JP4492669B2 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP4492669B2
JP4492669B2 JP2007275974A JP2007275974A JP4492669B2 JP 4492669 B2 JP4492669 B2 JP 4492669B2 JP 2007275974 A JP2007275974 A JP 2007275974A JP 2007275974 A JP2007275974 A JP 2007275974A JP 4492669 B2 JP4492669 B2 JP 4492669B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
output
feedback
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007275974A
Other languages
English (en)
Other versions
JP2009103061A (ja
Inventor
茂樹 宮下
桂 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007275974A priority Critical patent/JP4492669B2/ja
Priority to PCT/IB2008/002814 priority patent/WO2009053814A2/en
Priority to US12/670,171 priority patent/US8249793B2/en
Priority to CN2008800169173A priority patent/CN101790631B/zh
Priority to EP08842827.1A priority patent/EP2207953B1/en
Publication of JP2009103061A publication Critical patent/JP2009103061A/ja
Application granted granted Critical
Publication of JP4492669B2 publication Critical patent/JP4492669B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • F02D2041/1419Several control loops, either as alternatives or simultaneous the control loops being cascaded, i.e. being placed in series or nested
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration

Description

この発明は、内燃機関の空燃比制御装置に係り、特に、排気ガスの状態に基づいて空燃比フィードバック制御を行う内燃機関の空燃比制御装置に関する。
従来、特開2002−276419号公報に開示されるように、内燃機関の排気通路にアンモニアセンサを配置したシステムが知られている。このシステムにおいて、アンモニアセンサは、排気通路に配置された触媒の後段に配置されている。また、触媒の後段には、アンモニアセンサと共に酸素センサが配置されている。
内燃機関の排気ガス中には、排気空燃比がリーンである場合にNOxが含まれやすい。このため、リーン空燃比が継続されると、触媒の後段にNOxが流出することがある。他方、排気空燃比がリッチである状況下では、排気ガス中の窒素が水素と反応して、NH3(アンモニア)が生成され易い。このため、リッチ空燃比の状況下では、触媒の後段にNH3が排出されることがある。
アンモニアセンサは、NH3に対して感度を有していると共に、NOxに対しても感度を有している。このため、触媒の後段に配置されたアンモニアセンサは、リッチ雰囲気下ではNH3濃度に応じた出力を発し、他方、リーン雰囲気下ではNOx濃度に応じた出力を発する。
上記従来のシステムは、触媒の下流に配置された酸素センサの出力に基づいて、排気空燃比がリッチであるかリーンであるかを判断する。そして、このシステムは、排気空燃比がリッチである状況下でアンモニアセンサが判定値を超える出力を発している場合は、NH3が多量に発生していると判断して、空燃比のリーン化を図る。また、このシステムは、排気空燃比がリーンである状況下でアンモニアセンサが判定値を超える出力を発している場合は、NOxが多量に発生していると判断して、空燃比のリッチ化を図る。
上記の処理によれば、触媒の下流に流出するNH3量、及びNOx量が十分に少量になるように内燃機関の空燃比を制御することができる。このため、このシステムによれば、内燃機関に対して良好なエミッション特性を与えることができる。
特開2002−276419号公報 特開平10−68346号公報 特開平8−158917号公報
しかしながら、上記従来のシステムは、リーン雰囲気下で、アンモニアセンサが判定値を超える出力を発した時点で初めて、空燃比がリーンに偏っていると判断し、空燃比をリッチ化する。このような制御によれば、必然的に、触媒の下流にある程度はNOxが流出することになる。この点、上記従来のシステムは、NOxの排出量を抑制するという観点では、更なる改良の余地を残すものであった。
