JP2006206826A - セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置 - Google Patents

セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置 Download PDF

Info

Publication number
JP2006206826A
JP2006206826A JP2005023431A JP2005023431A JP2006206826A JP 2006206826 A JP2006206826 A JP 2006206826A JP 2005023431 A JP2005023431 A JP 2005023431A JP 2005023431 A JP2005023431 A JP 2005023431A JP 2006206826 A JP2006206826 A JP 2006206826A
Authority
JP
Japan
Prior art keywords
cellulose acylate
film
rth
acylate film
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005023431A
Other languages
English (en)
Inventor
Tei Daimatsu
禎 大松
Akihiro Matsufuji
明博 松藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005023431A priority Critical patent/JP2006206826A/ja
Publication of JP2006206826A publication Critical patent/JP2006206826A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】 光学異方性が小さく、環境変化に対して光学異方性(Re、Rth)の変化が小さく、液晶表示装置に用いた場合の視野角依存性が小さいセルロースアシレートフィルム、該フィルムの製造方法、該フィルムを用いた光学補償フィルム、偏光板および液晶表示装置を提供する。
【解決手段】 正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(I)、(II)を満たすセルロースアシレートフィルム、セルロースアシレートと反応性金属化合物とを含有するセルロースアシレート組成物を流延してなる上記フィルムの製造。(I)0≦Re(630)≦10かつ|Rth(630)|≦25(II)(RthA)−(RthB)≦25nm(ここで、(RthA)は25℃および10%RHの条件下でのRth(630)、(RthB)は25℃および80%RHの条件下でのRth(630)を示す。)
【選択図】 なし

