヘテロ環基(例えばピリジニオ基、イミダゾリオ基、キノリニオ基、イソキノリニオ基)、イソシアノ基、イミノ基、(アルキルまたはアリール)スルホニル基、(アルキルまたはアリール)スルフィニル基、スルホ基またはその塩、スルファモイル基、N−アシルスルファモイル基、N−スルホニルスルファモイル基またはその塩、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基等が挙げられる。
これらの基はさらに組み合わされて複合置換基を形成してもよく、このような置換基の例としては、エトキシエトキシエチル基、ヒドロキシエトキシエチル基、エトキシカルボニルエチル基などを挙げることができる。また、R11-13は置換基としてリン酸エステル基を含有することもでき、一般式(1)の化合物は同一分子中に複数のリン酸エステル基を有することも可能である。
一般式(2)および(3)の化合物について説明する。
一般式(2)および(3)において、Zは炭素原子、酸素原子、硫黄原子、−NR25−を表し、R25は水素原子またはアルキル基を表す。Zを含んで構成される5または6員環は置換基を有していても良く、複数の置換基が互いに結合して環を形成していてもよい。Zを含んで構成される5または6員環の例としては、テトラヒドロフラン、テトラヒドロピラン、テトラヒドロチオフェン、チアン、ピロリジン、ピペリジン、インドリン、イソインドリン、クロマン、イソクロマン、テトラヒドロ−2−フラノン、テトラヒドロ−2−ピロン、4−ブタンラクタム、6−ヘキサノラクタムなどを挙げることができる。
また、Zを含んで構成される5または6員環は、ラクトン構造またはラクタム構造、すなわち、Zの隣接炭素にオキソ基を有する環状エステルまたは環状アミド構造を含む。このような環状エステルまたは環状アミド構造の例としては、2−ピロリドン、2−ピペリドン、5−ペンタノリド、6−ヘキサノリドを挙げることができる。
25は水素原子または、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12であるアルキル基(鎖状、分岐状および環状のアルキル基を含む。)を表す。R25で表されるアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、tert−アミル基、n−ヘキシル基、n−オクチル基、デシル基、ドデシル基、エイコシル基、2−エチルヘキシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、2,6−ジメチルシクロヘキシル基、4−tert−ブチルシクロヘキシル基、シクロペンチル基、1−アダマンチル基、2−アダマンチル基、ビシクロ[2.2.2]オクタン−3−イル基などを挙げることができる。R25で表されるアルキル基はさらに置換基を有していてもよく、置換基の例としては前記のR11-13に置換していても良い基を挙げることができる。
21-22はそれぞれ独立に、エステル基、アルコキシカルボニル基、アミド基またはカルバモイル基を表す。エステル基としては、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12であり、例えば、アセトキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、n−ブチルカルボニルオキシ基、イソブチルカルボニルオキシ基、tert−ブチルカルボニルオキシ基、sec−ブチルカルボニルオキシ基、n−ペンチルカルボニルオキシ基、tert−アミルカルボニルオキシ基、n−ヘキシルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基、1−エチルペンチルカルボニルオキシ基、n−ヘプチルカルボニルオキシ基、n−ノニルカルボニルオキシ基、n−ウンデシルカルボニルオキシ基、ベンジルカルボニルオキシ基、1−ナフタレンカルボニルオキシ基、2−ナフタレンカルボニルオキシ基、1−アダマンタンカルボニルオキシ基などが例示できる。アルコキシカルボニル基としては、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12であり、例えば、メトキシカルボニル基、エトキシカルボニル基、n−プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、n−ブトキシカルボニル基、tert−ブトキシカルボニル基、イソブチルオキシカルボニル基、sec−ブチルオキシカルボニル基、n−ペンチルオキシカルボニル基、tert−アミルオキシカルボニル基、n−ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、2−エチルヘキシルオキシカルボニル基、1−エチルプロピルオキシカルボニル基、n−オクチルオキシカルボニル基、3,7−ジメチル−3−オクチルオキシカルボニル基、3,5,5−トリメチルヘキシルオキシカルボニル基、4−tert−ブチルシクロヘキシルオキシカルボニル基、2,4−ジメチルペンチル−3−オキシカルボニル基、1−アダマンタンオキシカルボニル基、2−アダマンタンオキシカルボニル基、ジシクロペンタジエニルオキシカルボニル基、n−デシルオキシカルボニル基、n−ドデシルオキシカルボニル基、n−テトラデシルオキシカルボニル基、n−ヘキサデシルオキシカルボニル基などが例示できる。アミド基としては、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12であり、例えば、アセタミド基、エチルカルボキサミド基、n−プロピルカルボキサミド基、イソプロピルカルボキサミド基、n−ブチルカルボキサミド基、tert−ブチルカルボキサミド基、イソブチルカルボキサミド基、sec−ブチルカルボキサミド基、n−ペンチルカルボキサミド基、tert−アミルカルボキサミド基、n−ヘキシルカルボキサミド基、シクロヘキシルカルボキサミド基、1−エチルペンチルカルボキサミド基、1−エチルプロピルカルボキサミド基、n−ヘプチルカルボキサミド基、n−オクチルカルボキサミド基、1−アダマンタンカルボキサミド基、2−アダマンタンカルボキサミド基、n−ノニルカルボキサミド基、n−ドデシルカルボキサミド基、n−ペンタカルボキサミド基、n−ヘキサデシルカルボキサミド基などが例示できる。カルバモイル基としては、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12であり、例えば、メチルカルバモイル基、ジメチルカルバモイル基、エチルカルバモイル基、ジエチルカルバモイル基、n−プロピルカルバモイル基、イソプロピルカルバモイル基、n−ブチルカルバモイル基、tert−ブチルカルバモイル基、イソブチルカルバモイル基、sec−ブチルカルバモイル基、n−ペンチルカルバモイル基、tert−アミルカルバモイル基、n−ヘキシルカルバモイル基、シクロヘキシルカルバモイル基、2−エチルヘキシルカルバモイル基、2−エチルブチルカルバモイル基、tert−オクチルカルバモイル基、n−ヘプチルカルバモイル基、n−オクチルカルバモイル基、1−アダマンタンカルバモイル基、2−アダマンタンカルバモイル基、n−デシルカルバモイル基、n−ドデシルカルバモイル基、n−テトラデシルカルバモイル基、n−ヘキサデシルカルバモイル基などが例示できる。Y21-22は互いに連結して環を形成してもよい。Y21-22はさらに置換基を有していてもよく、例としては前記のR11-13に置換していても良い基を挙げることができる。
一般式(4)〜(12)の化合物について説明する。
一般式(4)〜(12)において、Y31-70はそれぞれ独立に、エステル基、アルコキシカルボニル基、アミド基、カルバモイル基またはヒドロキシ基を表す。エステル基としては、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12であり、例えば、アセトキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、n−ブチルカルボニルオキシ基、イソブチルカルボニルオキシ基、tert−ブチルカルボニルオキシ基、sec−ブチルカルボニルオキシ基、n−ペンチルカルボニルオキシ基、tert−アミルカルボニルオキシ基、n−ヘキシルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基、1−エチルペンチルカルボニルオキシ基、n−ヘプチルカルボニルオキシ基、n−ノニルカルボニルオキシ基、n−ウンデシルカルボニルオキシ基、ベンジルカルボニルオキシ基、1−ナフタレンカルボニルオキシ基、2−ナフタレンカルボニルオキシ基、1−アダマンタンカルボニルオキシ基などが挙げられる。アルコキシカルボニル基としては、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12であり、例えば、メトキシカルボニル基、エトキシカルボニル基、n−プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、n−ブトキシカルボニル基、tert−ブトキシカルボニル基、イソブチルオキシカルボニル基、sec−ブチルオキシカルボニル基、n−ペンチルオキシカルボニル基、tert−アミルオキシカルボニル基、n−ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、2−エチルヘキシルオキシカルボニル基、1−エチルプロピルオキシカルボニル基、n−オクチルオキシカルボニル基、3,7−ジメチル−3−オクチルオキシカルボニル基、3,5,5−トリメチルヘキシルオキシカルボニル基、4−tert−ブチルシクロヘキシルオキシカルボニル基、2,4−ジメチルペンチル−3−オキシカルボニル基、1−アダマンタンオキシカルボニル基、2−アダマンタンオキシカルボニル基、ジシクロペンタジエニルオキシカルボニル基、n−デシルオキシカルボニル基、n−ドデシルオキシカルボニル基、n−テトラデシルオキシカルボニル基、n−ヘキサデシルオキシカルボニル基などが挙げられる。アミド基としては、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12であり、例えば、アセタミド基、エチルカルボキサミド基、n−プロピルカルボキサミド基、イソプロピルカルボキサミド基、n−ブチルカルボキサミド基、tert−ブチルカルボキサミド基、イソブチルカルボキサミド基、sec−ブチルカルボキサミド基、n−ペンチルカルボキサミド基、tert−アミルカルボキサミド基、n−ヘキシルカルボキサミド基、シクロヘキシルカルボキサミド基、1−エチルペンチルカルボキサミド基、1−エチルプロピルカルボキサミド基、n−ヘプチルカルボキサミド基、n−オクチルカルボキサミド基、1−アダマンタンカルボキサミド基、2−アダマンタンカルボキサミド基、n−ノニルカルボキサミド基、n−ドデシルカルボキサミド基、n−ペンタカルボキサミド基、n−ヘキサデシルカルボキサミド基などが挙げられる。カルバモイル基としては、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12であり、例えば、メチルカルバモイル基、ジメチルカルバモイル基、エチルカルバモイル基、ジエチルカルバモイル基、n−プロピルカルバモイル基、イソプロピルカルバモイル基、n−ブチルカルバモイル基、tert−ブチルカルバモイル基、イソブチルカルバモイル基、sec−ブチルカルバモイル基、n−ペンチルカルバモイル基、tert−アミルカルバモイル基、n−ヘキシルカルバモイル基、シクロヘキシルカルバモイル基、2−エチルヘキシルカルバモイル基、2−エチルブチルカルバモイル基、tert−オクチルカルバモイル基、n−ヘプチルカルバモイル基、n−オクチルカルバモイル基、1−アダマンタンカルバモイル基、2−アダマンタンカルバモイル基、n−デシルカルバモイル基、n−ドデシルカルバモイル基、n−テトラデシルカルバモイル基、n−ヘキサデシルカルバモイル基などが挙げられる。Y31-70はさらに置換基を有していてもよく、例としては前記のR11-13に置換していても良い基を挙げることができる。
31-43はそれぞれ独立に水素原子または、好ましくは炭素数が1〜20、さらに好ましくは炭素数が1〜16、特に好ましくは、炭素数が1〜12である脂肪族基を表す。ここで、脂肪族基とは、好ましくは脂肪族炭化水素基であり、さらに好ましくは、アルキル基(鎖状、分岐状および環状のアルキル基を含む。)、アルケニル基またはアルキニル基である。アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、tert−アミル基、n−ヘキシル基、n−オクチル基、デシル基、ドデシル基、エイコシル基、2−エチルヘキシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、2,6−ジメチルシクロヘキシル基、4−tert−ブチルシクロヘキシル基、シクロペンチル基、1−アダマンチル基、2−アダマンチル基、ビシクロ[2.2.2]オクタン−3−イル基などが挙げられ、アルケニル基としては、例えば、ビニル基、アリル基、プレニル基、ゲラニル基、オレイル基、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基などが挙げられ、アルキニル基としては、例えば、エチニル基、プロパルギル基などを挙げることができる。V31-43はさらに置換基を有していてもよく、例としては前記のR11-13に置換していても良い基を挙げることができる。
31-80はそれぞれ独立に、原子数0〜40かつ、炭素数0〜20の2価の飽和の連結基を表す。ここで、L31-80の原子数が0であるということは、連結基の両端にある基が直接に単結合を形成していることを意味する。L31-77の好ましい例としては、アルキレン基(例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、メチルエチレン基、エチルエチレン基など)、環式の2価の基(例えば、cis−1,4−シクロヘキシレン基、trans−1,4−シクロヘキシレン基、1,3−シクロペンチリデン基など)、エーテル基、チオエーテル基、エステル基、アミド基、スルホン基、スルホキシド基、スルフィド基、スルホンアミド基、ウレイレン基、チオウレイレン基などを挙げることができる。これらの2価の基は互いに結合して二価の複合基を形成してもよく、複合置換基の例としては、−(CH22O(CH22−、−(CH22O(CH22O(CH2)−、−(CH22S(CH22−、−(CH222C(CH22−などを挙げることができる。L31-80は、さらに置換基を有していてもよく、置換基の例としては、前記のR11-13に置換していても良い基を挙げることができる。
一般式(4)〜(12)においてY31-70、V31-43およびL31-80の組み合わせにより形成される化合物の好ましい例としては、クエン酸エステル(例えば、O−アセチルクエン酸トリエチル、O−アセチルクエン酸トリブチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル、O−アセチルクエン酸トリ(エチルオキシカルボニルメチレン)エステルなど)、オレイン酸エステル(例えば、オレイン酸エチル、オレイン酸ブチル、オレイン酸2−エチルヘキシル、オレイン酸フェニル、オレイン酸シクロヘキシル、オレイン酸オクチルなど)、リシノール酸エステル(例えばリシノール酸メチルアセチルなど)、セバシン酸エステル(例えばセバシン酸ジブチルなど)、グリセリンのカルボン酸エステル(例えば、トリアセチン、トリブチリンなど)、グリコール酸エステル(例えば、ブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート、メチルフタリルメチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレートなど)、ペンタエリスリトールのカルボン酸エステル(例えば、ペンタエリスリトールテトラアセテート、ペンタエリスリトールテトラブチレートなど)、ジペンタエリスリトールのカルボン酸エステル(例えば、ジペンタエリスリトールヘキサアセテート、ジペンタエリスリトールヘキサブチレート、ジペンタエリスリトールテトラアセテートなど)、トリメチロールプロパンのカルボン酸エステル類(トリメチロールプロパントリアセテート、トリメチロールプロパンジアセテートモノプロピオネート、トリメチロールプロパントリプロピオネート、トリメチロールプロパントリブチレート、トリメチロールプロパントリピバロエート、トリメチロールプロパントリ(tert−ブチルアセテート)、トリメチロールプロパンジ2−エチルヘキサネート、トリメチロールプロパンテトラ2−エチルヘキサネート、トリメチロールプロパンジアセテートモノオクタネート、トリメチロールプロパントリオクタネート、トリメチロールプロパントリ(シクロヘキサンカルボキシレート)など)、特開平11−246704号公報に記載のグリセロールエステル類、特開2000−63560号公報に記載のジグリセロールエステル類、特開平11−92574号公報に記載のクエン酸エステル類、ピロリドンカルボン酸エステル類(2−ピロリドン−5−カルボン酸メチル、2−ピロリドン−5−カルボン酸エチル、2−ピロリドン−5−カルボン酸ブチル、2−ピロリドン−5−カルボン酸2−エチルヘキシル)、シクロヘキサンジカルボン酸エステル(cis−1,2−シクロヘキサンジカルボン酸ジブチル、trans−1,2−シクロヘキサンジカルボン酸ジブチル、cis−1,4−シクロヘキサンジカルボン酸ジブチル、trans−1,4−シクロヘキサンジカルボン酸ジブチルなど)、キシリトールカルボン酸エステル(キシリトールペンタアセテート、キシリトールテトラアセテート、キシリトールペンタプロピオネートなど)などが挙げられる。