この発明は、上述のような課題を解決するためになされたもので、触媒の下流に排出されるNOx量を十分に抑制することのできる内燃機関の空燃比制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の空燃比制御装置であって、
内燃機関の空燃比を調整するための空燃比調整機構と、
排気空燃比を検知する排気空燃比検知手段と、
前記排気空燃比が理論空燃比近傍の目標空燃比に近づくように前記空燃比調整機構に第1フィードバック制御を施す第1フィードバック手段と、
内燃機関の排気系に配置されるアンモニアセンサと、
前記アンモニアセンサの出力値に基づく第2フィードバック制御を前記空燃比調整機構に施す第2フィードバック手段と、
前記アンモニアセンサの上流に位置するように前記排気系に配置される触媒と、
前記触媒の下流側に配置される酸素センサと、
前記アンモニアセンサ及び前記酸素センサの出力値、或いは前記酸素センサの出力値に基づく第2フィードバック制御を前記空燃比調整機構に施す第3フィードバック手段と、
前記第2フィードバック手段と、前記第3フィードバック手段とを選択的に作動させる第2フィードバック選択手段と、を備え、
前記排気空燃比検知手段は、前記触媒の上流側に配置される空燃比センサを備え、
前記第1フィードバック手段は、前記空燃比センサの出力に基づいて前記第1フィードバック制御を実行することを特徴とする。
また、第2の発明は、第1の発明において、
前記アンモニアセンサの上流に位置するように前記排気系に配置される触媒を備え、
前記排気空燃比検知手段は、前記触媒の上流側に配置される空燃比センサを備え、
前記第1フィードバック手段は、前記空燃比センサの出力に基づいて前記第1フィードバック制御を実行することを特徴とする。
また、第3の発明は、第1又は第2の発明において、
内燃機関の運転状態を検知する運転状態検知手段を備え、
前記第2フィードバック手段は、
前記アンモニアセンサの出力とアンモニア目標値との比較結果に基づいて前記空燃比の制御パラメータを設定する制御パラメータ設定手段と、
高負荷運転条件の成立下で前記アンモニア目標値をリッチ側目標値に設定し、低負荷運転条件の成立下で前記アンモニア目標値を、前記リッチ側目標値に比してリーンなリーン側目標値に設定する目標値変更手段と、を備えることを特徴とする。
また、第4の発明は、第1乃至第3の発明の何れかにおいて、
前記第2フィードバック手段は、
前記アンモニアセンサの出力とアンモニア目標値との比較結果を所定のゲインで前記空燃比にフィードバックする比較結果反映手段と、
前記アンモニアセンサの出力と前記アンモニア目標値との乖離量が大きいほど、前記ゲインを大きくするゲイン設定手段と、
を備えることを特徴とする。
また、第の発明は、第1乃至第4の発明の何れかにおいて、
内燃機関の運転状態を検知する運転状態検知手段を備え、
前記第2フィードバック選択手段は、高負荷運転条件の成立下で前記第2フィードバック手段を作動手段として選択し、低負荷運転条件の成立下で前記第3フィードバック手段を作動手段として選択することを特徴とする。
また、第の発明は、第1乃至第4の発明の何れかにおいて、
排気空燃比が目標空燃比に対してリッチ側にずれているかリーン側にずれているかを判断するずれ方向判断手段を備え、
前記第2フィードバック選択手段は、排気空燃比がリッチ側にずれていると判断される条件下で、前記第2フィードバック手段を作動手段として選択し、排気空燃比がリーン側にずれていると判断される条件下で、前記第3フィードバック手段を作動手段として選択することを特徴とする。
また、第の発明は、第の発明において、前記ずれ方向判断手段は、前記酸素センサの出力が酸素目標値に比して大きい場合に、排気空燃比が目標空燃比に対してリッチ側にずれていると判断し、前記酸素センサの出力が前記酸素目標値に比して小さい場合に、排気空燃比が目標空燃比に対してリーン側にずれていると判断することを特徴とする。
また、第の発明は、第乃至第の発明の何れかにおいて、
前記第2フィードバック手段は、前記アンモニアセンサの出力がアンモニア目標値に近づくように前記第2フィードバック制御を実行し、
前記第3フィードバック手段は、前記酸素センサの出力が酸素目標値に近づくように前記第2フィードバック制御を実行し、
前記アンモニアセンサの出力を前記アンモニア目標値に一致させるための排気空燃比は、前記酸素センサの出力を前記酸素目標値に一致させるための排気空燃比に比してリッチ側にシフトしていることを特徴とする。
また、第の発明は、第乃至第の発明の何れかにおいて、
前記第3フィードバック手段は、
前記酸素センサの出力と酸素目標値との比較結果を所定のゲインで前記空燃比の制御パラメータに反映させる制御パラメータ設定手段と、
前記酸素センサの出力と前記酸素目標値との乖離量が大きいほど、前記ゲインを大きくするゲイン設定手段と、
を備えることを特徴とする。
第1の発明によれば、第1フィードバック手段により、排気空燃比を理論空燃比の近傍値に制御することができる。更に、この発明によれば、第2フィードバック手段によって、排気空燃比を微細に調整することができる。第2フィードバック手段は、アンモニアセンサの出力に基づいて第2フィードバック制御を実行する。アンモニアセンサは、理論空燃比の近傍では、NH3濃度に対してリニアな出力を発する。また、アンモニアセンサは、酸素センサが感度を示す空燃比に比してリッチ側の空燃比領域において、NH3濃度に対してリニアな出力を発する。このため、第2フィードバック手段によれば、酸素センサの出力を基礎とするフィードバック制御に比して、空燃比の制御目標をリッチ側にシフトさせることができる。排気ガス中のNOxは、理論空燃比に対して排気空燃比が僅かにリーン化しただけで急激に増加する。他方、排気ガス中のHCやCOは、理論空燃比の近傍で排気空燃比がリッチ側に偏ってもさほど急激には増加しない。このため、空燃比の制御目標を、酸素センサの出力が急変する空燃比から僅かにリッチ化させることができると、内燃機関のエミッション特性を全体として改善することができる。本発明によれば、第2フィードバック手段によって上記の要求が満たせるため、酸素センサを用いて空燃比を微細調整する場合に比して、内燃機関のエミッション特性を全体として改善することができる。