Description

本発明はセルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置に関する。
従来、セルロースアシレートフィルムに代表される高分子フィルムはその強靭性と難燃性から写真用支持体や各種光学材料に用いられてきた。特に、近年は液晶表示装置用の光学透明フィルムとして多く用いられている。特にセルロースアシレートフィルムは、光学的に透明性が高いことと、光学的に等方性が高いことから、液晶表示装置のように偏光を取り扱う装置のための光学材料として優れており、これまで偏光子の保護フィルムや、斜め方向からの見た表示を良化(視野角補償)できる光学補償フィルムの支持体として用いられてきた。
液晶表示装置に用いられる偏光板は、偏光子の少なくとも片側に偏光子の保護フィルムが貼合されたものである。一般的な偏光子は、延伸されたポリビニルアルコール(PVA)系フィルムをヨウ素または二色性色素で染色することにより得られる。この偏光子の保護フィルムは、光学的等方性に優れることが重要であり、偏光子の保護フィルムの光学特性が偏光板の特性を大きく左右する。そのため、多くの場合、偏光子の保護フィルムとしてはPVAに対して直接貼り合わせることができる、セルロースアシレートフィルム、なかでもトリアセチルセルロースフィルムが用いられている。
偏光子に保護フィルムを貼り合わせる前には、偏光子との接着性を良化させる目的で、保護フィルムの貼り合せ面に対し親水化処理等の表面処理を行うことがある。親水化処理としては、一般的にアルカリケン化処理が用いられることが多く、その他の方法としては、プラズマ処理、コロナ処理等による方法も提案されている(例えば特許文献1、特許文献2)。
一方、最近の液晶表示装置においては、視野角特性の改善がより強く要求されるようになっており、偏光子の保護フィルムや光学補償フィルムの支持体などの光学透明フィルムは、より光学的に等方性であることが求められている。光学的に等方性であるとは、すなわち光学フィルムの複屈折と厚みとの積で表されるレターデーションが小さいことである。とりわけ、斜め方向からの表示良化のためには、正面レターデーション(Re)だけでなく、膜厚方向のレターデーション(Rth)を小さくする必要がある。具体的には光学透明フィルムの光学特性を評価した際に、フィルム正面から測定したReが小さく、角度を変えて測定してもそのReが変化しないことが要求される。
これまでに、Reを小さくしたセルロースアシレートフィルムはあったが、角度によるRe変化が小さい、すなわちRthが小さいセルロースアシレートフィルムは作製が難しかった。そこでセルロースアシレートフィルムの代わりにポリカーボネート系フィルムや熱可塑性シクロオレフィンフィルムを用いて、Reの角度変化の小さい光学透明フィルムの提案がされている(例えば、特許文献3,4、製品としてはZEONOR(日本ゼオン社製)や、ARTON(JSR社製)など)。しかし、これらの光学透明フィルムは、偏光子の保護フィルムとして使用する場合、フィルムが疎水的なためにPVAとの貼合性に問題がある。またフィルム面内全体の光学特性が不均一である問題も残っている。この解決法として、セルロースアシレートフィルムの光学異方性をより低下させることが有効であると期待される。
セルロースアシレートフィルムの製造において、一般的に製膜性能を良化するため可塑剤と呼ばれる化合物が添加される。可塑剤の種類としては、リン酸トリフェニル、リン酸ビフェニルジフェニルのようなリン酸トリエステル、フタル酸エステル類等が知られている(例えば、非特許文献1参照)。これら可塑剤の中には、セルロースアシレートフィルムの光学異方性を低下させる効果を有するものが知られており、例えば、特定の脂肪酸エステル類が開示されている(例えば、特許文献5参照)。しかしながら、従来知られているこれらの化合物を用いたセルロースアシレートフィルムの光学異方性を低下させる効果は十分とはいえない。
近年、液晶表示装置は高精細化がますます進み、偏光板用保護フィルムとしては、優れた光透過性、光学的な等方性、偏光子との良好な接着性、優れた平面性、耐久性が求められている。とりわけ、環境条件が変化してもこれらの特性の変化を抑制し、表示画像の視認性並びに偏光板の耐久性を改善することが重要となっている。
ここで、偏光板の保護フィルムに用いられるセルロースアシレート自体は非常に親水的なポリマーであり透湿性が高いため、様々な疎水化剤を添加し透水度を低下させる方法,更にはセルロースアシレート溶液中に重合性モノマーや反応性金属化合物を含有させて製膜工程で重合してフィルムの湿度に対する機械的強度を改良する方法(特許文献6、7)、等が提案されている。しかし、光学的な等方性との両立や、更に温度及び湿度が変化した場合における光学的な等方性等の変動抑制に関する技術は開示されていない。
特開2002−328224号公報 特開2000−356714号公報 特開2001−318233号公報 特開2002−328233号公報 特開2001−247717号公報 特開2002−20410号公報 特開2003−171500号公報 プラスチック材料講座、第17巻、日刊工業新聞社、「繊維素系樹脂」、121頁(昭和45年)
本発明の目的は、光学異方性が小さく、更に環境変化に対して光学異方性(Re、Rth)の変化が小さく、また液晶表示装置に用いた場合の視野角依存性が小さいセルロースアシレートフィルムを提供することである。
本発明の他の目的は、薄膜でも、環境条件が変動しても優れたフィルムの物理的特性(機械的強度、耐湿性等)を維持できる、長尺ロール形態のセルロースアシレートフィルムの製造方法を提供することである。
本発明の他の目的は、前記セルロースアシレートフィルムを用いた、環境変化に対して光学異方性の変化が小さくかつ視野角依存性が小さい光学補償フィルムおよび偏光板を提供することである。
本発明のさらに他の目的は、前記セルロースアシレートフィルム、光学補償フィルムまたは偏光板を用いることにより、環境が変化しても画像表示性能の低下がない、画像表示性能に優れた液晶表示装置を提供することである。
本発明者らによる鋭意検討の結果、光学異方性を十分に低下させるとともに、反応性金属化合物を用いたセルロースアシレートフィルムが、優れた耐久性を有し、かつさまざまな環境下であっても光学性能や機械強度等の膜物性を維持できることがわかった。
さらに、本発明者らによる鋭意検討の結果、波長200〜400nmの紫外領域に吸収を持つ化合物を使用することによりフィルムの経時後の着色を防止することができ、またフィルムのRe(λ)およびRth(λ)の波長分散を制御できる化合物を用いることによって波長400nmと700nmでのRe、Rthの差、|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を小さくできることを見出した。
また、実際にセルロースアシレートフィルムの作製にあたってこれらの化合物がセルロースアシレートとよく相溶し、フィルムが白濁したりすることなく、フィルムの物理的強度も十分であることも確認できた。
また本発明者らは、鋭意検討した結果、セルロースアシレートのアシル置換度が2.50〜3.00と高いものを用いることによっても、上記課題が解決できることを見出し、合わせて、薄膜でも、環境条件が変動してもフィルムの物理的な特性に優れた長尺ロール形態のセルロースアシレートフィルムの製造方法を見出した。
さらに本発明者らは、本発明の光学異方性が小さく波長分散が小さいセルロースアシレートフィルム上に光学異方性層を付設することにより、とくに視野角特性に優れた光学補償フィルムを提供できることを見出した。
さらにまた本発明者らは、前記のセルロースアシレートフィルム、光学補償フィルムあるいはこれらを用いた偏光板を有する液晶表示装置が、視野角依存性が小さく、更に環境が変化しても画像表示性能の低下がない、画像表示性能に優れたものであることを見出した。
すなわち、本発明は以下の通りである。
(1)正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(I)、(II)を満たすことを特徴とするセルロースアシレートフィルム。
(I) 0≦Re(630)≦10かつ|Rth(630)|≦25
(II) (RthA)−(RthB)≦25nm
(ここで、(RthA)は25℃および10%RHの条件下でのRth(630)、(RthB)は25℃および80%RHの条件下でのRth(630)を示す。)
(2)正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(I)を満たし、かつ90℃および5%RHの条件下で150時間静置する前後の寸度変化率が0.1%以下であり、さらに60℃、90%RHの条件下で150時間静置する前後の寸度変化率が0.1%以下であることを特徴とするセルロースアシレートフィルム。
(I) 0≦Re(630)≦10かつ|Rth(630)|≦25
(3)正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(I)を満たし、かつ光弾性係数が、10×10-13cm2/dyne(10-13N/m2)以下であることを特徴とするセルロースアシレートフィルム。
(I) 0≦Re(630)≦10かつ|Rth(630)|≦25
(4)前記セルロースアシレートフィルムが、少なくとも加水分解重縮合が可能な反応性金属化合物の重縮合物を含有することを特徴とする前記(1)〜(3)のいずれかに記載のセルロースアシレートフィルム。
(5)正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(III)を満たすことを特徴とする前記(1)〜(4)のいずれかに記載のセルロースアシレートフィルム。
(III) |Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35
(6)前記セルロースアシレートフィルムが、更に少なくともセルロースアシレートと分子量が3000以下の化合物とを含有することを特徴とする前記(1)〜(5)のいずれかに記載のセルロースアシレートフィルム。
(7)前記分子量が3000以下の化合物が1種類以上の化合物からなり、少なくともオクタノール−水分配係数(LogP値)が0〜7である化合物を含むことを特徴とする前記(6)に記載のセルロースアシレートフィルム。
(8)前記分子量が3000以下の化合物が1種類以上の化合物からなり、少なくとも波長200nm〜400nmの範囲で分光吸収を示す化合物を含むことを特徴とする前記(6)または(7)に記載のセルロースアシレートフィルム。
(9)前記分子量が3000以下の化合物が1種類以上の化合物からなり、少なくとも重合性不飽和二重結合を有する化合物を含むことを特徴とする前記(6)〜(8)のいずれかに記載のセルロースアシレートフィルム。
(10)セルロースアシレートのアシル置換基がアセチル基のみからなり、その全置換度が2.50〜3.00であり、その平均重合度が180〜550であることを特徴とする前記(6)〜(9)のいずれかに記載のセルロースアシレートフィルム。
(11)前記セルロースアシレートのアシレート基がアセチレート、プロピオネート、ブチレートのうちの少なくとも1つ以上からなり、全置換度が2.50以上であることを特徴とする前記(6)〜(9)のいずれかに記載のセルロースアシレートフィルム。
(12)前記セルロースアシレートフィルムの少なくとも片側の面の表面エネルギーが50mN/m以上80mN/m以下であることを特徴とする前記(1)〜(11)のいずれかに記載のセルロースアシレートフィルム。
(13)前記セルロースアシレートフィルムの少なくとも片側の面が表面処理された面であり、該表面処理された面の表面処理前の表面エネルギーが30mN/m以上50mN/m以下であって、かつ表面処理後の表面エネルギーが50mN/m以上80mN/m以下であることを特徴とする前記(12)に記載のセルロースアシレートフィルム。
(14)セルロースアシレートと反応性金属化合物とを少なくとも含有するセルロースアシレート組成物を流延する流延工程を含むセルロースアシレートフィルムの製造方法であって、製造した該セルロースアシレートフィルムの正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(I)を満たすことを特徴とするセルロースアシレートフィルムの製造方法。
(I) 0≦Re(630)≦10かつ|Rth(630)|≦25
(15)前記製造方法が、更にセルロースアシレート組成物を流延する前に加熱する加熱工程を含むことを特徴とする前記(14)に記載のセルロースアシレートフィルムの製造方法。
(16)前記製造方法が、流延工程と、流延して製膜したフィルムを更に加熱する加熱工程を含むことを特徴とする前記(14)または(15)に記載のセルロースアシレートフィルムの製造方法。
(17)前記(1)〜(13)のいずれかに記載のセルロースアシレートフィルムに、
正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が下記式を満たす光学異方性層を積層したことを特徴とする光学補償フィルム。
0≦Re(630)≦200nmかつ0≦|Rth(630)|≦400nm
(18)前記光学異方性層がポリマーフィルムを含有することを特徴とする前記(17)に記載の光学補償フィルム。
(19)固体ポリマーを溶媒に溶解させて液状化し、これを前記(1)〜(13)のいずれかに記載のセルロースアシレートフィルム上に展開して乾燥させた後、伸張処理および/または収縮処理を施して面内で分子を配向させたことを特徴とする請求項18に記載の光学補償フィルム。
(20)ポリマーフィルムにおけるポリマーが、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアリールエーテルケトン、ポリアミドイミドおよびポリエステルイミドから選択された少なくとも1種であることを特徴とする前記(18)または(19)に記載の光学補償フィルム。
(21)前記(1)〜(13)のいずれかに記載のセルロースアシレートフィルム、または前記(17)〜(20)のいずれかに記載の光学補償フィルムを少なくとも1枚、偏光子の保護フィルムとして用いたことを特徴とする偏光板。
(22)表面にハードコート層、防眩層および反射防止層から選択された少なくとも一層を設けたことを特徴とする前記(21)に記載の偏光板。
(23)前記(1)〜(13)のいずれかに記載のセルロースアシレートフィルム、または前記(17)〜(20)のいずれかに記載の光学補償フィルム、前記(21)または(22)に記載の偏光板、のいずれかを用いたことを特徴とする液晶表示装置。
(24)前記(1)〜(13)のいずれかに記載のセルロースアシレートフィルム、または前記(17)〜(20)のいずれかに記載の光学補償フィルム、前記(21)または(22)に記載の偏光板、のいずれかを用いたことを特徴とするVAまたはIPSモードの液晶表示装置。
本発明によれば、光学異方性が小さく、更に環境変化に対して光学異方性(Re、Rth)の変化が小さく、また液晶表示装置に用いた場合の視野角依存性が小さいセルロースアシレートフィルムが提供される。
また本発明によれば、薄膜でも、環境条件が変動しても優れたフィルムの物理的特性(機械的強度、耐湿性等)を維持できる、長尺ロール形態のセルロースアシレートフィルムの製造方法が提供される。
また本発明によれば、前記セルロースアシレートフィルムを用いた、環境変化に対して光学異方性の変化が小さくかつ視野角依存性が小さい光学補償フィルムおよび偏光板が提供される。
また本発明によれば、前記セルロースアシレートフィルム、光学補償フィルムまたは偏光板を用いることにより、環境が変化しても画像表示性能の低下がない、画像表示性能に優れた液晶表示装置が提供される。
以下に本発明のセルロースアシレートフィルムの詳細を説明する。
本発明において、光学異方性(Re、Rth)が小さいセルロースアシレートフィルムとしては、波長630nmにおける正面レターデーションRe(630)が10nm以下(0
≦Re(630)≦10)でかつ、膜厚方向のレターデーションRth(630)の絶対値が25nm以下(|Rth(630)|≦25nm)であることが好ましい。さらに好ましくは、0≦Re(630)≦5かつ|Rth(630)|≦20nmであり、とくに0≦Re(630)≦2かつ|Rth(630)|≦15nmである。さらに、環境変化による光学異方性の変化が小さいセルロースアシレートフィルムとしては、(RthA)−(RthB)≦25nmが好ましく、より好ましくは(RthA)−(RthB)≦15nm、もっとも好ましくは(RthA)−(RthB)≦10nmである(ここで、(RthA)は25℃および10%RHの条件下でのRth(630)、(RthB)は25℃および80%RHの条件下でのRth(630)を示す)。フィルムの光学性能が上記所望の範囲内でない場合には、たとえば液晶パネルで使用する偏光板用の保護フィルムとして使用した場合に、クロスニコル偏光板での遮光時の光漏れが垂直方向、または斜め方向に発生してしまい、液晶パネルでの光漏れを発生させてしまう。また長期使用した場合における光漏れがより顕著となり、耐久性が不足する。
本発明においてはまた、Re(λ)、Rth(λ)の波長400nmと700nmとの差は、|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35であることが好ましい。さらに好ましくは、|Re(400)−Re(700)|≦5かつ|Rth(400)−Rth(700)|≦25であり、|Re(400)−Re(700)|≦3かつ|Rth(400)−Rth(700)|≦15であることが特に好ましい。
[セルロースアシレート原料綿]
本発明に用いられるセルロースアシレート原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えば、丸澤、宇田著、「プラスチック材料講座(17)繊維素系樹脂」日刊工業新聞社(1970年発行)や発明協会公開技報公技番号2001−1745号(7頁〜8頁)に記載のセルロースを用いることができ、本発明のセルロースアシレートフィルムに対しては特に限定されるものではない。
[セルロースアシレート置換度]
次に上述のセルロースを原料に製造される本発明のセルロースアシレートについて記載する。本発明のセルロースアシレートはセルロースの水酸基がアシル化されたもので、その置換基はアシル基の炭素原子数が2のアセチル基から炭素原子数が22のものまでいずれも用いることができる。本発明のセルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸の結合度を測定し、計算によって置換度を得ることができる。測定方法としては、ASTMのD−817−91に準じて実施することが出来る。
上述のように本発明のセルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基へのアシル置換度が2.50〜3.00であることがのぞましい。さらには置換度が2.75〜3.00であることがのぞましく、2.85〜3.00であることがよりのぞましい。
セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸のうち、炭素数2〜22のアシル基としては、脂肪族基でもアリール基でもよく特に限定されず、単一でも2種類以上の混合物でもよい。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよい。これらの好ましいアシル基としては、アセチル、プロピオニル、ブタノイル、へプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テト
ラデカノイル、ヘキサデカノイル、オクタデカノイル、iso−ブタノイル、t−ブタノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル基などを挙げることが出来る。これらの中でも、アセチル、プロピオニル、ブタノイル、ドデカノイル、オクタデカノイル、t−ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルなどが好ましく、アセチル、プロピオニル、ブタノイルがより好ましい。
本発明者が鋭意検討した結果、上述のセルロースの水酸基に置換するアシル置換基のうちで、実質的にアセチレート、プロピオネート、ブチレートのうちの少なくとも1つ以上からなり、全置換度が2.50以上であること、例えば置換度が2.50〜3.00の場合にセルロースアシレートフィルムの光学異方性が低下できることがわかった。より好ましいアシル置換度は2.60〜3.00であり、さらにのぞましくは2.65〜3.00である。また、セルロースの水酸基に置換するアシル置換基がアセチル基のみからなる場合には、フィルムの光学異方性が低下できる事に加え、更に添加剤との相溶性、使用する有機溶剤への溶解性の観点で全置換度が2.50〜3.00、好ましくは2.80〜2.99、さらに好ましくは2.85〜2.95であることがよい。
[セルロースアシレートの重合度]
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で180〜700であり、セルロースアセテートにおいては、180〜550がより好ましく、180〜400が更に好ましく、180〜350が特に好ましい。重合度が高すぎるとセルロースアシレートのドープ溶液の粘度が高くなり、流延によりフィルム作製が困難になる。重合度が低すぎると作製したフィルムの強度が低下してしまう。平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。特開平9−95538号公報に詳細に記載されている。
また、本発明で好ましく用いられるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価され、その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜3.0であることが好ましく、1.0〜2.0であることがさらに好ましく、1.0〜1.6であることが最も好ましい。
低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロースアシレートよりも低くなるため有用である。低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。なお、低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロース100質量部に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量部分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。本発明のセルロースアシレートの製造時に使用される際には、その含水率は2質量%以下であることが好ましく、さらに好ましくは1質量%以下であり、特には0.7質量%以下の含水率を有するセルロースアシレートである。一般に、セルロースアシレートは、水を含有しており2.5〜5質量%が知られている。本発明でこのセルロースアシレートの含水率にするためには、乾燥することが必要であり、その方法は目的とする含水率になれば特に限定されない。本発明のこれらのセルロースアシレートは、その原料綿や合成方法は発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)にて7頁〜12頁に詳細に記載されている。
本発明のセルロースアシレートは置換基、置換度、重合度、分子量分布など前述した範
囲であれば、単一あるいは異なる2種類以上のセルロースアシレートを混合して用いることができる。
[セルロースアシレートへの添加剤]
本発明のセルロースアシレートには、種々の添加剤(例えば、光学的異方性を低下する化合物、波長分散調整剤、微粒子、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、光学特性調整剤など)を加えることができ、これらについて以下に説明する。またその添加する時期はドープ作製工程(セルロースアシレート溶液の作製工程)における何れでも良いが、ドープ作製工程の最後に添加剤を添加し調製する工程を行ってもよい。
これらの添加剤の添加量を調整することにより、本発明の要件である、
(I)0≦Re(630)≦10かつ|Rth(630)|≦25
を満たすことができる。
なお本発明によれば、下記で説明する添加剤の中で、分子量が3000以下のもの、とくにオクタノール−水分配係数(LogP値)が0〜7である化合物、波長200nm〜400nmの範囲で分光吸収を示す化合物、重合性不飽和二重結合を有する化合物が好ましい。
本発明のセルロースアシレートフィルムは、光学異方性、即ち膜厚方向のレターデーションRthを低下させる化合物を、下記式(i)、(ii)をみたす範囲で少なくとも一種含有することがのぞましい。
(i)(Rth(A)−Rth(0))/A≦−1.0
(ii)0.01≦A≦30
[式中、Rth(A)はRthを低下させる化合物をA%含有したフィルムのRth(nm)、Rth(0)はRthを低下させる化合物を含有しないフィルムのRth(nm)、Aはセルロースアシレートの質量を100としたときの化合物の質量(%)である。]
上記式(i)、(ii)は
(i)(Rth(A)−Rth(0))/A≦−2.0
(ii)0.05≦A≦25
であることがよりのぞましく、
(i)(Rth(A)−Rth(0))/A≦−3.0
(ii)0.1≦A≦20
であることがさらにのぞましい。
[セルロースアシレートフィルムの光学異方性を低下させる化合物の構造的特徴]
セルロースアシレートフィルムの光学異方性を低下させる化合物について説明する。本発明者らは、鋭意検討した結果、フィルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制する化合物を用いて光学異方性を十分に低下させ、ReがゼロかつRthがゼロに近くなるようにした。このためには光学異方性を低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
(LogP値)
本発明のセルロースアシレートフィルムを作製するにあたっては、上述のようにフィルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制して光学異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0ないし7である化合物が好ましい。logP値が7を超える化合物は、セルロースアシレートとの相溶性に乏しく、フィルムの白濁や粉吹きを生じやすい。また、logP値が0よりも小さな化合物は親水性が高いために、セルロースアシレートフィルムの耐水性を悪化させる場合がある。logP値としてさらに好ましい範囲は1ないし6であり、特に好ましい範囲は1
.5ないし5である。
オクタノール−水分配係数(logP値)の測定は、JIS日本工業規格Z7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen's fragmentation法
(J.Chem.Inf.Comput.Sci.,27,21(1987).)、Viswanadhan's fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989).)、Broto's fragmentation法(Eur.J.Med.Chem.- Chim.Theor.,19,71(1984).)などが好ましく用いられるが、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)がより好ましい。ある化合物のlogPの値が測定方法あるいは計算方法により異なる場合に、該化合物が本発明の範囲内であるかどうかは、Crippen's fragmentation法により判断することが好ましい。なお本明細書に記載のlogPの値は、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)により求めたものである。
[光学異方性を低下させる化合物の物性]
光学異方性を低下させる化合物は、芳香族基を含有しても良いし、含有しなくても良い。また光学異方性を低下させる化合物は、分子量が3000以下、例えば150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
光学異方性を低下させる化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。また光学異方性を低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
光学異方性を低下させる化合物の添加量は、セルロースアシレートの0.01ないし30質量%であることが好ましく、1ないし25質量%であることがより好ましく、5ないし20質量%であることが特に好ましい。
光学異方性を低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
光学異方性を低下させる化合物を添加する時期はドープ作製工程中の何れであってもよく、ドープ作製工程の最後に行ってもよい。
光学的異方性を低下させる化合物は、少なくとも一方の側の表面から全膜厚の10%までの部分における該化合物の平均含有率が、該セルロースアシレートフィルムの中央部における該化合物の平均含有率の80−99%である。当該化合物の存在量は、例えば、特開平8−57879号公報に記載の赤外吸収スペクトルを用いる方法などにより表面および中心部の化合物量を測定して求めることができる。
以下に本発明で好ましく用いられる、セルロースアシレートフィルムの光学異方性を低下させる化合物の具体例としては、下記一般式(1)、(2)、(3)のいずれかで表される化合物が挙げられるが、本発明はこれら化合物に限定されない。
Figure 2006206826
[一般式(1)において、R1はアルキル基またはアリール基を表し、R2およびR3は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。ただしR1、R2およびR3の炭素原子数のは10以上である。]
Figure 2006206826
[一般式(2)において、R1はアルキル基またはアリール基を表し、R2およびR3はそれぞれ独立に水素原子、アルキル基またはアリール基を表す。]
Figure 2006206826
[一般式(3)において、R4、R5およびR6はそれぞれ独立にアルキル基またはアリール基を表す。]
一般式(1)の化合物について説明する。
上記一般式(1)において、R1はアルキル基またはアリール基を表し、R2およびR3は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。また、R1、R2およびR3の炭素原子数の総和が10以上であることが特に好ましい。R1、R2およびR3
置換されていてもよく、置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が特に好ましい。また、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1ないし25のものが好ましく、6ないし25のものがより好ましく、6ないし20のもの(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、アミル、イソアミル、t-アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ビシクロオクチル、ノニル、アダマンチル、デシル、t-オクチル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、ジデシル)が特に好ましい。アリール基としては炭素原子数が6ないし30のものが好ましく、6ないし24のもの(例えば、フェニル、ビフェニル、テルフェニル、ナフチル、ビナフチル、トリフェニルフェニル)が特に好ましい。一般式(1)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 2006206826
Figure 2006206826
Figure 2006206826
以下に、一般式(2)または一般式(3)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。なお、一般式(2)または一般式(3)で表される化合物において、アルキル基およびアリール基の具体例は一般式(1)と同じである。
Figure 2006206826
Figure 2006206826
Figure 2006206826
Figure 2006206826
式中、Pr1はイソプロピル基を表す。
Figure 2006206826
Figure 2006206826
Figure 2006206826
Figure 2006206826
Figure 2006206826
Figure 2006206826
[波長分散調整剤]
セルロースアシレートフィルムの波長分散を低下させる化合物(以下波長分散調整剤ともいう)について説明する。本発明のセルロースアシレートフィルムのRthの波長分散を良化させるためには、下記式(iii)で表されるRthの波長分散ΔRth=|Rth(400)−Rth(700)|を低下させる化合物を、下記式(iv)、(v)をみたす範囲で少なくとも一種含有することがのぞましい。
(iii)ΔRth=|Rth(400)−Rth(700)
(iv)(ΔRth(B)−ΔRth(0))/B≦−2.0
(v)0.01≦B≦30
[式中、ΔRth(B)はRthの波長分散を低下させる化合物をB%含有したフィルム
のΔRth(nm)、ΔRth(0)はRthの波長分散を低下させる化合物を含有しないフィルムのΔRth(nm)、Bはセルロースアシレートの質量を100としたときの化合物の質量(%)である。]
上記式(iv)、(v)は
(iv)(ΔRth(B)−ΔRth(0))/B≦−3.0
(v)0.05≦B≦25
であることがよりのぞましく、
(iv)(ΔRth(B)−ΔRth(0))/B≦−4.0
(v)0.1≦B≦20
であることがさらにのぞましい。
上記の波長分散調整剤は、中でも、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re(400)−Re(700)|および|Rth(400)−Rth(700)|の双方を低下させる化合物が好ましく、セルロースアシレート固形分に対して0.01〜30質量%使用するのがよい。
セルロースアシレートフィルムのRe、Rthの値は一般に短波長側よりも長波長側が大きい波長分散特性となる。したがって相対的に小さい短波長側のRe、Rthを大きくすることによって波長分散を平滑にすることが要求される。一方200〜400nmの紫外領域に吸収を持つ化合物は短波長側よりも長波長側の吸光度が大きい波長分散特性をもつ。この化合物自身がセルロースアシレートフィルム内部で等方的に存在していれば、化合物自身の複屈折性、ひいてはRe、Rthの波長分散は吸光度の波長分散と同様に短波長側が大きいと想定される。
したがって上述したような、200〜400nmの紫外領域に吸収を持ち、化合物自身のRe、Rthの波長分散が短波長側が大きいと想定されるものを用いることによって、セルロースアシレートフィルムのRe、Rthの波長分散を調製することができる。このためには波長分散を調整する化合物はセルロースアシレートに十分均一に相溶することが要求される。このような化合物の紫外領域の吸収帯範囲は200〜400nmが好ましいが、220〜395nmがより好ましく、240〜390nmがさらに好ましい。
また、近年テレビやノートパソコン、モバイル型携帯端末などの液晶表示装置ではより少ない電力で輝度を高めるために、液晶表示装置に用いられる光学部材の透過率が優れたものが要求されている。その点においては、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re(400)−Re(700)|および|Rth(400)−Rth(700)|を低下させる化合物をセルロースアシレートフィルムに添加する場合、分光透過率が優れていることが要求される。本発明のセルロースアシレートフィルムにおいては、波長380nmにおける分光透過率が45%以上95%以下であり、かつ波長350nmにおける分光透過率が10%以下であることがのぞましい。
上述のような、本発明で好ましく用いられる波長分散調整剤は揮散性の観点から分子量が250〜1000であることが好ましい。より好ましくは260〜800であり、更に好ましくは270〜800であり、特に好ましくは300〜800である。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
波長分散調整剤は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
(化合物添加量)
上述した本発明で好ましく用いられる波長分散調整剤の添加量は、セルロースアシレー
トに対し0.01ないし30質量%であることが好ましく、0.1ないし20質量%であることがより好ましく、0.2ないし10質量%であることが特に好ましい。
(化合物添加の方法)
またこれら波長分散調整剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
またこれら波長分散調整剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ作製工程の最後に行ってもよい。
本発明に好ましく用いられる波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、本発明はこれら化合物だけに限定されるものではない。以下、好ましい化合物を例示する。
ベンゾトリアゾール系化合物としては一般式(101)で示されるものが本発明の波長分散調整剤として好ましく用いられる。
一般式(101) Q1−Q2−OH
(式中、Q1は含窒素芳香族ヘテロ環、Q2は芳香族環を表す。)
1は含窒素芳香族へテロ環をあらわし、好ましくは5ないし7員の含窒素芳香族ヘテロ環であり、より好ましくは5ないし6員の含窒素芳香族ヘテロ環であり、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、セレナゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、ベンゾセレナゾール、チアジアゾール、オキサジアゾール、ナフトチアゾール、ナフトオキサゾール、アザベンズイミダゾール、プリン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、トリアザインデン、テトラザインデン等があげられ、更に好ましくは、5員の含窒素芳香族ヘテロ環であり、具体的にはイミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、チアジアゾール、オキサジアゾールが好ましく、特に好ましくは、ベンゾトリアゾールである。
1で表される含窒素芳香族ヘテロ環は更に置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環して更に環を形成してもよい。
2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)、更に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジ
ン、トリアジン、キノリンである。
2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはナフタレン環、ベンゼン環であり、特に好ましくはベンゼン環である。Q2は更に置換基を有してもよく、後述の置換基Tが好ましい。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例
えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
一般式(101)として好ましくは下記一般式(101−A)で表される化合物である。
一般式(101−A)
Figure 2006206826
(式中、R1、R2、R3、R4、R5、R6、R7、およびR8はそれぞれ独立に水素原子または置換基を表す。)
1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1およびR3として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素
数4〜12)である。
2、およびR4として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
5およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
6およびR7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、ハロゲン原子であり、特に好ましくは水素原子、塩素原子である。
一般式(101)としてより好ましくは下記一般式(101−B)で表される化合物である。
一般式(101−B)
Figure 2006206826
(式中、R1、R3、R6およびR7は一般式(101−A)におけるそれらと同義であり、また好ましい範囲も同様である。)
以下に一般式(101)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2006206826
Figure 2006206826
以上例にあげたベンゾトリアゾール系化合物の中でも、分子量が320以下のものを含まずに本発明のセルロースアシレートフィルムを作製した場合、保留性の点で有利である
ことが確認された。
また本発明に用いられる波長分散調整剤のひとつであるベンゾフェノン系化合物としては一般式(102)で示されるものが好ましく用いられる。
一般式(102)
Figure 2006206826
(式中、Q1およびQ2はそれぞれ独立に芳香族環を表す。XはNR(Rは水素原子または置換基を表す。)、酸素原子または硫黄原子を表す。)
1およびQ2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
1およびQ2で表される芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
1およびQ2で表される芳香族ヘテロ環として好ましくは酸素原子、窒素原子あるいは硫黄原子のどれかひとつを少なくとも1つ含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、更に好ましくは置換または無置換のベンゼン環である。
1およびQ2は更に置換基を有してもよく、後述の置換基Tが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
XはNR(Rは水素原子または置換基を表す。置換基としては後述の置換基Tが適用できる。)、酸素原子または硫黄原子を表し、Xとして好ましくは、NR(Rとして好ましくはアシル基、スルホニル基であり、これらの置換基は更に置換してもよい。)、または酸素原子であり、特に好ましくは酸素原子である。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピ
ル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭
素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
一般式(102)として好ましくは下記一般式(102−A)で表される化合物である。
一般式(102−A)
Figure 2006206826
(式中、R1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表す。)
1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1、R3、R4、R5、R6、R8およびR9として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
2として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは炭素数1〜20のアルコキシ基であり、特に好ましくは炭素数1〜12のアルコキシ基である。
7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜20のアルキル基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくはメチル基)であり、特に好ましくはメチル基、水素原子である。
一般式(102)としてより好ましくは下記一般式(102−B)で表される化合物である。
一般式(102−B)
Figure 2006206826
(式中、R10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表す。)
10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表し、置換基としては前述の置換基Tが適用できる。
10として好ましくは置換または無置換のアルキル基であり、より好ましくは炭素数5〜20の置換または無置換のアルキル基であり、更に好ましくは炭素数5〜12の置換または無置換のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n-ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換または無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
一般式(102)であらわされる化合物は特開平11−12219号公報記載の公知の方法により合成できる。
以下に一般式(102)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2006206826
Figure 2006206826
Figure 2006206826
また本発明に用いられる波長分散調整剤のひとつであるシアノ基を含む化合物としては一般式(103)で示されるものが好ましく用いられる。
一般式(103)
Figure 2006206826
(式中、Q1およびQ2はそれぞれ独立に芳香族環を表す。X1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基を表す。)
1およびQ2であらわされる芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)、更に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環である。
1およびQ2は更に置換基を有してもよく、後述の置換基Tが好ましい。置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ
、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基を表す。X1およびX2で表される置換基は前述の置換基Tを適用することができる。また、X1およびX2で表される置換基は更に他の置換基によって置換されてもよく、X1およびX2はそれぞれが縮環して環構造を形成してもよい。
1およびX2として好ましくは、水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(-C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。
一般式(103)として好ましくは下記一般式(103-A)で表される化合物である