以下に一般式(1)〜(12)で表される化合物の例を挙げるが、本発明はこれらに限定されるものではない。なお、一般式(1)については化合物C−1〜C−76を例示し、一般式(2)〜(12)については化合物C−201〜C−231、C−401〜C−448を例示した。表記載または括弧内に記載のlogPの値は、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)により求めたものである。
Figure 0004771692
(式中、R1-3は前記一般式(1)のR11-13と同義であり、下記のC−1〜C−76で具体例を例示する。)
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
一般式(13)および(14)の化合物について説明する。
上記一般式(13)において、R1はアルキル基またはアリール基を表し、R2およびR3は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。また、R1、R2およびR3の炭素原子数の総和が10以上であることが特に好ましい。また、一般式(14)中、R4およびR5は、それぞれ独立に、アルキル基またはアリール基を表す。また、R4およびR5の炭素原子数の総和は10以上であり、各々、アルキル基およびアリール基は置換基を有していてもよい。置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が特に好ましい。また、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のもの(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、アミル基、イソアミル基、t−アミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ビシクロオクチル基、ノニル基、アダマンチル基、デシル基、t−オクチル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、ジデシル基)が特に好ましい。アリール基としては炭素原子数が6〜30のものが好ましく、6〜24のもの(例えば、フェニル基、ビフェニル基、テルフェニル基、ナフチル基、ビナフチル基、トリフェニルフェニル基)が特に好ましい。一般式(13)または一般式(14)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
一般式(15)の化合物について説明する。
Figure 0004771692
上記一般式(15)において、R1、R2およびR3は、それぞれ独立に、水素原子または炭素原子数が1〜5のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、アミル基、イソアミル基)であることが好ましく、R1、R2およびR3の少なくとも1つ以上が炭素原子数1〜3のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基)であることが特に好ましい。Xは、単結合、−O−、−CO−、アルキレン基(好ましくは炭素原子数1〜6、より好ましくは1〜3のもの、例えばメチレン基、エチレン基、プロピレン基)またはアリーレン基(好ましくは炭素原子数6〜24、より好ましくは6〜12のもの。例えば、フェニレン基、ビフェニレン基、ナフチレン基)から選ばれる1種以上の基から形成される2価の連結基であることが好ましく、−O−、アルキレン基またはアリーレン基から選ばれる1種以上の基から形成される2価の連結基であることが特に好ましい。Yは、水素原子、アルキル基(好ましくは炭素原子数2〜25、より好ましくは2〜20のもの。例えば、エチル基、イソプロピル基、tert−ブチル基、ヘキシル基、2−エチルヘキシル基、tert−オクチル基、ドデシル基、シクロヘキシル基、ジシクロヘキシル基、アダマンチル基)、アリール基(好ましくは炭素原子数6〜24、より好ましくは6〜18のもの。例えば、フェニル基、ビフェニル基、テルフェニル基、ナフチル基)またはアラルキル基(好ましくは炭素原子数7〜30、より好ましくは7〜20のもの。例えば、ベンジル基、クレジル基、t−ブチルフェニル基、ジフェニルメチル基、トリフェニルメチル基)であることが好ましく、アルキル基、アリール基またはアラルキル基であることが特に好ましい。−X−Yの組み合わせとしては、−X−Yの総炭素数が0〜40であることが好ましく、1〜30であることがさらに好ましく、1〜25であることが最も好ましい。これら一般式(14)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 0004771692
Figure 0004771692
一般式(16)の化合物について説明する。
Figure 0004771692
1、Q2およびQ3はそれぞれ独立に5〜6員環を表し、炭化水素環でもへテロ環でもよく、また、これらは単環であってもよいし、さらに他の環と縮合環を形成してもよい。炭化水素環として好ましくは、置換または無置換のシクロヘキサン環、置換または無置換のシクロペンタン環、芳香族炭化水素環であり、より好ましくは芳香族炭化水素環である。へテロ環として好ましくは5〜6員環の酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含む環である。へテロ環としてより好ましくは酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含む芳香族ヘテロ環である。
1、Q2およびQ3として好ましくは芳香族炭化水素環または芳香族へテロ環である。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、さらに好ましくは炭素数6〜12の芳香族炭化水素環である。)さらに好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは酸素原子、窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。Q1、Q2およびQ3としてより好ましくは好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環である。またQ1、Q2およびQ3は置換基を有してもよく、置換基としては後述の置換基Tが挙げられる。
XはB、C−R(Rは水素原子または置換基を表す。)、N、P、P=Oを表し、Xとして好ましくはB、C−R(Rとして好ましくはアリール基、置換または未置換のアミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、カルボキシル基であり、より好ましくはアリール基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、さらに好ましくはアルコキシ基、ヒドロキシ基であり、特に好ましくはヒドロキシ基である。)、Nであり、Xとしてより好ましくはC−R、Nであり、特に好ましくはC−Rである。
一般式(16)として好ましくは下記一般式(17)で表される化合物である。
Figure 0004771692
(式中、X2はB、C−R(Rは水素原子または置換基を表す。)、Nを表す。R11、R12、R13、R14、R15、R21、R22、R23、R24、R25、R31、R32、R33、R34〜R35はそれぞれ独立に水素原子または置換基を表す。)
XはB、C−R(Rは水素原子または置換基を表す。)、N、P、P=Oを表しXとして好ましくはB、C−R(Rとして好ましくはアリール基、置換または未置換のアミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、カルボキシル基であり、より好ましくはアリール基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、さらに好ましくはアルコキシ基、ヒドロキシ基であり、特に好ましくはヒドロキシ基である。)、N、P=Oであり、さらに好ましくはC−R、Nであり、特に好ましくはC−Rである。
11、R12、R13、R14、R15、R21、R22、R23、R24、R25、R31、R32、R33、R34〜R35はそれぞれ独立に水素原子または置換基を表し、置換基としては後述の置換基Tが適用できる。R11、R12、R13、R14、R15、R21、R22、R23、R24、R25、R31、R32、R33、R34〜R35として好ましくはアルキル基、アルケニル基、アルキニル基、アリール基、置換または未置換のアミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基であり、より好ましくはアルキル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基であり、さらに好ましくはアルキル基、アリール基、アルコキシ基である。
これらの置換基はさらに置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
以下に前述の置換基Tについて説明する。置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル基、3−ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル基、p−メチルフェニル基、ナフチル基などが挙げられる。)、置換または未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ基、エトキシ基、ブトキシ基などが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ基、2−ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシ基などが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。これらの置換基はさらに置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
以下に一般式(16)で表される化合物に関して具体例をあげて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
以下に、一般式(18)または一般式(19)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
本発明者らは、鋭意検討した結果、オクタノール−水分配係数(LogP値)が0〜7である、多価アルコールエステル化合物、カルボン酸エステル化合物、多環カルボン酸化合物、ビスフェノール誘導体をセルロースアシレートに添加することによっても、光学的異方性を低下させることができることを見出した。
オクタノール−水分配係数(LogP値)が0〜7である、多価アルコールエステル化合物、カルボン酸エステル化合物、多環カルボン酸化合物、ビスフェノール誘導体の具体例を以下に示す。
(多価アルコールエステル化合物)
オクタノール−水分配係数(LogP値)が0〜7である多価アルコールエステルは、2価以上の多価アルコールと1種以上のモノカルボン酸とのエステルであることができる。多価アルコールエステル化合物としては以下のものが例としてあげられるが、本発明はこれらに限定されない。
(多価アルコール)
好ましい多価アルコールの例としては、例えばアドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
(モノカルボン酸)
前述の多価アルコールエステルにおけるモノカルボン酸としては、特に制限はなく公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いるとセルロースアシレートフィルムの透湿度、含水率、保留性を向上させる点で好ましい。
好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることがさらに好ましく、1〜10であることが特に好ましい。酢酸を含有するとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。これらはさらに置換基を有しても良い。
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
前述の多価アルコールエステルにおけるカルボン酸は1種類でも、2種以上の混合でもよい。また、多価アルコール中のOH基は全てエステル化してもよいし、一部をOH基のままで残してもよい。好ましくは、分子内に芳香環もしくはシクロアルキル環を3つ以上有することが好ましい。
多価アルコールエステル化合物としては、以下の化合物を例としてあげることができるが、本発明はこれらに限定されない。
Figure 0004771692
Figure 0004771692
(カルボン酸エステル化合物)
オクタノール−水分配係数(LogP値)が0〜7であるカルボン酸エステル化合物としては、以下の化合物を例としてあげることができるが、本発明はこれらに限定されない。具体的には、フタル酸エステルおよびクエン酸エステル等、フタル酸エステルとしては、例えばジメチルフタレート、ジエチルフタレート、ジシクロヘキシルフタレート、ジオクチルフタレートおよびジエチルヘキシルフタレート等、またクエン酸エステルとしてはクエン酸アセチルトリエチルおよびクエン酸アセチルトリブチルを挙げることができる。またその他、オレイン酸ブチル、リシノール酸メチルアセチル、セバチン酸ジブチル、トリアセチン、トリメチロールプロパントリベンゾエート等も挙げられる。アルキルフタリルアルキルグリコレートもこの目的で好ましく用いられる。アルキルフタリルアルキルグリコレートのアルキルは炭素原子数1〜8のアルキル基であることができる。アルキルフタリルアルキルグリコレートとしてはメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、プロピルフタリルエチルグリコレート、メチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等を挙げることができ、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレートが好ましく、特にエチルフタリルエチルグリコレートが好ましく用いられる。またこれらアルキルフタリルアルキルグリコレート等を2種以上混合して使用してもよい。
オクタノール−水分配係数(LogP値)が0〜7であるカルボン酸エステル化合物としては、以下の化合物を例としてあげることができるが、本発明はこれらに限定されない。
Figure 0004771692
Figure 0004771692
(多環カルボン酸化合物)
本発明において用いるオクタノール−水分配係数(LogP値)が0〜7である多環カルボン酸化合物は分子量が3000以下の化合物であることが好ましく、特に250〜2000以下の化合物であることが好ましい。環状構造に関して、環の大きさについて特に制限はないが、3〜8個の原子から構成されていることが好ましく、特に6員環および/または5員環であることが好ましい。これらが炭素、酸素、窒素、珪素あるいは他の原子を含んでいてもよく、環の結合の一部が不飽和結合であってもよく、例えば6員環がベンゼン環、シクロヘキサン環でもよい。上記化合物は、このような環状構造が複数含まれているものであり、例えば、ベンゼン環とシクロヘキサン環をどちらも分子内に有していたり、2個のシクロヘキサン環を有していたり、ナフタレンの誘導体あるいはアントラセン等の誘導体であってもよい。より好ましくはこのような環状構造を分子内に3個以上含んでいる化合物であることが好ましい。また、少なくとも環状構造の1つの結合が不飽和結合を含まないものであることが好ましい。具体的には、アビエチン酸、デヒドロアビエチン酸、パラストリン酸などのアビエチン酸誘導体が代表的であり、以下にこれら化合物の化学式を示すが、特にこれらに限定されるものではない。
