JP2006243703A - 液晶表示装置 - Google Patents
液晶表示装置 Download PDFInfo
- Publication number
- JP2006243703A JP2006243703A JP2005290542A JP2005290542A JP2006243703A JP 2006243703 A JP2006243703 A JP 2006243703A JP 2005290542 A JP2005290542 A JP 2005290542A JP 2005290542 A JP2005290542 A JP 2005290542A JP 2006243703 A JP2006243703 A JP 2006243703A
- Authority
- JP
- Japan
- Prior art keywords
- film
- group
- liquid crystal
- carbon atoms
- rth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *OC(CC1O)=CC=C1C(*1ccccc1)=O Chemical compound *OC(CC1O)=CC=C1C(*1ccccc1)=O 0.000 description 3
Images
Landscapes
- Liquid Crystal (AREA)
- Polarising Elements (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】黒表示においてパネル面内における輝度のばらつきが軽減されたベンド配向モードの液晶表示装置を提供する。
【解決手段】ベンド配向モードの液晶セル及び一対の第1偏光膜と第2偏光膜とを有する液晶表示装置であって、第1偏光膜と液晶セルとの間に少なくとも第1光学異方層と支持体とを有し、第1光学異方層がハイブリット配向状態に固定された円盤状化合物を含有し、式(III)を満足し、且つ第1光学異方層の面内の遅相軸と第1偏光膜の面内の透過軸との角度が実質的に45゜であり、及び支持体が式(I)及び(II)を満足するセルロースアシレートフィルムからなる液晶表示装置である。(I)0≦Re2(630)≦10かつ|Rth2(630)|≦25(II)|Re2(400)−Re2(700)|≦10かつ|Rth2(400)−Rth2(700)|≦35(III)1≦Re1(700)/Re1(400)≦2
【選択図】なし
【解決手段】ベンド配向モードの液晶セル及び一対の第1偏光膜と第2偏光膜とを有する液晶表示装置であって、第1偏光膜と液晶セルとの間に少なくとも第1光学異方層と支持体とを有し、第1光学異方層がハイブリット配向状態に固定された円盤状化合物を含有し、式(III)を満足し、且つ第1光学異方層の面内の遅相軸と第1偏光膜の面内の透過軸との角度が実質的に45゜であり、及び支持体が式(I)及び(II)を満足するセルロースアシレートフィルムからなる液晶表示装置である。(I)0≦Re2(630)≦10かつ|Rth2(630)|≦25(II)|Re2(400)−Re2(700)|≦10かつ|Rth2(400)−Rth2(700)|≦35(III)1≦Re1(700)/Re1(400)≦2
【選択図】なし
Description
本発明は、ベンド配向モードの液晶表示装置に関する。
液晶表示装置(LCD)は、CRT(Cathode Ray Tube)と比較して、薄型、軽量、低消費電力との大きな利点を有する。液晶表示装置は、液晶セル及び液晶セルの両側に配置された一対の偏光板からなる。液晶セルは、棒状液晶性分子、それを封入するための二枚の基板及び棒状液晶性分子に電圧を加えるための電極層からなる。封入した棒状液晶性分子を配向させるため、二枚の基板には配向膜が設けられる。液晶セルに表示される画像の着色を除去するため、液晶セルと偏光板との間に光学補償シート(位相差板)を設けることが多い。偏光板(偏光膜)と光学補償シートとの積層体は、楕円偏光板として機能する。光学補償シートに、液晶セルの視野角を拡大する機能を付与する場合もある。延伸複屈折フィルムが、光学補償シートとして従来から使用されている。
延伸複屈折フィルムに代えて、円盤状化合物を含む光学異方層を有する光学補償シートを使用することも提案されている(例えば、特許文献1〜4参照)。光学異方層は、円盤状化合物を配向させ、その配向状態を固定することにより形成する。円盤状化合物は、一般に大きな複屈折率を有する。また、円盤状化合物には、多様な配向形態がある。従って、円盤状化合物を用いることで、従来の延伸複屈折フィルムでは得ることができない光学的性質を有する光学補償シートを製造することができる。
棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置が提案されている(例えば、特許文献5、6参照)。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
ベンド配向モードには、一般的な液晶モード(TNモード、STNモード)と比較すると、視野角が広く、応答速度が速いとの特徴がある。しかし、CRTと比較すると、さらに改良が必要である。ベンド配向モードの液晶表示装置をさらに改良するため、一般的な液晶モードと同様に光学補償シートを用いることが考えられる。しかし、従来の延伸複屈折フィルムからなる光学補償シートは、ベンド配向モードの液晶表示装置では、光学補償機能が不充分であった。前述したように、延伸複屈折フィルムに代えて、円盤状化合物を含む光学的異方性層と透明支持体とを有する光学補償シートを使用することが提案されている。さらに、円盤状化合物を含む光学補償シートを使用したベンド配向モードの液晶表示装置も提案されている(例えば、特許文献7、8参照)。円盤状化合物を含む光学補償シートを使用することで、ベンド配向モードの液晶表示装置の視野角は著しく改善される。
ベンド配向モードの液晶表示装置に円盤状化合物を含む光学補償シートを使用すると、特定の波長の光が漏れて、表示画像に着色を生じる問題が指摘されている(例えば、特許文献9参照)。この着色の原因は、楕円偏光板(偏光膜と光学補償シートとの積層体)の透過率の波長依存性にある旨が記載されている。そして、円盤状化合物の円盤面の法線の光学異方層への正射影の平均方向と偏光膜の面内透過軸との角度が実質的に45゜になるように光学異方層と偏光膜とを配置することで、ベンド配向モードの液晶セルに対する最大の光学補償効果が得られることが報告されている。また、円盤状化合物を含む光学補償シートを使用したベンド配向液晶装置について、色味変化を低減し、階調反転を防止するために、様々な方法が提案されている(例えば、特許文献10、11参照)。
しかし、従来のベンド配向モードの液晶装置では、黒表示においてパネル面内で輝度がばらついて見える問題があった。従って、本発明は、黒表示においてパネル面内における輝度のばらつきが軽減されたベンド配向モードの液晶表示装置を提供することを課題とする。
本発明の発明者らは、鋭意検討した結果、光学的異方性を十分に低下させ、ReがゼロかつRthがゼロに近くなるようにしたセルロースアシレートフィルムからなる光学異方層と、液晶性化合物をハイブリッド配向させて形成した光学異方性層とを併用することにより、ベンド配向モードの黒表示における輝度ばらつきを低減できることを見出した。
本発明の課題は、下記[1]〜[4]の液晶表示装置により解決された。
[1] ベンド配向モードの液晶セル及び該液晶セルの両側に配置された一対の第1偏光膜と第2偏光膜とを有する液晶表示装置であって、
前記第1偏光膜と前記液晶セルとの間に少なくとも第1光学異方層と該第1光学異方層の支持体とを有し、
前記第1光学異方層がハイブリット配向状態に固定された円盤状化合物を含有し、下記式(III)を満足し、且つ前記第1光学異方層の面内の遅相軸と前記第1偏光膜の面内の透過軸との角度が実質的に45゜であり、及び
前記支持体が下記式(I)及び(II)を満足するセルロースアシレートフィルムからなる液晶表示装置:
(I) 0≦Re2(630)≦10かつ|Rth2(630)|≦25
(II) |Re2(400)−Re2(700)|≦10かつ|Rth2(400)−Rth2(700)|≦35
(III) 1≦Re1(700)/Re1(400)≦2
[式中、Re1(λ)は波長λnmにおける第1光学異方層の面内レターデーション値、Re2(λ)は波長λnmにおける支持体の面内レターデーション値、Rth2(λ)は波長λnmにおける支持体の厚み方向のレターデーション値である]。
[2] 前記第1光学異方層のRe(0°)、Re(40゜)及びRe(−40゜)の値が下記式(VI)及び(VII)を満足する[1]の液晶表示装置:
(VI) 1.0<Re(40゜)/Re(0°)<3.0
(VII) 0.1<Re(−40゜)/Re(0°)<1.0
[式中、Re(0°)は、波長632.8nmの光で測定した光学異方性層の面内Reレターデーション値であり、Re(40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を40゜として波長632.8nmの光を入射して測定したReレターデーション値であり、Re(−40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を−40゜として波長632.8nmの光を入射して測定したReレターデーション値であって、あおり角度の正負はRe(40゜)>Re(−40゜)となるように決定する]。
[3] 前記セルロースアシレートフィルムが、フィルム膜厚方向のレターデーションRthを低下させる化合物を、下記式(VIII)及び(IX)を満足する範囲で少なくとも一種含有する[1]又は[2]の液晶表示装置:
(VIII) (Rth(A)−Rth(0))/A≦−1.0
(IX) 0.01≦A≦30
[Rth(A)は、Rthを低下させる化合物をA%含有したフィルムのRth(nm)であり、Rth(0)はRthを低下させる化合物を含有しないフィルムのRth(nm)であり、Aはフィルム原料ポリマーの重量を100としたときの化合物の重量(%)である]。
[4] 前記セルロースアシレートフィルムが、アシル置換度が2.85〜3.00のセルロースアシレートに、Re(λ)及びRth(λ)を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30重量%含む[1]〜[3]のいずれかの液晶表示装置。
[1] ベンド配向モードの液晶セル及び該液晶セルの両側に配置された一対の第1偏光膜と第2偏光膜とを有する液晶表示装置であって、
前記第1偏光膜と前記液晶セルとの間に少なくとも第1光学異方層と該第1光学異方層の支持体とを有し、
前記第1光学異方層がハイブリット配向状態に固定された円盤状化合物を含有し、下記式(III)を満足し、且つ前記第1光学異方層の面内の遅相軸と前記第1偏光膜の面内の透過軸との角度が実質的に45゜であり、及び
前記支持体が下記式(I)及び(II)を満足するセルロースアシレートフィルムからなる液晶表示装置:
(I) 0≦Re2(630)≦10かつ|Rth2(630)|≦25
(II) |Re2(400)−Re2(700)|≦10かつ|Rth2(400)−Rth2(700)|≦35
(III) 1≦Re1(700)/Re1(400)≦2
[式中、Re1(λ)は波長λnmにおける第1光学異方層の面内レターデーション値、Re2(λ)は波長λnmにおける支持体の面内レターデーション値、Rth2(λ)は波長λnmにおける支持体の厚み方向のレターデーション値である]。
[2] 前記第1光学異方層のRe(0°)、Re(40゜)及びRe(−40゜)の値が下記式(VI)及び(VII)を満足する[1]の液晶表示装置:
(VI) 1.0<Re(40゜)/Re(0°)<3.0
(VII) 0.1<Re(−40゜)/Re(0°)<1.0
[式中、Re(0°)は、波長632.8nmの光で測定した光学異方性層の面内Reレターデーション値であり、Re(40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を40゜として波長632.8nmの光を入射して測定したReレターデーション値であり、Re(−40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を−40゜として波長632.8nmの光を入射して測定したReレターデーション値であって、あおり角度の正負はRe(40゜)>Re(−40゜)となるように決定する]。
[3] 前記セルロースアシレートフィルムが、フィルム膜厚方向のレターデーションRthを低下させる化合物を、下記式(VIII)及び(IX)を満足する範囲で少なくとも一種含有する[1]又は[2]の液晶表示装置:
(VIII) (Rth(A)−Rth(0))/A≦−1.0
(IX) 0.01≦A≦30
[Rth(A)は、Rthを低下させる化合物をA%含有したフィルムのRth(nm)であり、Rth(0)はRthを低下させる化合物を含有しないフィルムのRth(nm)であり、Aはフィルム原料ポリマーの重量を100としたときの化合物の重量(%)である]。
[4] 前記セルロースアシレートフィルムが、アシル置換度が2.85〜3.00のセルロースアシレートに、Re(λ)及びRth(λ)を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30重量%含む[1]〜[3]のいずれかの液晶表示装置。
なお、本明細書では、「偏光膜」及び「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体のことを意味するものとする。また、本明細書において、「45゜」、「平行」あるいは「直交」とは、厳密な角度±5゜未満の範囲内であることを意味する。厳密な角度との誤差は、4゜未満であることが好ましく、3゜未満であることがより好ましい。また、「遅相軸」は、屈折率が最大となる方向を意味する。さらにレターデーションRe及びRthの値について、波長について記述がない限り、λ=550nmでの値である。
本発明では、光学異方性が小さく、Re及びRthの波長分散が小さいセルロースアシレートフィルムと、液晶性化合物層とを併用している。その結果、本発明によれば、黒表示での輝度ばらつきが低減されたベンド配向モードの液晶表示装置を提供することができる。
以下、本発明について詳細に説明する。
図1に、本発明の液晶表示装置の構成例の模式図を示す。図1に示すOCBモードの液晶表示装置は、電圧印加時、即ち黒表示時に、液晶が基板面に対してベンド配向する液晶層とそれを挟む一対の基板からなる液晶セル1を有する。一対の基板は液晶面に配向処理が施してあり、ラビング方向は図中矢印で示す。液晶セル1を挟持して偏光膜4及び4’が配置されている。偏光膜4及び4’はそれぞれの透過軸(図中矢印で示す)を、互いに直交に、且つ液晶セルのラビング方向と45度の角度に配置される。偏光膜4と液晶セル1との間には、所定の光学特性を満足するセルロースアシレートフィルム3(支持体)と第1光学異方性層2が、偏光膜4側から順次積層され、偏光膜4’と液晶セル1との間にも、所定の光学特性を満足するセルロースアシレートフィルム3’(支持体)及び第1光学異方層2’が、偏光膜4’側から順次積層される。第1光学異方性層2及び2’は、図1に示す様にハイブリット配向状態に固定された円盤状化合物を含有する。第1光学異方性層2及び2’は、その面内の遅相軸(図中矢印で示す)が、それぞれとより近くに位置する偏光膜4及び4’の透過軸(図中矢印で示す)の方向と実質的に45°に配置されている。さらに、背面側(例えば偏光膜4’のさらに外側)には、光源であるバックライト(不図示)が配置される。また、図中省略したが、偏光膜4及び4’の外側には、偏光膜を保護するポリマーフィルム等からなる保護膜が配置される。
図1に、本発明の液晶表示装置の構成例の模式図を示す。図1に示すOCBモードの液晶表示装置は、電圧印加時、即ち黒表示時に、液晶が基板面に対してベンド配向する液晶層とそれを挟む一対の基板からなる液晶セル1を有する。一対の基板は液晶面に配向処理が施してあり、ラビング方向は図中矢印で示す。液晶セル1を挟持して偏光膜4及び4’が配置されている。偏光膜4及び4’はそれぞれの透過軸(図中矢印で示す)を、互いに直交に、且つ液晶セルのラビング方向と45度の角度に配置される。偏光膜4と液晶セル1との間には、所定の光学特性を満足するセルロースアシレートフィルム3(支持体)と第1光学異方性層2が、偏光膜4側から順次積層され、偏光膜4’と液晶セル1との間にも、所定の光学特性を満足するセルロースアシレートフィルム3’(支持体)及び第1光学異方層2’が、偏光膜4’側から順次積層される。第1光学異方性層2及び2’は、図1に示す様にハイブリット配向状態に固定された円盤状化合物を含有する。第1光学異方性層2及び2’は、その面内の遅相軸(図中矢印で示す)が、それぞれとより近くに位置する偏光膜4及び4’の透過軸(図中矢印で示す)の方向と実質的に45°に配置されている。さらに、背面側(例えば偏光膜4’のさらに外側)には、光源であるバックライト(不図示)が配置される。また、図中省略したが、偏光膜4及び4’の外側には、偏光膜を保護するポリマーフィルム等からなる保護膜が配置される。
OCBモードの液晶セルは、一般的には、上側基板及び下側基板と、これらに挟持される液晶分子から形成される液晶層からなる。OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配向モードの液晶セルを用いた液晶表示装置は、米国特許第4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。OCBモードの液晶セルもTNモード同様、黒表示においては、液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性分子が寝た配向状態にある。
液晶セルの上下基板の液晶分子に接触する表面(以下、「内面」という場合がある)には、配向膜が形成されていて、電圧無印加状態もしくは低印加状態における液晶分子の配向がプレチルト角をもった平行方向に制御されている。また、上下基板の内面には、液晶分子からなる液晶層に電圧を印加可能な透明電極(不図示)が形成されている。OCBモードの液晶セルの液晶層の厚さd(ミクロン)と屈折率異方性Δnとの積Δn・dは、0.1〜1.5ミクロンとするのが好ましく、さらに、0.2〜1.5ミクロンとするのがより好ましく、0.2〜1.2ミクロンとするのがさらに好ましく、0.6〜0.9ミクロンとするのがさらにより好ましい。これらの範囲では白電圧印加時における白表示輝度が高いことから、明るくコントラストの高い表示装置が得られる。用いる液晶材料については特に制限されないが、上下基板間に電界が印加される態様では、電界方向に平行に液晶分子が応答するような、誘電率異方性が正の液晶材料を使用する。
OCBモードの液晶セルでは、上下基板間に、誘電異方性が正で、Δn=0.08、Δε=5程度のネマチック液晶材料などを用いることができる。液晶層の厚さdについては特に制限されないが、前記範囲の特性の液晶を用いる場合、6ミクロン程度に設定することができる。厚さdと、白電圧印加時の屈折率異方性Δnの積Δn・dの大きさにより白表示時の明るさが変化するので、白電圧印加時において十分な明るさを得るためには、無印加状態における液晶層のΔn・dは上記範囲、中でも0.6〜1.5ミクロン、になるように設定するのが好ましい。
図1中の液晶セル1のOFF状態及びON状態についての模式的断面図を図2に示す。図2に示すように、ベンド配向液晶セル1は、上基板(14a)と下基板(14b)の間に液晶性化合物(11)を封入した構造を有する。ベンド配向液晶セルに使用する液晶性化合物(11)は、一般に正の誘電率異方性を有する。液晶セルの上基板(14a)と下基板(14b)は、それぞれ、配向膜(12a、12b)と電極層(13a、13b)を有する。配向膜は棒状液晶性分子(11a〜11j)を配向させる機能を有する。RDは配向膜のラビング方向である。電極層は棒状液晶性分子(11a〜11j)に電圧を印加する機能を有する。
ベンド配向液晶セルの印加電圧が低い時、図2のoffに示すように、液晶セルの上基板(14a)側の棒状液晶性分子(11a〜11e)と下基板(14b)側の棒状液晶性分子(11f〜11j)とは、逆向きに(上下対称に)に配向する。また、基板(14a、14b)近傍の棒状液晶性分子(11a、11b、11i、11j)は、ほぼ水平方向に配向し、液晶セル中央部の棒状液晶性分子(11d〜11g)は、ほぼ垂直方向に配向する。
図2のonに示すように、印加電圧が高いと、基板近傍の棒状液晶性分子は、ほぼ水平に配向したままである。また、液晶セル中央部の棒状液晶性分子は、ほぼ垂直に配向したままである。電圧の増加により配向が変化するのは、基板と液晶セル中央部との中間に位置する棒状液晶性分子であり、これらはoffの状態よりも垂直に配向する。しかし、液晶セルの上基板側の棒状液晶性分子と下基板側の棒状液晶性分子とが、逆向きに(上下対称に)に配向することは、offの状態と同様である。
なお、OCBモードの液晶表示装置では、TNモードの液晶表示装置で一般的に使われているカイラル材の添加は、動的応答特性の劣化させるため用いることは少ないが、配向不良を低減するために添加されることもある。また、マルチドメイン構造とする場合には、各ドメイン間の境界領域の液晶分子の配向を調整するのに有利である。マルチドメイン構造とは、液晶表示装置の一画素を複数の領域に分割した構造をいう。例えば、OCBモードにおいて、マルチドメイン構造にすると、輝度や色調の視野角特性が改善されるので好ましい。具体的には、画素のそれぞれを液晶分子の初期配向状態が互いに異なる2以上(好ましくは4又は8)の領域で構成して平均化することで、視野角に依存した輝度や色調の偏りを低減することができる。また、それぞれの画素を、電圧印加状態において液晶分子の配向方向が連続的に変化する互いに異なる2以上の領域から構成しても同様の効果が得られる。
再び図2において、第1光学異方層2及び2’は下記一般式(III)を満足する光学特性を示し、且つ第1光学異方層2及び2’の支持体であるセルロースアシレートフィルム3及び3’は下記式(I)及び(II)を満足する光学特性を有する。
(I) 0≦Re2(630)≦10かつ|Rth2(630)|≦25
(II) |Re2(400)−Re2(700)|≦10かつ|Rth2(400)−Rth2(700)|≦35
(III) 1≦Re1(700)/Re1(400)≦2
式中、Re1(λ)は波長λnmにおける第1光学異方層の面内レターデーション値、Re2(λ)は波長λnmにおける支持体の面内レターデーション値、Rth2(λ)は波長λnmにおける支持体の厚み方向のレターデーション値である。
図1に示す液晶表示装置では、上記式(I)及び(II)を満足する、光学的異方性が小さく、且つ波長分散性が小さいセルロースアシレートフィルム3及び3’と、ハイブリッド配向状態に固定された円盤状化合物を含有し、且つ前記式(III)を満足する、波長分散性が小さい第1光学異方層2及び2’とを組み合わせて用いることにより、黒表示時の輝度のばらつきを軽減している。また、セルロースアシレートフィルムは、ポリビニルアルコール等からなる偏光膜と貼合性が良好で、且つ偏光膜の保護膜として要求される低透湿性等を満足し得るので、保護膜として利用することができ、液晶表示装置の薄型化にも寄与し得る。
(I) 0≦Re2(630)≦10かつ|Rth2(630)|≦25
(II) |Re2(400)−Re2(700)|≦10かつ|Rth2(400)−Rth2(700)|≦35
(III) 1≦Re1(700)/Re1(400)≦2
式中、Re1(λ)は波長λnmにおける第1光学異方層の面内レターデーション値、Re2(λ)は波長λnmにおける支持体の面内レターデーション値、Rth2(λ)は波長λnmにおける支持体の厚み方向のレターデーション値である。
図1に示す液晶表示装置では、上記式(I)及び(II)を満足する、光学的異方性が小さく、且つ波長分散性が小さいセルロースアシレートフィルム3及び3’と、ハイブリッド配向状態に固定された円盤状化合物を含有し、且つ前記式(III)を満足する、波長分散性が小さい第1光学異方層2及び2’とを組み合わせて用いることにより、黒表示時の輝度のばらつきを軽減している。また、セルロースアシレートフィルムは、ポリビニルアルコール等からなる偏光膜と貼合性が良好で、且つ偏光膜の保護膜として要求される低透湿性等を満足し得るので、保護膜として利用することができ、液晶表示装置の薄型化にも寄与し得る。