一般式(103-A)
Figure 2006206826
(式中、R1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表す。X1およびX2は一般式(103)におけるそれらと同義であり、また好ましい範囲も同様である。)
1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1、R2、R4、R5、R6、R7、R9、およびR10として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
3、およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12アルコキシ基であり、特に好ましくは水素原子である。
一般式(103)としてより好ましくは下記一般式(103-B)で表される化合物である。
一般式(103-B)
Figure 2006206826
(式中、R3およびR8は一般式(103-A)におけるそれらと同義であり、また、好ましい範囲も同様である。X3は水素原子、または置換基を表す。)
3は水素原子、または置換基を表し、置換基としては前述の置換基Tが適用でき、また、可能な場合は更に他の置換基で置換されてもよい。X3として好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(-C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。
一般式(103)として更に好ましくは一般式(103-C)で表される化合物である。
一般式(103-C)
Figure 2006206826
(式中、R3およびR8は一般式(103-A)におけるそれらと同義であり、また、好ましい範囲も同様である。R21は炭素数1〜20のアルキル基を表す。)
21として好ましくはR3およびR8が両方水素の場合には、炭素数2〜12のアルキル基であり、より好ましくは炭素数4〜12のアルキル基であり、更に好ましくは、炭素数6〜12のアルキル基であり、特に好ましくは、n−オクチル基、tert-オクチル基、2−エチルへキシル基、n−デシル基、、n−ドデシル基であり、最も好ましくは2−エチルへキシル基である。
21として好ましくはR3およびR8が水素以外の場合には、一般式(103-C)で表される化合物の分子量が300以上になり、かつ炭素数20以下の炭素数のアルキル基が好ましい。
一般式(103)で表される化合物はJounal of American Chemical Society 63巻 3452頁(1941)記載の方法によって合成できる。
以下に一般式(103)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2006206826
Figure 2006206826
Figure 2006206826
[加水分解重縮合可能な反応性金属化合物]
本発明に用いられる加水分解重縮合が可能な反応性金属化合物としては、例えば金属アルコキシド、反応性の金属ハロゲン化物が挙げられ、好ましくは金属種が4価の金属のものであり、より好ましくは金属種がケイ素、ジルコニウム、チタン、アルミニウム、およびゲルマニウムから選ばれるものである。特に好ましい金属種はケイ素である。ここで、
本発明における金属とは、「周期表の化学」岩波書店 斎藤一夫著 p.71記載の金属すなわち半金属性原子を含む金属を示す。
本発明に用いられる加水分解重縮合が可能な反応性金属化合物で、加水分解可能な置換基が該金属1原子当たり2個である化合物の例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジイソプロポキシシラン、ジメチルジブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジイソプロポキシシラン、ジエチルジブトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジイソプロポキシシラン、ジフェニルジブトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、ジクロロジメチルシラン、ジクロロジエチルシラン、バリウムイソプロポキシド、カルシウムエトキシド、銅エトキシド、マグネシウムエトキシド、マンガンメトキシド、ストロンチウムイソプロポキシド、すずエトキシド、亜鉛メトキシエトキシド、等が挙げられる。
加水分解可能な置換基が金属1原子当たり3個である化合物の例としてはメチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリブトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、フェニルトリブトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリブトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、(3−アクリロキシプロピル)トリメトキシシラン、アセトキシトリエトキシシラン、(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリメトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、トリメトキシボラン、トリエトキシボラン、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムn−ブトキシド、アルミニウムs−ブトキシド、アルミニウムt−ブトキシド、アルマトラン、アルミニウムフェノキシド、アルミニウムアセチルアセトナート、アンチモンエトキシド、ヒ素トリエトキシド、ビスマスt−ペントキシド、クロムイソプロポキシド、エルビウムメトキシエトキシド、ガリウムエトキシド、インジウムメトキシエトキシド、鉄エトキシド、ランタンイソプロポキシド、ネオジウムメトキシエトキシド、プラセオジムメトキシエトキシド、サマリウムイソプロポキシド、バナジウムトリイソブトキシドオキシド、イットリウムイソプロポキシド等が挙げられる。
加水分解可能な置換基が金属1原子当たり4個である化合物の例としては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、チタンエトキシド、チタンイソプロポキシド、チタンn−ブトキシド、ジルコニウムn−プロポキシド、ジルコニウムn−ブトキシド、テトラメトキシゲルマン、テトラエトキシゲルマン、テトライソプロポキシゲルマン、テトラn−ブトキシゲルマン、セリウムt−ブトキシド、ハフニウムエトキシド、ハフニウムn−ブトキシド、テルルエトキシド等が挙げられる。
加水分解可能な置換基が金属1原子当たり5個である化合物の例としては、モリブデンエトキシド、ニオブエトキシド、ニオブn−ブトキシド、タンタルメトキシド、タンタルエトキシド、タンタルn−ブトキシド、タングステンエトキシド、タングステンフェノキシド等が挙げられる。
本発明において反応性金属化合物としては、金属酸化物になった際に400nm以上の
可視部に吸収を持たない金属化合物が好ましく、より好ましくはSi、Al、Ti、Zrであり、またこれらのダブル金属アルコキシドでも良い。
ダブル金属アルコキシドとは、一分子中に複数の金属原子を含むアルコキシドであり、アルミニウム銅アルコキシド、アルミニウムチタンアルコキシド、アルミニウムイットリウムアルコキシド、アルミニウムジルコニウムアルコキシド、バリウムチタンアルコキシド、バリウムジルコニウムアルコキシド、インジウムスズアルコキシド、マグネシウムアルミニウムアルコキシド、マグネシウムチタンアルコキシド、マグネシウムジルコニウムアルコキシド、ストロンチウムチタンアルコキシド、ストロンチウムジルコニウムアルコキシド等が挙げられる。
本発明において反応性金属化合物として加水分解可能な置換基が該金属1原子当たり4個である化合物を加水分解重縮合時に共存させるのが好ましい。また、水蒸気透過率を低減する観点から、加水分解可能な置換基が該金属1原子当たり3個である化合物及び加水分解可能な置換基が該金属1原子当たり2個である化合物のその他の置換基としては、置換または無置換のアルキル基、または置換または無置換のアリール基が好ましく、該アルキル基またはアリール基の置換基としては、アルキル基(例えばメチル基、エチル基等)、シクロアルキル基(例えばシクロペンチル基、シクロヘキシル基等)、アラルキル基(例えばベンジル基、2−フェネチル基等)、アリール基(例えばフェニル基、ナフチル基等)、複素環基(たとえばフラン、チオフェン、ピリジン等)アルコキシ基(例えばメトキシ基、エトキシ基等)、アリールオキシ基(例えばフェノキシ基等)、アシル基、ハロゲン原子、シアノ基、アミノ基、アルキルチオ基、グリシジル基、ビニル基等が挙げられる。また、(3,3,3−トリフルオロプロピル)トリメトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン、(3,3,3−トリフルオロプロピル)トリクロロシラン、ペンタフルオロフェニルプロピルトリクロロシラン、(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリクロロシラン等)を加水分解重縮合時に共存させてもよい。
本発明においては、高分子フィルムを作製するための、セルロースアシレートに代表される有機高分子に対し、反応性金属化合物を結果的に無機高分子としてハイブリッドすることが必須であり、いわゆる有機−無機ポリマーハイブリッドまたは有機−無機ポリマーコンポジットまたはゾル・ゲル法などと呼ばれる手法が用いられる。この際、使用する反応性金属化合物の量は、有機高分子に対し、質量で0.2%〜20%であることが好ましく、1%〜15%であることがより好ましく、2%〜10%であることが更に好ましい。使用量が少なすぎると、無機高分子を併用した効果が十分でなく、耐久性が不足してしまい、また使用量が多すぎると無機高分子が有機高分子マトリックスと十分に溶解せずにドメインを形成してしまい、フィルムのヘイズが大きくなって光学フィルムとして使用できなくなってしまう。
ここで、有機高分子および加水分解重縮合可能な反応性金属化合物の溶液に、ゾル・ゲル法を適用し加水分解重縮合をおこなわせるため、必要に応じて水・触媒を加え、加水分解を起こさせることにより縮合反応を促進することができる。この組成物を基材上に押し出しあるいは流延し乾燥し、その後、必要なら、熱処理、紫外線処理或いはプラズマ処理等を行うことにより、三次元架橋の進んだセルロースアシレートフィルムを得ることが出来る。具体的には、組成物を流延する前に加熱して加水分解重縮合を行うことができる。これとは別に、流延して製膜したフィルムを更に加熱して加水分解重縮合を行うこともできる。なおこれらの加熱工程は併用してもよい。
ここで、通常触媒としては塩酸、硫酸、硝酸等の無機酸、酢酸、トリフロロ酢酸、レブリン酸、クエン酸、p−トルエンスルホン酸、メタンスルホン酸等の有機酸等が用いられ
る。酸を添加しゾル・ゲル反応が進行した後に塩基を加え中和しても良い。塩基を加え中和する場合、乾燥工程前でのアルカリ金属の含有量が5000ppm未満である事が好ましい(ここでアルカリ金属とは、イオン状態のものを含む)。又、ルイス酸、例えばゲルマニウム、チタン、アルミニウム、アンチモン、錫などの金属の酢酸塩、その他の有機酸塩、ハロゲン化物、燐酸塩などを併用してもよい。尚、金属化合物の加水分解重縮合は、流延や押し出し前の溶液状態で反応を完結させるか、またはある程度反応を進行させておいても良いし、フィルム状に流延してから反応を完結させても良いが、流延または押し出し前に反応を完結させるか、またはある程度まで反応を進行させておくのが良い。また、用途によっては反応は完全に終了しなくても良いが、できれば最終的には完結していたほうが良い。
また、触媒として、このような酸類の代りに、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチルアミン、トリエチルアミンなど、DBU(ジアザビシクロウンデセン−1)、DBN(ジアザビシクロノネン)などのビシクロ環系アミン、アンモニア、ホスフィン等の塩基を用いることができる。さらに、酸及び塩基の処理を複数回併用しても良い。
触媒を中和してもよいし揮発性の触媒は減圧で除去してもよいし、分液水洗等により除去しても良い。
有機高分子および加水分解重縮合可能な反応性金属化合物は溶剤に溶解されるが、基材上に流延しフィルムを形成させる際、流延後に溶剤を蒸発させる必要性があるため、揮発性の溶媒が好ましく、かつ、反応性金属化合物や触媒等と反応せず、しかも流延用基材を溶解しないものであり、2種以上の溶媒を混合して用いても良い。また、有機高分子と加水分解重縮合可能な反応性金属化合物を各々別の溶媒に溶解し後に混合しても良い。
溶媒の例としてはエチルアルコール、メチルアルコール、イソプロピルアルコール、n−プロピルアルコール、メトキシメチルアルコールなどのアルコール、アセトン、メチルエチルケトン、テトラヒドロフラン(THF)、1,4−ジオキサン、1,3−ジオキソラン、ジメチルイミダゾリノン、ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、ジメチルスルフォキシド、スルホラン、塩化メチレンなどが挙げられるが、1,3−ジオキソラン、THF、エチルアルコール、メチルエチルケトン、アセトンおよび塩化メチレンが好ましい。
[マット剤微粒子]
本発明のセルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次平均粒子径は0.2μm以上1.5μm以下が好まし
く、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とした。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において2次平均粒子径の小さな粒子を有するセルロースアシレートフィルムを得るために、微粒子の分散液を調製する際にいくつかの手法が考えられる。例えば、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作成し、この微粒子分散液を別途用意した少量のセルロースアシレート溶液に加えて撹拌溶解し、さらにメインのセルロースアシレート溶液(ドープ液)と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子が更に再凝集しにくい点で好ましい調製方法である。ほかにも、溶剤に少量のセルロースエステルを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行いこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤微粒子の添加量は1m2あたり0.01〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.16gが最も好ましい。
使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。
[可塑剤、劣化防止剤、剥離剤]
光学的に異方性を低下する化合物、波長分散調整剤の他に、本発明のセルロースアシレートフィルムには、前述のように、用途に応じた種々の添加剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号公報などに記載されている。さらにまた、赤外吸収剤としては例えば特開2001−194522号公報に記載されている。またその添加する時期はドープ作製工程において何れの時期でも良いが、ドープ作製工程の最後に添加剤を添加しするのがよい。更にまた、各添加剤の添加量は機能が発現する限りにおいて特に限定されない。また、セルロースアシレートフィルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号公報などに記載されているが、これらは従来から知られている技術である。これらの詳細は
、発明協会公開技報公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている素材が好ましく用いられる。
[化合物添加の比率]
本発明のセルロースアシレートフィルムにおいては、分子量が3000以下の化合物の総量は、セルロースアシレート質量に対して5〜45%であることがのぞましい。より好ましくは10〜40%であり、さらにのぞましくは15〜30%である。これらの化合物としては上述したように、光学的異方性を低下させる化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、剥離剤、赤外吸収剤などであり、分子量としては3000以下がのぞましく、2000以下がよりのぞましく、1000以下がさらにのぞましい。これら化合物の総量が5質量%未満であると、セルロースアシレート単体の性質が出やすくなり、例えば、温度や湿度の変化に対して光学性能や物理的強度が変動しやすくなるなどの問題がある。またこれら化合物の総量が45質量%を越えると、セルロースアシレートフィルム中に化合物が相溶する限界を超え、フィルム表面に析出してフィルムが白濁する( フィルムからの泣き出し)などの問題が生じやすくなる。
[セルロースアシレート溶液の有機溶媒]
本発明では、ソルベントキャスト法によりセルロースアシレートフィルムを製造することが好ましく、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムは製造される。なお、主溶媒として好ましく用いられる有機溶媒は前述のとおりである。
その他、本発明のセルロースアシレート溶液及びフィルムについての溶媒は、その溶解方法も含め以下の特許に開示されており、好ましい態様である。それらは、例えば、特開2000−95876号公報、特開平12−95877号公報、特開平10−324774号公報、特開平8−152514号公報、特開平10−330538号公報、特開平9−95538号公報、特開平9−95557号公報、特開平10−235664号公報、特開平12−63534号公報、特開平11−21379号公報、特開平10−182853号公報、特開平10−278056号公報、特開平10−279702号公報、特開平10−323853号公報、特開平10−237186号公報、特開平11−60807号公報、特開平11−152342号公報、特開平11−292988号公報、特開平11−60752号公報、特開平11−60752号公報などに記載されている。これらの特許によると本発明のセルロースアシレートに好ましい溶媒だけでなく、その溶液物性や共存させる共存物質についても記載があり、本発明においても好ましい態様である。
[セルロースアシレートフィルムの製造工程]
[溶解工程]
本発明のセルロースアシレート溶液(ドープ)の調製に際して、その溶解方法は特に限定されず、室温溶解でもよく、また冷却溶解あるいは高温溶解、さらにはこれらの組み合わせであってもよい。本発明におけるセルロースアシレート溶液の調製、さらには溶解工程に伴う溶液濃縮、ろ過の各工程に関しては、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)にて22頁〜25頁に詳細に記載されている製造工程が好ましく用いられる。
(ドープの透明度)
本発明のセルロースアシレート溶液であるドープの透明度としては、85%以上であることが好ましい。より好ましくは88%以上であり、さらに好ましくは90%以上である。本発明においてはセルロースアシレートドープ溶液に各種の添加剤が十分に溶解していることを確認した。具体的なドープの透明度の算出方法としては、ドープ溶液を1cm角のガラスセルに注入し、分光光度計(UV−3150、(株)島津製作所製)を用いて550nmの吸光度を測定した。溶媒のみをあらかじめブランクとして測定しておき、ブラ
ンクの吸光度との比からセルロースアシレート溶液(ドープ)の透明度を算出した。
[流延、乾燥、巻き取り工程]
次に、本発明のセルロースアシレート溶液(ドープ)を用いたフィルムの製造方法について述べる。
本発明のセルロースアシレートフィルムを製造する方法及び設備は、従来セルローストリアセテートフィルム製造に供される、溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)で調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、次いでドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延し、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて乾燥装置のロール群で搬送し乾燥を終了して巻き取り機で所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。本発明のセルロースアシレートフィルムの用途においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置が付加されることが多い。これらについては、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)にて25頁〜30頁に詳細に記載されており、流延(共流延を含む),金属支持体,乾燥,剥離などに分類され、本発明において好ましく用いることができる。
本発明の製造方法によれば、薄膜でも、環境条件が変動しても優れたフィルムの物理的特性(機械的強度、耐湿性等)を維持できる、長尺ロール形態のセルロースアシレートフィルムが提供される。また、セルロースアシレートフィルムの厚さは10〜120μmが好ましく、20〜100μmがより好ましく、30〜90μmがさらに好ましい。
[セルロースアシレートフィルム物性評価]
[フィルムのガラス転移温度Tg]
本発明のセルロースアシレートフィルムのガラス転移温度Tgは、80〜165℃である。耐熱性の観点から、Tgが100〜160℃であることがより好ましく、110〜150℃であることが特に好ましい。ガラス転移温度Tgの測定は、本発明のセルロースアシレートフィルム試料10mgを、常温から200度まで昇降温速度5℃/分で示差走査熱量計(DSC2910、T.A.インスツルメント)で熱量測定を行い、ガラス転移温度Tgを算出した。
[フィルムのヘイズ]
本発明のセルロースアシレートフィルムのヘイズは0.01〜2.0%であることがのぞましい。よりのぞましくは0.05〜1.5%であり、0.1〜1.0%であることがさらにのぞましい。光学フィルムとしてフィルムの透明性は重要である。ヘイズの測定は、本発明のセルロースアシレートフィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM−2DP、スガ試験機)でJIS K−6714に従って測定した。
[フィルムのRe、Rthの湿度依存性]
本発明のセルロースアシレートフィルムのReおよびRthはともに湿度による変化が小さいことが好ましい。具体的には、フィルムの正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(II)を満たすことが好ましい。
(II)(RthA)−(RthB)≦25nm
(ここで、(RthA)は25℃および10%RHの条件下でのRth(630)、(RthB
)は25℃および80%RHの条件下でのRth(630)を示す。)
より好ましくは(RthA)−(RthB)が0〜15nmであり、さらに好ましくは0〜10nmである。
[フィルムの平衡含水率]
本発明のセルロースアシレートフィルムの平衡含水率は、偏光板の保護膜として用いる際、ポリビニルアルコールなどの水溶性ポリマーとの接着性を損なわないために、膜厚のいかんに関わらず、25℃80%RHにおける平衡含水率が、0〜4%であることが好ましい。0.1〜3.5%であることがより好ましく、1〜3%であることが特に好ましい。4%以上の平衡含水率であると、光学補償フィルムの支持体として用いる際にレターデーションの湿度変化による依存性が大きくなりすぎてしまい好ましくない。
含水率の測定法は、本発明のセルロースアシレートフィルム試料7mm×35mmを水分測定器、試料乾燥装置(CA−03、VA−05、共に三菱化学(株))にてカールフィッシャー法で測定した。水分量(g)を試料質量(g)で除して算出した。
[フィルムの透湿度]
本発明の光学補償シートに用いるセルロースアシレートフィルムの透湿度は、JIS規格JISZ0208をもとに、温度60℃、湿度95%RHの条件において測定し、膜厚80μmに換算して400〜2000g/m2・24hであることがのぞましい。500〜1800g/m2・24hであることがより好ましく、600〜1600g/m2・24hであることが特に好ましい。2000g/m2・24hを越えると、フィルムのRe値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまう。また、本発明のセルロースアシレートフィルムに光学異方性層を積層して光学補償フィルムとした場合も、Re値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまい好ましくない。この光学補償フィルムや偏光板が液晶表示装置に組み込まれた場合、色味の変化や視野角の低下を引き起こす。また、セルロースアシレートフィルムの透湿度が400g/m2・24h未満では、偏光子の両面などに貼り付けて偏光板を作製する場合に、セルロースアシレートフィルムにより粘着剤の乾燥が妨げられ、接着不良を生じる。
セルロースアシレートフィルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄ければ透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を80μmに設け換算する必要がある。膜厚の換算は、(80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm)として求めた。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができ、本発明のセルロースアシレートフィルム試料70mmφを25℃、90%RH及び60℃、95%RHでそれぞれ24時間調湿し、透湿試験装置(KK−709007、東洋精機(株))にて、JIS Z−0208に従って、単位面積あたりの水分量を算出(g/m2)し、透湿度=調湿後質量−調湿前質量で求めた。
[フィルムの寸度変化]
本発明のセルロースアシレートフィルムの寸度安定性は、60℃、90%RHの条件下に150時間静置した場合(高湿)の寸度変化率および90℃、5%RHの条件下に150時間静置した場合(高温)の寸度変化率がいずれも0.1%以下であることがのぞましい。よりのぞましくは0.05%以下であり、さらにのぞましくは0.02%以下である。
具体的な測定方法としては、セルロースアシレートフィルム試料30mm×120mmを2枚用意し、25℃、60%RHで24時間調湿し、自動ピンゲージ(新東科学(株))にて、両端に6mmφの穴を100mmの間隔で開け、パンチ間隔の原寸(L0)とした。1枚の試料を60℃、90%RHにて150時間処理した後のパンチ間隔の寸法(L1)を測定、もう1枚の試料を90℃、5%RHにて150時間処理した後のパンチ間隔
の寸法(L2)を測定した。すべての間隔の測定において最小目盛り1/1000mmまで測定した。60℃、90%RH(高湿)の寸度変化率={|L0−L1|/L0}×100、90℃、5%RH(高温)の寸度変化率={|L0−L2|/L0}×100、として寸度変化率を求めた。
[フィルムの引張弾性率]
本発明のフィルムの機械方向(MD方向)および機械方向に垂直な方向(TD方向)の引張弾性率が240〜700kgf/mm2(2.35GPa〜6.86GPa)であることがのぞましい。よりのぞましくは、機械方向および機械方向に垂直な方向の引張弾性率が250〜650kgf/mm2 (2.45GPa〜6.37GPa)であり、さらにのぞましくは、機械方向および機械方向に垂直な方向の引張弾性率が260〜600kgf/mm2(2.55GPa〜5.88GPa)である。具体的な測定方法としては、東洋ボールドウィン製万能引っ張り試験機STM T50BPを用い、23℃・70%雰囲気中、引っ張り速度10%/分で0.5%伸びにおける応力を測定し、弾性率を求めた。
[フィルムの貯蔵弾性率]
本発明のセルロースアシレートフィルムは、機械方向の貯蔵弾性率および機械方向に垂直な方向の貯蔵弾性率がともに15000〜80000kgf/cm2(147GPa〜784GPa)であることがのぞましい。
よりのぞましくは、機械方向、垂直方向ともに貯蔵弾性率が18000〜75000kgf/cm2 (176GPa〜735GPa)であり、さらにのぞましくは、機械方向、垂直方向ともに貯蔵弾性率が20000〜70000kgf/cm2(196GPa〜686GPa)である。
具体的な測定方法は、温度を変化させながらの動的粘弾性測定より貯蔵弾性率をもとめた。
[フィルムの光弾性係数]
本発明のセルロースアシレートフィルムは、機械方向および機械方向に垂直な方向の光弾性係数がともに10×10-13cm2/dyne(10-13N/m2)以下であることがのぞましい。よりのぞましくは、機械方向および機械方向に垂直な方向の光弾性係数がともに6×10-13cm2/dyne(0.6×10-13N/m2)以下であり、さらにのぞましくは、機械方向および機械方向に垂直な方向の光弾性係数がともに4×10-13cm2/dyne(0.4×10-13N/m2)以下である。
具体的な測定方法としては、本発明のセルロースアシレートフィルム試料12mm×120mmの長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター(M150、日本分光(株))で測定し、応力に対するレターデーションの変化量から光弾性係数を算出した。
[本発明のセルロースアシレートフィルムの評価方法]
本発明のセルロースアシレートフィルムの評価に当たって、以下の方法で測定して実施した。
(正面レターデーションRe、膜厚方向のレターデーションRth)
Re(λ)はKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション、および面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーションの計3つの方向で測定したレターデーションと平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここ
で平均屈折率の仮定値はポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。
(Re、Rthの波長分散測定)
試料30mm×40mmを、25℃、60%RHで2時間調湿し、エリプソメーターM−150(日本分光(株)製)において波長780nmから380nmの光をフィルム法線方向に入射させることにより各波長でのReをもとめ、Reの波長分散を測定した。また、Rthの波長分散については、前記Re、面内の遅相軸を傾斜軸としてフィルム法線方向に対して+40°傾斜した方向から780〜380nmの波長の光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸としてフィルム法線方向に対して−40°傾斜した方向から波長780〜380nmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基に、平均屈折率の仮定値1.48および膜厚を入力して算出した。
(透過率)
試料20mm×70mmを、25℃,60%RHで透明度測定器(AKA光電管比色計、KOTAKI製作所)で可視光(615nm)の透過率を測定した。
[フィルム表面の性状]
(表面形状)
本発明のセルロースアシレートフィルムの表面は、JISB0601−1994に基づく該膜の表面凹凸の算術平均粗さ(Ra)が0.1μm以下、及び最大高さ(Ry)が0.5μm以下であることが好ましい。好ましくは、算術平均粗さ(Ra)が0.05μm以下、及び最大高さ(Ry)が0.2μm以下である。膜表面の凹と凸の形状は、原子間力顕微鏡(AFM)により評価することが出来る。
(表面エネルギー)
本発明のセルロースアシレートフィルムの表面エネルギーは以下の方法により測定した。すなわち、試料を水平な台の上に水平にのせ、試料表面に一定量の水、およびヨウ化メチレンをのせてから一定時間後の試料表面での水、およびヨウ化メチレンの接触角を求めた。更に測定した接触角から、Owensの方法により表面エネルギーを求めた。
[フィルムの保留性]
本発明のセルロースアシレートフィルムにおいては、フィルムに添加した各種化合物の保留性が要求される。具体的には、本発明のセルロースアシレートフィルムを80℃/90%RHの条件下に48時間静置した場合のフィルムの質量変化が、0〜5%であることが好ましい。より好ましくは0〜3%であり、さらに好ましくは0〜2%である。
〈保留性の評価方法〉
試料を10cm×10cmのサイズに断裁し、23℃、55%RHの雰囲気下で24時間放置後の質量を測定して、80±5℃、90±10%RHの条件下で48時間放置した。処理後の試料の表面を軽く拭き、23℃、55%RHで1日放置後の質量を測定して、以下の方法で保留性を計算した。