Figure 0004771692
(ビスフェノール誘導体)
本発明において用いるオクタノール−水分配係数(LogP値)が0〜7であるビスフェノール誘導体は分子量が10000以下であることが好ましく、この範囲であれば単量体でも良いし、オリゴマー、ポリマーでも良い。また他のポリマーとの共重合体でも良いし、末端に反応性置換基が修飾されていても良い。以下にこれら化合物の化学式を示すが、特にこれらに限定されるものではない。
Figure 0004771692
なお、ビスフェノール誘導体の上記具体例中で、R1〜R4はそれぞれ独立に水素原子、または炭素数1〜10のアルキル基を表す。l、m、nはそれぞれ独立に繰り返し単位を表し、特に限定はしないが、1〜100の整数が好ましく、1〜20の整数がさらに好ましい。
[波長分散調整剤]
本発明では、前述のセルロースアシレートフィルムに対し、フィルムの波長分散を低下させる化合物(以下波長分散調整剤ともいう)を添加することが好ましい。
以下、波長分散調整剤について説明する。
本発明では、セルロースアシレートフィルムに対して、波長200〜400nmの紫外領域に吸収を持つことによりフィルムの着色を防止し、フィルムのRe(λ)およびRth(λ)の波長分散を制御できる化合物を添加することにより、波長400nmと700nmでのRe、Rthの差、好ましくは|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を低下させることができる。
更に、本発明では、セルロースアシレートフィルムのRthの波長分散を良化させるために、下記式(iv)で表されるRthの波長分散ΔRth=|Rth(400)−Rth(700)|を低下させる化合物を、下記式(v)、(vi)をみたす範囲で少なくとも1種含有させることがのぞましい。
(iv)ΔRth=|Rth(400)−Rth(700)
(v)(ΔRth(B)−ΔRth(0))/B≦−2.0
(vi)0.01≦B≦30
上記式(v)、(vi)は
(v)(ΔRth(B)−ΔRth(0))/B≦−3.0
(vi)0.05≦B≦25
であることがよりのぞましく、
(v)(ΔRth(B)−ΔRth(0))/B≦−4.0
(vi)0.1≦B≦20
であることがさらにのぞましい。
セルロースアシレートフィルムのRe、Rthの値は一般に短波長側よりも長波長側が大きい波長分散特性となる。したがって相対的に小さい短波長側のRe、Rthを大きくすることによって波長分散を平滑にすることが要求される。一方200〜400nmの紫外領域に吸収を持つ化合物は短波長側よりも長波長側の吸光度が大きい波長分散特性をもつ。この化合物自身がセルロースアシレートフィルム内部で等方的に存在していれば、化合物自身の複屈折性、ひいてはRe、Rthの波長分散は吸光度の波長分散と同様に短波長側が大きいと想定される。
したがって上述したような、200〜400nmの紫外領域に吸収を持ち、化合物自身のRe、Rthの波長分散が短波長側が大きいと想定されるものを用いることによって、セルロースアシレートフィルムのRe、Rthの波長分散を調製することができる。このためには波長分散を調整する化合物はセルロースアシレートに十分均一に相溶することが好ましい。このような化合物の紫外領域の吸収帯範囲は200〜400nmが好ましいが、220〜395nmがより好ましく、240〜390nmがさらに好ましい。
また、近年テレビやノートパソコン、モバイル型携帯端末などの液晶表示装置ではより少ない電力で輝度を高めるに、液晶表示装置に用いられる光学部材の透過率が優れたものが要求されている。その点においては、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を低下させる化合物を含むセルロースアシレートフィルムは、高い分光透過率を有することが好ましい。本発明において使用されるセルロースアシレートフィルムにおいては、波長380nmにおける分光透過率が45%以上95%以下であり、かつ波長350nmにおける分光透過率が10%以下であることがのぞましい。
上述のような、本発明で好ましく用いられる波長分散調整剤は揮散性の観点から分子量が250〜1000であることが好ましい。より好ましくは260〜800であり、さらに好ましくは270〜800であり、特に好ましくは300〜800である。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
波長分散調整剤は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
(化合物添加量)
上述した本発明で好ましく用いられる波長分散調整剤の添加量は、セルロースアシレート固形分に対して0.01〜30質量%であることが好ましく、0.1〜20質量%であることがより好ましく、0.2〜10質量%であることが特に好ましい。
(化合物添加の方法)
またこれら波長分散調整剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
またこれら波長分散調整剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
本発明に好ましく用いられる波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、本発明はこれら化合物だけに限定されるものではない。
ベンゾトリアゾール系化合物としては一般式(101)で示されるものが波長分散調整剤として好ましく用いられる。
一般式(101) Q1−Q2−OH
(式中、Q1は含窒素芳香族ヘテロ環Q2は芳香族環を表す。)
1は含窒素方向芳香族へテロ環をあらわし、好ましくは5〜7員の含窒素芳香族ヘテロ環であり、より好ましくは5〜6員の含窒素芳香族ヘテロ環であり、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、セレナゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、ベンゾセレナゾール、チアジアゾール、オキサジアゾール、ナフトチアゾール、ナフトオキサゾール、アザベンズイミダゾール、プリン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、トリアザインデン、テトラザインデン等があげられ、さらに好ましくは、5員の含窒素芳香族ヘテロ環であり、具体的にはイミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、チアジアゾール、オキサジアゾールが好ましく、特に好ましくは、ベンゾトリアゾールである。
1で表される含窒素芳香族ヘテロ環はさらに置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環してさらに環を形成してもよい。
2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、さらに他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、さらに好ましくは炭素数6〜12の芳香族炭化水素環である。)さらに好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
2で表される芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはナフタレン環、ベンゼン環であり、特に好ましくはベンゼン環である。Q2はさらに置換基を有してもよく、後述の置換基Tが好ましい。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル基、3−ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル基、p−メチルフェニル基、ナフチル基などが挙げられる。)、置換または未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ基、エトキシ基、ブトキシ基などが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ基、2−ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシ基などが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。これらの置換基はさらに置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
一般式(101)として好ましくは下記一般式(101−A)で表される化合物である。
一般式(101−A)
Figure 0004771692
(式中、R1、R2、R3、R4、R5、R6、R7、およびR8はそれぞれ独立に水素原子または置換基を表す。)
1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基はさらに別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1およびR3として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
2、およびR4として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
5およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
6およびR7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、ハロゲン原子であり、特に好ましくは水素原子、塩素原子である。
一般式(101)としてより好ましくは下記一般式(101−B)で表される化合物である。
一般式(101−B)
Figure 0004771692
(式中、R1、R3、R6およびR7は一般式(101−A)におけるそれらと同義であり、また好ましい範囲も同様である。)
以下に一般式(101)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 0004771692
Figure 0004771692
以上例に挙げたベンゾトリアゾール系化合物の中でも、分子量が320以下のものを含まずにセルロースアシレートフィルムを作製することが、保留性の点で有利である。
また本発明に用いられる波長分散調整剤のひとつであるベンゾフェノン系化合物としては一般式(102)で示されるものが好ましく用いられる。
一般式(102)
Figure 0004771692
(式中、Q1およびQ2はそれぞれ独立に芳香族環を表す。XはNR(Rは水素原子または置換基を表す。)、酸素原子または硫黄原子を表す。)
1およびQ2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、さらに他の環と縮合環を形成してもよい。
1およびQ2で表される芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、さらに好ましくは炭素数6〜12の芳香族炭化水素環である。)さらに好ましくはベンゼン環である。
1およびQ2で表される芳香族ヘテロ環として好ましくは酸素原子、窒素原子あるいは硫黄原子のどれかひとつを少なくとも1つ含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、さらに好ましくは置換または無置換のベンゼン環である。
1およびQ2はさらに置換基を有してもよく、後述の置換基Tが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
XはNR(Rは水素原子または置換基を表す。置換基としては後述の置換基Tが適用できる。)、酸素原子または硫黄原子を表し、Xとして好ましくは、NR(Rとして好ましくはアシル基、スルホニル基であり、これらの置換基はさらに置換してもよい。)、またはOであり、特に好ましくはOである。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル基、3−ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル基、p−メチルフェニル基、ナフチル基などが挙げられる。)、置換または未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ基、エトキシ基、ブトキシ基などが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ基、ベンゾイルオキシ基などが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。これらの置換基はさらに置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
一般式(102)として好ましくは下記一般式(102−A)で表される化合物である。
一般式(102−A)
Figure 0004771692
(式中、R1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表す。)
1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基はさらに別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1、R3、R4、R5、R6、R8およびR9として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
2として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、さらに好ましくは炭素数1〜20のアルコキシ基であり、特に好ましくは炭素数1〜12のアルコキシ基である。
7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、さらに好ましくは水素原子、炭素数1〜20のアルキル基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、さらに好ましくはメチル基)であり、特に好ましくはメチル基、水素原子である。
一般式(102)としてより好ましくは下記一般式(102−B)で表される化合物である。
一般式(102−B)
Figure 0004771692
(式中、R10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表す。)
10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表し、置換基としては前述の置換基Tが適用できる。
10として好ましくは置換または無置換のアルキル基であり、より好ましくは炭素数5〜20の置換または無置換のアルキル基であり、さらに好ましくは炭素数5〜12の置換または無置換のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換または無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
一般式(102)で表される化合物は特開平11−12219号公報記載の公知の方法により合成できる。
以下に一般式(102)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 0004771692
Figure 0004771692
Figure 0004771692
また本発明に用いられる波長分散調整剤のひとつであるシアノ基を含む化合物としては一般式(103)で示されるものが好ましく用いられる。
一般式(103)
Figure 0004771692
(式中、Q1およびQ2はそれぞれ独立に芳香族環を表す。X1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環を表す。)Q1およびQ2であらわされる芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、さらに他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、さらに好ましくは炭素数6〜12の芳香族炭化水素環である。)さらに好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環である。