第1光学異方層2及び2’と、第1光学異方層2及び2’の支持体3及び3’との間に配向膜を有していてもよい。第1光学異方層2及び2’は、上記した様に、ハイブリッド配向状態に固定された円盤状化合物を含有する。円盤状化合物は、平面分子であり、分子中にはただ一個の平面、すなわち円盤面を持つ。円盤面は、第1光学異方層2及び2’の層平面(支持体であるセルロースアシレートフィルム3及び3’との界面)に対してそれぞれ傾斜している。円盤面と第1光学異方層面との間の角度(傾斜角)は、円盤状化合物と配向膜からの距離が増加するに伴って増加しているのが好ましい。また、平均傾斜角は、15〜50°の範囲であることが好ましい。層平面に対する傾斜角が変化した配向状態、いわゆるハイブリッド配向状態、に分子を固定してなる第1光学異方層を用いると、視野角拡大機能が著しく向上する。また、傾斜角が変化した第1光学異方層は、表示画像の反転、階調変化あるいは着色の発生の防止に寄与する。また、第1光学異方層2及び2’中の円盤状化合物分子の円盤面の法線の層平面への正射影の平均方向と、偏光膜4及び4’それぞれの面内透過軸の方向は、実質的に45゜である。
第1光学異方層2及び2’と、第1光学異方層2及び2’の支持体3及び3’の間には、円盤状化合物分子の配向方向を制御する配向膜を有していてもよい。配向膜表面は、例えばラビング処理が施されているのが好ましい。第1光学異方層2及び2’中の円盤状化合物分子の配向方向を決定するラビング方向は、それぞれより近くに位置する液晶セルの基板のラビング方向と、反平行の関係にあるのが好ましい。前述したように、円盤状化合物のラビング方向は、円盤面の法線を層平面へ正射影した平均方向と反平行になる。偏光膜4及び4’の面内透過軸は、円盤状化合物分子のラビング方向と同一平面では実質的に45゜の角度になる。そして、二枚の偏光膜4及び4’は、面内透過軸が互いに直交するよう(クロスニコル)に配置される。
図1では、一対の偏光膜の双方と液晶セルとの間に対照的に、第1光学異方層及び支持体を配置した構成を示したが、少なくとも一方の偏光膜と液晶セルとの間に、第1光学異方層及び支持体を配置すればよい。また、偏光膜、前記セルロースアシレートフィルム(支持体)及び第1光学異方層は、それぞれ個々の部材として液晶表示装置内に組み込まれてもよいし、一体化された偏光板として組み込まれていてもよい。さらに、第1光学異方層と支持体の位置は入れ替わっていてもよい。
以下、本発明の液晶表示装置に用いられる各部材の詳細について説明する。
[光学異方性(Re、Rth)の測定]
なお、本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のリターデーション及び厚さ方向のリターデーションを表す。Re(λ)はKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、及び面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx−nz)/(nx−ny)が更に算出される。
[光学異方性(Re、Rth)の測定]
なお、本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のリターデーション及び厚さ方向のリターデーションを表す。Re(λ)はKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、及び面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx−nz)/(nx−ny)が更に算出される。
[支持体]
本発明の液晶表示装置には、下記式(I)及び(II)を満足するセルロースアシレートフィルムを、前記第1光学異方層の支持体として用いる。
(I)0≦Re(630)≦10かつ|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35
式中、Re(λ)は波長λnmにおけるReの正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおけるReの膜厚方向のレターデーション値(単位:nm)である。
本発明の液晶表示装置には、下記式(I)及び(II)を満足するセルロースアシレートフィルムを、前記第1光学異方層の支持体として用いる。
(I)0≦Re(630)≦10かつ|Rth(630)|≦25
(II)|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35
式中、Re(λ)は波長λnmにおけるReの正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおけるReの膜厚方向のレターデーション値(単位:nm)である。
さらに、0≦Re(630)≦5かつ|Rth(630)|≦20nmであるのが好ましく、0≦Re(630)≦2かつ|Rth(630)|≦15nmであるのがより好ましい。また、|Re(400)−Re(700)|≦5かつ|Rth(400)−Rth(700)|≦25であるのが好ましく、|Re(400)−Re(700)|≦3かつ|Rth(400)−Rth(700)|≦15であるのがより好ましい。
また、本発明では、光学的異方性(Re、Rth)が小さい支持体とは別に、セルロースアシレートフィルムからなる光学異方層を併用してもよい。該光学異方層として用いられるセルロースアシレートフィルムは、比較的大きな光学異方性(Re、Rth)を持つことが好ましく、その場合、レターデーション低下剤の変わりにレターデーション上昇剤を用いるのが好ましい。その光学異方性(Re、Rth)は光学補償シートが用いられる液晶セルの設計や光学補償シート中の光学異方性層の特性(Re、Rth)に応じて好ましい範囲が異なるが、Re(630)は0〜200nm、Rth(630)は0〜400nm範囲であることが好ましい。
[セルロースアシレート原料綿]
本発明に用いられるセルロースアシレート原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報2001−1745(7頁〜8頁)に記載のセルロースを用いることができ、前記セルロースアシレートフィルムに対しては特に限定されるものではない。
本発明に用いられるセルロースアシレート原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報2001−1745(7頁〜8頁)に記載のセルロースを用いることができ、前記セルロースアシレートフィルムに対しては特に限定されるものではない。
[セルロースアシレート置換度]
上述のセルロースを原料として、製造されるセルロースアシレートは、セルロースの水酸基がアシル化されたもので、その置換基はアシル基の炭素原子数が2のアセチル基から炭素原子数が22のものまでいずれも用いることができる。前記セルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸の結合度を測定し、計算によって置換度を得ることができる。測定方法としては、ASTMのD−817−91に準じて実施することが出来る。
上述のセルロースを原料として、製造されるセルロースアシレートは、セルロースの水酸基がアシル化されたもので、その置換基はアシル基の炭素原子数が2のアセチル基から炭素原子数が22のものまでいずれも用いることができる。前記セルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸の結合度を測定し、計算によって置換度を得ることができる。測定方法としては、ASTMのD−817−91に準じて実施することが出来る。
本発明に用いるセルロースアシレートについては、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基へのアシル置換度が2.50〜3.00であることがのぞましい。さらには置換度が2.75〜3.00であることがのぞましく、2.85〜3.00であることがよりのぞましい。
セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸のうち、炭素数2〜22のアシル基としては、脂肪族基でもアリル基でもよく特に限定されず、単一でも2種類以上の混合物でもよい。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよい。これらの好ましいアシル基としては、アセチル、プロピオニル、ブタノイル、へプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサデカノイル、オクタデカノイル、iso−ブタノイル、t−ブタノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル基などを挙げることが出来る。これらの中でも、アセチル、プロピオニル、ブタノイル、ドデカノイル、オクタデカノイル、t−ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルなどが好ましく、アセチル、プロピオニル、ブタノイルがより好ましい。
本発明の発明者が鋭意検討した結果、上述のセルロースの水酸基に置換するアシル置換基のうちで、実質的にアセチル基/プロピオニル基/ブタノイル基の少なくとも2種類からなる場合においては、その全置換度が2.50〜3.00の場合にセルロースアシレートフィルムの光学異方性が低下できることがわかった。より好ましいアシル置換度は2.60〜3.00であり、さらにのぞましくは2.65〜3.00である。
[セルロースアシレートの重合度]
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で180〜700であり、セルロースアセテートにおいては、180〜550がより好ましく、180〜400が更に好ましく、180〜350が特に好ましい。重合度が高すぎるとセルロースアシレートのドープ溶液の粘度が高くなり、流延によりフィルム作製が困難になる。重合度が低すぎると作製したフィルムの強度が低下してしまう。平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。特開平9−95538に詳細に記載されている。
また、本発明で好ましく用いられるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価され、その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜3.0であることが好ましく、1.0〜2.0であることがさらに好ましく、1.0〜1.6であることが最も好ましい。
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で180〜700であり、セルロースアセテートにおいては、180〜550がより好ましく、180〜400が更に好ましく、180〜350が特に好ましい。重合度が高すぎるとセルロースアシレートのドープ溶液の粘度が高くなり、流延によりフィルム作製が困難になる。重合度が低すぎると作製したフィルムの強度が低下してしまう。平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。特開平9−95538に詳細に記載されている。
また、本発明で好ましく用いられるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価され、その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜3.0であることが好ましく、1.0〜2.0であることがさらに好ましく、1.0〜1.6であることが最も好ましい。
低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロースアシレートよりも低くなるため有用である。低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。なお、低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロース100質量部に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量部分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。前記セルロースアシレートの製造時に使用される際には、その含水率は2質量%以下であることが好ましく、さらに好ましくは1質量%以下であり、特には0.7質量%以下の含水率を有するセルロースアシレートである。一般に、セルロースアシレートは、水を含有しており2.5〜5質量%が知られている。本発明でこのセルロースアシレートの含水率にするためには、乾燥することが必要であり、その方法は目的とする含水率になれば特に限定されない。本発明のこれらのセルロースアシレートは、その原料綿や合成方法は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて7頁〜12頁に詳細に記載されている。
前記セルロースアシレートは置換基、置換度、重合度、分子量分布など前述した範囲であれば、単一あるいは異なる2種類以上のセルロースアシレートを混合して用いることができる。
[セルロースアシレートへの添加剤]
前記セルロースアシレートフィルムは、溶液流延製膜法により作製するのが好ましいが、但し、この方法に限定されるものではない。溶液流延製膜法では、まず、セルロースアシレートの溶液(ドープ)を調製する。前記セルロースアシレート溶液には、各調製工程において用途に応じた種々の添加剤(例えば、光学的異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、光学特性調整剤など)を加えることができ、これらについて以下に説明する。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。
前記セルロースアシレートフィルムの光学的異方性、特に膜厚方向のレターデーションRthを低下させる化合物を、下記式(IV)及び(V)をみたす範囲で少なくとも一種含有することがのぞましい。
(IV)(Rth(A)−Rth(0))/A≦−1.0
(V)0.01≦A≦30
上記式(IV)及び(V)は
(IV’)(Rth(A)−Rth(0))/A≦−2.0
(V’)0.05≦A≦25
であることがよりのぞましく、
(IV”)(Rth(A)−Rth(0))/A≦−3.0
(V”)0.1≦A≦20
であることがさらにのぞましい。
前記セルロースアシレートフィルムは、溶液流延製膜法により作製するのが好ましいが、但し、この方法に限定されるものではない。溶液流延製膜法では、まず、セルロースアシレートの溶液(ドープ)を調製する。前記セルロースアシレート溶液には、各調製工程において用途に応じた種々の添加剤(例えば、光学的異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、光学特性調整剤など)を加えることができ、これらについて以下に説明する。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。
前記セルロースアシレートフィルムの光学的異方性、特に膜厚方向のレターデーションRthを低下させる化合物を、下記式(IV)及び(V)をみたす範囲で少なくとも一種含有することがのぞましい。
(IV)(Rth(A)−Rth(0))/A≦−1.0
(V)0.01≦A≦30
上記式(IV)及び(V)は
(IV’)(Rth(A)−Rth(0))/A≦−2.0
(V’)0.05≦A≦25
であることがよりのぞましく、
(IV”)(Rth(A)−Rth(0))/A≦−3.0
(V”)0.1≦A≦20
であることがさらにのぞましい。
[セルロースアシレートフィルムの光学的異方性を低下させる化合物の構造的特徴]
セルロースアシレートフィルムの光学的異方性を低下させる化合物について説明する。本発明の発明者らは、鋭意検討した結果、フィルム中のセルロースアシレートが面内及び膜厚方向に配向するのを抑制する化合物を用いて光学的異方性を十分に低下させ、ReがゼロかつRthがゼロに近くなるようにした。このためには光学的異方性を低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
セルロースアシレートフィルムの光学的異方性を低下させる化合物について説明する。本発明の発明者らは、鋭意検討した結果、フィルム中のセルロースアシレートが面内及び膜厚方向に配向するのを抑制する化合物を用いて光学的異方性を十分に低下させ、ReがゼロかつRthがゼロに近くなるようにした。このためには光学的異方性を低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
(LogP値)
前記セルロースアシレートフィルムを作製するにあたっては、上述のようにフィルム中のセルロースアシレートが面内及び膜厚方向に配向するのを抑制して光学異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0〜7である化合物が好ましい。logP値が7を超える化合物は、セルロースアシレートとの相溶性に乏しく、フィルムの白濁や粉吹きを生じやすい。また、logP値が0よりも小さな化合物は親水性が高いために、セルロースアセテートフィルムの耐水性を悪化させる場合がある。logP値としてさらに好ましい範囲は1〜6であり、特に好ましい範囲は1.5〜5である。
オクタノール−水分配係数(logP値)の測定は、JIS日本工業規格Z7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)、Viswanadhan's fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989).)、Broto's fragmentation法(Eur.J.Med.Chem.- Chim.Theor.,19,71(1984).)などが好ましく用いられるが、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)がより好ましい。ある化合物のlogPの値が測定方法あるいは計算方法により異なる場合に、該化合物が本発明の範囲内であるかどうかは、Crippen's fragmentation法により判断することが好ましい。
前記セルロースアシレートフィルムを作製するにあたっては、上述のようにフィルム中のセルロースアシレートが面内及び膜厚方向に配向するのを抑制して光学異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0〜7である化合物が好ましい。logP値が7を超える化合物は、セルロースアシレートとの相溶性に乏しく、フィルムの白濁や粉吹きを生じやすい。また、logP値が0よりも小さな化合物は親水性が高いために、セルロースアセテートフィルムの耐水性を悪化させる場合がある。logP値としてさらに好ましい範囲は1〜6であり、特に好ましい範囲は1.5〜5である。
オクタノール−水分配係数(logP値)の測定は、JIS日本工業規格Z7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)、Viswanadhan's fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989).)、Broto's fragmentation法(Eur.J.Med.Chem.- Chim.Theor.,19,71(1984).)などが好ましく用いられるが、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)がより好ましい。ある化合物のlogPの値が測定方法あるいは計算方法により異なる場合に、該化合物が本発明の範囲内であるかどうかは、Crippen's fragmentation法により判断することが好ましい。
[光学的異方性を低下する化合物の物性]
光学異方性を低下させる化合物は、芳香族基を含有しても良いし、含有しなくても良い。また光学異方性を低下させる化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
光学異方性を低下させる化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。また光学異方性を低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
光学異方性を低下させる化合物の添加量は、セルロースアシレートの0.01〜30質量%であることが好ましく、1〜25質量%であることがより好ましく、5〜20質量%であることが特に好ましい。
光学異方性を低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
光学異方性を低下させる化合物を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
光学異方性を低下させる化合物は、芳香族基を含有しても良いし、含有しなくても良い。また光学異方性を低下させる化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
光学異方性を低下させる化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。また光学異方性を低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
光学異方性を低下させる化合物の添加量は、セルロースアシレートの0.01〜30質量%であることが好ましく、1〜25質量%であることがより好ましく、5〜20質量%であることが特に好ましい。
光学異方性を低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
光学異方性を低下させる化合物を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
光学異方性を低下させる化合物は、少なくとも一方の側の表面から全膜厚の10%までの部分における該化合物の平均含有率が、該セルロースアシレートフィルムの中央部における該化合物の平均含有率の80−99%である。本発明の化合物の存在量は、例えば、特開平8−57879号公報に記載の赤外吸収スペクトルを用いる方法などにより表面及び中心部の化合物量を測定して求めることができる。
以下に本発明で好ましく用いられる、セルロースアシレートフィルムの光学異方性を低下させる化合物の具体例を示すが、本発明はこれら化合物に限定されない。
また、本発明に記載のlogPの値は、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)により求めたものである。
また、本発明に記載のlogPの値は、Crippen's fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)により求めたものである。
光学異方性を低下させる化合物としては、例えば、下記一般式(13)で表される化合物が挙げられる。
式中、R1はアルキル基又はアリール基を表し、R2及びR3は、それぞれ独立に、水素原子、アルキル基又はアリール基を表す。R1、R2及びR3の炭素原子数の総和は10以上である。
R1、R2及びR3で表されるアルキル基又はアリール基は、置換されていてもよい。置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が特に好ましい。また、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のもの(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、アミル、イソアミル、t-アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ビシクロオクチル、ノニル、アダマンチル、デシル、t-オクチル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、ジデシル)が特に好ましい。アリール基としては炭素原子数が6〜30のものが好ましく、6〜24のもの(例えば、フェニル、ビフェニル、テルフェニル、ナフチル、ビナフチル、トリフェニルフェニル)が特に好ましい。前記一般式(13)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