保留性(質量%)={(放置前の質量−放置後の質量)/放置前の質量}×100
[フィルムの力学特性]
(カール)
本発明のセルロースアシレートフィルムの幅方向のカール値は、−10/m〜+10/mであることが好ましい。本発明のセルロースアシレートフィルムには後述する表面処理、光学異方性層を塗設する際のラビング処理の実施や配向膜、光学異方性層の塗設や貼合などを長尺で行う際に、本発明のセルロースアシレートフィルムの幅方向のカール値が前述の範囲外では、フィルムのハンドリングに支障をきたし、フィルムの切断が起きることがある。また、フィルムのエッジや中央部などで、フィルムが搬送ロールと強く接触するために発塵しやすくなり、フィルム上への異物付着が多くなり、光学補償フィルムの点欠陥や塗布スジの頻度が許容値を超えることがある。又、カールを上述の範囲とすることで光学異方性層を設置するときに発生しやすい色斑故障を低減できるほか、偏光子貼り合せ時に気泡が入ることを防ぐことができ、好ましい。
カール値は、アメリカ国家規格協会の規定する測定方法(ANSI/ASCPH1.29−1985)に従い測定することができる。
(引裂き強度)
JISK7128−2:1998の引裂き試験方法に基ずく引裂き強度(エルメンドルフ引裂き法)が、本発明のセルロースアシレートフィルムの膜厚が20〜80μmの範囲において、2g以上が好ましい。より好ましくは、5〜25gであり、更には6〜25gである。又、60μm換算で8g以上が好ましく、より好ましくは8〜15gである。具体的には、試料片50mm×64mmを、25℃、65%RHの条件下に2時間調湿した後に軽荷重引裂き強度試験機を用いて測定できる。
[フィルムの残留溶剤量]
本発明のセルロースアシレートフィルムに対する残留溶剤量が、0.01〜1.5質量%の範囲となる条件で乾燥することが好ましい。より好ましくは0.01〜1.0質量%である。本発明に用いる透明支持体の残留溶剤量は1.5%以下とすることでカールを抑制できる。1.0%以下であることがより好ましい。これは、前述のソルベントキャスト方法による成膜時の残留溶剤量が少なくすることで自由堆積が小さくなることが主要な効果要因になるためと思われる。
[フィルムの吸湿膨張係数]
本発明のセルロースアシレートフィルムの吸湿膨張係数は30×10-5/%RH以下とすることが好ましい。吸湿膨張係数は、15×10-5/%RH以下とすることが好ましく、10×10-5/%RH以下であることがさらに好ましい。また、吸湿膨張係数は小さい方が好ましいが、通常は、1.0×10-5/%RH以上の値である。吸湿膨張係数は、一定温度下において相対湿度を変化させた時の試料の長さの変化量を示す。この吸湿膨張係数を調節することで、本発明のセルロースアシレートフィルムを光学補償フィルム支持体として用いた際、光学補償フィルムの光学補償機能を維持したまま、額縁状の透過率上昇すなわち歪みによる光漏れを防止することができる。
[機能層]
本発明のセルロースアシレートフィルムは、その用途として光学用途と写真感光材料に適用される。特に光学用途が液晶表示装置であることが好ましく、液晶表示装置が、二枚の電極基板の間に液晶を担持してなる液晶セル、その両側に配置された二枚の偏光板、および該液晶セルと該偏光板との間に少なくとも一枚の光学補償シートを配置した構成であることがさらに好ましい。これらの液晶表示装置としては、TN、IPS、FLC、AFLC、OCB、STN、ECB、VAおよびHANが好ましい。中でもVAまたはIPSモードの液晶表示装置が好ましい。
その際に前述の光学用途に本発明のセルロースアシレートフィルムを用いるに際し、各
種の機能層を付与することが実施される。それらは、例えば、帯電防止層、硬化樹脂層(透明ハードコート層)、反射防止層、易接着層、防眩層、光学補償層、配向層、液晶層などである。本発明のセルロースアシレートフィルムを用いることができるこれらの機能層及びその材料としては、界面活性剤、滑り剤、マット剤、帯電防止層、ハードコート層などが挙げられ、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)にて32頁〜45頁に詳細に記載されており、本発明において好ましく用いることができる。
[偏光板]
本発明のセルロースアシレートフィルムの偏光板への用途について説明する。
本発明の光学フィルムは特に偏光板保護フィルム用として有用である。偏光板は偏光子及びその両面を保護する保護フィルムで構成されており、更に該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成される。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。又、セパレートフィルムは液晶セルへ貼合する接着層をカバーする目的で用いられ、偏光板を液晶セルへ貼合する面側に用いられる。
液晶表示装置には通常2枚の偏光板の間に液晶を含む基板が配置されているが、本発明のフィルムを適用した偏光板保護フィルムはどの部位に配置しても優れた表示性が得られる。特に液晶表示装置の表示側最表面の偏光板保護フィルムには、通常透明ハードコート層、防眩層、反射防止層等が設けられるが、その場合において該偏光板保護フィルムをこの部分に好ましく用いられる。
本発明の偏光板を作製するにあたり、本発明のセルロースアシレートフィルムを偏光子の保護フィルム(偏光板用保護フィルム)として用いるために、偏光子と貼り合わせる側の表面とポリビニルアルコールを主成分とする偏光子との接着性を良好にすることが必要である。接着性が不充分の場合は、偏光板を作製した後に液晶表示装置等のパネルに適宜用いるための加工性が不良であったり、または耐久性が不足して、長期の使用での剥れ等が問題となる。接着には、粘着剤を使用することもでき、粘着剤の成分としては、例えばポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系粘着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。接着性を考慮するには表面エネルギーを指標に考えれば良く、偏光子の主成分であるポリビニルアルコールか、もしくはポリビニルアルコールかビニル系ラテックスを主成分とする粘着剤からなる粘着剤層の表面エネルギーと貼り合せる保護フィルムの表面エネルギーがより近ければ貼合性と貼合した偏光板の加工性と耐久性がより向上される。これらのことから、偏光子または粘着剤と貼り合わせる側の表面エネルギーを親水化処理等の表面処理により所望の範囲内にすることで、ポリビニルアルコールを主成分とする偏光子との接着性を充分に付与することができる。
本発明のセルロースアシレートフィルムは、フィルム中に含有する添加剤により、フィルムの表面はより疎水的となっている。そのため上記の親水化処理による貼合性を向上させることが、偏光板の加工性と耐久性を付与する上でより必要となる。
親水化処理等の表面処理等を行う前の、製膜後のフィルムの表面エネルギーは、前記レターデーションを制御する添加剤を使用するため疎水化されており、フィルムの光学特性や力学特性の湿度依存性や、前記偏光板貼合性を向上するための処理の容易性の観点から、30mN/m以上50mN/m以下が好ましく、40mN/m以上48mN/m以下がより好ましい。処理前の表面エネルギーが30mN/m未満では後述の親水化処理により
貼合性を良好にするためには、大きなエネルギーが必要となり、結果的にフィルム特性を劣化させたり、または生産性との両立が困難となる。また処理前の表面エネルギーが50mN/m超では、フィルム自身の親水性が大きすぎて、フィルムの光学性能や力学特性の湿度依存性が大きすぎて問題となってしまう。
また、ポリビニルアルコール表面の表面エネルギーは、併用する添加剤や乾燥の程度や用いる粘着剤にもよるが60mN/m以上80mN/m以下の範囲にあることから、後述の親水化処理等の表面処理後の保護フィルムの偏光板と貼り合せる側の面の表面エネルギーとしては、50mN/m以上80mN/m以下が好ましく、60mN/m以上75mN/m以下がより好ましく、65mN/m以上75mN/m以下が更に好ましい。
[親水化処理等の表面処理]
フィルムの表面の親水化処理は、公知の方法で行うことが出来る。例えば、コロナ放電処理、グロー放電処理、紫外線照射処理、火炎処理、オゾン処理、酸処理、アルカリ処理等で該フィルム表面を改質する方法が挙げられる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
[アルカリ鹸化処理]
これらの中でも特に好ましくは、アルカリ鹸化処理でありセルロースアシレートフィルムの表面処理としては極めて有効である。処理方法として、以下の方法が挙げられる。
(1)浸漬法
アルカリ液の中にフィルムを適切な条件で浸漬して、フィルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/lであり、特に好ましくは1〜2mol/lである。好ましいアルカリ液の液温は25〜70℃、特に好ましくは30〜60℃である。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
鹸化処理することにより、フィルムの所望の面が親水化される。偏光板用保護フィルムは、親水化された表面を偏光子と接着させて使用する。
親水化された表面は、ポリビニルアルコールを主成分とする偏光子との接着性を改良するのに有効である。
(2)アルカリ液塗布法
アルカリ液塗布法は、特開2002−82226号公報、国際公開第02/46809号パンフレットに記載の内容が挙げられる。ただし、別途、アルカリ液を塗布する設備、工程が必要となるため、コストの観点では(1)の浸漬法に劣る。
[プラズマ処理]
本発明に用いられるプラズマ処理としては、真空グロー放電、大気圧グロー放電等によるものがあり、その他の方法としてフレームプラズマ処理等の方法があげられる。これらは、例えば特開平6−123062号公報、特開平11−293011号公報、同11−
5857号公報等に記載された方法を用いることが出来る。
プラズマ処理によれば、プラズマ中においたプラスチックフィルムの表面を処理することで、これに強い親水性を与える事が出来る。例えば、上記のグロー放電によるプラズマ発生装置中においては相対する電極の間にこれらの親水性を付与しようとするフィルムを置き、この装置中にプラズマ励起性気体を導入し、電極間に高周波電圧を印加する事により、該気体をプラズマ励起させ電極間にグロー放電を行わせることにより表面処理が行える。中でも大気圧グロー放電によるものが好ましく用いられる。
[コロナ放電処理]
表面処理のうち、コロナ放電処理は、最もよく知られている方法であり、従来公知のいずれの方法、例えば特公昭48−5043号公報、同47−51905号公報、特開昭47−28067号公報、同49−83767号公報、同51−41770号公報、同51−131576号公報等に開示された方法により達成することができる。コロナ処理に使用するコロナ処理機としては、現在プラスチックフィルム等の表面改質の手段として使用されている市販の各種コロナ処理機の適用が可能であり、中でもSOFTAL(ソフタル)社のマルチナイフ電極を有するコロナ処理機は多数本の電極で構成され、さらに電極の間に空気を送る構造となっており、フィルムの加熱防止やフィルム表面に出てくる低分子の除去等がおこなえるので、エネルギー効率が非常に高く、高コロナ処理が可能となるので、本発明には特に有用なコロナ処理機である。
コロナ処理の条件としては、使用するフィルムの種類、粘着剤の種類及び用いるコロナ処理機の種類等によって異なるが、1回当たりの処理に際してのエネルギー密度としては20〜400W・min./m2程度が好ましい。高エネルギーで処理するよりはできるだけ低エネルギーで処理する方が処理する保護膜の劣化、保護膜中の充填物の表面へのブリード等がおさえられ、接着力向上には有効である。一回処理で不充分な場合は、二回以上の多数回処理を行えばさらに接着力が向上する。
本発明のセルロースアシレートフィルムを偏光板の保護フィルム等の目的で使用するためにはセルロースアシレートフィルムの少なくとも片面の表面エネルギーを適当な範囲内にすることが必要であり、そのため前述のような表面処理を行う。一方、本発明のセルロースアシレートフィルムに表面処理を行うことにより、セルロースアシレートフィルム中に含有する添加剤の揮散/溶出/分解が発生する可能性があり、セルロースアシレートフィルムの光学性能やフィルム性能や耐久性が劣化する懸念がある。また揮散や溶出が発生する場合には更に処理系を汚染し処理性を低下させてしまい、連続的に処理を行うことができなくなる。そのため添加剤量の低下を抑制することが必要であり、表面処理による添加剤の添加量の変化量が処理前の添加剤の全添加量の0.2%以下であることが好ましく、0.1%以下であることがより好ましく、0.01%以下であることが更に好ましい。
[光学補償フィルム]
本発明のセルロースアシレートフィルムは、上記の他にも様々な用途で用いることができるが、液晶表示装置の光学補償フィルムとして用いると特に効果があるため好ましい。なお、光学補償フィルムとは、一般に液晶表示装置に用いられ、位相差を補償する光学材料のことを指し、位相差板、光学補償シートなどと同義である。光学補償フィルムは複屈折性を有し、液晶表示装置の表示画面の着色を取り除いたり、視野角特性を改善したりする目的で用いられる。本発明のセルロースアシレートフィルムは、ReおよびRthが0≦Re≦10nmかつ|Rth|≦25nmと光学異方性が小さく、好ましくは、|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35と波長分散が小さいため、余計な異方性を生じず、複屈折を持つ光学異方性層を併用すると光学異方性層の光学性能のみを発現することができる。
したがって本発明のセルロースアシレートフィルムを液晶表示装置の光学補償フィルムとして用いる場合、併用する光学異方性層のReおよびRthは0≦Re(630)≦200nmかつ0≦|Rth(630)|≦400nmであることが好ましく、この範囲であればどのような光学異方性層でも良い。
本発明のセルロースアシレートフィルムが使用される液晶表示装置の液晶セルの光学性能や駆動方式は特に制限されず、光学補償フィルムとして要求されるどのような光学異方性層も併用することができる。併用される光学異方性層としては、液晶性化合物を含有する組成物から形成しても良いし、複屈折を持つポリマーフィルムから形成しても良い。
前記液晶性化合物としては、ディスコティック液晶性化合物または棒状液晶性化合物が好ましい。
(ディスコティック液晶性化合物)
本発明に使用可能なディスコティック液晶性化合物の例には、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載の化合物が含まれる。
光学異方性層において、ディスコティック液晶性化合物の分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。ディスコティック液晶性化合物の重合については、特開平8−27284公報に記載がある。ディスコティック液晶性化合物を重合により固定するためには、ディスコティック液晶性化合物の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。重合性基を有するディスコティック液晶性化合物について、特開2001−4387号公報に開示されている。
(棒状液晶性化合物)
本発明において、使用可能な棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が含まれる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。
光学異方性層において、棒状液晶性化合物の分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。本発明に使用可能な重合性棒状液晶性化合物の例には、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開第95/22586号パンフレット、同95/24455号パンフレット、同97/00600号パンフレット、同98/23580号パンフレット、同98/52905号パンフレット、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、および特開2001−328973号公報などに記載の化合物が含まれる。
(ポリマーフィルムからなる光学異方性層)
上記した様に、本発明における光学異方性層はポリマーフィルムから形成してもよい。ポリマーフィルムは、光学異方性を発現し得るポリマーから形成する。そのようなポリマーの例には、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマーなど)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリビニルアルコール、ポリメタクリル酸エステル、ポリアクリル酸エステルおよびセルロースエステル(例えば、セルローストリアセーテート、セルロースジアセテートなど)が含まれる。また、これらのポリマーの共重合体あるいはポリマー混合物を用いてもよい。
ポリマーフィルムの光学異方性は、延伸により得ることが好ましい。延伸は一軸延伸または二軸延伸であることが好ましい。具体的には、2つ以上のロールの周速差を利用した縦一軸延伸、またはポリマーフィルムの両サイドを掴んで幅方向に延伸するテンター延伸、これらを組み合わせての二軸延伸が好ましい。なお、二枚以上のポリマーフィルムを用いて、二枚以上のフィルム全体の光学的性質が前記の条件を満足してもよい。ポリマーフィルムは、複屈折のムラを少なくするためにソルベントキャスト法により製造することが好ましい。また、ソルベントキャスト法と延伸処理により作成したムラの少ない光学異方性層を別の支持体上に転写して光学補償フィルムとすることも好ましい。ポリマーフィルムの厚さは、20〜500μmであることが好ましく、40〜100μmであることが最も好ましい。
[固体ポリマーの塗布による光学異方性層の形成]
本発明による固体ポリマーの塗布による光学異方性層の形成は、液状化した固体ポリマーを支持体上に展開し、乾燥させた後、伸張処理および/または収縮処理をほどこしで、面内で分子を配向させる処理を施して所望の光学特性を付与した複屈折性フィルムを得るものである。この際、支持体として本発明のセルロースアシレートフィルムを用いると光学異方性が小さいため、均一な二軸フィルムが形成でき光学設計等も容易となる。また、支持体上に形成した光学異方性層を本発明のセルロースアシレートフィルム上に転写して光学補償フィルムを作成することで、所望の光学特性を示し、さらに支持体に延伸処理等の配向処理が施されていないことにより、より耐久性にも優れる光学補償フィルムを作成することができる。