1およびQ2はさらに置換基を有してもよく、後述の置換基Tが好ましい。置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル基、3−ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル基、p−メチルフェニル基、ナフチル基などが挙げられる。)、置換または未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ基、エトキシ基、ブトキシ基などが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ基、2−ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ基、ベンゾイルオキシ基などが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。これらの置換基はさらに置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環を表す。X1およびX2で表される置換基は前述の置換基Tを適用することができる。また、X1およびX2はで表される置換基はさらに他の置換基によって置換されてもよく、X1およびX2はそれぞれが縮環して環構造を形成してもよい。
1およびX2として好ましくは、水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、さらに好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(−C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。
一般式(103)として好ましくは下記一般式(103−A)で表される化合物である。
一般式(103−A)
Figure 0004771692
(式中、R1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表す。X1およびX2は一般式(103)におけるそれらと同義であり、また好ましい範囲も同様である。)
1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基はさらに別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1、R2、R4、R5、R6、R7、R9、およびR10として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、さらに好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
3、およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、さらに好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12アルコキシ基であり、特に好ましくは水素原子である。
一般式(103)としてより好ましくは下記一般式(103−B)で表される化合物である。
一般式(103−B)
Figure 0004771692
(式中、R3およびR8は一般式(103−A)におけるそれらと同義であり、また、好ましい範囲も同様である。X3は水素原子、または置換基を表す。)
3は水素原子、または置換基を表し、置換基としては前述の置換基Tが適用でき、また、可能な場合はさらに他の置換基で置換されてもよい。X3として好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、さらに好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(−C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。
一般式(103)としてさらに好ましくは一般式(103−C)で表される化合物である。
一般式(103−C)
Figure 0004771692
(式中、R3およびR8は一般式(103−A)におけるそれらと同義であり、また、好ましい範囲も同様である。R21は炭素数1〜20のアルキル基を表す。)
21として好ましくはR3およびR8が両方水素の場合には、炭素数2〜12のアルキル基であり、より好ましくは炭素数4〜12のアルキル基であり、さらに好ましくは、炭素数6〜12のアルキル基であり、特に好ましくは、n−オクチル基、tert−オクチル基、2−エチルへキシル基、n−デシル基、、n−ドデシル基であり、最も好ましくは2−エチルへキシル基である。
21として好ましくはR3およびR8が水素以外の場合には、一般式(103−C)で表される化合物の分子量が300以上になり、かつ炭素数20以下の炭素数のアルキル基が好ましい。
一般式(103)で表される化合物はJounal of American Chemical Society 63巻 3452頁(1941)記載の方法によって合成できる。
以下に一般式(103)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 0004771692
Figure 0004771692
Figure 0004771692
[マット剤微粒子]
本発明において使用されるセルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子サイズが20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
これらの微粒子は、通常平均粒子サイズが0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次平均粒子サイズは0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。1次、2次粒子サイズはフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒子サイズとした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子サイズとした。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976およびR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子サイズが20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において2次平均粒子サイズの小さな粒子を有するセルロースアシレートフィルムを得るために、微粒子の分散液を調製する際にいくつかの手法が考えられる。例えば、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作成し、この微粒子分散液を別途用意した少量のセルロースアシレート溶液に加えて撹拌溶解し、さらにメインのセルロースアシレートドープ液と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子がさらに再凝集しにくい点で好ましい調製方法である。ほかにも、溶剤に少量のセルロースエステルを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行いこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%がさらに好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤の添加量は1m2あたり0.01〜1.0gが好ましく、0.03〜0.3gがさらに好ましく、0.08〜0.16gが最も好ましい。
使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。
[可塑剤、劣化防止剤、剥離剤]
上記の光学異方性を低下させる化合物、波長分散調整剤の他に、本発明で使用されるセルロースアシレートフィルムには、各調製工程において用途に応じた種々の添加剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号公報などに記載されている。さらにまた、赤外吸収染料としては例えば特開2001−194522号公報に記載されているものを使用することができる。またその添加する時期はドープ作製工程において何れで添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。さらにまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。また、セルロースアシレートフィルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号公報などに記載されているが、これらは従来から知られている技術である。これらの詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている素材が好ましく用いられる。
[化合物添加の比率]
本発明において使用されるセルロースアシレートフィルムにおいては、分子量が3000以下の化合物の総量は、セルロースアシレート質量に対して5〜45%であることがのぞましい。より好ましくは10〜40%であり、さらにのぞましくは15〜30%である。これらの化合物としては上述したように、光学異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、剥離剤、赤外吸収剤などであり、分子量としては3000以下がのぞましく、2000以下がよりのぞましく、1000以下がさらにのぞましい。これら化合物の総量が5%以下であると、セルロースアシレート単体の性質が出やすくなり、例えば、温度や湿度の変化に対して光学性能や物理的強度が変動しやすくなるなどの問題がある。またこれら化合物の総量が45%以上であると、セルロースアシレートフィルム中に化合物が相溶する限界を超え、フィルム表面に析出してフィルムが白濁する( フィルムからの泣き出し)などの問題が生じやすくなる。
[セルロースアシレート溶液の有機溶媒]
本発明では、ソルベントキャスト法によりセルロースアシレートフィルムを製造することが好ましく、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造することができる。ドープの主溶媒として好ましく用いられる有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテル、および炭素原子数が1〜7のハロゲン化炭化水素から選ばれる溶媒が好ましい。エステル、ケトンおよび、エーテルは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。2種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。
本発明において使用されるセルロースアシレートフィルムに対しては塩素系のハロゲン化炭化水素を主溶媒としても良いし、発明協会公開技報2001−1745(12頁〜16頁)に記載されているように、非塩素系溶媒を主溶媒としても良く、本発明において使用されるセルロースアシレートフィルムに対しては特に限定されるものではない。
その他、本発明において使用されるセルロースアシレートフィルムを調製するためのセルロースアシレート溶液およびフィルムについての溶媒は、その溶解方法も含め以下の特許に開示されており、好ましい態様である。それらは、例えば、特開2000−95876号公報、特開平12−95877号公報、特開平10−324774号公報、特開平8−152514号公報、特開平10−330538号公報、特開平9−95538号公報、特開平9−95557号公報、特開平10−235664号公報、特開平12−63534号公報、特開平11−21379号公報、特開平10−182853号公報、特開平10−278056号公報、特開平10−279702号公報、特開平10−323853号公報、特開平10−237186号公報、特開平11−60807号公報、特開平11−152342号公報、特開平11−292988号公報、特開平11−60752号公報、特開平11−60752号公報などに記載されている。これらの公報には、本発明に使用されるセルロースアシレートに好ましい溶媒だけでなく、その溶液物性や共存させる共存物質についても記載があり、本発明においても好ましい態様である。
<セルロースアシレートフィルムの製造工程>
[溶解工程]
本発明において使用されるセルロースアシレートフィルムを得るためのセルロースアシレート溶液(ドープ)の調製について、その溶解方法は特に限定されず、室温でもよくさらには冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施することができる。本発明におけるセルロースアシレート溶液の調製、さらには溶解工程に伴う溶液濃縮、ろ過の各工程に関しては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)22頁〜25頁に詳細に記載されている製造工程が好ましく用いられる。
(ドープ溶液の透明度)
本発明では、セルロースアシレート溶液のドープ透明度は85%以上であることがのぞましい。より好ましくは88%以上であり、さらに好ましくは90%以上である。本発明においてはセルロースアシレートドープ溶液に各種の添加剤が十分に溶解していることを確認した。具体的なドープ透明度の算出方法としては、ドープ溶液を1cm角のガラスセルに注入し、分光光度計(UV−3150、島津製作所)で550nmの吸光度を測定した。溶媒のみをあらかじめブランクとして測定しておき、ブランクの吸光度との比からセルロースアシレート溶液の透明度を算出した。
[流延、乾燥、巻き取り工程]
次に、セルロースアシレート溶液を用いたフィルムの製造方法について述べる。本発明において使用されるセルロースアシレートフィルムを製造する方法および設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法および溶液流延製膜装置を用いることができる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて得られたフィルムを乾燥装置のロール群で機械的に搬送し乾燥を終了して巻き取り機でロール状に所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。更に、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置を付加することもできる。これらについては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)25頁〜30頁に詳細に記載されており、流延(共流延を含む)、金属支持体、乾燥、剥離などに分類され、本発明において好ましく用いることができる。
また、セルロースアシレートフィルムの厚さは10〜120μmが好ましく、20〜100μmがより好ましく、30〜90μmがさらに好ましい。
<高湿度処理後のフィルムの光学性能変化>
[セルロースアシレートフィルム物性評価]
本発明において使用されるセルロースアシレートフィルムの環境変化による光学性能の変化については、60℃90%RHに240時間処理したフィルムのReおよびRthの変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
[高温度処理後のフィルムの光学性能変化]
また、80℃240時間処理したフィルムのReおよびRthの変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
[フィルム加熱処理後の化合物揮散量]
本発明において使用されるセルロースアシレートフィルムにのぞましく用いることができる、Rthを低下させる化合物と、ΔRthを低下させる化合物は、80℃240時間処理したフィルムからの化合物の揮散量が30%以下であることがのぞましい。よりのぞましくは25%以下以下であり、20%以下であることがさらにのぞましい。
なお、フィルムからの揮散量は、80℃240時間処理したフィルムおよび未処理のフィルムをそれぞれ溶媒に溶かし出し、液体高速クロマトグラフィーにて化合物を検出し、化合物のピーク面積をフィルム中に残存した化合物量として、下記式により算出した。
揮散量(%)={(未処理品中の残存化合物量)−(処理品中の残存化合物量)}/(未処理品中の残存化合物量)×100