また、この発明によれば、触媒上流の空燃比センサの出力に基づいて第1フィードバック制御を実行し、触媒下流のアンモニアセンサの出力及び酸素センサの出力の少なくとも一方に基づいて第2フィードバック制御を実行することができる。本発明によれば、第2フィードバック制御の基礎として、2つのセンサ出力が用い得るため、高い制御精度を実現することができる。
第2の発明によれば、触媒の上流に配置される空燃比センサの出力を基礎として第1フィードバック制御を実行することができる。このため、第1フィードバック制御により、触媒に流れ込む段階の空燃比を目標空燃比の近傍に制御することができる。また、本発明によれば、触媒の下流に配置されるアンモニアセンサの出力に基づいて第2フィードバック制御を実行することができる。このため、第2フィードバック制御により、触媒下流のエミッション特性が所望の特性となるように、空燃比を微調整することができる。
第3の発明によれば、高負荷運転時には、アンモニア目標値をリッチ側に設定することができる。高負荷運転時は、NOx、HC、CO等の成分が排出され易い。この状況でアンモニア目標値がリッチ側に設定されると、HC、COは更に発生し易くなるが、NOxの発生量は抑制できる。高負荷運転時は、触媒が十分に加熱されているため、HC、COの浄化能力は十分に確保される。このため、上記の設定によれば、高負荷運転時に、良好なエミッション特性を実現することができる。また、本発明によれば、低負荷運転時にはアンモニア目標値がリーン側に設定される。低負荷運転時は、HC、COに対する触媒の浄化能力が低下し易い。この状況下でアンモニア目標値をリーン側に設定すると、HC、COの発生量が抑制されるため、それらの排出を防ぐことができる。また、低負荷運転時は、NOxの発生量が少なくなるため、アンモニア目標値をリーン側に設定しても、NOxが過剰に排出されることがない。以上の理由により、本発明によれば、内燃機関に対して良好なエミッション特性を与えることができる。
第4の発明によれば、アンモニアセンサの出力とアンモニア目標値との乖離量を、フィードバックゲインに反映させることができる。このため、本発明によれば、第2フィードバック制御の精度と応答性を両立させることができる。
の発明によれば、高負荷運転時には、アンモニアセンサの出力を基礎として第2フィードバック制御を実行することができる。アンモニアセンサの出力を基礎とすると、酸素センサの出力を基礎とする場合に比して目標空燃比をリッチ側にシフトさせることができる。目標空燃比をリッチ化すると、NOx生成量が抑制できる。このため、本発明によれば、NOxが多量に生じ易い高負荷運転時にも良好なエミッション特性を実現することができる。本発明によれば、低負荷運転時には、酸素センサの出力を基礎として第2フィードバック制御を実行することができる。酸素センサの出力を基礎とすると、目標空燃比をリーン側にシフトさせることができる。目標空燃比がリーン化されると、HC、COの発生量が抑制される。従って、本発明によれば、触媒の活性が下がる低負荷運転時にも、良好なエミッション特性を実現することができる。
の発明によれば、排気空燃比が目標空燃比に対してリッチ側にずれている場合には、アンモニアセンサの出力を基礎として第2フィードバック制御が実行される。アンモニアセンサは、酸素センサに比して応答性が悪い反面、酸素センサでは安定的に検知することができない僅かにリッチな空燃比に対してリニアな出力を発する。目標空燃比がリッチ側にずれている場合は、NOxが多量に発生する可能性が低いため、フィードバック制御に応答性は要求されない。本発明によれば、この場合に、アンモニアセンサの出力を第2フィードバック制御の基礎とすることで良好なエミッション特性を実現することができる。また、本発明によれば、排気空燃比が目標空燃比に対してリーン側にずれている場合には、酸素センサの出力を基礎として第2フィードバック制御が実行される。酸素センサは、アンモニアセンサと異なり、理論空燃比よりリッチな領域には感度を有していない一方、優れた応答性を有している。目標空燃比がリーン側にずれた場合は、NOxが多量に発生し易い。本発明によれば、このような状況下で、酸素センサの出力を第2フィードバック制御の基礎とすることにより、優れた応答性の下、NOxの排出量を十分に抑制することができる。
の発明によれば、排気空燃比が目標空燃比に対してリッチ側にずれているか、或いはリーン側にずれているかを、酸素センサの出力に基づいて判断することができる。酸素センサは、絶対精度が高く、また、優れた応答性を有している。このため、本発明によれば、優れた応答性の下に精度良く上記の判断を下すことができる。
の発明によれば、第2フィードバック制御の基礎をアンモニアセンサの出力とするか、酸素センサの出力とするかにより、目標空燃比を変化させることができる。
の発明によれば、酸素センサの出力と酸素目標値との乖離量を、フィードバックゲインに反映させることができる。このため、本発明によれば、第2フィードバック制御の精度と応答性を両立させることができる。
実施の形態1.