固体ポリマーについては特に限定はなく、光透過性の適宜なものを1種又は2種以上用いうる。この中で、光透過率が75%以上、特に85%以上の透光性に優れるフィルムを形成しうるポリマーが好ましい。またフィルムの安定した量産性等の点より、延伸方向のレターデーションが大きくなる正の複屈折性を示す固体ポリマーが好ましく用いうる。
前記した固体ポリマーの例としては、ポリアミドやポリエステル(たとえば特表平10−508048号公報に記載)、ポリイミド(たとえば特表2000−511296号公報に記載)、ポリエーテルケトンや特にポリアリールエーテルケトン(たとえば特開2001−49110号公報に記載)、ポリアミドイミド(たとえば特開昭61−162512号公報に記載)やポリエステルイミド(たとえば特開昭64−38472号公報に記載)などが挙げられる。
光学補償フィルムの形成には、その固体ポリマーの1種、又は2種以上を混合したものなどを用いうる。固体ポリマーの分子量について特に限定はないが、一般にはフィルムへの加工性などの点より質量平均分子量に基づいて1000〜100万が好ましく、より好ましくは1500〜75万、特に好ましくは2000〜50万である。
光学補償フィルムの母体となる透明フィルムの形成は、固体ポリマーを液状化してそれを展開し、その展開層を固体化させることにより行うことができる。透明フィルムの形成に際しては安定剤や可塑剤や金属類等からなる種々の添加剤を必要に応じて配合することができる。また固体ポリマーの液状化には、熱可塑性の固体ポリマーを加熱して溶融させる方式や、固体ポリマーを溶媒に溶解させて溶液とする方法などの適宜な方式を採ること
ができる。
従って当該展開層の固体化は、前者の溶融液ではその展開層を冷却させることにより、また後者の溶液ではその展開層より溶媒を除去して乾燥させることにより行うことができる。その乾燥には自然乾燥(風乾)方式や加熱乾燥方式、特に40〜200℃の加熱乾燥方式、減圧乾燥方式などの適宜な方式の1種又は2種以上を採ることができる。製造効率や光学異方性の発生を抑制する点からはポリマー溶液を塗工する方式が好ましい。
前記の溶媒としては、例えば塩化メチレンやシクロヘキサノン、トリクロロエチレンやテトラクロロエタン、N−メチルピロリドンやテトラヒドロフランなどの適宜なものを1種又は2種以上用いることができる。溶液は、フィルム形成に適した粘度の点より、溶媒100質量部に対して固体ポリマーを2〜100質量部、この中で5〜50質量部、特に10〜40質量部溶解させたものが好ましい。
固体ポリマーを液状化したものの展開には、例えばスピンコート法やロールコート法、フローコート法やプリント法、ディップコート法や流延成膜法、バーコート法やグラビア印刷法等のキャスティング法、押出法などの適宜なフィルム形成方式を採ることができる。この中で、厚さムラや配向歪ムラ等の少ないフィルムの量産性などの点より、キャスティング法等の溶液製膜法が好ましく適用することができる。なおその場合、ポリイミドとしては芳香族二無水物とポリ芳香族ジアミンから調製された溶媒可溶性のもの(特表平8−511812号公報)が好ましく用いうる。
本発明による光学補償フィルムとしての光学特性は、透明フィルムに、その面内で分子を配向させる処理を施すことにより付与される。すなわち上記した液状化物の展開による透明フィルムの形成過程で得られる透明フィルムは、Re≒0nmの特性を示す。
従って本発明による製造方法は、透明フィルムの形成過程でRthを制御し、その透明フィルムの面内において分子を配向させる処理でReを制御する。斯かる役割分担方式には、例えば二軸延伸方式等の従来のRthとReを同時的に制御する方法に比べて少ない延伸率で目的を達成でき、RthとReの特性や光学軸の各精度に優れた二軸性複屈折性フィルムが得られやすい利点がある。
透明フィルムの面内において分子を配向させる処理は、フィルムの伸張処理および/または収縮処理として施すことができ、その伸張処理は、例えば延伸処理などとして施すことができる。延伸処理には逐次方式や同時方式等による二軸延伸方式、自由端方式や固定端方式等の一軸延伸方式などの適宜な方式の1種又は2種以上を適用することができる。ボーイング現象を抑制する点よりは一軸延伸方式が好ましい。延伸処理温度は、従来に準じることができ、透明フィルムを形成する固体ポリマーのガラス転移温度の近傍、この中でガラス転移温度以上が一般的である。
一方、収縮処理は、例えば透明フィルムの塗工形成を基材上で行って、その基材の温度変化等に伴う寸法変化を利用して収縮力を作用させる方式などにより行うことができる。その場合、熱収縮性フィルムなどの収縮能を付与した基材を用いることもでき、そのときには延伸機等を利用して収縮率を制御することが望ましい。
得られる光学補償フィルムにおけるRthとReの大きさは、固体ポリマーの種類や、液状化物の塗工方式等の展開層の形成方式、乾燥条件等の展開層の固体化方式や、形成する透明フィルムの厚さなどにて制御することができる。透明フィルムの一般的な厚さは、0.5〜100μm、この中で1〜50μm、特に2〜20μmである。
この方法にで作製した光学補償フィルムはそのまま用いても良いし、粘着剤等によりその他のフィルムに貼合しても良い。
〔液晶表示装置〕
(一般的な液晶表示装置の構成)
次に、本発明のセルロースアシレートフィルムを部材として用いた液晶表示装置について説明する。
前述のとおり、本発明のセルロースアシレートフィルムは偏光板保護フィルムとして好適に用いられる。このようにして得られた偏光板を液晶表示装置に用いる場合、液晶表示装置は、2枚の電極基板の間に液晶を担持してなる液晶セル、及びその両側に配置された2枚の偏光板を配置し、好適には該液晶セルと該偏光板との間に少なくとも1枚の光学補償フィルムを配置した構成を有している。
また、本発明のセルロースアシレートフィルムを光学補償フィルムに用いる場合は、上記の液晶表示装置の構成において、液晶セルと偏光板との間に配置した少なくも1枚の光学補償フィルムとしてそのまま用いても良いし、光学補償層として液晶層やポリマー層を設けていない側を偏光膜と直接貼りあわせて、光学補償フィルムかつ偏光板保護フィルムとする、一体型として用いても良い。この際、偏光膜の透過軸と、光学補償フィルムの遅相軸とをどのような角度で配置しても構わない。
液晶セルの液晶層は、通常は、二枚の基板の間にスペーサーを挟み込んで形成した空間に液晶を封入して形成する。透明電極層は、導電性物質を含む透明な膜として基板上に形成する。液晶セルには、さらにガスバリアー層、ハードコート層あるいは(透明電極層の接着に用いる)アンダーコート層(下塗り層)を設けてもよい。これらの層は、通常、基板上に設けられる。液晶セルの基板は、一般に50μm〜2mmの厚さを有する。
(液晶表示装置の種類)
本発明のセルロースアシレートフィルムは、様々な表示モードの液晶セルに用いることができる。具体的には、TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti−ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)、ECB(Electrically Controlled
Birefringence)、およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。また、上記表示モードを配向分割した表示モードも提案されている。本発明のセルロースアシレートフィルムは、いずれの表示モードの液晶表示装置においても有効である。また、透過型、反射型、半透過型のいずれの液晶表示装置においても有効である。
(TN型液晶表示装置)
本発明のセルロースアシレートフィルムは、TNモードの液晶セルを有するTN型液晶表示装置の光学補償フィルムの支持体又は偏光板の保護フィルムとして用いてもよい。TNモードの液晶セルとTN型液晶表示装置については、古くから良く知られている。TN型液晶表示装置に用いる光学補償フィルムについては、特開平3−9325号、特開平6−148429号、特開平8−50206号、特開平9−26572号の各公報に記載がある。また、モリ(Mori)他の論文(Jpn. J. Appl. Phys. Vol.36(1997)p.143や、Jpn. J. Appl. Phys. Vol.36(1997)p.1068)に記載がある。
(STN型液晶表示装置)
本発明のセルロースアシレートフィルムは、STNモードの液晶セルを有するSTN型液晶表示装置の光学補償フィルムの支持体又は偏光板の保護フィルムとして用いてもよい。一般的にSTN型液晶表示装置では、液晶セル中の棒状液晶性化合物の分子が90〜3
60度の範囲にねじられており、棒状液晶性分子の屈折率異方性(Δn)とセルギャップ(d)との積(Δn・d)が300〜1500nmの範囲にある。STN型液晶表示装置に用いる光学補償フィルムについては、特開2000−105316号公報に記載がある。
(VA型液晶表示装置)
本発明のセルロースアシレートフィルムは、VAモードの液晶セルを有するVA型液晶表示装置の光学補償フィルムの支持体又は偏光板の保護フィルムとして特に有利に用いられる。VA型液晶表示装置に用いる光学補償シートのレターデーション値Reを0乃至150nmとし、Rthを70乃至400nmとすることが好ましい。Reは、20乃至70nmであることが更に好ましい。VA型液晶表示装置に二枚の光学異方性ポリマーフィルムを使用する場合、フィルムのRthは70乃至250nmであることが好ましい。VA型液晶表示装置に一枚の光学異方性ポリマーフィルムを使用する場合、フィルムのRthは150乃至400nmであることが好ましい。VA型液晶表示装置は、例えば特開平10−123576号公報に記載されているような配向分割された方式であっても構わない。
(IPS型液晶表示装置およびECB型液晶表示装置)
本発明のセルロースアシレートフィルムは、IPSモードおよびECBモードの液晶セルを有するIPS型液晶表示装置およびECB型液晶表示装置の光学補償フィルムの支持体、または偏光板の保護フィルムとしても特に有利に用いられる。これらのモードは黒表示時に液晶材料が略平行に配向する態様であり、電圧無印加状態で液晶分子を基板面に対して平行配向させて、黒表示する。これらの態様において本発明のセルロースアシレートフィルムを用いた偏光板は視野角拡大、コントラストの良化に寄与する。この態様においては、前記偏光板の保護フィルムと保護フィルムと液晶セルの間に配置された光学異方性層のレターデーションの値は、液晶層のΔn・dの値の2倍以下に設定するのが好ましい。またRth値の絶対値|Rth|は、25nm以下、より好ましくは20nm以下、さらに好ましくは15nm以下に設定するのが好ましいため、本発明のセルロースアシレートフィルムが有利に用いられる。
(OCB型液晶表示装置およびHAN型液晶表示装置)
本発明のセルロースアシレートフィルムは、OCBモードの液晶セルを有するOCB型液晶表示装置あるいはHANモードの液晶セルを有するHAN型液晶表示装置の光学補償フィルムの支持体又は偏光板の保護フィルムとしても有利に用いられる。OCB型液晶表示装置あるいはHAN型液晶表示装置に用いる光学補償フィルムには、レターデーションの絶対値が最小となる方向が光学補償フィルムの面内にも法線方向にも存在しないことが好ましい。OCB型液晶表示装置あるいはHAN型液晶表示装置に用いる光学補償フィルムの光学的性質も、光学異方性層の光学的性質、支持体の光学的性質および光学異方性層と支持体との配置により決定される。OCB型液晶表示装置あるいはHAN型液晶表示装置に用いる光学補償フィルムについては、特開平9−197397号公報に記載がある。また、モリ(Mori)他の論文(Jpn. J. Appl. Phys. Vol.38(1999)p.2837)に記載がある。
(反射型液晶表示装置)
本発明のセルロースアシレートフィルムは、TN型、STN型、HAN型、GH(Guest−Host)型の反射型液晶表示装置の光学補償フィルムの支持体又は偏光板の保護フィルムとしても有利に用いられる。これらの表示モードは古くから良く知られている。TN型反射型液晶表示装置については、特開平10−123478号公報、国際公開第98/48320号パンフレット、特許第3022477号公報に記載がある。反射型液晶表示装置に用いる光学補償シートについては、国際公開第00/65384号パンフレ
ットに記載がある。
(その他の液晶表示装置)
本発明のセルロースアシレートフィルムは、ASM(Axially Symmetric Aligned Microcell )モードの液晶セルを有するASM型液晶表示装置の光学補償フィルムの支持体又は偏光板の保護フィルムとしても有利に用いられる。ASMモードの液晶セルは、セルの厚さが位置調整可能な樹脂スペーサーにより維持されているとの特徴がある。その他の性質は、TNモードの液晶セルと同様である。ASMモードの液晶セルとASM型液晶表示装置については、クメ(Kume)他の論文(Kume et al., SID 98 Digest 1089 (1998))に記載がある。
(ハードコートフィルム、防眩フィルム、反射防止フィルム)
本発明のセルロースアシレートフィルムは、またハードコートフィルム、防眩フィルム、反射防止フィルムへの適用が好ましく実施できる。LCD、PDP、CRT、EL等のフラットパネルディスプレイの視認性を向上する目的で、本発明のセルロースアシレートフィルムの片面または両面にハードコート層、防眩層、反射防止層の何れかあるいはそれらの全てを付与することができる。このような防眩フィルム、反射防止フィルムとしての望ましい実施態様は、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)の54頁〜57頁に詳細に記載されており、本発明のセルロースアシレートフィルムを好ましく用いることができる。
(写真フィルム支持体)
さらに本発明のセルロースアシレートフィルムは、ハロゲン化銀写真感光材料の支持体としても適用でき、該特許に記載されている各種の素材や処方さらには処理方法が適用できる。それらの技術については、特開2000−105445号公報にカラーネガティブに関する記載が詳細に挙げられており、本発明のセルロースアシレートフィルムが好ましく用いられる。またカラー反転ハロゲン化銀写真感光材料の支持体としての適用も好ましく、特開平11−282119号公報に記載されている各種の素材や処方さらには処理方法が適用できる。
(透明基板)
本発明のセルロースアシレートフィルムは、光学異方性がゼロに近く、優れた透明性を持っていることから、液晶表示装置の液晶セルガラス基板の代替、すなわち駆動液晶を封入する透明基板としても用いることができる。
液晶を封入する透明基板はガスバリア性に優れる必要があることから、必要に応じて本発明のセルロースアシレートフィルムの表面にガスバリアー層を設けてもよい。ガスバリアー層の形態や材質は特に限定されないが、本発明のセルロースアシレートフィルムの少なくとも片面にSiO2等を蒸着したり、あるいは塩化ビニリデン系ポリマーやビニルアルコール系ポリマーなど相対的にガスバリアー性の高いポリマーのコート層を設ける方法が考えられ、これらを適宜使用できる。
また液晶を封入する透明基板として用いるには、電圧印加によって液晶を駆動するための透明電極を設けてもよい。透明電極としては特に限定されないが、本発明のセルロースアシレートフィルムの少なくとも片面に、金属膜、金属酸化物膜などを積層することによって透明電極を設けることができる。中でも透明性、導電性、機械的特性の点から、金属酸化物膜が好ましく、なかでも酸化スズを主として酸化亜鉛を2〜15%含む酸化インジウムの薄膜が好ましく使用できる。これら技術の詳細は例えば、特開2001−125079号公報や特開2000−227603号公報などに公開されている。
以下、本発明を実施例により更に説明するが、本発明は下記例に制限されない。
[例1]
〔セルロースアシレート溶液の調製〕
表1に記載の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液T−1〜T−4を調製した。
Figure 2006206826
〔添加剤溶液の調製〕
ミキシングタンクに、表2に記載の組成物を投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液U−1〜U−17を調製した。なお、オルガノシランゾル液を使用する場合には、以下に示す方法により作製したゾル液を使用した。
<オルガノシランゾル液の作製>
(オルガノシランゾル液(F−1)の調製)
テトラエトキシシラン2000g、イソブタノール200g、アルミニウムアセチルアセトナート6gをフラスコに仕込み、撹拌した。次に0.25Nの酢酸水500gを少量ずつ滴下した。滴下終了後、室温で3時間撹拌した。その後、ジアセトンアルコール600gを添加して、孔径1μmのポリプロピレン製フィルターでろ過してオルガノシランゾル液(F−1)を調製した。
(オルガノシランゾル液(F−2)の調製)
3−グリシドキシプロピルトリメトキシシラン500g、テトラエトキシシラン1500g、イソブタノール200gをフラスコに仕込み、撹拌した。次に0.25Nの酢酸水419gを少量ずつ滴下した。滴下終了後、室温で3時間撹拌した。次にアルミニウムアセチルアセトナート6gを加え、更に撹拌を3時間行った。その後、ジアセトンアルコール600gを添加して、孔径1μmのポリプロピレン製フィルターでろ過し塗布液(F−2
)を調製した。
Figure 2006206826
但し、TEOSはテトラエトキシシリケートを示す。
〔セルロースアシレートフィルム試料001の作製〕
セルロースアシレート溶液T−1を477質量部に、添加剤溶液U−1の44質量部を添加し、充分に攪拌して、ドープを調製した。ドープを流延口から0℃に冷却したドラム上に流延した。溶媒含有率70質量%の状態でドラムより剥ぎ取り、フィルムの巾方向の両端をピンテンター(特開平4−1009号公報の図3に記載のピンテンター)で固定し、溶媒含有率が3乃至5質量%の状態で、横方向(機械方向に垂直な方向)の延伸率が2%となる間隔を保ちつつ乾燥した。その後、138℃の熱処理装置のロール間を搬送することにより、更なる乾燥と熱処理を行い、厚み80μmのセルロースアシレートフィルム試料001を、長さ(流延方向)100m、幅(流延方向に対してフィルム面内で直交す