[フィルムのガラス転移温度Tg]
本発明において使用されるセルロースアシレートフィルムのガラス転移温度Tgは、80〜165℃であることが好ましい。耐熱性の観点から、Tgが100〜160℃であることがより好ましく、110〜150℃であることが特に好ましい。ガラス転移温度Tgの測定は、以下の方法で行うことができる。セルロースアシレートフィルム試料10mgを、常温から200度まで昇降温速度5℃/分で示差走査熱量計(DSC2910、T.A.インスツルメント)で熱量測定を行い、ガラス転移温度Tgを算出する。
[フィルムのヘイズ]
本発明において使用されるセルロースアシレートフィルムのヘイズは0.01〜2.0%であることがのぞましい。よりのぞましくは0.05〜1.5%であり、0.1〜1.0%であることがさらにのぞましい。光学フィルムとしてフィルムの透明性は重要である。ヘイズの測定は、セルロースアシレートフィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM−2DP、スガ試験機)でJIS K−6714に従って行うことができる。
[フィルムのRe、Rthの湿度依存性]
本発明において使用されるセルロースアシレートフィルムのReおよびRthはともに湿度による変化が小さいことが好ましい。具体的には、25℃10%RHにおけるRth値と25℃80%RHにおけるRth値の差ΔRth(=Rth10%RH−Rth80%RH)が0〜50nmであることが好ましい。より好ましくは0〜40nmであり、さらに好ましくは0〜35nmである。
[フィルムの平衡含水率]
本発明において使用されるセルロースアシレートフィルムの平衡含水率は、偏光板の保護膜として用いる際、ポリビニルアルコールなどの水溶性ポリマーとの接着性を損なわないために、膜厚のいかんに関わらず、25℃80%RHにおける平衡含水率が、0〜4%であることが好ましい。0.1〜3.5%であることがより好ましく、1〜3%であることが特に好ましい。4%以上の平衡含水率であると、位相差フィルムの支持体として用いる際にレターデーションの湿度変化による依存性が大きくなりすぎてしまい好ましくない。
含水率の測定法は、セルロースアシレートフィルム試料7mm×35mmを水分測定器、試料乾燥装置(CA−03、VA−05、共に三菱化学(株))にてカールフィッシャー法で測定した。水分量(g)を試料質量(g)で除して算出した。
[フィルムの透湿度]
本発明において使用されるセルロースアシレートフィルムの透湿度は、JIS規格JISZ0208をもとに、温度60℃、湿度95%RHの条件において測定し、膜厚80μmに換算して400〜2000g/m2・24hであることがのぞましい。500〜1800g/m2・24hであることがより好ましく、600〜1600g/m2・24hであることが特に好ましい。2000g/m2・24hを越えると、フィルムのRe値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまう。また、セルロースアシレートフィルムに光学異方性層を積層して位相差フィルムとした場合も、Re値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまい好ましくない。このような位相差フィルムや偏光板が液晶表示装置に組み込まれた場合、色味の変化や視野角の低下を引き起こすおそれがある。また、セルロースアシレートフィルムの透湿度が400g/m2・24h未満では、偏光膜の両面などに貼り付けて偏光板を作製する場合に、セルロースアシレートフィルムにより接着剤の乾燥が妨げられ、接着不良を生じるおそれがある。
セルロースアシレートフィルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄ければ透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を80μmに設け換算する必要がある。膜厚の換算は、(80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm)として求めた。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができ、セルロースアシレートフィルム試料70mmφを25℃、90%RHおよび60℃、95%RHでそれぞれ24時間調湿し、透湿試験装置(KK−709007、東洋精機(株))にて、JIS Z−0208に従って、単位面積あたりの水分量を算出(g/m2)し、透湿度=調湿後質量−調湿前質量で求めることができる。
[フィルムの寸度変化]
本発明において使用されるセルロースアシレートフィルムの寸度安定性は、60℃、90%RHの条件下に24時間静置した場合(高湿)の寸度変化率および90℃、5%RHの条件下に24時間静置した場合(高温)の寸度変化率がいずれも0.5%以下であることがのぞましい。よりのぞましくは0.3%以下であり、さらにのぞましくは0.15%以下である。
具体的な測定方法は、以下の通りである。セルロースアシレートフィルム試料30mm×120mmを2枚用意し、25℃、60%RHで24時間調湿し、自動ピンゲージ(新東科学(株))にて、両端に6mmφの穴を100mmの間隔で開け、パンチ間隔の原寸(L0)とした。1枚の試料を60℃、90%RHにて24時間処理した後のパンチ間隔の寸法(L1)を測定、もう1枚の試料を90℃、5%RHにて24時間処理した後のパンチ間隔の寸法(L2)を測定する。すべての間隔の測定において最小目盛り1/1000mmまで測定した。60℃、90%RH(高湿)の寸度変化率={|L0−L1|/L0}×100、90℃、5%RH(高温)の寸度変化率={|L0−L2|/L0}×100、として寸度変化率を求めることができる。
[フィルムの弾性率]
(弾性率)
本発明において使用されるセルロースアシレートフィルムの弾性率は、200〜500kgf/mm2であることが好ましい、より好ましくは240〜470kgf/mm2であり、さらに好ましくは270〜440kgf/mm2である。具体的な測定方法は、以下の通りである。東洋ボールドウィン製万能引っ張り試験機STM T50BPを用い、23℃・70%雰囲気中、引っ張り速度10%/分で0.5%伸びにおける応力を測定し、弾性率を求めることができる。
[フィルムの光弾性係数]
(光弾性係数)
本発明において使用されるセルロースアシレートフィルムの光弾性係数は、50×10-13cm2/dyne以下であることが好ましい。30×10-13cm2/dyne以下であることがより好ましく、20×10-13cm2/dyne以下であることがさらに好ましい。具体的な測定方法は、以下の通りである。セルロースアシレートフィルム試料12mm×120mmの長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター(M150、日本分光(株))で測定し、応力に対するレターデーションの変化量から光弾性係数を算出することができる。
[延伸前後における正面レターデーション変化、遅相軸の検出]
試料100×100mmを用意し、固定一軸延伸機を用いて温度140℃の条件下で機械搬送方向(MD方向)または垂直方向(TD方向)に延伸を行う。延伸前後における各試料の正面レターデーションを自動複屈折計KOBRA21ADHを用いて測定する。遅相軸の検出は上記のレターデーション測定の際に得られる配向角から決定する。延伸によってReの変化が小さいことが好ましく、具体的にはRe(n)をn(%)延伸したフィルムの面内正面レターデーション(nm)、Re(0)を延伸していないフィルムの面内正面レターデーション(nm)としたときに、|Re(n)−Re(0)|/n≦1.0を有することが好ましく、|Re(n)−Re(0)|/n≦0.3以下がさらに好ましい。
[遅相軸を有する方向]
本発明において、セルロースアシレートフィルムを偏光膜の保護膜に用いる場合、偏光膜が機械搬送方向(MD方向)に吸収軸を持つため、セルロースアシレートフィルムは遅相軸がMD方向近傍またはTD近傍にあることがのぞましい。遅相軸が偏光膜と平行または直交させることにより光漏れや色味変化を低減できる。近傍とは、遅相軸とMDまたはTD方向が0〜10°、好ましくは0〜5°の範囲にあることを表す。
[固有複屈折が正であるセルロースアシレートフィルム]
本発明において使用されるセルロースアシレートフィルムは、フィルム面内において、遅相軸を有する方向に延伸すると正面レターデーションReが大きくなり、遅相軸を有する方向と垂直な方向に延伸すると正面レターデーションReが小さくなる。このことは固有複屈折が正であることを示しており、フィルム中で発現したReを打ち消すには遅相軸と垂直方向に延伸することが有効である。この方法としては例えば、フィルムが機械搬送方向(MD方向)に遅相軸を有している場合にMDとは垂直な方向(TD方向)にテンター延伸を用いて正面Reを小さくすることが考えられる。逆の例として、TD方向に遅相軸を有している場合にはMD方向の機械搬送ロールの張力を強めて延伸することによって正面Reを小さくすることが考えられる。
[固有複屈折が負であるセルロースアシレートフィルム]
本発明において使用されるセルロースアシレートフィルムは、遅相軸を有する方向に延伸すると正面レターデーションReが小さくなり、遅相軸を有する方向と垂直な方向に延伸すると正面レターデーションReが大きくなる場合もある。このことは固有複屈折が負であることを示しており、フィルム中で発現したReを打ち消すには遅相軸と同一の方向に延伸することが有効である。この方法としては例えば、フィルムが機械搬送方向(MD方向)に遅相軸を有している場合にMD方向の機械搬送ロールの張力を強めて延伸することによって正面Reを小さくすることが考えられる。逆の例として、TD方向に遅相軸を有している場合にはMDとは垂直な方向(TD方向)にテンター延伸を用いて正面Reを小さくすることが考えられる。
[セルロースアシレートフィルムの評価方法]
本発明において使用されるセルロースアシレートフィルムの評価は、以下の方法によって実施した。
(面内のレターデーションRe、膜厚方向のレターデーションRth)
試料30mm×40mmを、25℃、60%RHで2時間調湿し、Re(λ)は自動複屈折計KOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定した。また、Rth(λ)は前記Re(λ)、面内の遅相軸を傾斜軸としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基に、平均屈折率の仮定値1.48および膜厚を入力し算出した。
(Re、Rthの波長分散測定)
試料30mm×40mmを、25℃、60%RHで2時間調湿し、エリプソメーターM−150(日本分光(株)製)において波長780nmから380nmの光をフィルム法線方向に入射させることにより各波長でのReを求め、Reの波長分散を測定した。また、Rthの波長分散については、前記Re、面内の遅相軸を傾斜軸としてフィルム法線方向に対して+40°傾斜した方向から780〜380nmの波長の光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸としてフィルム法線方向に対して−40°傾斜した方向から波長780〜380nmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基に、平均屈折率の仮定値1.48および膜厚を入力して算出した。
(分子配向軸)
試料70mm×100mmを、25℃、65%RHで2時間調湿し、自動複屈折計(KOBRA21DH、王子計測(株))にて、垂直入射における入射角を変化させた時の位相差より分子配向軸を算出した。
(軸ズレ)
また、自動複屈折計(KOBRA−21ADH、王子計測機器(株))で軸ズレ角度を測定した。幅方向に全幅にわたって等間隔で20点測定し、絶対値の平均値を求めた。また、遅相軸角度(軸ズレ)のレンジとは、幅方向全域にわたって等間隔に20点測定し、軸ズレの絶対値の大きいほうから4点の平均と小さいほうから4点の平均の差をとったものである。
(透過率)
試料20mm×70mmを、25℃,60%RHで透明度測定器(AKA光電管比色計、KOTAKI製作所)で可視光(615nm)の透過率を測定した。
(分光特性)
試料13mm×40mmを、25℃,60%RHで分光光度計(U−3210、(株)日立製作所)にて、波長300〜450nmにおける透過率を測定した。傾斜幅は72%の波長−5%の波長で求めた。限界波長は、(傾斜幅/2)+5%の波長で表した。吸収端は、透過率0.4%の波長で表す。これより380nmおよび350nmの透過率を評価した。
[フィルム表面の性状]
本発明において使用されるセルロースアシレートフィルムの表面は、JISB0601−1994に基づく該膜の表面凹凸の算術平均粗さ(Ra)が0.1μm以下、および最大高さ(Ry)が0.5μm以下であることが好ましい。好ましくは、算術平均粗さ(Ra)が0.05μm以下、および最大高さ(Ry)が0.2μm以下である。膜表面の凹と凸の形状は、原子間力顕微鏡(AFM)により評価することができる。
[セルロースアシレートフィルムのレターデーションの面内ばらつき]
本発明において使用されるセルロースアシレートフィルムは次の式を満たすことがのぞましい。
|Re(MAX)−Re(MIN)|≦3かつ|Rth(MAX)−Rth(MIN)|≦5
[式中、Re(MAX)、Rth(MAX)−は任意に切り出した1m四方のフィルムの最大レターデーション値、Re(MIN)、Rth(MIN)は最小値である。]
[フィルムの保留性]
本発明において使用されるセルロースアシレートフィルムは、フィルムに添加した各種化合物の保留性が高いことが好ましい。具体的には、セルロースアシレートフィルムを80℃/90%RHの条件下に48時間静置した場合のフィルムの質量変化が、0〜5%であることが好ましい。より好ましくは0〜3%であり、さらに好ましくは0〜2%である。
〈保留性の評価方法〉
試料を10cm×10cmのサイズに断裁し、23℃、55%RHの雰囲気下で24時間放置後の質量を測定して、80±5℃、90±10%RHの条件下で48時間放置した。処理後の試料の表面を軽く拭き、23℃、55%RHで1日放置後の質量を測定して、以下の方法で保留性を計算した。
保留性(質量%)={(放置前の質量−放置後の質量)/放置前の質量}×100
[フィルムの力学特性]
(カール)
本発明において使用されるセルロースアシレートフィルムの幅方向のカール値は、−10/m〜+10/mであることが好ましい。本発明において使用されるセルロースアシレートフィルムには後述する表面処理、光学異方性層を塗設する際のラビング処理の実施や配向膜、光学異方性層の塗設や貼合などを長尺で行う際に、セルロースアシレートフィルムの幅方向のカール値が前述の範囲外では、フィルムのハンドリングに支障をきたし、フィルムの切断が起きることがある。また、フィルムのエッジや中央部などで、フィルムが搬送ロールと強く接触するために発塵しやすくなり、フィルム上への異物付着が多くなり、光学補償フィルムの点欠陥や塗布スジの頻度が許容値を超えることがある。又、カールを上述の範囲とすることで光学異方性層を設置するときに発生しやすい色斑故障を低減できるほか、偏光膜貼り合せ時に気泡が入ることを防ぐことができ、好ましい。
カール値は、アメリカ国家規格協会の規定する測定方法(ANSI/ASCPH1.29−1985)に従い測定することができる。
(引裂き強度)
本発明において使用されるセルロースアシレートフィルムのJISK7128−2:1998の引裂き試験方法に基づく引裂き強度(エルメンドルフ引裂き法)は、セルロースアシレートフィルムの膜厚が20〜80μmの範囲において、2g以上が好ましい。より好ましくは、5〜25gであり、さらには6〜25gである。又、60μm換算で8g以上が好ましく、より好ましくは8〜15gである。具体的には、試料片50mm×64mmを、25℃、65%RHの条件下に2時間調湿した後に軽荷重引裂き強度試験機を用いて測定できる。
[フィルムの残留溶剤量]
本発明において使用されるセルロースアシレートフィルムは、残留溶剤量が、0.01〜1.5質量%の範囲となる条件で乾燥することが好ましい。より好ましくは0.01〜1.0質量%である。セルロースアシレートフィルムの残留溶剤量を1.5質量%以下とすることでカールを抑制できる。1.0質量%以下であることがより好ましい。これは、前述のソルベントキャスト方法による成膜時の残留溶剤量が少なくすることで自由堆積が小さくなることが主要な効果要因になるためと思われる。
[フィルムの吸湿膨張係数]