[実施の形態1の構成]
図1は、本発明の実施の形態1の構成を説明するための図である。図1に示すように、本実施形態のシステムは、内燃機関10を備えている。内燃機関10には、排気通路12が連通している。排気通路12には、三元触媒14が組み込まれている。三元触媒14の上流側には、排気空燃比を検出する空燃比センサ16が配置されている。また、三元触媒14の下流には、アンモニアセンサ18が配置されている。
空燃比センサ12の出力、及びアンモニアセンサ18の出力は、ECU(Electronic Control Unit)30に供給されている。ECU30には、また、吸入空気量Gaを検知するエアフロメータ32の出力や、機関回転数Neを検知する回転数センサ34の出力が供給されている。更に、ECU30には、内燃機関10の吸気側に燃料を噴射するインジェクタ36が接続されている。ECU30は、上述した各種センサの出力に基づいて、排気空燃比が目標空燃比となるように、インジェクタ36から噴射する燃料噴射量をフィードバック制御する。
[酸素センサ及びアンモニアセンサの特性]
図2は、アンモニアセンサ18の特性を説明するための図である。図2中に、符号40を付して示す特性線は、一般的な酸素センサの初期特性を示す。また、符号42を付して示す特性線は、経時劣化後の酸素センサの特性を示す。酸素センサは、理論空燃比を挟んで空燃比がリッチ側である場合にハイ出力(リッチ出力)を発生し、空燃比がリーン側である場合にロー出力(リーン出力)を発する。このため、リッチ出力とリーン出力の間に判定値を設定し、その判定値と酸素センサの出力とを比較すれば、空燃比がリッチであるかリーンであるかを判断することができる。
酸素センサのリッチ出力は、初期段階では0.9V程度であるが(特性線40参照)、経時劣化に伴って0.6V程度にまで低下する(特性線42参照)。このため、酸素センサを用いて経時変化後にも正しい判定を得るためには、判定値は0.5V程度に設定することが必要となる。
酸素センサの出力反転が検知される空燃比を「反転空燃比」とすると、この反転空燃比は、判定値が大きな値であるほどリッチ側にシフトし、他方、判定値が小さな値であるほどリーン側にシフトする。酸素センサの出力と比較する判定値の上限は、上記の理由により0.5V程度である。このため、酸素センサを用いる限りは、0.5Vに対応する反転空燃比よりリッチな領域では、空燃比の挙動を検知することはできない。
図2中に符号44を付して示す領域は、酸素センサの出力を空燃比フィードバック制御の基礎とすることで実現できる空燃比の制御領域である。酸素センサの出力を基礎とする空燃比フィードバック制御は、例えば、その出力がリーン出力に反転したら燃料噴射量を増やし、反対に、その出力がリッチ出力に反転したら燃料噴射量を減らすことにより実現できる。このような制御が行われると、内燃機関の空燃比は、領域44として示すように、0.5Vに対応する空燃比の近傍域に維持される。
図2中に符号46を付して示す実線、及び符号48を付して示す実線は、何れもアンモニアセンサ18の特性を示す。アンモニアセンサ18は、雰囲気中のNH3(アンモニア)及びNOxに反応して出力を発する。空燃比がリッチである場合は、排気ガス中にNH3が含まれる。また、排気ガス中のNH3濃度は、空燃比がリッチであるほど高くなり易い。このため、アンモニアセンサ18は、リッチ空燃比の状況下では、実線46が示すように、空燃比がリッチ化するほど大きな出力を発する。
空燃比がリーンである場合は、排気ガス中にNOxが含まれやすい。そして、排気ガス中のNOx濃度は、空燃比がリーン化するほど大きな値となる。このため、アンモニアセンサ18は、実線48に示すように、リーン空燃比の領域では、空燃比がリーン化するほど大きな出力を発する。以上説明した理由により、アンモニアセンサ18は、リッチ空燃比の領域、及びリーン空燃比の領域において、それぞれ、空燃比に対応した出力を発生する。特に、アンモニアセンサ18は、酸素センサの反転空燃比から外れる領域において、空燃比に対応した出力を発生する。このため、アンモニアセンサ18によれば、酸素センサに比して、より広い領域において空燃比を検知することが可能である。
[実施の形態1の特徴]
図3は、三元触媒14の浄化率と空燃比との関係、及び、空燃比フィードバックによる空燃比の制御領域を説明するための図である。図3中に「HC」を付して示す実線は、HCに対する三元触媒14の浄化率と空燃比の関係を示す。また、[CO」を付して示す実線は、三元触媒14のCOに対する浄化率と空燃比との関係を示す。更に、「NOx」を付して示す一点鎖線は、NOxに対する三元触媒14の浄化率と空燃比との関係を示す。