る方向)1mの大きさで作製した。
〔セルロースアシレートフィルム試料002の作製〕
セルロースアシレートフィルム試料001において、使用する添加剤溶液U−1をU−2とする以外は同様にして、フィルム試料002を作製した。
〔セルロースアシレートフィルム試料101の作製〕
セルロースアシレート溶液T−2を455質量部に、添加剤溶液U−3の44質量部を添加し、充分に攪拌して、ドープを調製した。それ以外はセルロースアシレートフィルム試料001の作製と同様の方法により、厚み80μmのセルロースアシレートフィルム試料101を作製した。また、この方法によるフィルムの作製方法を通常法とする。
〔“プレ乾法”を用いたセルロースアシレートフィルム試料103の作製〕
セルロースアシレート溶液T−2を455質量部に、添加剤溶液U−4の44質量部を添加し、充分に攪拌してドープを調製した後、密閉容器に入れて十分に密閉し、更に80℃にて1時間攪拌しながら加熱した。作製したドープをセルロースアシレートフィルム試料101と同様の方法で流延、乾燥を行い、厚み80μmのセルロースアシレートフィルム試料103を、長さ(流延方向)100m、幅(流延方向に対してフィルム面内で直交する方向)1mの大きさで作製した。また、この方法によるフィルムの作製方法をプレ乾法とする。
〔“後乾法” を用いたセルロースアシレートフィルム試料104の作製〕
セルロースアシレート溶液T−2を455質量部に、添加剤溶液U−4の44質量部を添加し、充分に攪拌してドープを調製した。作製したドープをセルロースアシレートフィルム試料101と同様の方法で流延、乾燥を行い、更に厚み80μmのセルロースアシレートフィルムを、長さ(流延方向)100m、幅(流延方向に対してフィルム面内で直交する方向)1mの大きさで作製した。更に、作製したフィルムを別の乾燥ゾーン中を搬送して160℃の条件で20分間の乾燥処理を行い、セルロースアシレートフィルム試料104とした。また、この方法によるフィルムの作成方法を後乾法とする。
〔セルロースアシレートフィルム試料102〜125の作製〕
フィルム試料101の作製方法において、セルロースアシレート溶液T−2と添加剤溶液U−3の代わりに、表3に記載のセルロースアシレート溶液と添加剤溶液の組み合わせによるドープを使用し、更にフィルム作成方法として表3に記載の方法を用いることで、厚み約80μmのセルロースアシレートフィルム試料102〜125を作製した。
Figure 2006206826
〔セルロースアシレートT−5溶液の調製〕
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアシレート溶液T−5を調製した。
(セルロースアシレート溶液T−5組成)
酢化度2.94のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
〔マット剤溶液の調製〕
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアシレート溶液(T−5) 10.3質量部
〔添加剤溶液U−18の調製〕
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液U−18を調製した。
(添加剤溶液U−18組成)
光学異方性を低下させる化合物(A−19) 90.0質量部
波長分散調整剤(UV−102) 9.0質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
TEOS 7.0質量部
セルロースアシレート溶液(T−5) 12.8質量部
〔セルロースアシレートフィルム試料126の作製〕
上記セルロースアシレート溶液(T−5)を94.6質量部、マット剤溶液を1.3質量部、添加剤溶液(U−18)を4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学異方性を低下させる化合物および波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.2%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させ、更に160℃で20分間乾燥させることでセルロースアシレートフィルム試料128を製造した。出来あがったセルロースアシレートフィルムの残留溶剤量は0.2%であり、膜厚は80μmであった。
[ノルボルネン系高分子試料201の作製]
炭酸カルシウムの針状結晶微粒子(丸尾カルシウム(株))を、超音波を照射することによりTHF中に均一に分散させた。さらにポリマーとしてペレット状のアートン(JSR(株))を加え、約30時間撹拌し溶解させた。試薬の混合比は、テトラヒドロフランはアートンに対し質量比で5倍、炭酸カルシウムはアートンに対し1.1質量%とした。このようにして得られたポリマー溶液をガラス板上にナイフコーターを用いて展開し、溶媒を蒸発させた。ガラス板よりフィルム状の試料(厚さ約80μm)をはがし、さらに82℃で2時間乾燥を行いノルボルネン系高分子試料201を得た。
<表面処理>
次に、作製したセルロースアシレートフィルム試料001に対し下記表面処理を行った。
作製したセルロースアシレートフィルム試料001を、1.5規定の水酸化ナトリウム水溶液に、55℃で2分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。このようにして、セルロースアシレートフィルムの表面をアルカリケン化した試料を作製した。
(セルロースアシレートフィルム試料002、101〜126,201の表面処理)
作製したセルロースアシレートフィルム試料002、101〜126,201についても、セルロースアシレートフィルム試料001と同様にして処理を行った試料を作製した。
<光学性能の評価>
作製した表面処理後の各試料について、本明細書中に記載の方法にて、Re=Re(630
)、Rth=Rth(630)、Re波長分散=|Re(400)−Re(700)|、Rth波長分散=|Rth(400)−Rth(700)|、の光学性能の評価を行った。
<光学性能の湿度依存性の評価>
作製した表面処理後の各試料について、本明細書中に記載の方法にて、Re(630)、Rth(630)、の光学性能の評価を行った。この際、測定時の雰囲気を25℃/10%RH、または25℃/80%RHとし、それぞれの条件下にて6時間以上調湿した試料を用いて測定を行い、得られた光学特性値の差、(RthA)−(RthB)を求めることでRthの湿度依存性の評価を行った。
<フィルム性能の評価>
作製した表面処理後の各試料について、本明細書中に記載の方法にて寸度安定性、光弾性の評価を行った。
<表面エネルギーの測定>
作製した表面処理後および表面処理前の各試料の表面エネルギーを下記方法により測定した。すなわち、試料中央部より30mm×40mmの大きさにサンプリングしたのち、25℃60%RHで2時間調湿し、水平な台の上に水平にのせて試料表面に一定量(20μl)の水、およびヨウ化メチレンをのせてから一定時間(30秒)後の試料表面での水、およびヨウ化メチレンの接触角を求めた。更に測定した接触角から、Owensの方法により表面エネルギーを求めた。
<偏光板耐久性の評価>
<偏光板貼合試験>
作製した表面処理後の試料に対し、下記の偏光板貼合試験を行った。すなわち、作製した試料の表面に対し、下記の粘着剤塗布液をそれぞれ20ml/m2塗布し、100℃5分乾燥して粘着剤付きフィルム試料とした。
(粘着剤塗布液)
下層塗布液A:
下記水溶性ポリマー(m) 0.5g
アセトン 40ml
酢酸エチル 55ml
イソプロパノール 5ml
上層塗布液B:
ポリビニルアルコール(日本合成化学工業株式会社製ゴーセノール
NH−26) 0.3g
サポニン(メルク社製界面活性剤) 0.03g
純水 57ml
メタノール 40ml
メチルプロピレングリコール 3ml
Figure 2006206826
続いて、厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して偏光子を得た。上記の粘着剤付きフィルム試料001に対し粘着剤を塗設した側に偏光子がくるように貼り付け、さらに偏光子のもう一方の側に市販のセルロールアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製、Re(630)値は3nm、Rth(630)値は50nm)を上記と同様の方法によりアルカリケン化処理を行った後、粘着剤層を塗設してから貼り合わせ、偏光板試料を作製した。
作製した表面処理後の試料002、101〜126,201についても、同様にして偏光板試料を作製した。
(密着性)
作製した偏光板試料の密着性を以下の方法で試験した。すなわち、偏光板試料の特定箇所を5回前後に90度に繰返し折り曲げ、折り曲げ後の貼合面の剥れの有無で密着性を評価した。
○:剥れ無し
×:剥れ有り
(加工性)
作製した偏光板試料の加工性を以下の方法で試験した。すなわち、偏光板試料を片刃のカッターナイフで裁断し、裁断面付近での剥れの生じ易さで加工性を評価した
○:剥れ無し
×:剥れ有り
〔耐久性1〕
作製した偏光板試料の耐久性試験を以下の方法で試験した。すなわち、密着性については偏光板試料を60℃/90%RHの条件下に150時間放置し、放置後の貼合面の剥れの有無で評価した。また、耐久性試験後の偏光板試料2枚をクロスニコルの向きに重ね合わせ、暗室にて裏面から白色光(ライトテーブル)を照射した黒表示モデル系でのムラの評価をおこなった。
<剥れ>
○:剥れ無し
×:剥れ有り
<ムラ>
○:ムラが極めてわずかであり良好
△:ムラがわずかながら見られる
×:ムラが大きい
〔耐久性2〕
作製した偏光板試料の耐久性試験を以下の方法で試験した。すなわち、密着性については偏光板試料を80℃の条件下に150時間放置し、放置後の貼合面の剥れの有無で評価した。また、耐久性試験後の偏光板試料2枚をクロスニコルの向きに重ね合わせ、暗室にて裏面から白色光(ライトテーブル)を照射した黒表示モデル系でのムラの評価をおこなった。
<剥れ>
○:剥れ無し
×:剥れ有り
<ムラ>
○:ムラが極めてわずかであり良好
△:ムラがわずかながら見られる
×:ムラが大きい
作製した各試料のそれぞれの項目についての評価結果を表4〜表5に示す。なお、表4中MDとは機械方向、TDとは機械方向に垂直な方向を表す。
Figure 2006206826
Figure 2006206826
[例2](IPS型液晶表示装置への実装評価)
例1で作製したセルロースアシレートフィルム試料を用いて、液晶表示装置へ実装評価してその光学性能が十分であるか確認した。なお本実施例ではIPS型液晶セル、他の実施例ではVA型、OCB型液晶セルを用いるが、本発明のセルロースアシレートフィルムを用いた偏光板または光学補償フィルムの用途は液晶表示装置の動作モードに限定されることはない。
例1で作製したセルロースアシレートフィルム試料001から例1と同様の方法にて作製した偏光板試料001に対し、アートンフィルム(JSR社製)を一軸延伸した光学補償フィルムを貼合して光学補償機能を持たせた。この際、光学補償フィルムの正面レターデーションの遅相軸を偏光板試料001の透過軸と直交させることで、正面特性を何ら変えることなく視覚特性を向上させることができる。光学補償フィルムの正面レターデーションRe(630)は270nm、膜厚方向のレターデーションRth(630)は0nmでNzファクターは0.5のものを用いた。
作製した上記の偏光板001と光学補償フィルムの積層体を2組作製し、光学補償フィルムが各々液晶セル側となるように、「偏光板001と光学補償フィルムの積層体+IPS型の液晶セル+偏光板001と光学補償フィルムの積層体」の順番に重ね合わせて組み込んだ表示装置を作製した。この際、上下の偏光板の透過軸を直交させ、上側の偏光板001の透過軸は液晶セルの分子長軸方向と平行(すなわち光学補償層の遅相軸と液晶セルの分子長軸方向は直交)とした。液晶セルや電極・基板はIPSとして従来から用いられているものがそのまま使用できる。液晶セルの配向は水平配向であり、液晶は正の誘電率異方性を有しており、IPS液晶用に開発され市販されているものを用いることができる。液晶セルの物性は、液晶のΔn:0.099、液晶層のセルギャップ:3.0μm、プレチルト角:5度、ラビング方向:基板上下とも75度とした。
同様にして、例1で作製したセルロースアシレートフィルム試料002、101〜126,201についても、偏光板001と同様にして、例1と同様の方法により偏光板を作製後、光学補償フィルムを貼合した積層体を2組用意して、IPS液晶セルと組み込んだ表示装置を作製した。
作製した液晶表示装置の輝度の視野角依存性を測定した。極角は正面から斜め方向へ10°毎に80°まで、方位角は水平右方向(0°)を基準として10°毎に360°まで測定した。黒表示時の輝度は正面方向から極角が増すにつれ漏れ光による上昇が見られ、極角70°近傍で最大値をとることがわかった。また黒表示時の輝度が増すことで、コントラストが悪化することもわかった。そこで、正面の黒表示時の輝度と極角70°の輝度の方位角0〜360°における最大値で、視野角のコントラスト変化と色味変化を評価することにした。この際、極角70°の方位角45°における輝度を光漏れ率として測定した。この値が小さいほど極角方向での光漏れが少なく、表示装置のコントラストに視野角依存性が小さくなることから、液晶表示装置のコントラストの視野角特性を評価できる。その結果、本発明のフィルム試料はいずれも光漏れ率が小さく、コントラスト変化が少なく、また、表示装置の色味変化が小さくなった。これは本発明のセルロースアシレートフィルム試料のRe、Rthが小さく、更に波長分散性が優れている(波長依存性が小さい)ために、どの波長においても同様の光学補償性能を持つことを示している。これらのことより、反応性の金属化合物を併用した場合においても、いずれも良好な表示性能を得られることが分かった。以上のように本発明のセルロースアシレートフィルムにより作製した光学補償フィルムおよび偏光板が、視野角特性に優れ、表示色味を変化しにくいことがわかった。
また、耐久性試験として、65℃95%で200時間の処理を行った後の表示ムラの観
察を行った。ムラはパネルの四隅に主に発生していた。
得られた結果を表6に示す。
その結果、本発明の試料では、レターデーションが小さいことで液晶表示の視野角特性がよく、また、耐久性試験後のパネルに現れる経時ムラも少ないことが分かる。
<表示特性変動の評価>
<コントラスト変化>
◎:視野角コントラスト変化が極めてわずかであり良好
○:視野角コントラスト変化がわずかであり良好
△:視野角コントラスト変化がわずかながら見られる
×:視野角コントラスト変化が大きい
<色味変化>
◎:視野角色味変化が極めてわずかであり良好
○:視野角色味変化がわずかであり良好
△:視野角色味変化がわずかながら見られる
×:視野角色味変化が大きい
<経時ムラ評価>
○:ムラが極めてわずかであり良好
△:ムラがわずかながら見られる
×:ムラが大きい
Figure 2006206826
本発明より、有機高分子フィルムに反応性金属化合物を併用した本発明のセルロースアシレートフィルムは、耐久性が優れており、偏光板等の保護フィルムとして用いた場合に、偏光板性能と耐久性に優れる、品質の高い偏光板を作製可能であることがわかった。さらに、本発明のセルロースアシレートフィルムを支持体として用いることにより、液晶表示装置等のパネルの光学補償フィルムとして、視野角特性と耐久性に優れる光学補償フィルムを提供できることがわかった。
[例3](VA型、OCB型液晶表示装置への実装評価)
例1で得た本発明のセルロースアシレートフィルム試料を用いて、特開平10−48420号公報の実施例1に記載の液晶表示装置、特開平9−26572号公報の実施例1に記載のディスコティック液晶分子を含む光学異方性層、ポリビニルアルコールを塗布した配向膜、特開2000−154261号公報の図2〜9に記載のVA型液晶表示装置、特開2000−154261号公報の図10〜15に記載のOCB型液晶表示装置での評価をしたところ、本発明の実施例においては、いずれの場合においてもコントラスト視野角と色味視野角が良好であり、また耐久性試験後のムラについても良好な性能が得られた。
[例4](光学補償フィルム性能)
例1で得た本発明のセルロースアシレートフィルム試料を用いて、特開平7−333433号公報の実施例1に記載の方法により光学補償フィルム試料を作製した。得られたフィルターフィルムは左右上下に優れた視野角を有するものであった。したがって、本発明のセルロースアシレートフィルムが、光学的用途として優れたものであることが判った。
[例5]
(光学異方性層の形成)
2,2'−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパンと、2,2'−ビス(トリフルオロメチル)−4,4'一ジアミノビフェニルから合成されたポリイミド(重量平均分子量(Mw)5.5万)の15質量%シクロヘキサノン溶液をTACフィルム(T80UZ、富士写真フイルム製)上に塗布し、100℃で10分間乾燥処理して、残存溶媒量が7質量%で、厚さが6μmの透明ポリマー層を得た後、TACフィルムと共に160℃で15%の縦一軸延伸処理を加えて光学異方性層付延伸フィルム1Aを得た。さらに、上記により形成した光学異方性層を例1で作成したセルロースアシレートフィルム試料または、ノルボルネン系高分子試料に転写した試料を作成し、光学補償フィルムを作成した。この光学補償フィルムは、Re=55nm、Rth=238nmのnx>ny>nzの特性を示した。更に、作成した光学補償フィルムを例1記載と同様の方法により偏光板試料とした。
作成した光学補償フィルムからなる偏光板を、例3と同様の方法でVA型液晶表示装置での評価を行ったところ、本発明の試料からなるサンプルはいずれもコントラスト視野角と色味視野角が良好であり、また耐久性試験後のムラ等の性能についても良好な結果が得られた。
以上の例から、本発明のセルロースアシレートフィルムは、加水分解重縮合が可能な反応性金属化合物の重縮合物を含有していることから環境変化に対して光学異方性の変化が小さく、また液晶表示装置に用いた場合、視野角依存性が小さくなることがわかる。
また本発明のセルロースアシレートフィルムを用いた光学補償フィルムおよび偏光板は、環境変化に対して光学異方性の変化が小さくかつ視野角依存性が小さい。したがってこれらの光学部材を用いることにより、環境が変化しても画像表示性能の低下がない、画像表示性能に優れた液晶表示装置を提供することができる。