R1、R2及びR3で表されるアルキル基又はアリール基は、置換されていてもよい。置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が特に好ましい。また、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のもの(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、アミル、イソアミル、t-アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ビシクロオクチル、ノニル、アダマンチル、デシル、t-オクチル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、ジデシル)が特に好ましい。アリール基としては炭素原子数が6〜30のものが好ましく、6〜24のもの(例えば、フェニル、ビフェニル、テルフェニル、ナフチル、ビナフチル、トリフェニルフェニル)が特に好ましい。前記一般式(13)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
また、光学異方性を低下させる化合物としては、例えば、下記一般式(18)及び一般式(19)で表される化合物も好ましい。
一般式(18)中、R1はアルキル基又はアリール基を表し、R2及びR3はそれぞれ独立に水素原子、アルキル基又はアリール基を表す。
上記一般式(19)中、R4、R5及びR6はそれぞれ独立にアルキル基又はアリール基を表す。
前記一般式(18)又は(19)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
[波長分散調整剤]
セルロースアシレートフィルムの波長分散を低下させる化合物(以下波長分散調整剤ともいう)について説明する。前記セルロースアシレートフィルムのRthの波長分散を良化させるためには、下記式(X)で表されるRthの波長分散ΔRth=|Rth(400)−Rth(700)|を低下させる化合物を、下記式(XI)及び(XII)を満足する範囲で少なくとも一種含有することがのぞましい。
(X) ΔRth=|Rth(400)−Rth(700)|
(XI) (ΔRth(B)−ΔRth(0))/B≦−2.0
(XII) 0.01≦B≦30
上記式(XI)及び(XII)は
(XI’) (ΔRth(B)−ΔRth(0))/B≦−3.0
(XII’) 0.05≦B≦25
であることがよりのぞましく、
(XI”) (ΔRth(B)−ΔRth(0))/B≦−4.0
(XII”) 0.1≦B≦20
であることがさらにのぞましい。
セルロースアシレートフィルムの波長分散を低下させる化合物(以下波長分散調整剤ともいう)について説明する。前記セルロースアシレートフィルムのRthの波長分散を良化させるためには、下記式(X)で表されるRthの波長分散ΔRth=|Rth(400)−Rth(700)|を低下させる化合物を、下記式(XI)及び(XII)を満足する範囲で少なくとも一種含有することがのぞましい。
(X) ΔRth=|Rth(400)−Rth(700)|
(XI) (ΔRth(B)−ΔRth(0))/B≦−2.0
(XII) 0.01≦B≦30
上記式(XI)及び(XII)は
(XI’) (ΔRth(B)−ΔRth(0))/B≦−3.0
(XII’) 0.05≦B≦25
であることがよりのぞましく、
(XI”) (ΔRth(B)−ΔRth(0))/B≦−4.0
(XII”) 0.1≦B≦20
であることがさらにのぞましい。
上記の波長分散調整剤は、200〜400nmの紫外領域に吸収を持つ化合物であるのが好ましい。前記波長分散調製剤の少なくとも一種を前記セルロース溶液に、セルロースアシレート固形分に対して所定量(好ましくは0.01〜30重量%)含有させるのが好ましい。
セルロースアシレートフィルムのRe、Rthの値は一般に短波長側よりも長波長側が大きい波長分散特性となる。したがって相対的に小さい短波長側のRe、Rthを大きくすることによって波長分散を平滑にすることが要求される。一方200〜400nmの紫外領域に吸収を持つ化合物は短波長側よりも長波長側の吸光度が大きい波長分散特性をもつ。この化合物自身がセルロースアシレートフィルム内部で等方的に存在していれば、化合物自身の複屈折性、ひいてはRe、Rthの波長分散は吸光度の波長分散と同様に短波長側が大きいと想定される。
したがって上述したような、200〜400nmの紫外領域に吸収を持ち、化合物自身のRe、Rthの波長分散が短波長側が大きいと想定されるものを用いることによって、セルロースアシレートフィルムのRe、Rthの波長分散を調製することができる。このためには波長分散を調整する化合物はセルロースアシレートに十分均一に相溶することが要求される。このような化合物の紫外領域の吸収帯範囲は200〜400nmが好ましいが、220〜395nmがより好ましく、240〜390nmがさらに好ましい。
また、近年テレビやノートパソコン、モバイル型携帯端末などの液晶表示装置ではより少ない電力で輝度を高めるに、液晶表示装置に用いられる光学部材の透過率が優れたものが要求されている。その点においては、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re(400)−Re(700)|及び|Rth(400)−Rth(700)|を低下させる化合物をセルロースアシレートフィルムに添加する場合、分光透過率が優れていることが要求される。前記セルロースアシレートフィルムにおいては、波長380nmにおける分光透過率が45%以上95%以下であり、かつ波長350nmにおける分光透過率が10%以下であることがのぞましい。
上述のような、本発明で好ましく用いられる波長分散調整剤は揮散性の観点から分子量が250〜1000であることが好ましい。より好ましくは260〜800であり、更に好ましくは270〜800であり、特に好ましくは300〜800である。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
波長分散調整剤は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
(化合物添加量)
上述した本発明で好ましく用いられる波長分散調整剤の添加量は、セルロースアシレートの0.01〜30重量%であることが好ましく、0.1〜20重量%であることがより好ましく、0.2〜10重量%であることが特に好ましい。
上述した本発明で好ましく用いられる波長分散調整剤の添加量は、セルロースアシレートの0.01〜30重量%であることが好ましく、0.1〜20重量%であることがより好ましく、0.2〜10重量%であることが特に好ましい。
(化合物添加の方法)
またこれら波長分散調整剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
またこれら波長分散調整剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
またこれら波長分散調整剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
またこれら波長分散調整剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
本発明に好ましく用いられる波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、本発明はこれら化合物だけに限定されるものではない。
ベンゾトリアゾール系化合物類の波長分散調整剤としては、下記一般式(101)で表される化合物が好ましく用いられる。
一般式(101) Q1−Q2−OH
式中、Q1は含窒素芳香族ヘテロ環の基を表し、Q2は芳香族環の基を表す。)
一般式(101) Q1−Q2−OH
式中、Q1は含窒素芳香族ヘテロ環の基を表し、Q2は芳香族環の基を表す。)
Q1は含窒素芳香族へテロ環の基を表し、好ましくは5〜7員の含窒素芳香族ヘテロ環の基であり、より好ましくは5又は6員の含窒素芳香族ヘテロ環の基であり、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、セレナゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、ベンゾセレナゾール、チアジアゾール、オキサジアゾール、ナフトチアゾール、ナフトオキサゾール、アザベンズイミダゾール、プリン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、トリアザインデン、テトラザインデン等の基があげられ、更に好ましくは、5員の含窒素芳香族ヘテロ環の基であり、具体的にはイミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、チアジアゾール、オキサジアゾールの基が好ましく、特に好ましくは、ベンゾトリアゾールの基である。
Q1で表される含窒素芳香族ヘテロ環の基は更に置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環して更に環を形成してもよい。
Q2で表される芳香族環の基は、芳香族炭化水素環及び芳香族ヘテロ環のいずれの基でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
Q2であらわされる芳香族環の基として好ましくは芳香族炭化水素環の基であり、より好ましくはナフタレン環又はベンゼン環の基であり、特に好ましくはベンゼン環の基である。Q2は更に置換基を有してもよく、後述の置換基Tが好ましい。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
式中、R1、R2、R3、R4、R5、R6、R7、及びR8はそれぞれ独立に水素原子又は置換基を表す。
R1、R2、R3、R4、R5、R6、R7、R8、及びR9はそれぞれ独立に水素原子又は置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
R1及びR3として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
R1及びR3として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
R2及びR4として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
R5及びR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
R6及びR7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、ハロゲン原子であり、特に好ましくは水素原子、塩素原子である。
前記一般式(101)で表される化合物の中でも、下記一般式(101−B)で表される化合物も好ましい。
式中、R1、R3、R6及びR7は、前記一般式(101−A)中におけるそれらとそれぞれ同義であり、また好ましい範囲も同様である。
以下に前記一般式(101)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
以上例にあげたベンゾトリアゾール系化合物の中でも、分子量が320以下のものを含まずに前記セルロースアシレートフィルムを作製した場合、保留性の点で有利であることが確認された。
また本発明に用いられる波長分散調整剤のひとつであるベンゾフェノン系化合物としては、下記一般式(102)で示されるものが好ましく用いられる。
式中、Q1及びQ2はそれぞれ独立に芳香族環の基を表す。XはNR(Rは水素原子又は置換基を表す)、酸素原子又は硫黄原子を表す。
Q1及びQ2で表される芳香族環の基は芳香族炭化水素環及び芳香族ヘテロ環のいずれの基でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
Q1及びQ2で表される芳香族炭化水素環の基として好ましくは(好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)の基であり、より好ましくは炭素数6〜20の芳香族炭化水素環の基、更に好ましくは炭素数6〜12の芳香族炭化水素環の基である。)更に好ましくはベンゼン環の基である。
Q1及びQ2で表される芳香族ヘテロ環の基としては、好ましくは酸素原子、窒素原子及び硫黄原子のいずれか一種の原子を少なくとも1つ含む芳香族ヘテロ環の基である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
Q1及びQ2であらわされる芳香族環の基としては、好ましくは芳香族炭化水素環の基であり、より好ましくは炭素数6〜10の芳香族炭化水素環の基であり、更に好ましくは置換又は無置換のベンゼン環の基である。
Q1及びQ2は更に置換基を有してもよく、後述の置換基Tが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
Q1及びQ2で表される芳香族炭化水素環の基として好ましくは(好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)の基であり、より好ましくは炭素数6〜20の芳香族炭化水素環の基、更に好ましくは炭素数6〜12の芳香族炭化水素環の基である。)更に好ましくはベンゼン環の基である。
Q1及びQ2で表される芳香族ヘテロ環の基としては、好ましくは酸素原子、窒素原子及び硫黄原子のいずれか一種の原子を少なくとも1つ含む芳香族ヘテロ環の基である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
Q1及びQ2であらわされる芳香族環の基としては、好ましくは芳香族炭化水素環の基であり、より好ましくは炭素数6〜10の芳香族炭化水素環の基であり、更に好ましくは置換又は無置換のベンゼン環の基である。
Q1及びQ2は更に置換基を有してもよく、後述の置換基Tが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
XはNR(Rは水素原子又は置換基を表す。置換基としては後述の置換基Tが適用できる。)、酸素原子又は硫黄原子を表し、Xとして好ましくは、NR(Rとして好ましくはアシル基、スルホニル基であり、これらの置換基は更に置換してもよい。)、又はOであり、特に好ましくはOである。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
前記一般式(102)で表される化合物の中でも、下記一般式(102−A)で表される化合物が好ましい。
式中、R1、R2、R3、R4、R5、R6、R7、R8、及びR9はそれぞれ独立に水素原子又は置換基を表す。
R1、R2、R3、R4、R5、R6、R7、R8、及びR9はそれぞれ独立に水素原子又は置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
R1、R3、R4、R5、R6、R8及びR9として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換もしくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又は炭素1〜12アルキル基であり、特に好ましくは水素原子又はメチル基であり、最も好ましくは水素原子である。
R2として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換もしくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基又はヒドロキシ基であり、更に好ましくは炭素数1〜20のアルコキシ基であり、特に好ましくは炭素数1〜12のアルコキシ基である。
R7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換もしくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基又はヒドロキシ基であり、更に好ましくは水素原子又は炭素数1〜20のアルキル基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくはメチル基)であり、特に好ましくはメチル基又は水素原子である。
前記一般式(102)で表される化合物の中でも、下記一般式(102−B)で表される化合物も好ましい。
式中、R10は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基又は置換もしくは無置換のアリール基を表す。
R10は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基又は置換もしくは無置換のアリール基を表し、置換基としては前述の置換基Tが適用できる。
R10として好ましくは置換もしくは無置換のアルキル基であり、より好ましくは炭素数5〜20の置換もしくは無置換のアルキル基であり、更に好ましくは炭素数5〜12の置換もしくは無置換のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n-ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換もしくは無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
R10として好ましくは置換もしくは無置換のアルキル基であり、より好ましくは炭素数5〜20の置換もしくは無置換のアルキル基であり、更に好ましくは炭素数5〜12の置換もしくは無置換のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n-ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換もしくは無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
前記一般式(102)であらわされる化合物は特開平11−12219号公報記載の公知の方法により合成できる。
以下に前記一般式(102)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
以下に前記一般式(102)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
また本発明に用いられる波長分散調整剤のひとつであるシアノ基等を含む化合物としては、下記一般式(103)で表される化合物が好ましく用いられる。
式中、Q1及びQ2はそれぞれ独立に芳香族環の基を表す。X1及びX2は水素原子又は置換基を表し、少なくともどちらか1つはシアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環の基を表す。
Q1及びQ2であらわされる芳香族環の基は、芳香族炭化水素環及び芳香族ヘテロ環のいずれの基でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環の基として好ましくは(好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)の基であり、より好ましくは炭素数6〜20の芳香族炭化水素環の基、更に好ましくは炭素数6〜12の芳香族炭化水素環の基であり、更に好ましくはベンゼン環の基である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
Q1及びQ2であらわされる芳香族環の基としては、好ましくは芳香族炭化水素環の基であり、より好ましくはベンゼン環の基である。
Q1及びQ2は更に置換基を有してもよく、後述の置換基Tが好ましい。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
Q1及びQ2は更に置換基を有してもよく、後述の置換基Tが好ましい。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
X1及びX2は水素原子又は置換基を表し、少なくともどちらか1つはシアノ基、カルボニル基、スルホニル基又は芳香族ヘテロ環の基を表す。X1及びX2で表される置換基は前述の置換基Tを適用することができる。また、X1及びX2はで表される置換基は更に他の置換基によって置換されてもよく、X1及びX2はそれぞれが縮環して環構造を形成してもよい。
X1及びX2として好ましくは、水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基又は芳香族ヘテロ環の基であり、より好ましくは、シアノ基、カルボニル基、スルホニル基又は芳香族ヘテロ環の基であり、更に好ましくはシアノ基又はカルボニル基であり、特に好ましくはシアノ基又はアルコキシカルボニル基(-C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基及びこれらを組み合せたもの)である。
前記一般式(103)で表される化合物の中でも、下記一般式(103-A)で表される化合物が好ましい。
式中、R1、R2、R3、R4、R5、R6、R7、R8、R9及びR10はそれぞれ独立に水素原子又は置換基を表す。X1及びX2は一般式(103)中のそれらとそれぞれ同義であり、また好ましい範囲も同様である。
R1、R2、R3、R4、R5、R6、R7、R8、R9及びR10はそれぞれ独立に水素原子又は置換基を表し、置換基としては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
R1、R2、R4、R5、R6、R7、R9、及びR10として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換もしくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又は炭素1〜12アルキル基であり、特に好ましくは水素原子又はメチル基であり、最も好ましくは水素原子である。
R3及びR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換もしくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基又はヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜12のアルキル基又は炭素数1〜12アルコキシ基であり、特に好ましくは水素原子である。
前記一般式(103)で表される化合物の中でも、下記一般式(103−B)で表される化合物が好ましい。
式中、R3及びR8は、前記一般式(103-A)中のそれらとそれぞれ同義であり、また、好ましい範囲も同様である。X3は水素原子又は置換基を表す。
X3は水素原子又は置換基を表し、置換基としては前述の置換基Tが適用でき、また、可能な場合は更に他の置換基で置換されてもよい。X3として好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(-C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基及びこれらを組み合せたもの)である。
前記一般式(103)で表される化合物の中でも、下記一般式(103−C)で表される化合物が好ましい。
式中、R3及びR8は前記一般式(103-A)中のそれらとそれぞれ同義であり、また、好ましい範囲も同様である。R21は炭素数1〜20のアルキル基を表す。
R21として好ましくはR3及びR8が両方水素の場合には、炭素数2〜12のアルキル基であり、より好ましくは炭素数4〜12のアルキル基であり、更に好ましくは、炭素数6〜12のアルキル基であり、特に好ましくは、n−オクチル基、tert-オクチル基、2−エチルへキシル基、n−デシル基、n−ドデシル基であり、最も好ましくは2−エチルへキシル基である。
R21として好ましくはR3及びR8が水素以外の場合には、一般式(103-C)で表される化合物の分子量が300以上になり、かつ炭素数20以下の炭素数のアルキル基が好ましい。
前記一般式(103)で表される化合物はJounal of American Chemical Society 63巻 3452頁(1941)記載の方法によって合成できる。
以下に前記一般式(103)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
[マット剤微粒子]
前記セルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