図3に示すように、三元触媒14は、リーン空燃比の領域では、HC及びCOに対して、ほぼ100%の浄化率を示す。そして、それらの浄化率は、リッチ空燃比の領域では、空燃比がリッチ化するほど低い値となる。他方、三元触媒14のNOxに対する浄化率は、リッチ空燃比の領域でほぼ100%となり、リーン空燃比の領域では、空燃比がリーン化するほど低い値となる。つまり、三元触媒14は、排気空燃比が理論空燃比の近傍に維持される場合に、HC、CO、及びNOxの全てに対して、ほぼ100%の浄化率を発揮する。このため、内燃機関10においては、排気空燃比を理論空燃比の近傍に維持することが重要である。
図3中に、「従来の使用域」として示した空燃比領域は、三元触媒14の下流に酸素センサを配置し、その出力を基礎として空燃比フィードバック制御を行うことで実現される制御域を示す。他方、「本案の使用域」として示した空燃比領域は、三元触媒14の下流にアンモニアセンサ18を備える本実施形態のシステムにおいて実現される制御域を示す。
本実施形態のシステムは、三元触媒14の上流に配置される空燃比センサ16の出力に基づくメイン空燃比フィードバック制御と、三元触媒14の下流に配置されるアンモニアセンサ18の出力に基づくサブフィードバック制御とを組み合わせて実行する。メインフィードバック制御は、内燃機関10から排出されてくる排気ガスの空燃比が理論空燃比となるように燃料噴射量を調整するための制御である。
内燃機関10には、個体差や経時変化等による影響が重畳している。このため、メイン空燃比フィードバック制御の結果得られる排気空燃比は、リッチ側或いはリーン側に偏ることがある。この傾向が継続すると、やがては、三元触媒14の下流にリッチガス又はリーンガスが吹き抜ける事態が生ずる。
上記の吹き抜けは、三元触媒14の下流に配置したアンモニアセンサ18により検知することができる。サブフィードバック制御は、その吹き抜けの影響を検知して、空燃比の制御中心の偏りを消滅させるための制御である。このようなサブフィードバック制御は、例えば、アンモニアセンサ18の出力がリッチ側にずれた場合に燃料噴射量を減量補正し、他方、アンモニアセンサ18の出力がリーン側にずれた場合に燃料噴射量を増量補正することにより実現することができる。
図2を参照して説明した通り、アンモニアセンサ18は、一般的な酸素センサの反転空燃比よりリッチ側において、空燃比に対する感度を有している。このため、本実施形態のシステムによれば、三元触媒14の下流に酸素センサが配置されている場合に比して、サブフィードバック制御の制御目標を、リッチ側にシフトさせることができる。そして、サブフィードバック制御の制御目標を、上記の如くリッチ側にシフトさせると、図3中に「本案の使用域」として示しているように、排気空燃比の制御域を、「従来の使用域」よりリッチ側にシフトさせることができる。
上述したように、三元触媒14のNOxに対する浄化率は、リーン領域において低下する。他方、三元触媒のHC、COに対する浄化率は、リッチ領域において低下する。両者を比較すると、NOxに対する浄化率の低下傾向が、HC、COに対する浄化率の低下傾向より急激である(図3参照)。このため、排気空燃比がリーン側にずれた場合とリッチ側にずれた場合とを比較すると、エミッション特性は、前者の場合により大きく悪化し易い。
三元触媒14の下流にアンモニアセンサ18配置して、サブフィードバック制御の制御目標をリッチ側にシフトさせれば、空燃比のリッチずれは生じやすくなるが、空燃比のリーンずれは生じ難くなる。HC、COに対する浄化率は、空燃比のリッチずれに対して急激な低下を示さないため、上記のシフトによってHCやCOの排出量に生ずる増加は、さほど大きなものにはならない。他方、空燃比のリーンずれが抑えられると、NOxの排出量は大幅に低減される。このため、本実施形態のシステムによれば、三元触媒14の下流に酸素センサを配置してサブフィードバック制御を行うシステムに比して、総合的なエミッション特性を改善することができる。
[実施の形態1における具体的処理]
図4は、アンモニアセンサ18の出力を基礎としたサブフィードバック制御を実現するためにECU30が実行するルーチンのフローチャートである。ECU30は、図4に示すルーチンとは別に、空燃比センサ16の出力に基づくメインフィードバック制御を実現するためのルーチンを実行している。排気空燃比は、そのメインフィードバック制御により、理論空燃比の近傍に制御されているものとする。
図4に示すルーチンでは、先ず、アンモニアセンサ18の出力が読み込まれる(ステップ100)。次に、アンモニアセンサ18の出力が、目標値に比して小さいか否かが判別される(ステップ102)。
図2に示すように、アンモニアセンサ18は、排気空燃比が理論空燃比からある程度リーン側に乖離している領域でNOxに対応する出力を発する。このため、排気空燃比が理論空燃比の近傍に維持されているとの前提の下では、アンモニアセンサ18が、排気ガス中のNH3濃度に応じた出力を発していると考えることができる。この場合、ECU30は、アンモニアセンサ18の出力が小さいほど排気空燃比が理論空燃比に近く、他方、その出力が大きいほど排気空燃比がリッチ側にずれていると判断できる。