Claims (24)

  1. 正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(I)、(II)を満たすことを特徴とするセルロースアシレートフィルム。
    (I) 0≦Re(630)≦10かつ|Rth(630)|≦25
    (II) (RthA)−(RthB)≦25nm
    (ここで、(RthA)は25℃および10%RHの条件下でのRth(630)、(RthB)は25℃および80%RHの条件下でのRth(630)を示す。)
  2. 正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(I)を満たし、かつ90℃および5%RHの条件下で150時間静置する前後の寸度変化率が0.1%以下であり、さらに60℃、90%RHの条件下で150時間静置する前後の寸度変化率が0.1%以下であることを特徴とするセルロースアシレートフィルム。
    (I) 0≦Re(630)≦10かつ|Rth(630)|≦25
  3. 正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(I)を満たし、かつ光弾性係数が、10×10-13cm2/dyne(10-13N/m2)以下であることを特徴とするセルロースアシレートフィルム。
    (I) 0≦Re(630)≦10かつ|Rth(630)|≦25
  4. 前記セルロースアシレートフィルムが、少なくとも加水分解重縮合が可能な反応性金属化合物の重縮合物を含有することを特徴とする請求項1〜3のいずれかに記載のセルロースアシレートフィルム。
  5. 正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(III)を満たすことを特徴とする請求項1〜4のいずれかに記載のセルロースアシレートフィルム。
    (III) |Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35
  6. 前記セルロースアシレートフィルムが、更に少なくともセルロースアシレートと分子量が3000以下の化合物とを含有することを特徴とする請求項1〜5のいずれかに記載のセルロースアシレートフィルム。
  7. 前記分子量が3000以下の化合物が1種類以上の化合物からなり、少なくともオクタノール−水分配係数(LogP値)が0〜7である化合物を含むことを特徴とする請求項6に記載のセルロースアシレートフィルム。
  8. 前記分子量が3000以下の化合物が1種類以上の化合物からなり、少なくとも波長200nm〜400nmの範囲で分光吸収を示す化合物を含むことを特徴とする請求項6または7に記載のセルロースアシレートフィルム。
  9. 前記分子量が3000以下の化合物が1種類以上の化合物からなり、少なくとも重合性不飽和二重結合を有する化合物を含むことを特徴とする請求項6〜8のいずれかに記載のセルロースアシレートフィルム。
  10. セルロースアシレートのアシル置換基がアセチル基のみからなり、その全置換度が2.
    50〜3.00であり、その平均重合度が180〜550であることを特徴とする請求項6〜9のいずれかに記載のセルロースアシレートフィルム。
  11. 前記セルロースアシレートのアシレート基がアセチレート、プロピオネート、ブチレートのうちの少なくとも1つ以上からなり、全置換度が2.50以上であることを特徴とする請求項6〜9のいずれかに記載のセルロースアシレートフィルム。
  12. 前記セルロースアシレートフィルムの少なくとも片側の面の表面エネルギーが50mN/m以上80mN/m以下であることを特徴とする請求項1〜11のいずれかに記載のセルロースアシレートフィルム。
  13. 前記セルロースアシレートフィルムの少なくとも片側の面が表面処理された面であり、該表面処理された面の表面処理前の表面エネルギーが30mN/m以上50mN/m以下であって、かつ表面処理後の表面エネルギーが50mN/m以上80mN/m以下であることを特徴とする請求項12に記載のセルロースアシレートフィルム。
  14. セルロースアシレートと反応性金属化合物とを少なくとも含有するセルロースアシレート組成物を流延する流延工程を含むセルロースアシレートフィルムの製造方法であって、製造した該セルロースアシレートフィルムの正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が、下記式(I)を満たすことを特徴とするセルロースアシレートフィルムの製造方法。
    (I)0≦Re(630)≦10かつ|Rth(630)|≦25
  15. 前記製造方法が、更にセルロースアシレート組成物を流延する前に加熱する加熱工程を含むことを特徴とする請求項14に記載のセルロースアシレートフィルムの製造方法。
  16. 前記製造方法が、流延工程と、流延して製膜したフィルムを更に加熱する加熱工程を含むことを特徴とする請求項14または15に記載のセルロースアシレートフィルムの製造方法。
  17. 請求項1〜13のいずれかに記載のセルロースアシレートフィルムに、正面レターデーションRe(λ)および膜厚方向のレターデーションRth(λ)(λは波長(nm)を示す)が下記式を満たす光学異方性層を積層したことを特徴とする光学補償フィルム。
    0≦Re(630)≦200nmかつ0≦|Rth(630)|≦400nm
  18. 前記光学異方性層がポリマーフィルムを含有することを特徴とする請求項17に記載の光学補償フィルム。
  19. 固体ポリマーを溶媒に溶解させて液状化し、これを請求項1〜13のいずれかに記載のセルロースアシレートフィルム上に展開して乾燥させた後、伸張処理および/または収縮処理を施して面内で分子を配向させたことを特徴とする請求項18に記載の光学補償フィルム。
  20. ポリマーフィルムにおけるポリマーが、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアリールエーテルケトン、ポリアミドイミドおよびポリエステルイミドから選択された少なくとも1種であることを特徴とする請求項18または19に記載の光学補償フィルム。
  21. 請求項1〜13のいずれかに記載のセルロースアシレートフィルム、または請求項17〜20のいずれかに記載の光学補償フィルムを少なくとも1枚、偏光子の保護フィルムと
    して用いたことを特徴とする偏光板。
  22. 表面にハードコート層、防眩層および反射防止層から選択された少なくとも一層を設けたことを特徴とする請求項21に記載の偏光板。
  23. 請求項1〜13のいずれかに記載のセルロースアシレートフィルム、または請求項17〜20のいずれかに記載の光学補償フィルム、請求項21または22に記載の偏光板、のいずれかを用いたことを特徴とする液晶表示装置。
  24. 請求項1〜13のいずれかに記載のセルロースアシレートフィルム、または請求項17〜20のいずれかに記載の光学補償フィルム、請求項21または22に記載の偏光板、のいずれかを用いたことを特徴とするVAまたはIPSモードの液晶表示装置。
JP2005023431A 2005-01-31 2005-01-31 セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置 Pending JP2006206826A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023431A JP2006206826A (ja) 2005-01-31 2005-01-31 セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023431A JP2006206826A (ja) 2005-01-31 2005-01-31 セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置