前記セルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とした。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において2次平均粒子径の小さな粒子を有するセルロースアシレートフィルムを得るために、微粒子の分散液を調製する際にいくつかの手法が考えられる。例えば、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作成し、この微粒子分散液を別途用意した少量のセルロースアシレート溶液に加えて撹拌溶解し、さらにメインのセルロースアシレートドープ液と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子が更に再凝集しにくい点で好ましい調製方法である。ほかにも、溶剤に少量のセルロースエステルを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行いこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤の添加量は1m2あたり0.01〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.16gが最も好ましい。
使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。
[可塑剤、劣化防止剤、剥離剤]
上記の光学的に異方性を低下する化合物、波長分散調整剤の他に、前記セルロースアシレートフィルムには、各調製工程において用途に応じた種々の添加剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号などに記載されている。さらにまた、赤外吸収染料としては例えば特開2001−194522号に記載されている。またその添加する時期はドープ作製工程において何れで添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。また、セルロースアシレートフィルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号などに記載されているが、これらは従来から知られている技術である。これらの詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている素材が好ましく用いられる。
上記の光学的に異方性を低下する化合物、波長分散調整剤の他に、前記セルロースアシレートフィルムには、各調製工程において用途に応じた種々の添加剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号などに記載されている。さらにまた、赤外吸収染料としては例えば特開2001−194522号に記載されている。またその添加する時期はドープ作製工程において何れで添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。また、セルロースアシレートフィルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号などに記載されているが、これらは従来から知られている技術である。これらの詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている素材が好ましく用いられる。
[化合物添加の比率]
前記セルロースアシレートフィルムにおいては、分子量が3000以下の化合物の総量は、セルロースアシレート重量に対して5〜45%であることがのぞましい。より好ましくは10〜40%であり、さらにのぞましくは15〜30%である。これらの化合物としては上述したように、光学異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、剥離剤、赤外吸収剤などであり、分子量としては3000以下がのぞましく、2000以下がよりのぞましく、1000以下がさらにのぞましい。これら化合物の総量が5%以下であると、セルロースアシレート単体の性質が出やすくなり、例えば、温度や湿度の変化に対して光学性能や物理的強度が変動しやすくなるなどの問題がある。またこれら化合物の総量が45%以上であると、セルロースアシレートフィルム中に化合物が相溶する限界を超え、フィルム表面に析出してフィルムが白濁する( フィルムからの泣き出し)などの問題が生じやすくなる。
前記セルロースアシレートフィルムにおいては、分子量が3000以下の化合物の総量は、セルロースアシレート重量に対して5〜45%であることがのぞましい。より好ましくは10〜40%であり、さらにのぞましくは15〜30%である。これらの化合物としては上述したように、光学異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、剥離剤、赤外吸収剤などであり、分子量としては3000以下がのぞましく、2000以下がよりのぞましく、1000以下がさらにのぞましい。これら化合物の総量が5%以下であると、セルロースアシレート単体の性質が出やすくなり、例えば、温度や湿度の変化に対して光学性能や物理的強度が変動しやすくなるなどの問題がある。またこれら化合物の総量が45%以上であると、セルロースアシレートフィルム中に化合物が相溶する限界を超え、フィルム表面に析出してフィルムが白濁する( フィルムからの泣き出し)などの問題が生じやすくなる。
[セルロースアシレート溶液の有機溶媒]
本発明では、ソルベントキャスト法によりセルロースアシレートフィルムを製造することが好ましく、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムは製造される。本発明の主溶媒として好ましく用いられる有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテル、及び炭素原子数が1〜7のハロゲン化炭化水素から選ばれる溶媒が好ましい。エステル、ケトン及び、エーテルは、環状構造を有していてもよい。エステル、ケトン及びエーテルの官能基(すなわち、−O−、−CO−及びCOO−)のいずれかを二つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。
本発明では、ソルベントキャスト法によりセルロースアシレートフィルムを製造することが好ましく、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムは製造される。本発明の主溶媒として好ましく用いられる有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテル、及び炭素原子数が1〜7のハロゲン化炭化水素から選ばれる溶媒が好ましい。エステル、ケトン及び、エーテルは、環状構造を有していてもよい。エステル、ケトン及びエーテルの官能基(すなわち、−O−、−CO−及びCOO−)のいずれかを二つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。
以上前記セルロースアシレートフィルムに対しては塩素系のハロゲン化炭化水素を主溶媒としても良いし、発明協会公開技報2001−1745(12頁〜16頁)に記載されているように、非塩素系溶媒を主溶媒としても良く、前記セルロースアシレートフィルムに対しては特に限定されるものではない。
その他、前記セルロースアシレート溶液及びフィルムについての溶媒は、その溶解方法も含め以下の特許に開示されており、好ましい態様である。それらは、例えば、特開2000−95876、特開平12−95877、特開平10−324774、特開平8−152514、特開平10−330538、特開平9−95538、特開平9−95557、特開平10−235664、特開平12−63534、特開平11−21379、特開平10−182853、特開平10−278056、特開平10−279702、特開平10−323853、特開平10−237186、特開平11−60807、特開平11−152342、特開平11−292988、特開平11−60752、特開平11−60752などに記載されている。これらの特許によると前記セルロースアシレートに好ましい溶媒だけでなく、その溶液物性や共存させる共存物質についても記載があり、本発明においても好ましい態様である。
[セルロースアシレートフィルムの製造工程]
(溶解工程)
前記セルロースアシレート溶液(ドープ)の調製は、その溶解方法は特に限定されず、室温でもよくさらには冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施される。本発明におけるセルロースアシレート溶液の調製、さらには溶解工程に伴う溶液濃縮、ろ過の各工程に関しては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて22頁〜25頁に詳細に記載されている製造工程が好ましく用いられる。
(溶解工程)
前記セルロースアシレート溶液(ドープ)の調製は、その溶解方法は特に限定されず、室温でもよくさらには冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施される。本発明におけるセルロースアシレート溶液の調製、さらには溶解工程に伴う溶液濃縮、ろ過の各工程に関しては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて22頁〜25頁に詳細に記載されている製造工程が好ましく用いられる。
(ドープ溶液の透明度)
前記セルロースアシレート溶液のドープ透明度としては85%以上であることがのぞましい。より好ましくは88%以上であり、さらに好ましくは90%以上であることがのぞましい。本発明においてはセルロースアシレートドープ溶液に各種の添加剤が十分に溶解していることを確認した。具体的なドープ透明度の算出方法としては、ドープ溶液を1cm角のガラスセルに注入し、分光光度計(UV−3150、島津製作所)で550nmの吸光度を測定した。溶媒のみをあらかじめブランクとして測定しておき、ブランクの吸光度との比からセルロースアシレート溶液の透明度を算出した。
前記セルロースアシレート溶液のドープ透明度としては85%以上であることがのぞましい。より好ましくは88%以上であり、さらに好ましくは90%以上であることがのぞましい。本発明においてはセルロースアシレートドープ溶液に各種の添加剤が十分に溶解していることを確認した。具体的なドープ透明度の算出方法としては、ドープ溶液を1cm角のガラスセルに注入し、分光光度計(UV−3150、島津製作所)で550nmの吸光度を測定した。溶媒のみをあらかじめブランクとして測定しておき、ブランクの吸光度との比からセルロースアシレート溶液の透明度を算出した。
[流延、乾燥、巻き取り工程]
次に、前記セルロースアシレート溶液を用いたフィルムの製造方法について述べる。前記セルロースアシレートフィルムを製造する方法及び設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて得られたフィルムを乾燥装置のロール群で機械的に搬送し乾燥を終了して巻き取り機でロール状に所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。前記セルロースアシレートフィルムの主な用途である、電子ディスプレイ用の光学部材である機能性保護膜やハロゲン化銀写真感光材料に用いる溶液流延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置が付加されることが多い。これらについては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて25頁〜30頁に詳細に記載されており、流延(共流延を含む),金属支持体,乾燥,剥離などに分類され、本発明において好ましく用いることができる。
また、セルロースアシレートフィルムの厚さは10〜120μmが好ましく、20〜100μmがより好ましく、30〜90μmがさらに好ましい。
次に、前記セルロースアシレート溶液を用いたフィルムの製造方法について述べる。前記セルロースアシレートフィルムを製造する方法及び設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて得られたフィルムを乾燥装置のロール群で機械的に搬送し乾燥を終了して巻き取り機でロール状に所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。前記セルロースアシレートフィルムの主な用途である、電子ディスプレイ用の光学部材である機能性保護膜やハロゲン化銀写真感光材料に用いる溶液流延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置が付加されることが多い。これらについては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて25頁〜30頁に詳細に記載されており、流延(共流延を含む),金属支持体,乾燥,剥離などに分類され、本発明において好ましく用いることができる。
また、セルロースアシレートフィルムの厚さは10〜120μmが好ましく、20〜100μmがより好ましく、30〜90μmがさらに好ましい。
[高湿度処理後のフィルムの光学性能変化]
[セルロースアシレートフィルム物性評価]
前記セルロースアシレートフィルムの環境変化による光学性能の変化については、60℃90%RHに240時間処理したフィルムのRe及びRthの変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
[セルロースアシレートフィルム物性評価]
前記セルロースアシレートフィルムの環境変化による光学性能の変化については、60℃90%RHに240時間処理したフィルムのRe及びRthの変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
[高温度処理後のフィルムの光学性能変化]
また、80℃240時間処理したフィルムのRe及びRthの変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
また、80℃240時間処理したフィルムのRe及びRthの変化量が15nm以下であることがのぞましい。よりのぞましくは12nm以下であり、10nm以下であることがさらにのぞましい。
[フィルム加熱処理後の化合物揮散量]
前記セルロースアシレートフィルムにのぞましく用いることができる、Rthを低下させる化合物と、ΔRthを低下させる化合物は、80℃240時間処理したフィルムからの化合物の揮散量が30%以下であることがのぞましい。よりのぞましくは25%以下であり、20%以下であることがさらにのぞましい。
なお、フィルムからの揮散量は、80℃240時間処理したフィルム及び未処理のフィルムをそれぞれ溶媒に溶かし出し、液体高速クロマトグラフィーにて化合物を検出し、化合物のピーク面積をフィルム中に残存した化合物量として、下記式により算出した。
揮散量(%)= {(未処理品中の残存化合物量)−(処理品中の残存化合物量)}/(未処理品中の残存化合物量)×100
前記セルロースアシレートフィルムにのぞましく用いることができる、Rthを低下させる化合物と、ΔRthを低下させる化合物は、80℃240時間処理したフィルムからの化合物の揮散量が30%以下であることがのぞましい。よりのぞましくは25%以下であり、20%以下であることがさらにのぞましい。
なお、フィルムからの揮散量は、80℃240時間処理したフィルム及び未処理のフィルムをそれぞれ溶媒に溶かし出し、液体高速クロマトグラフィーにて化合物を検出し、化合物のピーク面積をフィルム中に残存した化合物量として、下記式により算出した。
揮散量(%)= {(未処理品中の残存化合物量)−(処理品中の残存化合物量)}/(未処理品中の残存化合物量)×100
[フィルムのガラス転移温度Tg]
前記セルロースアシレートフィルムのガラス転移温度Tgは、80〜165℃である。耐熱性の観点から、Tgが100〜160℃であることがより好ましく、110〜150℃であることが特に好ましい。ガラス転移温度Tgの測定は、前記セルロースアシレートフィルム試料10mgを、常温から200度まで昇降温速度5℃/分で示差走査熱量計(DSC2910、T.A.インスツルメント)で熱量測定を行い、ガラス転移温度Tgを算出した。
前記セルロースアシレートフィルムのガラス転移温度Tgは、80〜165℃である。耐熱性の観点から、Tgが100〜160℃であることがより好ましく、110〜150℃であることが特に好ましい。ガラス転移温度Tgの測定は、前記セルロースアシレートフィルム試料10mgを、常温から200度まで昇降温速度5℃/分で示差走査熱量計(DSC2910、T.A.インスツルメント)で熱量測定を行い、ガラス転移温度Tgを算出した。
[フィルムのヘイズ]
前記セルロースアシレートフィルムのヘイズは0.01〜2.0%であることがのぞましい。よりのぞましくは0.05〜1.5%であり、0.1〜1.0%であることがさらにのぞましい。光学フィルムとしてフィルムの透明性は重要である。ヘイズの測定は、前記セルロースアシレートフィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM−2DP、スガ試験機)でJIS K−6714に従って測定した。
前記セルロースアシレートフィルムのヘイズは0.01〜2.0%であることがのぞましい。よりのぞましくは0.05〜1.5%であり、0.1〜1.0%であることがさらにのぞましい。光学フィルムとしてフィルムの透明性は重要である。ヘイズの測定は、前記セルロースアシレートフィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM−2DP、スガ試験機)でJIS K−6714に従って測定した。
[フィルムのRe、Rthの湿度依存性]
前記セルロースアシレートフィルムの面内のレターデーションRe及び膜厚方向のレターデーションRthはともに湿度による変化が小さいことが好ましい。具体的には、25℃10%RHにおけるRth値と25℃80%RHにおけるRth値の差ΔRth(=Rth10%RH−Rth80%RH)が0〜50nmであることが好ましい。より好ましくは0〜40nmであり、さらに好ましくは0〜35nmである。
前記セルロースアシレートフィルムの面内のレターデーションRe及び膜厚方向のレターデーションRthはともに湿度による変化が小さいことが好ましい。具体的には、25℃10%RHにおけるRth値と25℃80%RHにおけるRth値の差ΔRth(=Rth10%RH−Rth80%RH)が0〜50nmであることが好ましい。より好ましくは0〜40nmであり、さらに好ましくは0〜35nmである。
[フィルムの平衡含水率]
前記セルロースアシレートフィルムの平衡含水率は、偏光板の保護膜として用いる際、ポリビニルアルコールなどの水溶性ポリマーとの接着性を損なわないために、膜厚のいかんに関わらず、25℃80%RHにおける平衡含水率が、0〜4%であることが好ましい。0.1〜3.5%であることがより好ましく、1〜3%であることが特に好ましい。4%以上の平衡含水率であると、レターデーションの湿度変化による依存性が大きくなりすぎてしまい好ましくない。
含水率の測定法は、前記セルロースアシレートフィルム試料7mm×35mmを水分測定器、試料乾燥装置(CA−03、VA−05、共に三菱化学(株))にてカールフィッシャー法で測定した。水分量(g)を試料重量(g)で除して算出した。
前記セルロースアシレートフィルムの平衡含水率は、偏光板の保護膜として用いる際、ポリビニルアルコールなどの水溶性ポリマーとの接着性を損なわないために、膜厚のいかんに関わらず、25℃80%RHにおける平衡含水率が、0〜4%であることが好ましい。0.1〜3.5%であることがより好ましく、1〜3%であることが特に好ましい。4%以上の平衡含水率であると、レターデーションの湿度変化による依存性が大きくなりすぎてしまい好ましくない。
含水率の測定法は、前記セルロースアシレートフィルム試料7mm×35mmを水分測定器、試料乾燥装置(CA−03、VA−05、共に三菱化学(株))にてカールフィッシャー法で測定した。水分量(g)を試料重量(g)で除して算出した。
[フィルムの透湿度]
本発明の光学補償フィルムに用いるセルロースアシレートフィルムの透湿度は、JIS規格JISZ0208をもとに、温度60℃、湿度95%RHの条件において測定し、膜厚80μmに換算して400〜2000g/m2・24hであることがのぞましい。500〜1800g/m2・24hであることがより好ましく、600〜1600g/m2・24hであることが特に好ましい。2000g/m2・24hを越えると、フィルムのRe値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまう。また、前記セルロースアシレートフィルムに光学異方性層を積層して光学補償フィルムとした場合も、Re値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまい好ましくない。この光学補償フィルムや偏光板が液晶表示装置に組み込まれた場合、色味の変化や視野角の低下を引き起こす。また、セルロースアシレートフィルムの透湿度が400g/m2・24h未満では、偏光膜の両面などに貼り付けて偏光板を作製する場合に、セルロースアシレートフィルムにより接着剤の乾燥が妨げられ、接着不良を生じる。
セルロースアシレートフィルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄ければ透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を80μmに設け換算する必要がある。膜厚の換算は、(80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm)として求めた。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができ、前記セルロースアシレートフィルム試料70mmφを25℃、90%RH及び60℃、95%RHでそれぞれ24時間調湿し、透湿試験装置(KK−709007、東洋精機(株))にて、JIS Z−0208に従って、単位面積あたりの水分量を算出(g/m2)し、透湿度=調湿後重量−調湿前重量で求めた。
本発明の光学補償フィルムに用いるセルロースアシレートフィルムの透湿度は、JIS規格JISZ0208をもとに、温度60℃、湿度95%RHの条件において測定し、膜厚80μmに換算して400〜2000g/m2・24hであることがのぞましい。500〜1800g/m2・24hであることがより好ましく、600〜1600g/m2・24hであることが特に好ましい。2000g/m2・24hを越えると、フィルムのRe値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまう。また、前記セルロースアシレートフィルムに光学異方性層を積層して光学補償フィルムとした場合も、Re値、Rth値の湿度依存性の絶対値が0.5nm/%RHを超える傾向が強くなってしまい好ましくない。この光学補償フィルムや偏光板が液晶表示装置に組み込まれた場合、色味の変化や視野角の低下を引き起こす。また、セルロースアシレートフィルムの透湿度が400g/m2・24h未満では、偏光膜の両面などに貼り付けて偏光板を作製する場合に、セルロースアシレートフィルムにより接着剤の乾燥が妨げられ、接着不良を生じる。
セルロースアシレートフィルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄ければ透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を80μmに設け換算する必要がある。膜厚の換算は、(80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm)として求めた。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができ、前記セルロースアシレートフィルム試料70mmφを25℃、90%RH及び60℃、95%RHでそれぞれ24時間調湿し、透湿試験装置(KK−709007、東洋精機(株))にて、JIS Z−0208に従って、単位面積あたりの水分量を算出(g/m2)し、透湿度=調湿後重量−調湿前重量で求めた。
[フィルムの寸度変化]
前記セルロースアシレートフィルムの寸度安定性は、60℃、90%RHの条件下に24時間静置した場合(高湿)の寸度変化率及び90℃、5%RHの条件下に24時間静置した場合(高温)の寸度変化率がいずれも0.5%以下であることがのぞましい。よりのぞましくは0.3%以下であり、さらにのぞましくは0.15%以下である。