本発明において使用されるセルロースアシレートフィルムの吸湿膨張係数は30×10-5/%RH以下とすることが好ましい。吸湿膨張係数は、15×10-5/%RH以下とすることが好ましく、10×10-5/%RH以下であることがさらに好ましい。また、吸湿膨張係数は小さい方が好ましいが、通常は、1.0×10-5/%RH以上の値である。吸湿膨張係数は、一定温度下において相対湿度を変化させた時の試料の長さの変化量を示す。この吸湿膨張係数を調節することで、セルロースアシレートフィルムを位相差フィルムの支持体として用いた際、位相差フィルムの光学補償機能を維持したまま、額縁状の透過率上昇すなわち歪みによる光漏れを防止することができる。
[表面処理]
セルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、下塗層およびバック層)との接着の向上を達成することができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、さらにまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類およびそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
[アルカリ鹸化処理によるフィルム表面の接触角]
本発明において偏光板の保護膜として使用されるセルロースアシレートフィルムに対する表面処理の有効な手段の1つとしてアルカリ鹸化処理が挙げられる。この場合、アルカリ鹸化処理後のフィルム表面の接触角が55°以下であることがのぞましい。よりのぞましくは50°以下であり、45°以下であることがさらにのぞましい。接触角の評価法はアルカリ鹸化処理後のフィルム表面に直径3mmの水滴を落とし、フィルム表面と水滴のなす角をもとめる通常の手法によって親疎水性の評価として用いることができる。
(耐光性)
本発明において使用されるセルロースアシレートの光耐久性の指標として、スーパーキセノン光を240時間照射したフィルムの色差ΔE*abが20以下であることがのぞましい。よりのぞましくは18以下であり、15以下であることがさらにのぞましい。色差の測定は、UV3100(島津製作所製)を用いた。測定の仕方は、フィルムを25℃60%RHに2時間以上調湿した後にキセノン光照射前のフィルムのカラー測定を行ない初期値(L0*、a0*、b0*)を求める。その後、フィルム単体で、スーパーキセノンウェザーメーターSX−75(スガ試験機(株)製)にて、150W/m2、60℃50%RH条件にてキセノン光を240時間照射する。所定時間の経過後、フィルムを恒温槽から取り出し、25℃60%RHに2時間調湿した後に、再びカラー測定を行い、照射経時後の値(L1*、a1*、b1*)を求める。これらから、色差ΔE*ab=((L0*−L1*)^2+(a0*−a1*)^2+(b0*−b1*)^2)^0.5を求めることができる。
[偏光板]
本発明の液晶表示装置は、液晶パネルの両側に第1の偏光板および第2の偏光板が配置されている。第1および第2の偏光板は、それぞれ偏光膜と該偏光膜を挟持する一対の保護膜から構成され、かかる保護膜(支持体を兼用)の少なくとも1枚が、
0≦Re(630)≦10かつ|Rth(630)|≦25
を満たす、前述のセルロースアシレートフィルムである。
本発明において、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。得られたセルロースアシレートフィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリ処理の代わりに特開平6−94915号公報、特開平6−118232号公報に記載されているような易接着加工を施してもよい。
保護膜処理面と偏光膜を貼り合わせるために使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。
偏光板は偏光膜およびその両面を保護する保護膜で構成されており、さらに該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成することができる。プロテクトフィルムおよびセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。又、セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶板へ貼合する面側に用いられる。
本発明の液晶表示装置では、上記式を満たすセルロースアシレートフィルムから構成される保護膜を、どの部位に配置しても優れた表示性を得ることができる。特に液晶表示装置の表示側最表面の偏光板保護膜には透明ハードコート層、防眩層、反射防止層等が設けられるため、該偏光板保護膜をこの部分に用いることが特に好ましい。
[位相差フィルム]
本発明の液晶表示装置は、液晶パネルと第1の偏光板との間に第1の位相差フィルムを有し、液晶パネルと第2の位相差フィルムとの間に第2の位相差フィルムを有する。
本発明の液晶表示装置では、第1の位相差フィルムが、
50≦Re(589)≦100かつ30≦Rth(589)≦80
を満たし、
前記第2の位相差フィルムが
Re(589)≦20かつ100≦Rth(589)|≦300
を満たすことが好ましい。
更に、第1の位相差フィルムが、
50≦Re(589)≦90かつ40≦Rth(589)≦60
を満たし、
第2の位相差フィルムが、
Re(589)≦10かつ150≦Rth(589)|≦250
を満たすことがより好ましい。
第1および第2の位相差フィルムが上記範囲のレターデーションを有することにより、優れた表示特性を実現することができる。第1および第2の位相差フィルムの配置としては、視認側、バックライト側のいずれを取ることもできるが、第1の位相差フィルムが視認側になり、第2の位相差フィルムがバックライト側となるように、各層を配置することがより好ましい。
本発明では、偏光板と第1の位相差フィルムとを、偏光板の吸収軸と第1の位相差フィルムの遅相軸の成す角度が、85°以上95°以下になるように配置することが好ましい。この角度をなすように配置した光学補償機能付き偏光板をVAの液晶セルに用いると、それらのセルの複屈折が効率的に補償され、その光学補償機能付き偏光板を用いた液晶表示装置の視野角を拡大することができる。さらに、偏光板の吸収軸方向と第1の位相差フィルムの遅相軸方向の成す角度は、より好ましくは86°以上94°以下、さらに好ましくは87°以上93°以下である。
本発明において、第1の位相差フィルムに含まれる高分子フィルムは、未延伸高分子フィルムを適宜な方法で延伸した延伸高分子フィルムまたは液晶フィルムにより形成することができる。また、液晶フィルムはネマチック液晶から形成されることが最も好ましい。
未延伸高分子フィルムとしては、特に限定されず、フィルム延伸により光学異方性を付与することができる材料で、複屈折の制御性、透明性、耐熱性に優れる材料が好ましい。前記未延伸高分子フィルムは、単独で使用しても良いし2種類以上混合して使用しても良い。例えば、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリノルボルネン系ポリマー、ポリエステル、ポリ塩化ビニル、ポリスチレン、ポリアクリロニトリル、ポリスルホン、ポリアリレート、ポリビニルアルコール、ポリメタクリル酸エステル、ポリアクリル酸エステル、セルロースエステルおよびそれらの共重合体等が使用可能である。
また、特開2001−343529号公報(国際公開WO01/37007号公報)に記載のポリマーフィルムも挙げられる。このポリマー材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基およびシアノ基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN−メチレンマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。
前記未延伸高分子フィルムの製造方法は特に制限されず、通常の方法を用いることができる。押し出し法または流延製膜法が、延伸後の高分子フィルムの複屈折のムラを少なくできるので、好ましい。前記未延伸高分子フィルムは、例えば、3mm以下、好ましくは1μm〜1mm、特に好ましくは5〜500μmの厚さのものが用いられる。
前記未延伸高分子フィルムの延伸方法としては特に制限されないが、通常の方法を用いることができる。例えば、テンター横延伸や二軸延伸が挙げられる。二軸延伸は、長軸方向の延伸倍率が短軸方向の延伸倍率よりも小さいことが好ましい。また、二軸延伸は全テンター方式による同時二軸延伸、ロールーテンター法による逐次二軸延伸のいずれの方法でも用いることができる。
前記未延伸高分子フィルムの延伸倍率は、延伸方法によって異なるが、通常前記未延伸高分子フィルムの長さに対して、101〜250%延伸する。前記未延伸高分子フィルムの延伸倍率は、前記未延伸高分子フィルムの長さに対して、101〜200%が好ましい。
前記未延伸高分子フィルムを延伸する温度は、使用する前記未延伸高分子フィルムのガラス転移点(Tg)や前記未延伸高分子フィルム中の添加物の種類などに応じて適宜選択される。前記未延伸高分子フィルムを延伸する温度は、例えば80〜250℃、好ましくは120〜220℃、特に好ましくは140〜200℃である。特に、前記未延伸高分子フィルムを延伸する温度は、延伸される前記未延伸高分子フィルムのTg付近またはTg以上であるのが好ましい。
延伸高分子フィルムの厚さは、対象となる画像表示装置の画面の大きさに応じて適宜に決定することができる。前記延伸高分子フィルムの厚さは、例えば1mm以下、好ましくは1〜500μm、特に好ましくは5〜300μmである。
第2の位相差フィルムは、コレステリック液晶を配向層上に塗工し、配向させ、その配向状態を固定化してコレステリック液晶層を形成することにより製造することができる。
コレステリック液晶層は、特に限定されず、従来の液晶配向処理に準じた方法で製造されたものを用いることができる。例えば、まず基材の配向層上にコレステリック液晶ポリマーおよびカイラル剤を塗工する。その塗工層をガラス転移温度以上かつ等方相転移温度未満で加熱し、その塗工層中の液晶ポリマー分子を配向させる。その後、その塗工層をガラス転移温度未満に冷却すると、前記液晶ポリマー分子の配向が固定化されたコレステリック液晶層を基材上に形成することができる。また、前記配向層上に光架橋性液晶モノマーおよびカイラル剤を塗工して、前述のように、その塗工層をガラス転移温度以上かつ等方相転移温度未満で加熱し、その塗工層中の前記液晶モノマーを配向させる。これを光処理して前記液晶モノマーを架橋させ、コレステリック液晶層を基材上に形成する方法等が挙げられる。
[液晶パネル]
本発明の液晶表示装置における液晶パネルは、表面に垂直配向処理を施した上下二枚の基板間に誘電率異方性が負の液晶を挟持し、前記液晶の配向が、電圧無印加時にはほぼ垂直に、所定の電圧を印加した時にはほぼ水平となり、前記所定の電圧より小さい電圧を印加した時には斜めになる配向である液晶パネルである。液晶パネルの液晶層は、通常は、二枚の基板の間にスペーサーを挟み込んで形成した空間に液晶を封入して形成する。透明電極層は、導電性物質を含む透明な膜として基板上に形成することができる。液晶セルには、さらにガスバリアー層、ハードコート層あるいは(透明電極層の接着に用いる)アンダーコート層(下塗り層)を設けてもよい。これらの層は、通常、基板上に設けられる。液晶セルの基板は、一般に50μm〜2mmの厚さを有する。VA型液晶表示装置は、例えば特開平10−123576号公報に記載されているような配向分割された方式であっても構わない。本発明の液晶表示装置は、透過型、反射型、半透過型のいずれの液晶表示装置としても優れた表示特性と視野角特性を得ることができる。
本発明の液晶表示装置において、前述の0≦Re(630)≦10かつ|Rth(630)|≦25を満たすセルロースアシレートフィルムは、液晶表示装置の視認性を向上する目的で、ハードコートフィルム、防眩フィルム、反射防止フィルムとしても用いることができる。このような防眩フィルム、反射防止フィルムとしての望ましい実施態様は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)の54頁〜57頁に詳細に記載されており、前述のセルロースアシレートフィルムを好ましく用いることができる。
前述の0≦Re(630)≦10かつ|Rth(630)|≦25を満たすセルロースアシレートフィルムは、光学的異方性がゼロに近く、優れた透明性を持っていることから、液晶表示装置の液晶セルガラス基板の代替、すなわち駆動液晶を封入する透明基板としても用いることができる。
液晶を封入する透明基板はガスバリア性に優れることが好ましいため、必要に応じて前述のセルロースアシレートフィルムの表面にガスバリアー層を設けてもよい。ガスバリアー層の形態や材質は特に限定されないが、前述のセルロースアシレートフィルムの少なくとも片面にSiO2等を蒸着したり、あるいは塩化ビニリデン系ポリマーやビニルアルコール系ポリマーなど相対的にガスバリアー性の高いポリマーのコート層を設ける方法が考えられ、これらを適宜使用できる。
また液晶を封入する透明基板として用いるには、電圧印加によって液晶を駆動するための透明電極を設けてもよい。透明電極としては特に限定されないが、前述のセルロースアシレートフィルムの少なくとも片面に、金属膜、金属酸化物膜などを積層することによって透明電極を設けることができる。中でも透明性、導電性、機械的特性の点から、金属酸化物膜が好ましく、なかでも酸化スズを主として酸化亜鉛を2〜15%含む酸化インジウムの薄膜が好ましく使用できる。これら技術の詳細は例えば、特開2001−125079号や特開2000−227603号各公報などに公開されている。
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[製造例1]
(セルロースアシレートフィルムの作製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液Aを調製した。
<セルロースアシレート溶液A組成>
置換度2.86のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール 11質量部
別のミキシングタンクに、下記の組成物を投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液B−1〜B−6を調製した。
Figure 0004771692
<セルロースアセテートフィルム試料001の作製>
セルロースアシレート溶液Aを477質量部に、添加剤溶液B−1の40質量部を添加し、充分に攪拌して、ドープを調製した。ドープを流延口から0℃に冷却したドラム上に流延した。溶媒含有率70質量%の場外で剥ぎ取り、フィルムの巾方向の両端をピンテンター(特開平4−1009号公報の図3に記載のピンテンター)で固定し、溶媒含有率が3〜5質量%の状態で、横方向(機械方向に垂直な方向)の延伸率が3%となる間隔を保ちつつ乾燥した。その後、熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み80μmのセルロースアセテートフィルム試料001を作製した。
<セルロースアセテートフィルム試料002〜003、101〜105の作製>
セルロースアセテートフィルム001の作製において添加剤溶液、および厚みを表2のものに変更した以外はセルロースアセテートフィルム試料001と同様にしてセルロースアセテートフィルム試料002〜003、101〜105を作製した。これら試料の波長380nmおよび波長350nmにおける分光透過率を測定したところ、いずれの試料でも波長380nmの透過率が45%以上95%以下となるが、波長分散調整剤を添加した試料でのみ波長350nmにおいて透過率が10%以下であることがわかった。
Figure 0004771692
[製造例2]
(セルロースアシレートフィルムの作製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液Cを調製した。
<セルロースアシレート溶液C組成>
置換度2.86のセルロースアセテート 100質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール 11質量部
別のミキシングタンクに、下記表3の組成物を投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液B−7〜B−19を調製した。セルロースアシレート溶液Cの465質量部に、添加剤溶液B−7〜19の40質量部を添加して厚み80μmのセルロースアセテートフィルム試料試料004〜007、106〜114を作製した。これら試料のドープ溶液の透明度はいずれも85%以上と良好であり、光学的異方性を低下させる化合物、波長分散調整剤ともにセルロースアシレートのドープ溶液に十分に相溶していることを確認した。またこれら試料のヘイズはいずれも0.01〜2%の範囲にありフィルムにした際にも透明度が十分であることを確認した。さらに、これら試料のガラス転移温度Tgを測定したところ、光学的異方性低下剤や波長分散調整剤を添加していない比較試料004を除いてはいずれも80〜165℃であることを確認した。