Publications (1)

Publication Number Publication Date
JP2006206826A true JP2006206826A (ja) 2006-08-10

Family

ID=36964017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023431A Pending JP2006206826A (ja) 2005-01-31 2005-01-31 セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置

Country Status (1)

Country Link
JP (1) JP2006206826A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052041A (ja) * 2006-08-24 2008-03-06 Fujifilm Corp 光学フィルム、偏光板、液晶表示装置
JP2008129121A (ja) * 2006-11-17 2008-06-05 Fujifilm Corp 位相差フィルムの製造方法
JP2009237247A (ja) * 2008-03-27 2009-10-15 Konica Minolta Opto Inc 光学フィルム、これを用いた偏光板、及び表示装置
WO2016072508A1 (ja) * 2014-11-07 2016-05-12 富士フイルム株式会社 ポリマーフィルム、積層フィルム、ポリマーフィルムの製造方法、偏光板および画像表示装置
JP2016094597A (ja) * 2014-11-07 2016-05-26 富士フイルム株式会社 ポリマーフィルム、積層フィルム、ポリマーフィルムの製造方法、偏光板および画像表示装置
KR20180021092A (ko) * 2015-07-22 2018-02-28 코니카 미놀타 가부시키가이샤 편광판 및 그것을 사용한 액정 표시 장치

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052041A (ja) * 2006-08-24 2008-03-06 Fujifilm Corp 光学フィルム、偏光板、液晶表示装置
JP2008129121A (ja) * 2006-11-17 2008-06-05 Fujifilm Corp 位相差フィルムの製造方法
JP2009237247A (ja) * 2008-03-27 2009-10-15 Konica Minolta Opto Inc 光学フィルム、これを用いた偏光板、及び表示装置
WO2016072508A1 (ja) * 2014-11-07 2016-05-12 富士フイルム株式会社 ポリマーフィルム、積層フィルム、ポリマーフィルムの製造方法、偏光板および画像表示装置
JP2016094597A (ja) * 2014-11-07 2016-05-26 富士フイルム株式会社 ポリマーフィルム、積層フィルム、ポリマーフィルムの製造方法、偏光板および画像表示装置
KR20180021092A (ko) * 2015-07-22 2018-02-28 코니카 미놀타 가부시키가이샤 편광판 및 그것을 사용한 액정 표시 장치
CN107850720A (zh) * 2015-07-22 2018-03-27 柯尼卡美能达株式会社 偏振片和使用偏振片的液晶显示装置
KR101999075B1 (ko) * 2015-07-22 2019-07-10 코니카 미놀타 가부시키가이샤 편광판 및 그것을 사용한 액정 표시 장치

Similar Documents

Publication Publication Date Title
JP4740604B2 (ja) 光学補償フィルム、その製造方法、偏光板および液晶表示装置
JP4055861B2 (ja) 透明フイルムおよびそれを用いた液晶表示装置
JP4404735B2 (ja) セルロースアシレートフィルム、それを用いた光学補償フィルム、偏光板
JP2014240984A (ja) 光学フィルム、偏光板、液晶表示装置、及び光学フィルムの製造方法
JP4771692B2 (ja) 液晶表示装置
JP2006301570A (ja) 透明フィルム、透明フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP2006293255A (ja) 光学フィルム、光学補償フィルム、偏光板、液晶表示装置、および自発光型表示装置
JP2006291186A (ja) セルロースアシレートフィルム及びその製造方法、光学補償フィルム、偏光板および液晶表示装置
JP4491353B2 (ja) 光学フィルム、光学フィルムの製造方法、光学補償フィルム、偏光板及び液晶表示装置
JP2006243132A (ja) 偏光板及び液晶表示装置
JP2006195157A (ja) 光学補償フィルム、偏光板、液晶表示装置
KR101268747B1 (ko) 셀룰로오스 아실레이트 필름, 광학 보상 필름, 편광 필름 및 액정표시장치
JP2006292895A (ja) 透明フィルム並びにそれを用いた液晶ディスプレイ素子及び液晶表示装置
JP2006305751A (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、位相差フィルム、偏光板、および液晶表示装置
JP2006206826A (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置
JP2006257143A (ja) セルロースアシレートフィルム、並びにそれを用いた偏光板及び液晶表示装置
JP2008006602A (ja) セルロースオリゴマー誘導体を含有するセルロース体フィルム、これを用いた偏光板および液晶表示装置
JP4619108B2 (ja) 液晶表示装置
WO2013162018A1 (ja) セルロースアシレートフィルム、偏光板、偏光板の製造方法、及び液晶表示装置
JP2006221155A (ja) 光学フィルム、それを用いた光学補償フィルム、偏光板及び液晶表示装置
JP2006249328A (ja) セルロースアシレートフィルム、位相差フィルム、偏光板、および液晶表示装置
JP2006201502A (ja) 位相差フィルム、偏光板、および液晶表示装置
JP2006265288A (ja) 透明フィルム、透明フィルムの製造方法、光学補償フィルム、偏光板、及び液晶表示装置
JP2006201449A (ja) 液晶表示装置
JP2006220971A (ja) 光学補償シート、偏光板およびこれを用いた液晶表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124