具体的な測定方法としては、セルロースアシレートフィルム試料30mm×120mmを2枚用意し、25℃、60%RHで24時間調湿し、自動ピンゲージ(新東科学(株))にて、両端に6mmφの穴を100mmの間隔で開け、パンチ間隔の原寸(L0)とした。1枚の試料を60℃、90%RHにて24時間処理した後のパンチ間隔の寸法(L1)を測定、もう1枚の試料を90℃、5%RHにて24時間処理した後のパンチ間隔の寸法(L2)を測定した。すべての間隔の測定において最小目盛り1/1000mmまで測定した。60℃、90%RH(高湿)の寸度変化率={|L0−L1|/L0}×100、90℃、5%RH(高温)の寸度変化率={|L0−L2|/L0}×100、として寸度変化率を求めた。
前記セルロースアシレートフィルムの寸度安定性は、60℃、90%RHの条件下に24時間静置した場合(高湿)の寸度変化率及び90℃、5%RHの条件下に24時間静置した場合(高温)の寸度変化率がいずれも0.5%以下であることがのぞましい。よりのぞましくは0.3%以下であり、さらにのぞましくは0.15%以下である。
具体的な測定方法としては、セルロースアシレートフィルム試料30mm×120mmを2枚用意し、25℃、60%RHで24時間調湿し、自動ピンゲージ(新東科学(株))にて、両端に6mmφの穴を100mmの間隔で開け、パンチ間隔の原寸(L0)とした。1枚の試料を60℃、90%RHにて24時間処理した後のパンチ間隔の寸法(L1)を測定、もう1枚の試料を90℃、5%RHにて24時間処理した後のパンチ間隔の寸法(L2)を測定した。すべての間隔の測定において最小目盛り1/1000mmまで測定した。60℃、90%RH(高湿)の寸度変化率={|L0−L1|/L0}×100、90℃、5%RH(高温)の寸度変化率={|L0−L2|/L0}×100、として寸度変化率を求めた。
[フィルムの弾性率]
(弾性率)
前記セルロースアシレートフィルムの弾性率は、200〜500kgf/mm2であることが好ましい、より好ましくは240〜470kgf/mm2であり、さらに好ましくは270〜440kgf/mm2である。具体的な測定方法としては、東洋ボールドウィン製万能引っ張り試験機STM T50BPを用い、23℃・70%雰囲気中、引っ張り速度10%/分で0.5%伸びにおける応力を測定し、弾性率を求めた。
(弾性率)
前記セルロースアシレートフィルムの弾性率は、200〜500kgf/mm2であることが好ましい、より好ましくは240〜470kgf/mm2であり、さらに好ましくは270〜440kgf/mm2である。具体的な測定方法としては、東洋ボールドウィン製万能引っ張り試験機STM T50BPを用い、23℃・70%雰囲気中、引っ張り速度10%/分で0.5%伸びにおける応力を測定し、弾性率を求めた。
[フィルムの光弾性係数]
(光弾性係数)
前記セルロースアシレートフィルムの光弾性係数は、50×10-13cm2/dyne以下であることが好ましい。30×10-13cm2/dyne以下であることがより好ましく、20×10-13cm2/dyne以下であることがさらに好ましい。具体的な測定方法としては、セルロースアシレートフィルム試料12mm×120mmの長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター(M150、日本分光(株))で測定し、応力に対するレターデーションの変化量から光弾性係数を算出した。
(光弾性係数)
前記セルロースアシレートフィルムの光弾性係数は、50×10-13cm2/dyne以下であることが好ましい。30×10-13cm2/dyne以下であることがより好ましく、20×10-13cm2/dyne以下であることがさらに好ましい。具体的な測定方法としては、セルロースアシレートフィルム試料12mm×120mmの長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター(M150、日本分光(株))で測定し、応力に対するレターデーションの変化量から光弾性係数を算出した。
[延伸前後における正面レターデーション変化、遅相軸の検出]
試料100×100mmを用意し、固定一軸延伸機を用いて温度140℃の条件下で機械搬送方向(MD方向)又は垂直方向(TD方向)に延伸を行った。延伸前後における各試料の正面レターデーションは自動複屈折計KOBRA21ADHを用いて測定した。遅相軸の検出は上記のレターデーション測定の際に得られる配向角から決定した。延伸によってReの変化が小さいことが好ましく、具体的にはRe(n)をn(%)延伸したフィルムの面内正面レターデーション(nm)、Re(0)を延伸していないフィルムの面内正面レターデーション(nm)としたときに、|Re(n)−Re(0)|/n≦1.0を有することが好ましく、|Re(n)−Re(0)|/n≦0.3以下がさらに好ましい。
試料100×100mmを用意し、固定一軸延伸機を用いて温度140℃の条件下で機械搬送方向(MD方向)又は垂直方向(TD方向)に延伸を行った。延伸前後における各試料の正面レターデーションは自動複屈折計KOBRA21ADHを用いて測定した。遅相軸の検出は上記のレターデーション測定の際に得られる配向角から決定した。延伸によってReの変化が小さいことが好ましく、具体的にはRe(n)をn(%)延伸したフィルムの面内正面レターデーション(nm)、Re(0)を延伸していないフィルムの面内正面レターデーション(nm)としたときに、|Re(n)−Re(0)|/n≦1.0を有することが好ましく、|Re(n)−Re(0)|/n≦0.3以下がさらに好ましい。
[前記セルロースアシレートフィルムの評価方法]
前記セルロースアシレートフィルムの評価に当たって、以下の方法で測定して実施した。
(面内のレターデーションRe、膜厚方向のレターデーションRth)
試料30mm×40mmを、25℃、60%RHで2時間調湿し、Re(λ)は自動複屈折計KOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定した。また、Rth(λ)は前記Re(λ)と、面内の遅相軸を傾斜軸としてフィルム法線方向を0°としてサンプルを10°ごとに50°まで傾斜させて波長λnmの光を入射させて測定したレターデーション値を基に、平均屈折率の仮定値1.48及び膜厚を入力し算出した。
前記セルロースアシレートフィルムの評価に当たって、以下の方法で測定して実施した。
(面内のレターデーションRe、膜厚方向のレターデーションRth)
試料30mm×40mmを、25℃、60%RHで2時間調湿し、Re(λ)は自動複屈折計KOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定した。また、Rth(λ)は前記Re(λ)と、面内の遅相軸を傾斜軸としてフィルム法線方向を0°としてサンプルを10°ごとに50°まで傾斜させて波長λnmの光を入射させて測定したレターデーション値を基に、平均屈折率の仮定値1.48及び膜厚を入力し算出した。
(Re、Rthの波長分散測定)
試料30mm×40mmを、25℃、60%RHで2時間調湿しRe(λ)は、KOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション、及び面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーションの計3つの方向で測定したレターデーションと平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)がさらに算出される。
試料30mm×40mmを、25℃、60%RHで2時間調湿しRe(λ)は、KOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション、及び面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーションの計3つの方向で測定したレターデーションと平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)がさらに算出される。
(透過率)
試料20mm×70mmを、25℃,60%RHで透明度測定器(AKA光電管比色計、KOTAKI製作所)で可視光(615nm)の透過率を測定した。
(分光特性)
試料13mm×40mmを、25℃,60%RHで分光光度計(U−3210、(株)日立製作所)にて、波長300〜450nmにおける透過率を測定した。傾斜幅は72%の波長−5%の波長で求めた。限界波長は、(傾斜幅/2)+5%の波長で表した。吸収端は、透過率0.4%の波長で表す。これより380nm及び350nmの透過率を評価した。
試料20mm×70mmを、25℃,60%RHで透明度測定器(AKA光電管比色計、KOTAKI製作所)で可視光(615nm)の透過率を測定した。
(分光特性)
試料13mm×40mmを、25℃,60%RHで分光光度計(U−3210、(株)日立製作所)にて、波長300〜450nmにおける透過率を測定した。傾斜幅は72%の波長−5%の波長で求めた。限界波長は、(傾斜幅/2)+5%の波長で表した。吸収端は、透過率0.4%の波長で表す。これより380nm及び350nmの透過率を評価した。
[フィルム表面の性状]
前記セルロースアシレートフィルムの表面は、JISB0601−1994に基づく該膜の表面凹凸の算術平均粗さ(Ra)が0.1μm以下、及び最大高さ(Ry)が0.5μm以下であることが好ましい。好ましくは、算術平均粗さ(Ra)が0.05μm以下、及び最大高さ(Ry)が0.2μm以下である。膜表面の凹と凸の形状は、原子間力
顕微鏡(AFM)により評価することが出来る。
前記セルロースアシレートフィルムの表面は、JISB0601−1994に基づく該膜の表面凹凸の算術平均粗さ(Ra)が0.1μm以下、及び最大高さ(Ry)が0.5μm以下であることが好ましい。好ましくは、算術平均粗さ(Ra)が0.05μm以下、及び最大高さ(Ry)が0.2μm以下である。膜表面の凹と凸の形状は、原子間力
顕微鏡(AFM)により評価することが出来る。
[セルロースアシレートフィルムのレターデーションの面内ばらつき]
前記セルロースアシレートフィルムは次の式を満たすことがのぞましい。
|Re(MAX)−Re(MIN)|≦3かつ|Rth(MAX)−Rth(MIN)|≦5
[式中、Re(MAX)、Rth(MAX)−は任意に切り出した1m四方のフィルムの最大レターデーション値、Re(MIN)、Rth(MIN)は最小値である。]
前記セルロースアシレートフィルムは次の式を満たすことがのぞましい。
|Re(MAX)−Re(MIN)|≦3かつ|Rth(MAX)−Rth(MIN)|≦5
[式中、Re(MAX)、Rth(MAX)−は任意に切り出した1m四方のフィルムの最大レターデーション値、Re(MIN)、Rth(MIN)は最小値である。]
[フィルムの保留性]
前記セルロースアシレートフィルムにおいては、フィルムに添加した各種化合物の保留性が要求される。具体的には、前記セルロースアシレートフィルムを80℃/90%RHの条件下に48時間静置した場合のフィルムの質量変化が、0〜5%であることが好ましい。より好ましくは0〜3%であり、さらに好ましくは0〜2%である。
〈保留性の評価方法〉
試料を10cm×10cmのサイズに断裁し、23℃、55%RHの雰囲気下で24時間放置後の質量を測定して、80±5℃、90±10%RHの条件下で48時間放置した。処理後の試料の表面を軽く拭き、23℃、55%RHで1日放置後の質量を測定して、以下の方法で保留性を計算した。
保留性(質量%)={(放置前の質量−放置後の質量)/放置前の質量}×100
前記セルロースアシレートフィルムにおいては、フィルムに添加した各種化合物の保留性が要求される。具体的には、前記セルロースアシレートフィルムを80℃/90%RHの条件下に48時間静置した場合のフィルムの質量変化が、0〜5%であることが好ましい。より好ましくは0〜3%であり、さらに好ましくは0〜2%である。
〈保留性の評価方法〉
試料を10cm×10cmのサイズに断裁し、23℃、55%RHの雰囲気下で24時間放置後の質量を測定して、80±5℃、90±10%RHの条件下で48時間放置した。処理後の試料の表面を軽く拭き、23℃、55%RHで1日放置後の質量を測定して、以下の方法で保留性を計算した。
保留性(質量%)={(放置前の質量−放置後の質量)/放置前の質量}×100
[フィルムの力学特性]
(カール)
前記セルロースアシレートフィルムの幅方向のカール値は、−10/m〜+10/mであることが好ましい。前記セルロースアシレートフィルムには後述する表面処理、光学異方性層を塗設する際のラビング処理の実施や配向膜、光学異方性層の塗設や貼合などを長尺で行う際に、前記セルロースアシレートフィルムの幅方向のカール値が前述の範囲外では、フィルムのハンドリングに支障をきたし、フィルムの切断が起きることがある。また、フィルムのエッジや中央部などで、フィルムが搬送ロールと強く接触するために発塵しやすくなり、フィルム上への異物付着が多くなり、光学補償フィルムの点欠陥や塗布スジの頻度が許容値を超えることがある。又、カールを上述の範囲とすることで光学異方性層を設置するときに発生しやすい色斑故障を低減できるほか、偏光膜貼り合せ時に気泡が入ることを防ぐことができ、好ましい。
カール値は、アメリカ国家規格協会の規定する測定方法(ANSI/ASCPH1.29−1985)に従い測定することができる。
(カール)
前記セルロースアシレートフィルムの幅方向のカール値は、−10/m〜+10/mであることが好ましい。前記セルロースアシレートフィルムには後述する表面処理、光学異方性層を塗設する際のラビング処理の実施や配向膜、光学異方性層の塗設や貼合などを長尺で行う際に、前記セルロースアシレートフィルムの幅方向のカール値が前述の範囲外では、フィルムのハンドリングに支障をきたし、フィルムの切断が起きることがある。また、フィルムのエッジや中央部などで、フィルムが搬送ロールと強く接触するために発塵しやすくなり、フィルム上への異物付着が多くなり、光学補償フィルムの点欠陥や塗布スジの頻度が許容値を超えることがある。又、カールを上述の範囲とすることで光学異方性層を設置するときに発生しやすい色斑故障を低減できるほか、偏光膜貼り合せ時に気泡が入ることを防ぐことができ、好ましい。
カール値は、アメリカ国家規格協会の規定する測定方法(ANSI/ASCPH1.29−1985)に従い測定することができる。
(引裂き強度)
JISK7128−2:1998の引裂き試験方法に基づく引裂き強度(エルメンドルフ引裂き法)が、前記セルロースアシレートフィルムの膜厚が20〜80μmの範囲において、2g以上が好ましい。より好ましくは、5〜25gであり、更には6〜25gである。又、60μm換算で8g以上が好ましく、より好ましくは8〜15gである。具体的には、試料片50mm×64mmを、25℃、65%RHの条件下に2時間調湿した後に軽荷重引裂き強度試験機を用いて測定できる。
JISK7128−2:1998の引裂き試験方法に基づく引裂き強度(エルメンドルフ引裂き法)が、前記セルロースアシレートフィルムの膜厚が20〜80μmの範囲において、2g以上が好ましい。より好ましくは、5〜25gであり、更には6〜25gである。又、60μm換算で8g以上が好ましく、より好ましくは8〜15gである。具体的には、試料片50mm×64mmを、25℃、65%RHの条件下に2時間調湿した後に軽荷重引裂き強度試験機を用いて測定できる。
[フィルムの残留溶剤量]
前記セルロースアシレートフィルムに対する残留溶剤量が、0.01〜1.5質量%の範囲となる条件で乾燥することが好ましい。より好ましくは0.01〜1.0質量%である。本発明に用いる透明支持体の残留溶剤量は1.5%以下とすることでカールを抑制できる。1.0%以下であることがより好ましい。これは、前述のソルベントキャスト方法による成膜時の残留溶剤量が少なくすることで自由堆積が小さくなることが主要な効果要因になるためと思われる。
前記セルロースアシレートフィルムに対する残留溶剤量が、0.01〜1.5質量%の範囲となる条件で乾燥することが好ましい。より好ましくは0.01〜1.0質量%である。本発明に用いる透明支持体の残留溶剤量は1.5%以下とすることでカールを抑制できる。1.0%以下であることがより好ましい。これは、前述のソルベントキャスト方法による成膜時の残留溶剤量が少なくすることで自由堆積が小さくなることが主要な効果要因になるためと思われる。
[フィルムの吸湿膨張係数]
前記セルロースアシレートフィルムの吸湿膨張係数は30×10-5/%RH以下とすることが好ましい。吸湿膨張係数は、15×10-5/%RH以下とすることが好ましく、10×10-5/%RH以下であることがさらに好ましい。また、吸湿膨張係数は小さい方が好ましいが、通常は、1.0×10-5/%RH以上の値である。吸湿膨張係数は、一定温度下において相対湿度を変化させた時の試料の長さの変化量を示す。この吸湿膨張係数を調節することで、前記セルロースアシレートフィルムを光学補償フィルム支持体として用いた際、光学補償フィルムの光学補償機能を維持したまま、額縁状の透過率上昇すなわち歪みによる光漏れを防止することができる。
前記セルロースアシレートフィルムの吸湿膨張係数は30×10-5/%RH以下とすることが好ましい。吸湿膨張係数は、15×10-5/%RH以下とすることが好ましく、10×10-5/%RH以下であることがさらに好ましい。また、吸湿膨張係数は小さい方が好ましいが、通常は、1.0×10-5/%RH以上の値である。吸湿膨張係数は、一定温度下において相対湿度を変化させた時の試料の長さの変化量を示す。この吸湿膨張係数を調節することで、前記セルロースアシレートフィルムを光学補償フィルム支持体として用いた際、光学補償フィルムの光学補償機能を維持したまま、額縁状の透過率上昇すなわち歪みによる光漏れを防止することができる。
[表面処理]
セルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、下塗層及びバック層)との接着の向上を達成することができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸又はアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
セルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、下塗層及びバック層)との接着の向上を達成することができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸又はアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
[アルカリ鹸化処理によるフィルム表面の接触角]
前記セルロースアシレートフィルムを偏光板の透明保護フィルムとして用いる場合の表面処理の有効な手段の1つとしてアルカリ鹸化処理が上げられる。この場合、アルカリ鹸化処理後のフィルム表面の接触角が55°以下であることがのぞましい。よりのぞましくは50°以下であり、45°以下であることがさらにのぞましい。接触角の評価法はアルカリ鹸化処理後のフィルム表面に直径3mmの水滴を落とし、フィルム表面と水滴のなす角をもとめる通常の手法によって親疎水性の評価として用いることができる。
前記セルロースアシレートフィルムを偏光板の透明保護フィルムとして用いる場合の表面処理の有効な手段の1つとしてアルカリ鹸化処理が上げられる。この場合、アルカリ鹸化処理後のフィルム表面の接触角が55°以下であることがのぞましい。よりのぞましくは50°以下であり、45°以下であることがさらにのぞましい。接触角の評価法はアルカリ鹸化処理後のフィルム表面に直径3mmの水滴を落とし、フィルム表面と水滴のなす角をもとめる通常の手法によって親疎水性の評価として用いることができる。
(耐光性)
前記セルロースアシレートの光耐久性の指標として、スーパーキセノン光を240時間照射したフィルムの色差ΔE*abが20以下であることがのぞましい。よりのぞましくは18以下であり、15以下であることがさらにのぞましい。色差の測定は、UV3100(島津製作所製)を用いた。測定の仕方は、フィルムを25℃60%RHに2時間以上調湿した後にキセノン光照射前のフィルムのカラー測定を行ない初期値(L0*、a0*、b0*)を求めた。その後、フィルム単体で、スーパーキセノンウェザーメーターSX−75(スガ試験機(株)製)にて、150W/m2、60℃50%RH条件にてキセノン光を240時間照射した。所定時間の経過後、フィルムを恒温槽から取り出し、25℃60%RHに2時間調湿した後に、再びカラー測定を行い、照射経時後の値(L1*、a1*、b1*)を求めた。これらから、色差ΔE*ab=((L0*−L1*)2+(a0*−a1*)2+(b0*−b1*)2)0.5を求めた。
前記セルロースアシレートの光耐久性の指標として、スーパーキセノン光を240時間照射したフィルムの色差ΔE*abが20以下であることがのぞましい。よりのぞましくは18以下であり、15以下であることがさらにのぞましい。色差の測定は、UV3100(島津製作所製)を用いた。測定の仕方は、フィルムを25℃60%RHに2時間以上調湿した後にキセノン光照射前のフィルムのカラー測定を行ない初期値(L0*、a0*、b0*)を求めた。その後、フィルム単体で、スーパーキセノンウェザーメーターSX−75(スガ試験機(株)製)にて、150W/m2、60℃50%RH条件にてキセノン光を240時間照射した。所定時間の経過後、フィルムを恒温槽から取り出し、25℃60%RHに2時間調湿した後に、再びカラー測定を行い、照射経時後の値(L1*、a1*、b1*)を求めた。これらから、色差ΔE*ab=((L0*−L1*)2+(a0*−a1*)2+(b0*−b1*)2)0.5を求めた。
ポリマーフィルムには、表面処理を施すことが好ましい。表面処理には、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理及び紫外線照射処理が含まれる。表面処理は、発明協会公開技報公技番号2001−1745号の30頁〜32頁に記載がある。
アルカリ処理が好ましい。ポリマーフィルムがセルロースアシレートフィルムである場合は、アルカリ処理はケン化処理(アルカリ鹸化処理)として機能する。
アルカリ処理が好ましい。ポリマーフィルムがセルロースアシレートフィルムである場合は、アルカリ処理はケン化処理(アルカリ鹸化処理)として機能する。
アルカリ鹸化処理は、セルロースアシレートフィルムを鹸化液中に浸漬するか、鹸化液をセルロースアシレートフィルムに塗布することにより実施する。塗布による方法が好ましい。塗布方法には、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、バーコーティング法、E型塗布法がある。アルカリは、アルカリ金属(例、カリウム、ナトリウム)の水酸化物が好ましい。すなわち、アルカリ処理液は、アルカリ金属の水酸化物の溶液であることが好ましい。溶液中の水酸化イオンの規定濃度は、0.1〜3.0Nであることが好ましい。
アルカリ処理液には、フィルムに対する濡れ性が良好な溶媒、界面活性剤、湿潤剤(例、ジオール、グリセリン)を添加し、アルカリ処理液の支持体に対する濡れ性や処理液の安定性を改善できる。フィルムに対する濡れ性が良好な溶媒は、アルコール(例、イソプロピルアルコール、n−ブタノール、メタノール、エタノール)が好ましい。アルカリ処理液の添加剤は、特開2002−82226号公報、国際公開第02/46809号パンフレットに記載がある。
アルカリ処理液には、フィルムに対する濡れ性が良好な溶媒、界面活性剤、湿潤剤(例、ジオール、グリセリン)を添加し、アルカリ処理液の支持体に対する濡れ性や処理液の安定性を改善できる。フィルムに対する濡れ性が良好な溶媒は、アルコール(例、イソプロピルアルコール、n−ブタノール、メタノール、エタノール)が好ましい。アルカリ処理液の添加剤は、特開2002−82226号公報、国際公開第02/46809号パンフレットに記載がある。
表面処理に代えて、又は表面処理に加えて、下塗り層(特開平7−333433号公報記載)を設けてもよい。複数の下塗り層を設けてもよい。例えば、疎水性基と親水性基との両方を含有するポリマー層を第1下塗り層として設け、その上に配向膜とよく密着する親水性のポリマー層を第2下塗り層として設けること(特開平11−248940号公報記載)もできる。
前記第1光学異方層の支持体であるセルロースアシレートフィルムは、上記した様に偏光膜の保護膜としても利用されていてもよい。支持体である前記セルロースアシレートフィルムの表面に配向膜を形成し、該配向膜上に前記第1光学異方層を形成するのが好ましい。