Figure 0004771692
[製造例3]
(セルロースアセテート溶液の調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Dを調製した。
(セルロースアセテート溶液D組成)
酢化度2.86のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
(マット剤溶液の調製)
平均粒子サイズ16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒子サイズ16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液D 10.3質量部
(添加剤溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。光学的異方性を低下する化合物および波長分散調整剤については下記表4に示すものを用いた。
(添加剤溶液組成)
光学的異方性を低下する化合物 49.3質量部
波長分散調整剤 7.6質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液D 12.8質量部
(セルロースアセテートフィルム試料115の作製)
上記セルロースアセテート溶液Dを94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学的異方性を低下する化合物および波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.8%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させセルロースアセテートフィルムを製造した。できあがったセルロースアセテートフィルムの残留溶剤量は0.2%であり、膜厚は40μmであった。
(セルロースアセテートフィルム試料008〜011、116〜128の作製)
添加剤溶液中の光学的異方性を低下する化合物および波長分散調整剤の種類および量を表4の内容に変更した以外は同様にしてセルロースアセテートフィルム試料008〜011、116〜128を作製した。表4には試料115作製の溶液組成も記入した。これら試料の相対湿度10%と相対湿度80%での膜厚方向のレターデーションの差ΔRth(=Rth10%RH−Rth80%RH)を測定したところ、光学的異方性低下剤を添加していない比較試料008、009および光学的異方性低下剤の代わりに可塑剤ビフェニルジフェニルホスフェート(BDP)を添加した比較試料010、011においてはΔRthが30nm以下にならず光学的異方性の湿度依存性が大きかった。一方、光学的異方性低下剤を含む試料115〜128においてはΔRthが0〜30nmの範囲にあり、湿度依存性が低下していることを確認した。またこれら試料の25℃80%RHにおける平衡含水率を測定したところ、比較試料008以外においてはいずれも4%以下であり光学的異方性低下剤や波長分散調整剤の添加によりセルロースアシレートフィルムが疎水化されていることが確認できた。さらにこれら試料の60℃、95%RH、24hrの透湿度(80μm換算)を測定したところ、比較試料008以外においてはいずれも400g/m2・24hr以上2000g/m2・24hr以下であり、また比較試料009、010と比較して光学的異方性低下剤や波長分散調整剤を添加した試料115〜128はいずれも透湿度が良化していることが確認できた。また、比較試料011以外の試料ではいずれもフィルムの白濁はなく、十分に透明なフィルムが作成できたが、比較試料011は添加化合物の総量がセルロースアシレートに対して49%と高く、5〜45%の範囲を超えており、この場合はフィルムが白濁して化合物が析出し(泣き出し)、透明性を持ったセルロースアシレートフィルムとしては評価できなかった。
また、試料126と127においては、80℃、90%RHの条件に48時間放置した際の質量変化を測定したところ、試料126は−0.12%、試料127は−0.02%であった。波長分散調整剤としてベンゾトリアゾール系化合物であるUV−21、UV−22、UV−23を用いたが、分子量が320以下であるUV−23(分子量315.5)を含まない試料127の方が試料126よりも保留性の点で有利であることが確認できた。
Figure 0004771692
[製造例4]
(セルロースアシレートフィルムの作製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液Eを調製した。この際、置換度2.49、2.86、2.92の三種のセルロースアシレートを用いた(表5)。
<セルロースアシレート溶液E組成>
セルロースアセテート 100質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール 11質量部
別のミキシングタンクに、下記表5の組成物を投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液B−20〜B−25を調製した。セルロースアシレート溶液Eの465質量部に、添加剤溶液B−20〜25の40質量部を添加して厚み40μmのセルロースアセテートフィルム試料試料129〜132および比較試料012〜013を作製した。これら試料について、製造例3と同様に相対湿度10%と相対湿度80%での膜厚方向のレターデーションの差ΔRth(=Rth10%RH−Rth80%RH)、25℃80%RHにおける平衡含水率、60℃、95%RH、24hrの透湿度(80μm換算)、80℃90%RH、48時間後の質量変化、60℃95%RH、24時間後の寸度変化および弾性率を測定したところ、全置換度2.92のセルロースアシレートフィルムを用い、さらに光学的異方性低下剤、波長分散調整剤を含む試料129〜132は置換度2.49の比較試料012と比較していずれも良化していることが確認できた。
Figure 0004771692
[製造例5]
(セルロースアシレートフィルムの作製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液Fを調製した。この際、全置換度2.85(アセチル置換度2.06+プロピニル置換度0.79)および全置換度2.70(アセチル置換度1.93+プロピニル置換度0.77)の2種類のセルロースアシレートフィルムを用いた。
<セルロースアシレート溶液F組成>
セルロースアシレート 100質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール 11質量部
別のミキシングタンクに、下記表6の組成物を投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液B−26〜B−31を調製した。セルロースアシレート溶液Fの465質量部に、添加剤溶液B−26〜B−31の40質量部を添加して厚み40μmのセルロースアシレートフィルム試料試料133〜139を作製した。これら試料について、製造例3と同様に相対湿度10%と相対湿度80%での膜厚方向のレターデーションの差ΔRth(=Rth10%RH−Rth80%RH)、25℃80%RHにおける平衡含水率、および60℃、95%RH、24hrの透湿度(80μm換算)を測定したところ、全置換度2.85または全置換度2.70のセルロースアシレートを用い、さらに光学的異方性低下剤、波長分散調整剤を含む試料133〜139は製造例3の比較試料008〜010と比較していずれも良化していることが確認できた。
Figure 0004771692
[製造例6]
(セルロースアシレートフィルムの作製)
アセチル置換度2.92のセルロースアシレートを用い、下記表7の組成物を用いる以外は製造例3と同様にして厚み80または40μmのセルロースアセテートフィルム試料140〜145を作製した(表7)。
Figure 0004771692
[製造例7]
(セルロースアシレートフィルムの作製)
全置換度2.70(アセチル置換度1.0+ブチリル置換度1.7)のセルロースアシレートを用い、下記表8の組成物を用いる以外は製造例3と同様にして厚み80または40μmのセルロースアセテートフィルム試料146〜150を作製した(表8)。
Figure 0004771692
製造例1〜5で得られたセルロースアシレートフィルム試料101〜139および比較試料001〜011の、光学特性の評価結果を表9〜12に記載する。光学的異方性を低下する化合物を用いた試料101〜139は、これらの化合物を用いていない比較試料001〜006、008〜009および一般的な可塑剤でLogPが7.3と本発明想定外である、ビフェニル−ジフェニルフォスフェート(BDP)を用いた比較試料007、010に比較して、いずれもRe(630)、Rth(630)ともに十分な低下が見られ、光学的にほぼ等方性に近づいている。また波長分散を調整する化合物を併用した試料は、比較試料に対していずれの試料も|Re(400)−Re(700)|、|Rth(400)−Rth(700)|ともに十分な低下が見られ、波長分散がゼロに近づいている。
Figure 0004771692
Figure 0004771692
Figure 0004771692
Figure 0004771692
[参考例1]
(偏光板の作製)
製造例1で得たセルロースアセテートフィルム試料101を、1.5規定の水酸化ナトリウム水溶液に、55℃で2分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。このようにして、セルロースアシレートフィルムの表面をケン化した。
続いて、厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して偏光膜を得た。ポリビニルアルコール(クラレ製PVA−117H)3%水溶液を接着剤として、アルカリけん化処理したセルロースアシレートフィルム試料101を2枚用意して偏光膜を間にして貼り合わせ、両面がセルロースアシレートフィルム101によって保護された偏光板を得た。この際両側のセルロースアシレートフィルム試料101の遅相軸が偏光膜の透過軸と平行になるように貼り付けた。同様にして製造例1〜7の試料102〜150および製造例2の比較試料004についても偏光板を作製した。セルロースアシレートフィルム試料101〜150、比較試料004はいずれも延伸したポリビニルアルコールとの貼合性は十分であり、優れた偏光板加工適性を有していた。この偏光板を以下、偏光板101〜150、偏光板004という。
(参考比較例1)
参考例1において、偏光膜の保護を上記セルロースアシレートフィルム2枚で行う代わりに、市販のポリカーボネートフィルム「パンライトC1400」(帝人化成製)2枚を用いて同様の操作で偏光板を作製した。しかし延伸したポリビニルアルコールとの貼合性が不十分であり、ポリカーボネートフィルムは偏光膜の保護フィルムとして機能できず、偏光板加工適性に問題があった。
(参考比較例2)
参考例1において、偏光膜の保護を上記セルロースアシレートフィルム2枚で行う代わりに、厚さ80μmのアートンフィルム(JSR製)2枚を用いて同様の操作で偏光板を作製した。しかし延伸したポリビニルアルコールとの貼合性が不十分であり、アートンフィルムは偏光膜の保護フィルムとして機能できず、偏光板加工適性に問題があった。
(偏光板耐久性)
参考例1で作製したセルロースアシレートフィルム試料101〜150および比較試料004を用いた偏光板を60℃95%RHの条件で500時間放置した後の偏光度を評価したところ、試料101〜150を用いた偏光板の偏光特性は比較試料004を用いた偏光板に対していずれも優れており、光学的異方性を低下する化合物または波長分散調整剤の添加(比較試料004はどちらも無添加)により、セルロースアシレートフィルムを偏光板加工した際の耐久性が向上していることが確認できた。
[実施例1](VA型型液晶表示装置への実装評価)
<偏光板の作製>
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光膜を製作し、ポリビニルアルコール系接着剤を用いて、表13の保護膜1に指定したセルロースアシレートフィルムを偏光膜の片側に貼り付けた。続いて、市販のセルロースアセテートフィルム(フジタックTF80UL、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、この偏光膜の反対側に貼り付け、実施装置1〜6、比較装置1〜5の用の第1偏光板を形成した。
次に、表13の保護膜1に指定したセルロースアセテートフィルムを偏光膜の片側に貼り付けた。続いて、市販のセルロースアセテートフィルム(フジタックTF80UL、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、この偏光膜の反対側に貼り付け、実施装置1〜6、比較装置1〜5の用の第2偏光板を形成した。
<位相差フィルムの作製>
特開2003−315556号公報の実施例1に記載の光学補償A層と同様の方法にて、Re(589)77nm、Rth(589)47nmの位相差フィルム1を得た。また、特開2003−315556号公報の実施例2に記載の光学補償B層と同様の方法にて、Re(589)1.5nm、Rth(589)207nmの位相差フィルム2を得た。
(面内のレターデーションRe、膜厚方向のレターデーションRthの測定方法)
試料30mm×40mmを、25℃、60%RHで2時間調湿し、Re(λ)は自動複屈折計KOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定した。また、Rth(λ)は前記Re(λ)、面内の遅相軸を傾斜軸としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基に、セルロースアシレートフィルムについては、平均屈折率の仮定値1.48および膜厚を入力し算出した。
また位相差フィルム1については、平均屈折率として1.52を用いた。
また位相差フィルム2については、平均屈折率として1.6を用いた。
<VA型液晶表示装置への実装>
上記のようにして得られた位相差フィルム1と第1偏光板を、表13に示す組合せで接着剤で貼り合せた。この際位相差フィルム1のnx方向と第1偏光板の吸収軸が直交するように貼り合せた。次に、位相差フィルム2と第2偏光板を、表13に示す組合せで接着剤で貼り合せた。この際位相差フィルム2のnx方向と第2偏光板の吸収軸が平行となるように貼り合せた。
これらの位相差フィルム1と第1偏光板の貼合せ品1、位相差フィルム2と第2偏光板の貼合せ品2を、表13に示す組み合わせで、接着剤でVA液晶パネルに貼り合わせた。
この際、組合せ品1を第1偏光板の吸収軸がパネル水平方向になるよう、視認側に配置し、組合せ品2を第2偏光板の吸収軸がパネル鉛直方向となるよう、バックライト側に配置した。
またこの際、貼合せ品1の位相差フィルム1がVA液晶パネル側になり、液晶セルの反対側には、貼合せ品2の位相差フィルムがVA液晶パネル側になるように、それぞれ粘着剤を介して貼り合せた。
<評価方法>
以上のようにして得られた液晶表示装置において、装置正面からの方位角方向45度、極角方向70度における黒表示時の光漏れ率を測定した。この値が小さいほど斜め45度方向での光漏れが少なく、表示装置のコントラストが良いことを示し、液晶表示装置の視野角特性を評価できる。
◎:光漏れが認識できない
○:光漏れが軽度
△:光漏れが中程度
△×:大きな光漏れがある(許容不可)
×:激しい光漏れがある(許容不可)
黒色味変化は、極角60度における全方位角方向の変化(Δuv)を測定した。
◎:色味変化が極めて小さい
○:色味変化が軽度
△:色味変化が中程度
△×:色味変化がある(許容不可)
×:激しい色味変化がある(許容不可)
コーナームラは、液晶表示装置を50℃95%RHで120時間サーモ処理して、25℃60%RHに20時間調湿後、バックライトを点灯させ、黒表示での光漏れの評価を行った。評価には、20インチの液晶パネルを使用した。
◎:4隅の光漏れがない
○:4隅のうち、どこかにうっすらと光漏れがある
△:4隅のうち、1〜3箇所に光漏れがある
△×:4隅に光漏れがある(許容不可)
×:4隅にはっきりとした光漏れがある(許容不可)
<評価結果>