上記ステップ102において用いられる目標値は、理論空燃比に対して僅かにリッチな排気空燃比(以下、「リッチシフト理論空燃比」と称す)の下でアンモニアセンサ18が発する出力に相当している。リッチシフト理論空燃比は、酸素センサの反転空燃比(図2参照)より僅かにリッチな空燃比である。従って、上記ステップ102の処理によれば、三元触媒14から吹き抜けてきた排気ガスの空燃比が、酸素センサの反転空燃比より僅かにリッチな空燃比に対して、リーン側に位置しているか否かを判断することができる。
上記ステップ102において、条件成立の判定がなされた場合、つまり、排気空燃比がリッチシフト理論空燃比のリーン側に位置していると判断された場合は、サブフィードバック更新量DSFBGに-0.01がセットされる(ステップ104)。一方、その条件が否定された場合は、サブフィードバック更新量DSFBGに0.01がセットされる(ステップ106)。
図4に示すルーチンでは、次に、以下に示す(1)式により、サブフィードバック学習値SFBGが算出される(ステップ108)。但し、(1)式右辺のSFBGは、前回の処理サイクルで算出されたSFBGである(初回に限ってはイニシャル処理による設定値)。
SFBG=SFBG+DSFBG ・・・(1)
次に、以下に示す(2)式により、AF目標値が算出される(ステップ110)。但し、(2)式右辺の「初期値」は、理論空燃比に相当する値(例えば14.6)である。
AF目標値=初期値+SFBG ・・・(2)
上記の処理によれば、アンモニアセンサ18が、リッチシフト理論空燃比よりリーンな空燃比を検知している場合は、AF目標値が、より小さな値に、つまり、リッチ側の値に修正される。他方、アンモニアセンサ18が、リッチシフト理論空燃比よりリッチな空燃比を検知している場合は、AF目標値が、より大きな値に、つまり、リーン側の値に修正される。このため、上記の処理によれば、アンモニアセンサ18の出力が、リッチシフト理論空燃比に対応する値になるように、AF目標値を修正することができる。
ECU30は、上記の処理により設定されたAF目標値が実現されるように、燃料噴射量にサブフィードバック制御を施す。その結果、本実施形態のシステムでは、内燃機関10の排気空燃比が、図3中に「本案の使用域」として示す空燃比領域に制御される。この領域は、酸素センサによる「従来の使用域」よりリッチ側にシフトしている。このため、本実施形態のシステムによれば、酸素センサを用いてサブフィードバック制御を行うシステムに比して、優れたエミッション特性を実現することができる。
尚、上述した実施の形態1においては、インジェクタ36が前記第1の発明における「空燃比調整機構」に、空燃比センサ16が前記第1の発明における「排気空燃比検知手段」に、それぞれ相当している。また、ECU30が、空燃比センサ16の出力に基づいてメインフィードバック制御を実行することにより前記第1の発明における「第1フィードバック手段が、ステップ110の処理により算出したAF目標値を実現するべくサブフィードバック制御を実行することにより前記第2の発明における「第2フィードバック手段」が、それぞれ実現されている。
実施の形態2.
[実施の形態2の特徴]
次に、図5乃至図7を参照して、本発明の実施の形態2について説明する。本実施形態のシステムは、上述した実施の形態1のシステムにおいて、ECU30に、図4に示すルーチンに代えて、後述する図5に示すルーチンを実行させることにより実現することができる。
上述した実施の形態1のシステムは、三元触媒14の浄化率が、HC、CO及びNOxに対して異なる低下傾向を示すことに着目し、サブフィードバックのAF目標値をリッチ側にシフトさせることによりエミッション特性の改善を図っている。ところで、三元触媒14の浄化能力は、常に一定ではなく、内燃機関10の負荷状態に応じて変化する。また、内燃機関10から排出されるHC、CO、NOxの量も、その負荷状態に応じて変化する。このため、サブフィードバック制御のAF目標値を、内燃機関10の負荷状態に応じて適正に調整すると、三元触媒14の下流におけるエミッション特性を更に改善することが可能である。
すなわち、内燃機関10が高負荷領域で運転している場合は、空燃費の変動に伴って、HC、CO及びNOxが、何れも多量に排出され易い。他方、高負荷領域での運転中は、三元触媒14が十分に高温となり、十分に活性化された状態となる。この場合、三元触媒14はHC、COに対して十分な浄化能力を示す。このような状況下では、HCやCOの排出量が若干増えるとしても、空燃比の制御中心をリッチ側にシフトして、NOxの多量発生を抑え易い状況を作ることが良好なエミッション特性を得るうえで望ましい。
これに対して、内燃機関10が低負荷領域で運転している場合は、三元触媒14が低温となり、その活性度が低下する。この場合、HCやCOに対する三元触媒14の浄化能力が下がるため、それらが排出され易い状況を作ることは好ましくない。他方、内燃機関10の負荷が低ければ、リーン空燃比の領域で排出されるNOx量も、さほど多量にはならない。この場合、エミッション特性を総合的に改善するためには、空燃比の制御中心を、高負荷運転時の中心からリーン側にシフトさせることが望ましい。