[第1光学異方層]
本発明の液晶表示装置は、ハイブリット配向状態に固定された円盤状化合物を含有し、かつ下記式(III)を満足する第1光学異方層を有する。
(III) 1≦Re(700)/Re(400)≦2
式中、Re(λ)は波長λnmにおける面内レターデーション値である。
下記式(III’)を満足するのが好ましく、下記式(III”)を満足するのがより好ましい。
(III’) 1≦Re(700nm)/Re(400nm)≦1.6
(III”) 1.2≦Re(700nm)/Re(400nm)≦1.3
また、前記第1光学異方層の面内レターデーション値(Re)は、10〜50nmであることが好ましく、25〜37nmであることが更に好ましい。
本発明の液晶表示装置は、ハイブリット配向状態に固定された円盤状化合物を含有し、かつ下記式(III)を満足する第1光学異方層を有する。
(III) 1≦Re(700)/Re(400)≦2
式中、Re(λ)は波長λnmにおける面内レターデーション値である。
下記式(III’)を満足するのが好ましく、下記式(III”)を満足するのがより好ましい。
(III’) 1≦Re(700nm)/Re(400nm)≦1.6
(III”) 1.2≦Re(700nm)/Re(400nm)≦1.3
また、前記第1光学異方層の面内レターデーション値(Re)は、10〜50nmであることが好ましく、25〜37nmであることが更に好ましい。
さらに、前記第1光学異方層のRe(0°)、Re(40゜)及びRe(−40゜)は、下記式(VI)及び(VII)を満足しているのが好ましい。
(VI) 1.0<Re(40゜)/Re(0°)<3.0
(VII) 0.1<Re(−40゜)/Re(0°)<1.0
なお、式中、Re(0°)は、波長632.8nmの光で測定した光学異方性層の面内Reレターデーション値であり、Re(40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を40゜として波長632.8nmの光を入射して測定したReレターデーション値であり、Re(−40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を−40゜として波長632.8nmの光を入射して測定したReレターデーション値であって、あおり角度の正負はRe(40゜)>Re(−40゜)となるように決定する。上記式(VI)及び(VII)を満足していると、視野角特性が向上するので好ましい。前記第1光学異方層は、下記式(VI’)及び(VII’)を満足しているのがより好ましく、下記式(VI”)及び(VII”)を満足しているのがさらに好ましい。
(VI’)1.5<Re(40゜)/Re(0°)<2.7
(VII’)0.15<Re(−40゜)/Re(0°)<0.3
(VI”)2<Re(40゜)/Re(0°)<2.5
(VII”)0.2<Re(−40゜)/Re(0°)<0.25
(VI) 1.0<Re(40゜)/Re(0°)<3.0
(VII) 0.1<Re(−40゜)/Re(0°)<1.0
なお、式中、Re(0°)は、波長632.8nmの光で測定した光学異方性層の面内Reレターデーション値であり、Re(40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を40゜として波長632.8nmの光を入射して測定したReレターデーション値であり、Re(−40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を−40゜として波長632.8nmの光を入射して測定したReレターデーション値であって、あおり角度の正負はRe(40゜)>Re(−40゜)となるように決定する。上記式(VI)及び(VII)を満足していると、視野角特性が向上するので好ましい。前記第1光学異方層は、下記式(VI’)及び(VII’)を満足しているのがより好ましく、下記式(VI”)及び(VII”)を満足しているのがさらに好ましい。
(VI’)1.5<Re(40゜)/Re(0°)<2.7
(VII’)0.15<Re(−40゜)/Re(0°)<0.3
(VI”)2<Re(40゜)/Re(0°)<2.5
(VII”)0.2<Re(−40゜)/Re(0°)<0.25
前記第1光学異方層は、円盤状化合物の少なくとも一種を含有する組成物から形成することができる。第1光学異方層は、液晶表示装置の黒表示における液晶セル中の液晶化合物を補償するように設計することが好ましい。液晶セル中の液晶化合物の配向状態に関しては、IDW’00、FMC7−2、P411〜414に記載がある。第1光学異方層の形成に用いる円盤状化合物は、液晶性を有することが好ましい。円盤状の分子構造を含む高分子液晶でもよい。低分子円盤状液晶を重合又は架橋することにより、液晶性を示さなくなる化合物を用いてもよい。
[円盤状液晶性化合物]
円盤状(ディスコティック)液晶性化合物の例としては、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physics lett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルなどを挙げることができる。さらに、円盤状液晶性化合物としては、一般的にこれらを分子中心の母核とし、直鎖のアルキル基やアルコキシ基、置換ベンゾイルオキシ基等がその直鎖として放射線状に置換された構造のものも含まれ、液晶性を示す。ただし、分子自身が負の一軸性を有し、一定の配向を付与できるものであればよい。また、本発明において、円盤状液晶性化合物から形成する光学異方性層は、最終的にできた物が前記化合物である必要はなく、例えば、低分子の円盤状液晶性化合物が熱、光等で反応する基を有しており、結果的に熱、光等で反応により重合又は架橋し、高分子量化し液晶性を失ったものも含まれる。円盤状液晶性化合物の好ましい例は、特開平8−50206号公報に記載されている。また、円盤状液晶性化合物の重合については、特開平8−27284公報に記載がある。
円盤状(ディスコティック)液晶性化合物の例としては、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physics lett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルなどを挙げることができる。さらに、円盤状液晶性化合物としては、一般的にこれらを分子中心の母核とし、直鎖のアルキル基やアルコキシ基、置換ベンゾイルオキシ基等がその直鎖として放射線状に置換された構造のものも含まれ、液晶性を示す。ただし、分子自身が負の一軸性を有し、一定の配向を付与できるものであればよい。また、本発明において、円盤状液晶性化合物から形成する光学異方性層は、最終的にできた物が前記化合物である必要はなく、例えば、低分子の円盤状液晶性化合物が熱、光等で反応する基を有しており、結果的に熱、光等で反応により重合又は架橋し、高分子量化し液晶性を失ったものも含まれる。円盤状液晶性化合物の好ましい例は、特開平8−50206号公報に記載されている。また、円盤状液晶性化合物の重合については、特開平8−27284公報に記載がある。
円盤状液晶性化合物を重合により固定するためには、円盤状液晶性化合物の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。従って、重合性基を有する円盤状液晶性化合物は、下記一般式で表わされる化合物であることが好ましい。
D(−L−P)n
式中、Dは円盤状コアであり;Lは二価の連結基であり、Pは重合性基であり、そして、nは4〜12の整数である。
D(−L−P)n
式中、Dは円盤状コアであり;Lは二価の連結基であり、Pは重合性基であり、そして、nは4〜12の整数である。
円盤状コア(D)の例を以下に示す。以下の各例において、LP(又はPL)は、二価の連結基(L)と重合性基(P)との組み合わせを意味する。
式中、二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、−CO−、−NH−、−O−、−S−及びそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、−CO−、−NH−、−O−及びS−からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることがさらに好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、−CO−及びO−からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることが最も好ましい。アルキレン基の炭素原子数は、1〜12であることが好ましい。アルケニレン基の炭素原子数は、2〜12であることが好ましい。アリーレン基の炭素原子数は、6〜10であることが好ましい。
二価の連結基(L)の例を以下に示す。左側が円盤状コア(D)に結合し、右側が重合性基(P)に結合する。ALはアルキレン基又はアルケニレン基、ARはアリーレン基を意味する。なお、アルキレン基、アルケニレン基及びアリーレン基は、置換基(例、アルキル基)を有していてもよい。
L1:−AL−CO−O−AL−
L2:−AL−CO−O−AL−O−
L3:−AL−CO−O−AL−O−AL−
L4:−AL−CO−O−AL−O−CO−
L5:−CO−AR−O−AL−
L6:−CO−AR−O−AL−O−
L7:−CO−AR−O−AL−O−CO−
L8:−CO−NH−AL−
L9:−NH−AL−O−
L10:−NH−AL−O−CO−
L1:−AL−CO−O−AL−
L2:−AL−CO−O−AL−O−
L3:−AL−CO−O−AL−O−AL−
L4:−AL−CO−O−AL−O−CO−
L5:−CO−AR−O−AL−
L6:−CO−AR−O−AL−O−
L7:−CO−AR−O−AL−O−CO−
L8:−CO−NH−AL−
L9:−NH−AL−O−
L10:−NH−AL−O−CO−
L11:−O−AL−
L12:−O−AL−O−
L13:−O−AL−O−CO−
L14:−O−AL−O−CO−NH−AL−
L15:−O−AL−S−AL−
L16:−O−CO−AR−O−AL−CO−
L17:−O−CO−AR−O−AL−O−CO−
L18:−O−CO−AR−O−AL−O−AL−O−CO−
L19:−O−CO−AR−O−AL−O−AL−O−AL−O−CO−
L20:−S−AL−
L21:−S−AL−O−
L22:−S−AL−O−CO−
L23:−S−AL−S−AL−
L24:−S−AR−AL−
L12:−O−AL−O−
L13:−O−AL−O−CO−
L14:−O−AL−O−CO−NH−AL−
L15:−O−AL−S−AL−
L16:−O−CO−AR−O−AL−CO−
L17:−O−CO−AR−O−AL−O−CO−
L18:−O−CO−AR−O−AL−O−AL−O−CO−
L19:−O−CO−AR−O−AL−O−AL−O−AL−O−CO−
L20:−S−AL−
L21:−S−AL−O−
L22:−S−AL−O−CO−
L23:−S−AL−S−AL−
L24:−S−AR−AL−
式中、の重合性基(P)は、重合反応の種類に応じて決定する。重合性基(P)の例を以下に示す。
重合性基(P)は、不飽和重合性基(P1、P2、P3、P7、P8、P15、P16、P17)又はエポキシ基(P6、P18)であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基(P1、P7、P8、P15、P16、P17)であることが最も好ましい。
式(III)において、nは4〜12の整数である。具体的な数字は、円盤状コア(D)の種類に応じて決定される。なお、複数のLとPの組み合わせは、異なっていてもよいが、同一であることが好ましい。
式(III)において、nは4〜12の整数である。具体的な数字は、円盤状コア(D)の種類に応じて決定される。なお、複数のLとPの組み合わせは、異なっていてもよいが、同一であることが好ましい。
円盤状液晶性化合物を用いる場合、光学異方性層は円盤状構造単位の面が、層平面に対して傾き、且つ円盤状構造単位の面と層平面とのなす角度は、光学異方層の各深さにおいては、揺らぎをもちつつ、光学異方性層の深さ方向においては、変化していることが好ましい。
ある位置での円盤状構造単位の面の角度(平均傾斜角)は、一般に、各深さでは揺らぎをもちつつ、光学異方性層全体としては、深さ方向でかつ光学異方性層の底面からの距離の増加と共に増加又は減少している。平均傾斜角は、距離の増加と共に層全体としては増加することが好ましい。さらに、平均傾斜角の変化としては、連続的増加、連続的減少、間欠的増加、間欠的減少、連続的増加と連続的減少を含む変化、及び増加及び減少を含む間欠的変化などを挙げることができる。間欠的変化は、厚さ方向の途中で平均傾斜角が変化しない領域を含んでいる。平均傾斜角は、平均傾斜角が変化しない領域を含んでいても、全体として増加又は減少していることが好ましい。さらに、平均傾斜角は全体として増加していることが好ましく、特に連続的に変化することが好ましい。
支持体側の円盤状単位の平均傾斜角は、一般に円盤状液晶性化合物あるいは配向膜の材料を選択することにより、又はラビング処理方法の選択することにより、調整することができる。また、表面側(空気側)の円盤状単位の平均傾斜角は、一般に円盤状液晶性化合物あるいは円盤状液晶性化合物とともに使用する他の化合物を選択することにより調整することができる。円盤状液晶性化合物とともに使用する化合物の例としては、可塑剤、界面活性剤、重合性モノマー及びポリマーなどを挙げることができる。更に、平均傾斜角の変化の程度も、上記と同様の選択により調整できる。
円盤状液晶性化合物とともに使用する可塑剤、界面活性剤及び重合性モノマーとしては、円盤状液晶性化合物と相溶性を有し、円盤状液晶性化合物の平均傾斜角の変化を与えられるか、あるいは配向を阻害しない限り、どのような化合物も使用することができる。これらの中で、重合性モノマー(例、ビニル基、ビニルオキシ基、アクリロイル基及びメタクリロイル基を有する化合物)が好ましい。上記化合物の添加量は、円盤状液晶性化合物に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。
円盤状液晶性化合物とともに使用するポリマーとしては、円盤状液晶性化合物と相溶性を有し、円盤状液晶性化合物に平均傾斜角の変化を与えられる限り、どのようなポリマーでも使用することができる。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、セルロースアシレート、セルロースアシレートプロピオネート、ヒドロキシプロピルセルロース及びセルロースアシレートブチレートを挙げることができる。円盤状液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、円盤状液晶性化合物に対して一般に0.1〜10質量%の範囲にあり、0.1〜8質量%の範囲にあることがより好ましく、0.1〜5質量%の範囲にあることがさらに好ましい。
光学異方性層は、一般に円盤状液晶性化合物及び他の化合物を溶剤に溶解した溶液を配向膜上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱し、その後配向状態(ディスコティックネマチック相)を維持して冷却することにより得られる。あるいは、上記光学異方性層は、円盤状液晶性化合物及び他の化合物(更に、例えば重合性モノマー、光重合開始剤)を溶剤に溶解した溶液を配向膜上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱したのち重合させ(UV光の照射等により)、さらに冷却することにより得られる。本発明に用いる円盤状液晶性化合物のディスコティックネマティック液晶相−固相転移温度としては、70〜300℃が好ましく、特に70〜170℃が好ましい。
第1光学異方層は、円盤状化合物及び必要に応じて後述の重合性開始剤や任意の成分を含む塗布液を、配向膜の上に塗布することで形成できる。
塗布液の調製に使用する溶媒は、有機溶媒が好ましい。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
塗布液の調製に使用する溶媒は、有機溶媒が好ましい。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
第1光学異方層の厚さは、0.1〜20μmであることが好ましく、0.5〜15μmであることがさらに好ましく、1〜10μmであることがさらに好ましい、2〜5umであることが最も好ましい。
第1光学異方層の厚さは、0.1〜20μmであることが好ましく、0.5〜15μmであることがさらに好ましく、1〜10μmであることがさらに好ましい、2〜5umであることが最も好ましい。
配向させた円盤状化合物を、配向状態を維持して固定することができる。固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
光重合開始剤の例には、α−カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許第4239850号明細書記載)及びオキサジアゾール化合物(米国特許第4212970号明細書記載)が含まれる。
光重合開始剤の例には、α−カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許第4239850号明細書記載)及びオキサジアゾール化合物(米国特許第4212970号明細書記載)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%の範囲にあることが好ましく、0.5〜5質量%の範囲にあることがさらに好ましい。
液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。
照射エネルギーは、20mJ/cm2〜50J/cm2が好ましく、20〜5000mJ/cm2がさらに好ましく、100〜800mJ/cm2が最も好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
保護層を、第1光学異方層の上に設けてもよい。
液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。
照射エネルギーは、20mJ/cm2〜50J/cm2が好ましく、20〜5000mJ/cm2がさらに好ましく、100〜800mJ/cm2が最も好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
保護層を、第1光学異方層の上に設けてもよい。
[配向膜]
配向膜は、第1光学異方層の液晶性分子の配向方向を規定する機能を有する。従って、配向膜は、第1光学異方層を形成するために必須である。液晶性化合物を配向後に配向状態を固定すれば、配向膜はその役割を終了するため、製造後の液晶表示装置の構成要素として配向膜は必須ではない。例えば、円盤状化合物分子の配向状態を固定して形成した第1光学異方層を、支持体上に転写した積層体を用いてもよく、かかる場合は、第1光学異方層と支持体との間に配向膜がない液晶表示装置となる。ただし、一般には、第1光学異方層と支持体との間に、配向膜を設ける。
配向膜は、第1光学異方層の液晶性分子の配向方向を規定する機能を有する。従って、配向膜は、第1光学異方層を形成するために必須である。液晶性化合物を配向後に配向状態を固定すれば、配向膜はその役割を終了するため、製造後の液晶表示装置の構成要素として配向膜は必須ではない。例えば、円盤状化合物分子の配向状態を固定して形成した第1光学異方層を、支持体上に転写した積層体を用いてもよく、かかる場合は、第1光学異方層と支持体との間に配向膜がない液晶表示装置となる。ただし、一般には、第1光学異方層と支持体との間に、配向膜を設ける。
配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
配向膜は、ポリマーのラビング処理により形成することが好ましい。配向膜に使用するポリマーは、原則として、液晶性分子を配向させる機能のある分子構造を有する。
配向膜に用いるポリマーには、液晶性分子を配向させる機能に加えて、液晶性分子の配向を固定する機能を有することが好ましい。例えば、架橋性官能基(例、二重結合)を有する側鎖をポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基をポリマーの側鎖に導入することが好ましい。
配向膜に使用されるポリマーは、それ自体架橋可能であるか、あるいは架橋剤の使用により架橋可能になることが好ましい。架橋可能なポリマーは、特開平8−338913号公報の段落番号0022に記載がある。架橋可能なポリマーの例には、ポリメタクリレート、ポリスチレン、ポリオレフィン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、ポリ酢酸ビニル、カルボキシメチルセルロース、ポリカーボネート及びこれらの共重合体が含まれる。
シランカップリング剤をポリマーとして用いることもできる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。重合度が異なるポリビニルアルコール又は変性ポリビニルアルコールを2種類以上併用することが特に好ましい。
配向膜に用いるポリマーには、液晶性分子を配向させる機能に加えて、液晶性分子の配向を固定する機能を有することが好ましい。例えば、架橋性官能基(例、二重結合)を有する側鎖をポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基をポリマーの側鎖に導入することが好ましい。
配向膜に使用されるポリマーは、それ自体架橋可能であるか、あるいは架橋剤の使用により架橋可能になることが好ましい。架橋可能なポリマーは、特開平8−338913号公報の段落番号0022に記載がある。架橋可能なポリマーの例には、ポリメタクリレート、ポリスチレン、ポリオレフィン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、ポリ酢酸ビニル、カルボキシメチルセルロース、ポリカーボネート及びこれらの共重合体が含まれる。
シランカップリング剤をポリマーとして用いることもできる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。重合度が異なるポリビニルアルコール又は変性ポリビニルアルコールを2種類以上併用することが特に好ましい。
ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は、100〜5000であることが好ましい。
液晶性分子を配向させる機能を有する側鎖は、一般に疎水性基を官能基として有する。具体的な官能基の種類は、液晶性分子の種類及び必要とする配向状態に応じて決定する。
変性ポリビニルアルコールの変性基は、共重合変性、連鎖移動変性又はブロック重合変性により導入できる。変性基の例は、親水性基(例、カルボン酸基、スルホン酸基、ホスホン酸基、アミノ、アンモニオ、アミド、チオール)、炭素原子数10〜100の炭化水素基、フッ素原子置換の炭化水素基、アルキルチオ基、重合性基(例、不飽和重合性基、エポキシ基、アジリニジル基)、アルコキシシリル基(トリアルコキシシリル、ジアルコキシシリル、モノアルコキシシリル)を含む。
変性ポリビニルアルコールは、特開2000−155216号、同2002−62426号の各公報に記載がある。
液晶性分子を配向させる機能を有する側鎖は、一般に疎水性基を官能基として有する。具体的な官能基の種類は、液晶性分子の種類及び必要とする配向状態に応じて決定する。
変性ポリビニルアルコールの変性基は、共重合変性、連鎖移動変性又はブロック重合変性により導入できる。変性基の例は、親水性基(例、カルボン酸基、スルホン酸基、ホスホン酸基、アミノ、アンモニオ、アミド、チオール)、炭素原子数10〜100の炭化水素基、フッ素原子置換の炭化水素基、アルキルチオ基、重合性基(例、不飽和重合性基、エポキシ基、アジリニジル基)、アルコキシシリル基(トリアルコキシシリル、ジアルコキシシリル、モノアルコキシシリル)を含む。
変性ポリビニルアルコールは、特開2000−155216号、同2002−62426号の各公報に記載がある。
架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと第1光学異方層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償シートの強度を著しく改善することができる。