実施装置1〜6は、表13に示すように、比較装置1〜5に比べて、黒表示時の光もれ、黒色味変化、コーナームラのいずれかまたはすべてが優れていた。これにより、各偏光板と液晶パネルとの間に位相差フィルムを配置し、かつ、0≦Re(630)≦10かつ|Rth(630)|≦25を満たすセルローストリアシレートフィルムを偏光板の保護膜として使用することにより、視野角特性に優れ、コーナームラが軽減された、優れた表示特性を有する液晶表示装置を構成できることがわかる。
Figure 0004771692
光学的異方性(Re、Rth)が一定以下に小さいセルロースアシレートフィルムを、偏光板の保護膜として用いることによって、視野角特性に優れ、コーナームラが軽減された、優れた表示特性を有するVA型液晶表示装置を提供することができる。

Claims (7)

  1. 表面に垂直配向処理を施した上下二枚の基板間に誘電率異方性が負の液晶を挟持し、前記液晶の配向が、電圧無印加時にはほぼ垂直に、所定の電圧を印加した時にはほぼ水平となり、前記所定の電圧より小さい電圧を印加した時には斜めになる配向である液晶パネルと、互いの吸収軸が直交するように前記液晶パネルの両側に配置された第1と第2の偏光板と、前記液晶パネルと前記第1の偏光板の間に設けられた第1の位相差フィルムと、前記液晶パネルと前記第2の偏光板の間に設けられた第2の位相差フィルムとを備え、前記第1の位相差フィルムが、
    50≦Re (589) ≦100かつ30≦Rth (589) ≦80
    を満たし、前記第2の位相差フィルムが
    Re (589) ≦20かつ100≦Rth (589) |≦300
    を満たし、前記偏光板は、偏光膜と該偏光膜を挟持する一対の保護膜とから構成され、前記保護膜の少なくとも1枚は、
    0≦Re(630)≦10かつ|Rth(630)|≦25
    を満たすセルロースアシレートフィルムであり、
    前記セルロースアシレートフィルムは、アシル置換度が2.85〜3.00のセルロースアシレート、または、アセチル基、プロピオニル基およびブタノイル基の少なくとも2種類からなる場合においてはその全置換度が2.50〜3.00のセルロースアシレートに、Re(λ)およびRth(λ)を低下させる化合物の少なくとも1種を、セルロースアシレート固形分に対して0.01〜30質量%含むものであることを特徴とする液晶表示装置。
  2. 前記セルロースアシレートフィルムが、
    0≦Re(630)≦5かつ|Rth(630)|≦10
    を満たすことを特徴とする請求項に記載の液晶表示装置。
  3. 前記セルロースアシレートフィルムが、
    0≦Re(630)≦3かつ|Rth(630)|≦5
    を満たすことを特徴とする請求項1または2に記載の液晶表示装置。
  4. 前記セルロースアシレートフィルムは、膜厚方向のレターデーションRthを低下させる化合物を、下記式(I)、(II)を満たす範囲で少なくとも1種含有することを特徴とする請求項1〜のいずれか1項に記載の液晶表示装置。
    (I)(Rth(A)−Rth(0))/A≦−1.0
    (II)0.01≦A≦30
    ここで、
    Rth(A):Rthを低下させる化合物をA%含有したフィルムのRth(nm)
    Rth(0):Rthを低下させる化合物を含有しないフィルムのRth(nm)
    A:フィルム原料ポリマーの質量を100としたときの化合物の質量(%)
    である。
  5. 前記セルロースアシレートフィルムが、アシル置換度が2.85〜3.00のセルロースアシレートであることを特徴とする請求項1〜のいずれか1項に記載の液晶表示装置。
    液晶表示装置。
  6. 前記セルロースアシレートフィルムは、フィルムの|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含むことを特徴とする請求項1〜のいずれか1項に記載の液晶表示装置。
  7. 前記セルロースアシレートフィルムの膜厚が10〜120μmであることを特徴とする請求項1〜のいずれか1項に記載の液晶表示装置。
JP2004378873A 2004-12-28 2004-12-28 液晶表示装置 Expired - Fee Related JP4771692B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004378873A JP4771692B2 (ja) 2004-12-28 2004-12-28 液晶表示装置
EP05824568A EP1831758A4 (en) 2004-12-28 2005-12-28 LIQUID CRYSTAL DISPLAY DEVICE, OPTICAL COMPENSATION SHEET, AND POLARIZER AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
US11/794,355 US8049850B2 (en) 2004-12-28 2005-12-28 Liquid crystal display device, optical compensatory sheet, and polarizer and liquid crystal display device employing the same
CNB2005800451787A CN100547466C (zh) 2004-12-28 2005-12-28 液晶显示装置、光学补偿片、和偏振器以及使用偏振器的液晶显示装置
TW094146974A TWI405011B (zh) 2004-12-28 2005-12-28 液晶顯示裝置、光學補償片、及偏光片、以及用它之液晶顯示裝置
PCT/JP2005/024262 WO2006070936A1 (en) 2004-12-28 2005-12-28 Liquid crystal display device, optical compensatory sheet, and polarizer and liquid crystal display device employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378873A JP4771692B2 (ja) 2004-12-28 2004-12-28 液晶表示装置

Publications (2)

Publication Number Publication Date
JP2006184640A JP2006184640A (ja) 2006-07-13
JP4771692B2 true JP4771692B2 (ja) 2011-09-14

Family

ID=36737794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378873A Expired - Fee Related JP4771692B2 (ja) 2004-12-28 2004-12-28 液晶表示装置

Country Status (2)

Country Link
JP (1) JP4771692B2 (ja)
CN (1) CN100547466C (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855493B2 (ja) * 2008-04-14 2012-01-18 日東電工株式会社 光学表示装置製造システム及び光学表示装置製造方法
JP5202490B2 (ja) * 2008-09-26 2013-06-05 富士フイルム株式会社 Va型液晶表示装置
JP5529512B2 (ja) 2009-07-23 2014-06-25 富士フイルム株式会社 Va型液晶表示装置
JP2011081021A (ja) 2009-09-09 2011-04-21 Fujifilm Corp Va型液晶表示装置
US8395727B2 (en) 2009-11-30 2013-03-12 Fujifilm Corporation VA mode liquid crystal display device
JP5529672B2 (ja) 2009-11-30 2014-06-25 富士フイルム株式会社 液晶表示装置
JP5611575B2 (ja) 2009-11-30 2014-10-22 富士フイルム株式会社 Va型液晶表示装置
JP5297360B2 (ja) 2009-11-30 2013-09-25 富士フイルム株式会社 Va型液晶表示装置
JP5688328B2 (ja) * 2010-05-25 2015-03-25 富士フイルム株式会社 Ipsモード及びffsモード液晶表示装置
CN102262315B (zh) * 2010-05-25 2015-09-30 富士胶片株式会社 Ips模式及ffs模式液晶显示装置
JP5681404B2 (ja) * 2010-07-22 2015-03-11 富士フイルム株式会社 光反射性フィルムの製造方法、及び光反射性フィルム
JP5821205B2 (ja) * 2011-02-04 2015-11-24 ソニー株式会社 光学素子およびその製造方法、表示装置、情報入力装置、ならびに写真
JP2012189818A (ja) 2011-03-10 2012-10-04 Fujifilm Corp 液晶表示装置
WO2013191180A1 (ja) * 2012-06-19 2013-12-27 新日鉄住金化学株式会社 表示装置及びその製造方法、並びに、表示装置支持基材用ポリイミドフィルム及びその製造方法
JP2014098883A (ja) * 2012-09-28 2014-05-29 Fujifilm Corp 光学フィルム及びその製造方法、偏光板並びに液晶表示装置
JP6013870B2 (ja) * 2012-10-04 2016-10-25 富士フイルム株式会社 光学フィルム及びその製造方法、偏光板並びに液晶表示装置
TW201500205A (zh) 2013-05-21 2015-01-01 Fujifilm Corp 偏光板及其製造方法以及光學膜材料
KR102213582B1 (ko) * 2016-11-29 2021-02-05 후지필름 가부시키가이샤 중합성 액정 조성물, 광학 이방성막, 광학 필름, 편광판, 화상 표시 장치 및 유기 일렉트로 루미네선스 표시 장치
US11822108B2 (en) 2017-04-07 2023-11-21 Fujifilm Corporation Polarizing element, circularly polarizing plate, and image display device
WO2018186500A1 (ja) * 2017-04-07 2018-10-11 富士フイルム株式会社 偏光素子、円偏光板および画像表示装置
JP7311958B2 (ja) * 2018-11-09 2023-07-20 住友化学株式会社 垂直配向液晶硬化膜およびそれを含む積層体
CN112526788B (zh) * 2019-09-17 2022-10-28 江苏和成显示科技有限公司 液晶显示器件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994214B2 (ja) * 1993-10-08 1999-12-27 帝人株式会社 セルロースアシレートフイルムの製造法
JP4067734B2 (ja) * 2000-03-06 2008-03-26 富士フイルム株式会社 セルロースエステル用可塑剤、セルロースエステルフイルムおよびその製造方法
JP3763401B2 (ja) * 2000-05-31 2006-04-05 シャープ株式会社 液晶表示装置
JP4686916B2 (ja) * 2001-07-02 2011-05-25 コニカミノルタホールディングス株式会社 位相差フィルムとその製造方法及び複合偏光板
JP2003145563A (ja) * 2001-11-16 2003-05-20 Fuji Photo Film Co Ltd セルロースアシレートフィルム及びそれを用いた偏光板
JP2004148811A (ja) * 2002-10-08 2004-05-27 Fuji Photo Film Co Ltd セルロースアシレートフイルムの製造方法、セルロースアシレートフイルム、並びにそれを用いた光学機能性シート、偏光板、液晶表示装置及びハロゲン化銀写真感光材料
JP4155917B2 (ja) * 2002-12-19 2008-09-24 日東電工株式会社 複屈折性光学フィルム、それを用いた楕円偏光板、および、それらを用いた液晶表示装置
JP2004271695A (ja) * 2003-03-06 2004-09-30 Dainippon Printing Co Ltd 液晶層からなる位相差フィルム及びその製造方法
JP4475507B2 (ja) * 2003-04-07 2010-06-09 大日本印刷株式会社 積層位相差層の製造方法
JP2005148519A (ja) * 2003-11-18 2005-06-09 Konica Minolta Opto Inc 偏光板及び表示装置

Also Published As

Publication number Publication date
CN101107559A (zh) 2008-01-16
JP2006184640A (ja) 2006-07-13
CN100547466C (zh) 2009-10-07

Similar Documents

Publication Publication Date Title
JP5919347B2 (ja) 光学フィルム、偏光板、液晶表示装置、及び光学フィルムの製造方法
JP4404735B2 (ja) セルロースアシレートフィルム、それを用いた光学補償フィルム、偏光板
JP4055861B2 (ja) 透明フイルムおよびそれを用いた液晶表示装置
JP4771692B2 (ja) 液晶表示装置
JP4740604B2 (ja) 光学補償フィルム、その製造方法、偏光板および液晶表示装置
JP4074872B2 (ja) 光学補償偏光板、画像表示装置、及び液晶表示装置
JP2012128430A (ja) 高分子フィルム、それを用いた光学補償フィルム、偏光板、および液晶表示装置
JP2006293255A (ja) 光学フィルム、光学補償フィルム、偏光板、液晶表示装置、および自発光型表示装置
JP4491353B2 (ja) 光学フィルム、光学フィルムの製造方法、光学補償フィルム、偏光板及び液晶表示装置
JP2006291186A (ja) セルロースアシレートフィルム及びその製造方法、光学補償フィルム、偏光板および液晶表示装置
JP2007072390A (ja) セルロースアシレートフイルム並びにそれを用いた光学補償フィルム、偏光板及び液晶表示装置。
KR101268747B1 (ko) 셀룰로오스 아실레이트 필름, 광학 보상 필름, 편광 필름 및 액정표시장치
JP5232356B2 (ja) セルロースアシレートフィルム、それを用いた光学補償フィルム、偏光板、および液晶表示装置
JP2006257143A (ja) セルロースアシレートフィルム、並びにそれを用いた偏光板及び液晶表示装置
KR101239578B1 (ko) 액정 표시 장치
JP2006206826A (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置
JP2008112172A (ja) Ipsモード液晶表示装置用光学補償偏光板、画像表示装置、及び液晶表示装置
JP4989928B2 (ja) セルロースアシレートフィルム、並びにそれを用いた偏光板及び液晶表示装置
JP2006178226A (ja) 液晶表示装置
JP2006264028A (ja) 溶液製膜方法
JP2006194923A (ja) ベンド配向モードの液晶表示装置
JP2007169523A (ja) セルロース誘導体フィルム、該セルロース誘導体フィルムを用いた光学補償フィルム、偏光板および液晶表示装置
JP2006195205A (ja) 液晶表示装置及び偏光板
JP2006317922A (ja) セルロースアシレートフィルム、光学補償フィルム、これらの製造方法、偏光板および液晶表示装置
JP5492916B2 (ja) セルロースアシレートフイルム並びにそれを用いた光学補償フィルム、偏光板及び液晶表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

LAPS Cancellation because of no payment of annual fees
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370