以上の理由により、本実施形態では、サブフィードバック制御のAF目標値に、内燃機関10の負荷状態を反映させることとした。より具体的には、このシステムでは、内燃機関10の負荷が高いほど上記のAF目標値をリッチ側にシフトさせ、また、その負荷が低いほど、上記のAF目標値をリーン側にシフトさせることとした。
[実施の形態2における具体的処理]
図5は、本実施形態において、サブフィードバック制御を実現するためにECU30が実行するルーチンのフローチャートである。図5に示すルーチンは、ステップ100の前に、ステップ120〜124が挿入されている点を除き、図4に示すルーチンと同様である。以下、図5において、図4に示すステップと同一のステップについては、同一の符号を付してその説明を省略又は簡略する。
図5に示すルーチンでは、先ず、機関回転数Neが読み込まれる(ステップ120)。機関回転数Neは、回転数センサ34の出力に基づいて算出することができる。次に、内燃機関10の負荷が読み込まれる(ステップ122)。機関負荷は、機関回転数Ne及び吸入空気量Gaに基づいて算出することができる。
次に、サブフィードバック目標値、すなわち、アンモニアセンサ18の出力目標値が算出される(ステップ124)。ECU30は、図6に示すように、機関回転数Neと機関負荷との関係で、サブフィードバック目標値を定めたマップを記憶している。ここでは、そのマップを参照して、現在の機関回転数Ne及び機関負荷に対応するさびフィードバック目標値が設定される。
図6に示すマップによれば、低負荷低回転領域では、アンモニア濃度=0(NH3=0)に対応するセンサ出力がフィードバック目標値に設定される。その領域より僅かに負荷が高く、かつ、機関回転数Neが高い領域(以下、「第1中負荷中回転数領域」とする)では、アンモニア濃度=10ppm(NH3=10ppm)に対応するセンサ出力がフィードバック目標値に設定されている。第1中負荷中回転領域より更に少しだけ負荷が高く、かつ、機関回転数Neが高い領域(以下、「第2中負荷中回転数領域」とする)では、アンモニア濃度=20ppm(NH3=20ppm)に対応するセンサ出力がフィードバック目標値に設定されている。そして、高負荷高回転数領域では、アンモニア濃度=30ppm(NH3=30ppm)に対応するセンサ出力がフィードバック目標値に設定されている。
図2を参照して説明した通り、排気ガス中のNH3濃度は、リッチ空燃比の領域において、空燃比がリッチになるほど高くなる。また、アンモニアセンサ18は、排気ガス中のNH3濃度に応じた出力を発する。このため、フィードバック目標値を図6に示すマップに従って設定することは、低負荷低回転領域で目標空燃比を理論空燃比に設定し、負荷及び回転数が高くなるほど、目標空燃比をリッチ側にシフトすることを意味している。
図5に示すルーチンでは、以後、ステップ100以降の処理が実行される。これらの処理は、実施の形態1の場合と同様である。その結果、アンモニアセンサ18の出力がフィードバック目標値に一致するように、内燃機関10の空燃比が制御される。
以上の処理が行われることにより、本実施形態では、低負荷低回転領域では、内燃機関10の排気空燃比が理論空燃比の近傍に制度良く制御される。低負荷低回転領域では、NOxの発生量が少ないため、制御目標が理論空燃比(実施の形態1の場合に比べるとリーン寄りの目標)であっても、空燃比ずれに伴うNOxの大量放出は生じない。他方、この領域では、三元触媒14の活性が低くなり易いが、HC、COの発生量も少ないため、それらの大量放出も防止できる。このため、このシステムによれば、低負荷低回転領域において、良好なエミッション特性を実現することができる。
上記の処理によれば、機関回転数Ne及び機関負荷が上昇するに従って、空燃比の制御目標がリッチ側にシフトされる。負荷が高まるに連れ、また、回転数が高まるにつれ、空燃比のリーンずれに伴うNOx発生量が多量になる。負荷及び回転数の変化に伴って制御目標を上記のように変化させると、負荷及び回転数が高まるに連れて、空燃比のリーンずれが生じ難くなり、NOxを発生させ難くすることができる。このため、このシステムによれば、内燃機関10の全運転領域において、NOxの排出量を十分に抑制することができる。
また、三元触媒14は、内燃機関10の運転領域が高負荷、高回転領域に移行するほど、HC、COに対する浄化能力を高める。このため、高負荷化、高回転化に伴ってHC、COの発生量が増えても、三元触媒14は、それらを適正に浄化することができる。このため、このシステムによれば、内燃機関の全運転領域において、HC、COの排出量も、十分に抑制することができる。