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基が好ましい架橋性官能基は、特開2000−155216号公報の段落番号0080〜0100に記載がある。
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基が好ましい架橋性官能基は、特開2000−155216号公報の段落番号0080〜0100に記載がある。
配向膜ポリマーは、架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。架橋剤は、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール及びジアルデヒド澱粉を含む。二種類以上の架橋剤を併用してもよい。架橋剤は、特開2002−62426号公報に記載がある。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。
架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。架橋剤の残留量を削減することで、液晶表示装置を長期使用する場合、あるいは液晶表示装置を高温高湿の雰囲気下に長期間放置する場合でも、レチキュレーション発生のない充分な耐久性が得られる。
架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。架橋剤の残留量を削減することで、液晶表示装置を長期使用する場合、あるいは液晶表示装置を高温高湿の雰囲気下に長期間放置する場合でも、レチキュレーション発生のない充分な耐久性が得られる。
配向膜は、上記ポリマー及び架橋剤を含む塗布液を、支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成できる。架橋反応は、支持体上に塗布した後に行なう。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。水とメタノールの混合溶媒の場合、溶媒全体に対してメタノールが1質量%以上含まれることが好ましく、9質量%以上含まれることがさらに好ましい。有機溶媒を加えることで、泡の発生が抑えられ、配向膜及び第1光学異方層の表面の欠陥が著しく減少する。
配向膜の塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法が好ましい。特にロッドコーティング法が好ましい。
乾燥後の膜厚は0.1〜10μmが好ましい。
加熱乾燥は、20〜110℃で行なうことができる。充分な架橋を形成するためには60〜100℃が好ましく、80〜100℃がさらに好ましい。乾燥時間は1分〜36時間で行なうことができる。好ましくは1〜30分である。pHは、使用する架橋剤に最適な値に設定することが好ましい。グルタルアルデヒドを使用する場合、好ましいpHは4.5〜5.5である。
乾燥後の膜厚は0.1〜10μmが好ましい。
加熱乾燥は、20〜110℃で行なうことができる。充分な架橋を形成するためには60〜100℃が好ましく、80〜100℃がさらに好ましい。乾燥時間は1分〜36時間で行なうことができる。好ましくは1〜30分である。pHは、使用する架橋剤に最適な値に設定することが好ましい。グルタルアルデヒドを使用する場合、好ましいpHは4.5〜5.5である。
配向膜は、ポリマー層を架橋したのち、表面をラビング処理することにより得ることができる。
ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法と同様である。すなわち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維を用いて一定方向に擦ることにより、配向を得る。一般には、長さ及び太さが均一な繊維を平均的に植毛した布を用いて、数回程度ラビングを行う。
ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法と同様である。すなわち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維を用いて一定方向に擦ることにより、配向を得る。一般には、長さ及び太さが均一な繊維を平均的に植毛した布を用いて、数回程度ラビングを行う。
[偏光板]
本発明では、上記した様に、支持体と第1光学異方層とを、偏光膜と貼り合せて偏光板として使用してもよい。
本発明では、上記した様に、支持体と第1光学異方層とを、偏光膜と貼り合せて偏光板として使用してもよい。
偏光膜は、配向型偏光膜又は塗布型偏光膜(Optiva Inc.製)を含む。配向型偏光膜は、バインダーとヨウ素もしくは二色性色素とからなる。ヨウ素及び二色性色素は、バインダー中で配向することで偏向性能を発現する。ヨウ素及び二色性色素は、バインダー分子に沿って配向するか、もしくは二色性色素が液晶のような自己組織化により一方向に配向することが好ましい。
市販の配向型偏光膜は、延伸したポリマーを、浴槽中のヨウ素もしくは二色性色素の溶液に浸漬し、バインダー中にヨウ素、もしくは二色性色素をバインダー中に浸透させることで作製されている。また、市販の偏光膜は、ポリマー表面から4μm程度(両側合わせて8μm程度)にヨウ素もしくは二色性色素が分布しており、充分な偏光性能を得るためには、少なくとも10μmの厚みが必要である。浸透度は、ヨウ素もしくは二色性色素の溶液濃度、浴槽温度及び浸漬時間により制御することができる。
偏光膜の厚みは、現在市販の偏光板(約30μm)以下であることが好ましく、25μm以下がさらに好ましく、20μm以下が最も好ましい。20μm以下であると、光漏れ現象が、17インチの液晶表示装置では観察されなくなる。
市販の配向型偏光膜は、延伸したポリマーを、浴槽中のヨウ素もしくは二色性色素の溶液に浸漬し、バインダー中にヨウ素、もしくは二色性色素をバインダー中に浸透させることで作製されている。また、市販の偏光膜は、ポリマー表面から4μm程度(両側合わせて8μm程度)にヨウ素もしくは二色性色素が分布しており、充分な偏光性能を得るためには、少なくとも10μmの厚みが必要である。浸透度は、ヨウ素もしくは二色性色素の溶液濃度、浴槽温度及び浸漬時間により制御することができる。
偏光膜の厚みは、現在市販の偏光板(約30μm)以下であることが好ましく、25μm以下がさらに好ましく、20μm以下が最も好ましい。20μm以下であると、光漏れ現象が、17インチの液晶表示装置では観察されなくなる。
偏光膜のバインダーは架橋していてもよい。偏光膜のバインダーとして、それ自体架橋可能なポリマーを用いてもよい。官能基を有するポリマー、又はポリマーに官能基を導入して得られたポリマーに、光、熱あるいはpH変化を与えて、官能基を反応させてポリマー間を架橋させ、偏光膜を形成することができる。また、架橋剤によりポリマーに架橋構造を導入してもよい。反応活性の高い化合物である架橋剤を用いてバインダー間に架橋剤に由来する結合基を導入して、バインダー間を架橋することにより形成することができる。
架橋は一般に、架橋可能なポリマー又はポリマーと架橋剤との混合物を含む塗布液を、透明支持体上に塗布した後、加熱することにより実施できる。最終商品の段階で耐久性が確保できればよいため、架橋させる処理は、最終の偏光板を得るまでのいずれの段階で行なってもよい。
架橋は一般に、架橋可能なポリマー又はポリマーと架橋剤との混合物を含む塗布液を、透明支持体上に塗布した後、加熱することにより実施できる。最終商品の段階で耐久性が確保できればよいため、架橋させる処理は、最終の偏光板を得るまでのいずれの段階で行なってもよい。
偏光膜のバインダーとして、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーを使用できる。ポリマーの例には、ポリメチルメタクリレート、ポリアクリル酸、ポリメタクリル酸、ポリスチレン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリビニルトルエン、クロロスルホン化ポリエチレン、ニトロセルロース、塩素化ポリオレフィン(例、ポリ塩化ビニル)、ポリエステル、ポリイミド、ポリ酢酸ビニル、ポリエチレン、カルボキシメチルセルロース、ポリプロピレン、ポリカーボネート及びそれらのコポリマー(例、アクリル酸/メタクリル酸共重合体、スチレン/マレインイミド共重合体、スチレン/ビニルトルエン共重合体、酢酸ビニル/塩化ビニル共重合体、エチレン/酢酸ビニル共重合体)が含まれる。シランカップリング剤をポリマーとして用いてもよい。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。
ポリビニルアルコール及び変性ポリビニルアルコールのケン化度は、70〜100%が好ましく、80〜100%がさらに好ましく、95〜100%が最も好ましい。ポリビニルアルコールの重合度は、100〜5000が好ましい。
変性ポリビニルアルコールは、ポリビニルアルコールに対して、共重合変性、連鎖移動変性あるいはブロック重合変性により変性基を導入して得られる。共重合で導入する変性基の例は、−COONa、−Si(OX)3(Xは、水素原子又はアルキル基)、−N(CH3)3・Cl、−C9H19、−COO、−SO3Na、−C12H25を含む。連鎖移動で導入する変性基の例は、−COONa、−SH、−SC12H25を含む。変性ポリビニルアルコールの重合度は、100〜3000が好ましい。変性ポリビニルアルコールについては、特開平8−338913号、同9−152509号及び同9−316127号の各公報に記載がある。
ケン化度が85〜95%の未変性ポリビニルアルコール及びアルキルチオ変性ポリビニルアルコールが特に好ましい。
ポリビニルアルコール及び変性ポリビニルアルコールは、二種以上を併用してもよい。
変性ポリビニルアルコールは、ポリビニルアルコールに対して、共重合変性、連鎖移動変性あるいはブロック重合変性により変性基を導入して得られる。共重合で導入する変性基の例は、−COONa、−Si(OX)3(Xは、水素原子又はアルキル基)、−N(CH3)3・Cl、−C9H19、−COO、−SO3Na、−C12H25を含む。連鎖移動で導入する変性基の例は、−COONa、−SH、−SC12H25を含む。変性ポリビニルアルコールの重合度は、100〜3000が好ましい。変性ポリビニルアルコールについては、特開平8−338913号、同9−152509号及び同9−316127号の各公報に記載がある。
ケン化度が85〜95%の未変性ポリビニルアルコール及びアルキルチオ変性ポリビニルアルコールが特に好ましい。
ポリビニルアルコール及び変性ポリビニルアルコールは、二種以上を併用してもよい。
架橋剤については、米国再発行特許第23297号明細書に記載がある。ホウ素化合物(例、ホウ酸、硼砂)も、架橋剤として用いることができる。
バインダーの架橋剤は、多く添加すると、偏光膜の耐湿熱性を向上させることができる。ただし、バインダーに対して架橋剤を50質量%以上添加すると、ヨウ素、もしくは二色性色素の配向性が低下する。架橋剤の添加量は、バインダーに対して、0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。バインダーは、架橋反応が終了した後でも、反応しなかった架橋剤をある程度含んでいる。ただし、残存する架橋剤の量は、バインダー中に1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。バインダー中に1.0質量%を超える量で架橋剤が含まれていると、耐久性に問題が生じる場合がある。すなわち、架橋剤の残留量が多い偏光膜を液晶表示装置に組み込み、長期使用、あるいは高温高湿の雰囲気下に長期間放置した場合に、偏光度の低下が生じることがある。
バインダーの架橋剤は、多く添加すると、偏光膜の耐湿熱性を向上させることができる。ただし、バインダーに対して架橋剤を50質量%以上添加すると、ヨウ素、もしくは二色性色素の配向性が低下する。架橋剤の添加量は、バインダーに対して、0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。バインダーは、架橋反応が終了した後でも、反応しなかった架橋剤をある程度含んでいる。ただし、残存する架橋剤の量は、バインダー中に1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。バインダー中に1.0質量%を超える量で架橋剤が含まれていると、耐久性に問題が生じる場合がある。すなわち、架橋剤の残留量が多い偏光膜を液晶表示装置に組み込み、長期使用、あるいは高温高湿の雰囲気下に長期間放置した場合に、偏光度の低下が生じることがある。
二色性色素は、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素あるいはアントラキノン系色素を含む。二色性色素は、水溶性であることが好ましい。二色性色素は、親水性置換基(例、スルホ、アミノ、ヒドロキシル)を有することが好ましい。二色性色素の例には、C.I.ダイレクト・イエロー12、C.I.ダイレクト・オレンジ39、C.I.ダイレクト・オレンジ72、C.I.ダイレクト・レッド39、C.I.ダイレクト・レッド79、C.I.ダイレクト・レッド81、C.I.ダイレクト・レッド83、C.I.ダイレクト・レッド89、C.I.ダイレクト・バイオレット48、C.I.ダイレクト・ブルー67、C.I.ダイレクト・ブルー90、C.I.ダイレクト・グリーン59、C.I.アシッド・レッド37が含まれる。二色性色素については、特開平1−161202号、同1−172906号、同1−172907号、同1−183602号、同1−248105号、同1−265205号、同7−261024号の各公報に記載がある。
二色性色素は、遊離酸又は塩(例、アルカリ金属塩、アンモニウム塩もしくはアミン塩)として用いられる。二種類以上の二色性色素を配合することにより、各種の色相を有する偏光膜を製造することができる。偏光軸を直交させた時に黒色を呈する化合物(色素)を用いた偏光膜、あるいは黒色を呈するように各種の二色性分子を配合した偏光膜は、単板透過率及び偏光率が優れている。
偏光膜は、バインダーを偏光膜の長手方向(MD方向)に対して延伸して作製することができる(延伸法)。あるいは、ラビングした後に、ヨウ素、二色性染料で染色して作製することもできる(ラビング法)。
延伸法の場合、延伸倍率は2.5〜30.0倍が好ましく、3.0〜10.0倍がさらに好ましい。延伸は、空気中でのドライ延伸で実施できる。また、水に浸漬した状態でのウェット延伸を実施してもよい。ドライ延伸の延伸倍率は、2.5〜5.0倍が好ましく、ウェット延伸の延伸倍率は、3.0〜10.0倍が好ましい。延伸工程は、数回に分けて行ってもよい。数回に分けることによって、高倍率延伸でもより均一に延伸することができる。延伸前に、横あるいは縦に若干の延伸(幅方向の収縮を防止する程度)を行ってもよい。
延伸法の場合、延伸倍率は2.5〜30.0倍が好ましく、3.0〜10.0倍がさらに好ましい。延伸は、空気中でのドライ延伸で実施できる。また、水に浸漬した状態でのウェット延伸を実施してもよい。ドライ延伸の延伸倍率は、2.5〜5.0倍が好ましく、ウェット延伸の延伸倍率は、3.0〜10.0倍が好ましい。延伸工程は、数回に分けて行ってもよい。数回に分けることによって、高倍率延伸でもより均一に延伸することができる。延伸前に、横あるいは縦に若干の延伸(幅方向の収縮を防止する程度)を行ってもよい。
歩留まりの観点から、長手方向に対して10〜80°傾斜して延伸することが好ましい。その場合は、延伸は、二軸延伸におけるテンター延伸を左右異なる工程で行うことによって実施できる。上記二軸延伸は、通常のフィルム製膜において行われている延伸方法と同様である。二軸延伸では、左右異なる速度によって延伸されるため、延伸前のバインダーフィルムの厚みが左右で異なるようにする必要がある。流延製膜では、ダイにテーパーを付けることにより、バインダー溶液の流量に左右の差をつけることができる。
傾斜角度は、液晶表示装置を構成する液晶セルの両側に貼り合わされる2枚の偏光板の透過軸と液晶セルの縦又は横方向のなす角度にあわせるように延伸することが好ましい。通常の傾斜角度は45゜である。しかし、最近は、透過型、反射型及び半透過型液晶表示装置において必ずしも45゜でない装置が開発されており、延伸方向は液晶表示装置の設計にあわせて任意に調整できることが好ましい。
以上のように、偏光膜のMD方向に対して10〜80度斜め延伸されたバインダーフィルムが製造される。
傾斜角度は、液晶表示装置を構成する液晶セルの両側に貼り合わされる2枚の偏光板の透過軸と液晶セルの縦又は横方向のなす角度にあわせるように延伸することが好ましい。通常の傾斜角度は45゜である。しかし、最近は、透過型、反射型及び半透過型液晶表示装置において必ずしも45゜でない装置が開発されており、延伸方向は液晶表示装置の設計にあわせて任意に調整できることが好ましい。
以上のように、偏光膜のMD方向に対して10〜80度斜め延伸されたバインダーフィルムが製造される。
ラビング法では、液晶表示装置の液晶配向処理工程として広く採用されているラビング処理方法を応用することができる。すなわち、膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維を用いて一定方向に擦ることにより配向を得る。一般には、長さ及び太さが均一な繊維を平均的に植毛した布を用いて数回程度ラビングを行うことにより実施される。ロール自身の真円度、円筒度、振れ(偏芯)がいずれも30μm以下であるラビングロールを用いて実施することが好ましい。ラビングロールへのフィルムのラップ角度は、0.1〜90゜が好ましい。ただし、特開平8−160430号公報に記載されているように、360゜以上巻き付けることで、安定なラビング処理を得ることもできる。
長尺フィルムをラビング処理する場合は、フィルムを搬送装置により一定張力の状態で1〜100m/minの速度で搬送することが好ましい。ラビングロールは、任意のラビング角度設定のためフィルム進行方向に対し水平方向に回転自在とされることが好ましい。0〜60゜の範囲で適切なラビング角度を選択することが好ましい。液晶表示装置に使用する場合は、40〜50゜が好ましい。45゜が特に好ましい。
長尺フィルムをラビング処理する場合は、フィルムを搬送装置により一定張力の状態で1〜100m/minの速度で搬送することが好ましい。ラビングロールは、任意のラビング角度設定のためフィルム進行方向に対し水平方向に回転自在とされることが好ましい。0〜60゜の範囲で適切なラビング角度を選択することが好ましい。液晶表示装置に使用する場合は、40〜50゜が好ましい。45゜が特に好ましい。
偏光膜の両面には、保護フィルムを配置するのが好ましく、一方の面の保護フィルムとして、支持体であるセルロースアシレートフィルムを用いるのが好ましい。例えば、支持体となる長尺状のセルロースアシレートフィルム上に連続的に、円盤状化合物を含有する組成物を適用して、第1光学異方層を形成し、長尺状の第1光学異方層と支持体との積層体を作製してもよい。この積層体を、長尺状の偏光膜と貼り合せてもよい。例えば、保護フィルム/偏光膜/支持体/第1光学異方層、または保護フィルム/偏光膜/支持体/配向膜/第1光学異方層としてもよい。また、偏光膜とセルロースアシレートフィルムである支持体との間に、偏光膜の保護フィルム等、他のポリマーフィルムを配置してもよい。該ポリマーフィルムとして、ポリオレフィン系2軸フィルムを用いてもよい。即ち、保護フィルム/偏光膜/ポリオレフィン系2軸フィルム/支持体/配向膜/第1光学異方層の順に積層された積層体が好ましい。偏光膜と第1光学異方層の表面側とを貼りあわせてもよい。貼り合せには接着剤を用いることができる。ポリビニルアルコール系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基による変性ポリビニルアルコールを含む)やホウ素化合物水溶液を接着剤として用いることができる。ポリビニルアルコール系樹脂が好ましい。また、前記ポリオレフィン系2軸フィルムを含む態様において、偏光膜と該フィルムとを接着する際、及び該フィルムと支持体とを接着する際も、同様の接着剤を用いることができる。
接着剤層の厚みは、乾燥後に0.01〜10μmの範囲が好ましく、0.05〜5μmの範囲がさらに好ましい。
偏光板の表面には、光拡散フィルムまたは防眩性フィルムを貼り合わせてもよい。
接着剤層の厚みは、乾燥後に0.01〜10μmの範囲が好ましく、0.05〜5μmの範囲がさらに好ましい。
偏光板の表面には、光拡散フィルムまたは防眩性フィルムを貼り合わせてもよい。
[光拡散又は防眩性フィルム]
図3は、光拡散フィルムの代表的な形態を示す断面模式図である。
図3に示す光拡散フィルム(10)は、透明基材フィルム(20)と、透光性樹脂(31)中に、例えば、第1の透光性微粒子(41)及び第2の透光性微粒子(42)とを含む光拡散層(30)とを積層してなる。ここでは2種類の(屈折率が異なり)二つの粒径分布のピークを有する透光性微粒子にて説明を行なうが、同じ種類で(屈折率が同じで)二つの粒径分布線のピークを有する透光性微粒子を用いてもよいし、一種類の透光性微粒子を用いてもよい。
図3は、光拡散フィルムの代表的な形態を示す断面模式図である。
図3に示す光拡散フィルム(10)は、透明基材フィルム(20)と、透光性樹脂(31)中に、例えば、第1の透光性微粒子(41)及び第2の透光性微粒子(42)とを含む光拡散層(30)とを積層してなる。ここでは2種類の(屈折率が異なり)二つの粒径分布のピークを有する透光性微粒子にて説明を行なうが、同じ種類で(屈折率が同じで)二つの粒径分布線のピークを有する透光性微粒子を用いてもよいし、一種類の透光性微粒子を用いてもよい。
第1の透光性微粒子(41)は、透光性樹脂、例えばシリカ微粒子(平均粒子径1.0μm、屈折率1.51)から構成され、第2の透光性微粒子(42)は、透光性樹脂、例えばスチレンビーズ(平均粒子径3.5μm、屈折率1.61)から構成されている。光拡散機能は、透光性微粒子(41及び42)と透光性樹脂(31)との屈折率の差によって得られる。屈折率の差は、0.02以上、0.15以下であることが好ましい。屈折率差が0.02未満であると、光拡散効果を得られない場合がある。屈折率差が0.15よりも大きい場合は、光拡散性が高すぎて、フィルム全体が白化する場合がある。屈折率差は、0.03以上、0.13以下がより好ましく、0.04以上、0.10以下が最も良い。
偏光膜を液晶表示装置に用いる場合、視認側表面に反射防止層を設置するのが好ましい。反射防止層を偏光膜の視認側の保護層と兼用してもよい。液晶表示装置の視角による色味変化抑制の観点から、反射防止層の内部ヘイズを50%以上にすることが好ましい。反射防止層は、特開2001−33783号、同2001−343646号及び同2002−328228号の各公報に記載がある。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
[実施例1]
(支持体の作製)
(セルロースアセテート溶液の調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Dを調製した。
[実施例1]
(支持体の作製)
(セルロースアセテート溶液の調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Dを調製した。
(セルロースアセテート溶液D組成)
酢化度2.86のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
酢化度2.86のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
(マット剤溶液の調製)
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液D 10.3質量部
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液D 10.3質量部
(添加剤溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
(添加剤溶液組成)
光学的異方性を低下する化合物(A−19) 49.3質量部
波長分散調整剤(UV−102) 7.6質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液D 12.8質量部
光学的異方性を低下する化合物(A−19) 49.3質量部
波長分散調整剤(UV−102) 7.6質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液D 12.8質量部
上記セルロースアセテート溶液Dを94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学的異方性を低下する化合物及び波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.8%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させセルロースアシレートフィルム1を製造した。出来あがったセルロースアシレートフィルム1の残留溶剤量は0.2%であり、膜厚は80μmであった。
得られたセルロースアシレートフィルム1のRe(630)は8nm、Rth(630)は12nmだった。また、上記式(I)及び(II)を満足していた。
得られたセルロースアシレートフィルム1のRe(630)は8nm、Rth(630)は12nmだった。また、上記式(I)及び(II)を満足していた。
(鹸化処理)
上記のロールフィルムを温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、下記の組成のアルカリ溶液をバーコーターを用いて、14ml/m2塗布し、110℃に加熱したスチーム式遠赤外線ヒーター((株)ノリタケカンパニー製)の下に10秒間滞留させた後、同じくバーコーターを用いて純水を3ml/m2塗布した。このときのフィルム温度は40℃であった。次いでファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返して後に、70℃の乾燥ゾーンに2秒滞留させて乾燥した。
上記のロールフィルムを温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、下記の組成のアルカリ溶液をバーコーターを用いて、14ml/m2塗布し、110℃に加熱したスチーム式遠赤外線ヒーター((株)ノリタケカンパニー製)の下に10秒間滞留させた後、同じくバーコーターを用いて純水を3ml/m2塗布した。このときのフィルム温度は40℃であった。次いでファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返して後に、70℃の乾燥ゾーンに2秒滞留させて乾燥した。
<アルカリ溶液組成>
水酸化カリウム 4.7質量部
水 15.7質量部
イソプロパノール 64.8質量部
プロピレングリコール 14.9質量部
C16H33O(CH2CH2O)10H(界面活性剤) 1.0質量部
水酸化カリウム 4.7質量部
水 15.7質量部
イソプロパノール 64.8質量部
プロピレングリコール 14.9質量部
C16H33O(CH2CH2O)10H(界面活性剤) 1.0質量部
その後さらに、下記の組成の塗布液を#16のワイヤーバーコーターで28mL/m2塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。次に、形成した膜に、セルロースアシレートフィルム1の流延方向と平行な方向に配向するようにラビング処理を実施した(即ち、ラビング軸はセルロースアシレートフィルム1の流延方向と平行であった)。
<配向膜塗布液組成>
下記の変性ポリビニルアルコール 20質量部
水 360質量部
メタノール 120質量部
グルタルアルデヒド(架橋剤) 1.0質量部
<配向膜塗布液組成>
下記の変性ポリビニルアルコール 20質量部
水 360質量部
メタノール 120質量部
グルタルアルデヒド(架橋剤) 1.0質量部
(第1光学異方層の形成)
配向膜上に、下記の円盤状化合物41.01g、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06g、セルロースアセテートブチレート(CAB551−0.2、イーストマンケミカル社製)0.90g、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.23g、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45gを、102gのメチルエチルケトンに溶解した塗布液を、#2.8のワイヤーバーで塗布した。これを金属の枠に貼り付けて、130℃の恒温槽中で2分間加熱し、円盤状化合物を配向させた。次に、130℃で120W/cm高圧水銀灯を用いて、4秒間紫外線照射し円盤状化合物を重合させた。その後、室温まで放冷した。
このようにして、第1光学異方層を形成した。干渉膜厚計(大塚電子製)で膜厚を測定したところ3umであった。KOBRAにて、波長400nmと700nmの波長分散を測定し、Re1/(700nm)Re1(400nm)を求めたところ1.5であり、上記式(III)を満足していた。
配向膜上に、下記の円盤状化合物41.01g、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06g、セルロースアセテートブチレート(CAB551−0.2、イーストマンケミカル社製)0.90g、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.23g、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45gを、102gのメチルエチルケトンに溶解した塗布液を、#2.8のワイヤーバーで塗布した。これを金属の枠に貼り付けて、130℃の恒温槽中で2分間加熱し、円盤状化合物を配向させた。次に、130℃で120W/cm高圧水銀灯を用いて、4秒間紫外線照射し円盤状化合物を重合させた。その後、室温まで放冷した。
このようにして、第1光学異方層を形成した。干渉膜厚計(大塚電子製)で膜厚を測定したところ3umであった。KOBRAにて、波長400nmと700nmの波長分散を測定し、Re1/(700nm)Re1(400nm)を求めたところ1.5であり、上記式(III)を満足していた。
(偏光板の作製)
第1光学異方層と支持体(セルロースアセテートフィルム)との積層体をアルカリ浴槽中で鹸化処理し、ポリビニルアルコールとヨウ素からなる偏光膜と支持体面とを接着剤を介して貼り合わせた。前記第1光学異方層の面内の遅相軸と前記第1偏光膜の面内の透過軸との角度が、実質的に45°になるように配置した。
第1光学異方層と支持体(セルロースアセテートフィルム)との積層体をアルカリ浴槽中で鹸化処理し、ポリビニルアルコールとヨウ素からなる偏光膜と支持体面とを接着剤を介して貼り合わせた。前記第1光学異方層の面内の遅相軸と前記第1偏光膜の面内の透過軸との角度が、実質的に45°になるように配置した。
(ベンド配向液晶セルの作製)
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた二枚のガラス基板をラビング方向が平行となる配置で向かい合わせ、セルギャップを5μmに設定した。セルギャップにΔnが0.1396の液晶性化合物(ZLI1132、メルク社製)を注入し、ベンド配向液晶セルを作製した。
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた二枚のガラス基板をラビング方向が平行となる配置で向かい合わせ、セルギャップを5μmに設定した。セルギャップにΔnが0.1396の液晶性化合物(ZLI1132、メルク社製)を注入し、ベンド配向液晶セルを作製した。
(液晶表示装置の作製及び評価)
液晶セルと偏光板二枚を組み合わせて液晶表示装置を作製した。なお、偏光板二枚は、それぞれの透過軸が、液晶セルの一辺に対してそれぞれ45°の方向と135°の方向となる様に配置した。また、液晶セルと二枚の偏光板との配置は、偏光板の光学異方層及び液晶セルの基板が対面し、液晶セルのラビング方向とそれぞれに近く配置された光学異方層のラビング方向とが反平行になるように配置した。
液晶セルと偏光板二枚を組み合わせて液晶表示装置を作製した。なお、偏光板二枚は、それぞれの透過軸が、液晶セルの一辺に対してそれぞれ45°の方向と135°の方向となる様に配置した。また、液晶セルと二枚の偏光板との配置は、偏光板の光学異方層及び液晶セルの基板が対面し、液晶セルのラビング方向とそれぞれに近く配置された光学異方層のラビング方向とが反平行になるように配置した。
液晶表示装置のベンド配向液晶セルに、55Hz矩形波で電圧を印加し、電圧を調整しながら黒輝度(正面輝度)が最も小さくなったときの輝度バラツキを観察した。観察結果を表1に示した。
[比較例]
(支持体の作製)
室温において、平均酢化度60.9%のセルロースアセテート45質量部、下記のレターデーション上昇剤2.25質量部、メチレンクロリド232.72質量部、メタノール42.57質量部及びn−ブタノール8.50質量部を混合して、溶液(ドープ)を調製した。得られたドープを、有効長6mのバンド流延機を用いて、乾燥膜厚が100μmになるように流延して乾燥した。
得られたセルロースアシレートフィルム1のRe(630)は45nm、Rth(630)は160nmであり、上記式(I)を満足していなかった。
(支持体の作製)
室温において、平均酢化度60.9%のセルロースアセテート45質量部、下記のレターデーション上昇剤2.25質量部、メチレンクロリド232.72質量部、メタノール42.57質量部及びn−ブタノール8.50質量部を混合して、溶液(ドープ)を調製した。得られたドープを、有効長6mのバンド流延機を用いて、乾燥膜厚が100μmになるように流延して乾燥した。
得られたセルロースアシレートフィルム1のRe(630)は45nm、Rth(630)は160nmであり、上記式(I)を満足していなかった。
(配向膜の形成)
実施例1と同様に配向膜を形成した。
(第1光学異方層の形成)
配向膜上に、下記の円盤状化合物41.01g、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06g、セルロースアセテートブチレート(CAB551−0.2、イーストマンケミカル社製)0.90g、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.23g、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45gを、102gのメチルエチルケトンに溶解した塗布液を、#3.2のワイヤーバーで塗布した。これを金属の枠に貼り付けて、130℃の恒温槽中で2分間加熱し、円盤状化合物を配向させた。次に、130℃で120W/cm高圧水銀灯を用いて、4秒間紫外線照射し円盤状化合物を重合させた。その後、室温まで放冷した。このようにして、第1光学異方層を形成した。干渉膜厚計(大塚電子製)で膜厚を測定したところ2.5μmであった。
実施例1と同様に配向膜を形成した。
(第1光学異方層の形成)
配向膜上に、下記の円盤状化合物41.01g、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06g、セルロースアセテートブチレート(CAB551−0.2、イーストマンケミカル社製)0.90g、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.23g、光重合開始剤(イルガキュアー907、チバガイギー社製)1.35g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.45gを、102gのメチルエチルケトンに溶解した塗布液を、#3.2のワイヤーバーで塗布した。これを金属の枠に貼り付けて、130℃の恒温槽中で2分間加熱し、円盤状化合物を配向させた。次に、130℃で120W/cm高圧水銀灯を用いて、4秒間紫外線照射し円盤状化合物を重合させた。その後、室温まで放冷した。このようにして、第1光学異方層を形成した。干渉膜厚計(大塚電子製)で膜厚を測定したところ2.5μmであった。
(偏光板の作製)
第1光学異方層及び支持体を上記で作製したものに代えた以外は、実施例1と同様にして偏光板を作製した。
(ベンド配向液晶セルの作製)
実施例1と同様に液晶セルを作製した。
第1光学異方層及び支持体を上記で作製したものに代えた以外は、実施例1と同様にして偏光板を作製した。
(ベンド配向液晶セルの作製)
実施例1と同様に液晶セルを作製した。
(液晶表示装置の作製及び評価)
液晶セルと偏光板二枚を組み合わせて液晶表示装置を作製した。液晶セルと偏光板とは、実施例1と同様に配置した。
液晶表示装置のベンド配向液晶セルに、55Hz矩形波で電圧を印加し、電圧を調整しながら黒輝度(正面輝度)が最も小さくなったときの輝度バラツキを観察した。観察結果を表1に示す。
液晶セルと偏光板二枚を組み合わせて液晶表示装置を作製した。液晶セルと偏光板とは、実施例1と同様に配置した。
液晶表示装置のベンド配向液晶セルに、55Hz矩形波で電圧を印加し、電圧を調整しながら黒輝度(正面輝度)が最も小さくなったときの輝度バラツキを観察した。観察結果を表1に示す。
[実施例2]
二枚の偏光板を、それぞれの透過軸が液晶セルの一辺に対して90°及び180となる様に配置した以外は、実施例1と同一の方法で液晶表示装置を作製した。同様に輝度バラツキを観察して評価したところ、実施例1と同等であった。
二枚の偏光板を、それぞれの透過軸が液晶セルの一辺に対して90°及び180となる様に配置した以外は、実施例1と同一の方法で液晶表示装置を作製した。同様に輝度バラツキを観察して評価したところ、実施例1と同等であった。
[実施例3]
<オレフィン系2軸フィルムの作製>
厚さ100μmのポリオレフィン系2軸フィルム(ゼオノア、日本ゼオン(株)製)を一軸延伸(温度180℃、連続延伸)して、下記の延伸複屈折率ロール状フィルムを得た。
<オレフィン系2軸フィルムの作製>
厚さ100μmのポリオレフィン系2軸フィルム(ゼオノア、日本ゼオン(株)製)を一軸延伸(温度180℃、連続延伸)して、下記の延伸複屈折率ロール状フィルムを得た。
ポリオレフィン系2軸フィルムのRe(630)は41nm、Rth(630)は175nmであった。なお、作製したポリオレフィン系2軸フィルムは縦一軸延伸を施し、遅相軸方向はフイルム長手方向と平行であった。
(偏光板の作製)
ポリビニルアルコール及びヨウ素からなる偏光膜と、ポリオレフィン系2軸フィルムとを接着剤を介して貼り合わせた。偏光膜の透過軸が、ポリオレフィン系2軸フィルムの遅相軸と平行になるように配置した。さらに、偏光膜とポリオレフィン系2軸フィルムとの積層体に、実施例1で作製した支持体と第1光学異方性層との積層体を接着剤を介して貼り合わせた。より具体的には、ポリオレフィン系2軸フィルムの表面と、支持体の裏面とを貼り合せ、前記第1光学異方層の面内の遅相軸と偏光膜の面内の透過軸との角度が、実質的に45°になるように配置した。この様にして、同一の構成の偏光板を2枚作製した。
ポリビニルアルコール及びヨウ素からなる偏光膜と、ポリオレフィン系2軸フィルムとを接着剤を介して貼り合わせた。偏光膜の透過軸が、ポリオレフィン系2軸フィルムの遅相軸と平行になるように配置した。さらに、偏光膜とポリオレフィン系2軸フィルムとの積層体に、実施例1で作製した支持体と第1光学異方性層との積層体を接着剤を介して貼り合わせた。より具体的には、ポリオレフィン系2軸フィルムの表面と、支持体の裏面とを貼り合せ、前記第1光学異方層の面内の遅相軸と偏光膜の面内の透過軸との角度が、実質的に45°になるように配置した。この様にして、同一の構成の偏光板を2枚作製した。
(液晶表示装置の作製および評価)
液晶セルと、上記で作製した偏光板2枚とを組み合わせて液晶表示装置を作製した。液晶セルと偏光板とは、実施例1と同様に配置した。
液晶表示装置のベンド配向液晶セルに、55Hz矩形波で電圧を印加し、電圧を調整しながら黒輝度(正面輝度)が最も小さくなったときの輝度バラツキを観察した。同様に輝度バラツキを観察して評価したところ、実施例1と同等であった。
液晶セルと、上記で作製した偏光板2枚とを組み合わせて液晶表示装置を作製した。液晶セルと偏光板とは、実施例1と同様に配置した。
液晶表示装置のベンド配向液晶セルに、55Hz矩形波で電圧を印加し、電圧を調整しながら黒輝度(正面輝度)が最も小さくなったときの輝度バラツキを観察した。同様に輝度バラツキを観察して評価したところ、実施例1と同等であった。
1 液晶セル
2、2’ 第1光学異方層
3,3’ 支持体
4,4’ 偏光膜
10 ベンド配向液晶セル
11、21 液晶性化合物
11a〜11j、21a〜21j 棒状液晶性分子
12a、12b、22a、22b 配向膜
13a、13b、23a、23b 電極層
14a、24a 上基板
14b、24b 下基板
2、2’ 第1光学異方層
3,3’ 支持体
4,4’ 偏光膜
10 ベンド配向液晶セル
11、21 液晶性化合物
11a〜11j、21a〜21j 棒状液晶性分子
12a、12b、22a、22b 配向膜
13a、13b、23a、23b 電極層
14a、24a 上基板
14b、24b 下基板
Claims (4)
- ベンド配向モードの液晶セル及び該液晶セルの両側に配置された一対の第1偏光膜と第2偏光膜とを有する液晶表示装置であって、
前記第1偏光膜と前記液晶セルとの間に少なくとも第1光学異方層と該第1光学異方層の支持体とを有し、
前記第1光学異方層がハイブリット配向状態に固定された円盤状化合物を含有し、下記式(III)を満足し、且つ前記第1光学異方層の面内の遅相軸と前記第1偏光膜の面内の透過軸との角度が実質的に45゜であり、及び
前記支持体が下記式(I)及び(II)を満足するセルロースアシレートフィルムからなる液晶表示装置:
(I) 0≦Re2(630)≦10かつ|Rth2(630)|≦25
(II) |Re2(400)−Re2(700)|≦10かつ|Rth2(400)−Rth2(700)|≦35
(III) 1≦Re1(700)/Re1(400)≦2
[式中、Re1(λ)は波長λnmにおける第1光学異方層の面内レターデーション値、Re2(λ)は波長λnmにおける支持体の面内レターデーション値、Rth2(λ)は波長λnmにおける支持体の厚み方向のレターデーション値である]。 - 前記第1光学異方層のRe(0°)、Re(40゜)及びRe(−40゜)の値が下記式(VI)及び(VII)を満足する請求項1に記載の液晶表示装置:
(VI) 1.0<Re(40゜)/Re(0°)<3.0
(VII) 0.1<Re(−40゜)/Re(0°)<1.0
[式中、Re(0°)は、波長632.8nmの光で測定した光学異方性層の面内Reレターデーション値であり、Re(40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を40゜として波長632.8nmの光を入射して測定したReレターデーション値であり、Re(−40゜)は、光学異方性層の遅相軸をあおり軸、あおり角度を−40゜として波長632.8nmの光を入射して測定したReレターデーション値であって、あおり角度の正負はRe(40゜)>Re(−40゜)となるように決定する]。 - 前記セルロースアシレートフィルムが、フィルム膜厚方向のレターデーションRthを低下させる化合物を、下記式(VIII)及び(IX)を満足する範囲で少なくとも一種含有する請求項1又は2に記載の液晶表示装置:
(VIII) (Rth(A)−Rth(0))/A≦−1.0
(IX) 0.01≦A≦30
[Rth(A)は、Rthを低下させる化合物をA%含有したフィルムのRth(nm)であり、Rth(0)はRthを低下させる化合物を含有しないフィルムのRth(nm)であり、Aはフィルム原料ポリマーの重量を100としたときの化合物の重量(%)である]。 - 前記セルロースアシレートフィルムが、アシル置換度が2.85〜3.00のセルロースアシレートに、Re(λ)及びRth(λ)を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30重量%含む請求項1〜3のいずれか1項に記載の液晶表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005290542A JP2006243703A (ja) | 2005-02-04 | 2005-10-03 | 液晶表示装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005028807 | 2005-02-04 | ||
JP2005290542A JP2006243703A (ja) | 2005-02-04 | 2005-10-03 | 液晶表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006243703A true JP2006243703A (ja) | 2006-09-14 |
Family
ID=37050126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005290542A Pending JP2006243703A (ja) | 2005-02-04 | 2005-10-03 | 液晶表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006243703A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112334797A (zh) * | 2018-06-27 | 2021-02-05 | 富士胶片株式会社 | 偏振器及图像显示装置 |
-
2005
- 2005-10-03 JP JP2005290542A patent/JP2006243703A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112334797A (zh) * | 2018-06-27 | 2021-02-05 | 富士胶片株式会社 | 偏振器及图像显示装置 |
CN112334797B (zh) * | 2018-06-27 | 2022-12-20 | 富士胶片株式会社 | 偏振器及图像显示装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4689286B2 (ja) | 液晶表示装置 | |
JP4740604B2 (ja) | 光学補償フィルム、その製造方法、偏光板および液晶表示装置 | |
US7505099B2 (en) | Optical resin film and polarizing plate and liquid crystal display using same | |
JP4774415B2 (ja) | 液晶表示装置 | |
US7505101B2 (en) | Liquid crystal display | |
JP2006301570A (ja) | 透明フィルム、透明フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置 | |
JP4142691B2 (ja) | 液晶表示装置 | |
JP4860333B2 (ja) | 液晶表示装置 | |
JP4684047B2 (ja) | 光学補償フィルム、偏光板および液晶表示装置 | |
JP4694848B2 (ja) | 液晶表示装置 | |
JP2006201502A (ja) | 位相差フィルム、偏光板、および液晶表示装置 | |
JP2006220971A (ja) | 光学補償シート、偏光板およびこれを用いた液晶表示装置 | |
JP2006195363A (ja) | 液晶表示装置、さらにそれに用いる光学補償シート、及び偏光板 | |
JP4551773B2 (ja) | 光学補償シート、偏光板、及び液晶表示装置 | |
JP2006194923A (ja) | ベンド配向モードの液晶表示装置 | |
JP2006195140A (ja) | 光学補償シート、偏光板、及び液晶表示装置 | |
JP2006184479A (ja) | 光学補償フィルム及び液晶表示装置 | |
JP2007332188A (ja) | セルロースエステルフィルムの製造方法および、その方法により得られたセルロースエステルフィルム、光学補償フィルム、偏光板および液晶表示装置 | |
JP2007193276A (ja) | 光学補償フィルム、偏光板及び液晶表示装置 | |
JP2006243703A (ja) | 液晶表示装置 | |
JP5587391B2 (ja) | 液晶表示装置 | |
JP4145282B2 (ja) | Ips型液晶表示装置用長尺状偏光板とその製造方法、およびips型液晶表示装置 | |
JP2006195205A (ja) | 液晶表示装置及び偏光板 | |
JP2006251373A (ja) | 光学補償シート、偏光板、及び液晶表示装置 | |
JP4498103B2 (ja) | Tn型液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061211 |