図7は、上述した実施の形態2の動作を、酸素センサを用いるシステムで実現するための条件を説明するための図である。三元触媒14の下流に酸素センサを備えるシステムにおいて、実施の形態2と同様の動作を実現するためには、酸素センサの出力目標を、内燃機関10の運転状態に応じて、図7に示すように変化させる必要がある。
実施の形態2のシステムは、負荷及び回転数が高まるに連れて空燃比の制御目標をリッチ化させることにより、エミッション特性を向上させることとしている。触媒下流に酸素センサを備えるシステムにおいて、制御目標を同様にリッチ化させるためには、図7に示すように、中負荷中回転領域〜高負荷高回転領域において、酸素センサの出力目標を0.7〜0.8Vとする必要がある。しかしながら、酸素センサの出力目標は、上述した通り、0.6V程度が使用可能な上限である。このため、酸素センサを用いるシステムでは、実施の形態2の場合と同様に空燃比の制御目標を変化させることはできない。この点、実施の形態2のシステムは、酸素センサを用いてサブフィードバック制御を行うシステムでは達成することのできない効果を達成し得るものである。
尚、上述した実施の形態2においては、ECU30が、ステップ120及び122の処理を実行することにより前記第3の発明における「運転状態検知手段」が実現されている。また、ECU30がステップ102〜110の処理を実行することにより前記第3の発明における「制御パラメータ設定手段」が実現されている。更に、ECU30が、ステップ124の処理を実行することにより前記第3の発明における「目標値変更手段」が実現されている。
実施の形態3.
[実施の形態3の特徴]
次に、図8を参照して、本発明の実施の形態3について説明する。本実施形態のシステムは、上述した実施の形態1又は2のシステムにおいて、ECU30に、図4又は図5に示すルーチンに代えて、後述する図8に示すルーチンを実行させることにより実現することができる。
上述した実施の形態1及び2では、アンモニアセンサ18の出力と目標値との大小比較を行い、その結果に基づいてサブフィードバック更新量DSFBGに-0.01又は0.01をセットすることとしている。つまり、実施の形態1及び2では、アンモニアセンサ18の出力と目標値との乖離量に関わらず、常に一定の幅でサブフィードバック学習値SFBGを増減させることとしている。
しかしながら、内燃機関10の排気空燃比を迅速に目標空燃比に一致させるためには、アンモニアセンサ18の出力と目標値との乖離量が大きいほど、サブフィードバック学習値SFBGの修正幅を大きくすることが望ましい。そこで、本実施形態では、それらの乖離量に応じて、サブフィードバック更新量DSFBGにセットする値を変化させることとした。
[実施の形態3における具体的処理]
図8は、本実施形態において、サブフィードバック制御を実現するためにECU30が実行するルーチンのフローチャートである。図8に示すルーチンは、ステップ100の後ろに、ステップ130〜126が挿入されている点を除き、図5に示すルーチンと同様である。以下、図8において、図5に示すステップと同一のステップについては、同一の符号を付してその説明を省略又は簡略する。
図8に示すルーチンでは、ステップ120〜100の処理に続いて、アンモニアセンサ18の出力が、ステップ124で設定された目標値の近傍にあるか否かが判別される(ステップ130)。具体的には、ここでは、アンモニアセンサ18の出力が意味するNH3濃度と、上記の目標値が意味するNH3濃度との差が、10ppm以内であるか否かが判別される。
上記の判別が肯定された場合、つまり、アンモニアセンサ18の出力が目標値の近傍に位置していると判別された場合は、以後、ステップ102以降の処理が行われる。この場合、アンモニアセンサ18の出力が目標値に比して小さいか否かに応じて、サブフィードバック更新量DSFBGに-0.01又は0.01がセットされ、そのセット値の幅でサブフィードバック学習値SFBGが修正される。
他方、上記ステップ130の判別が否定された場合は、以後、ステップ132以降の処理が実行される。この場合、アンモニアセンサ18の出力が目標値に比して小さいか否かに応じて、サブフィードバック更新量DSFBGに-0.03又は0.03がセットされる(ステップ134,136)。そして、ステップ108以降の処理により、そのセット値の幅でサブフィードバック学習値SFBGが修正される。
上記の処理によれば、アンモニアセンサ18の出力が目標値の近傍に位置している場合は、サブフィードバック学習値SFBGを微少な幅で修正することにより、高精度な空燃比制御を実現することができる。また、アンモニアセンサ18の出力が目標値から大きく乖離している場合は、サブフィードバック学習値SFBGを大きな幅で修正し、排気空燃比を、迅速に目標空燃比に近づけることができる。このため、本実施形態のシステムによれば、実施の形態1又は2の場合に比して、排気空燃比の制御精度を更に高めることができる。
実施の形態4.
[実施の形態4の構成]
次に、図9乃至図13を参照して、本発明の実施の形態4について説明する。図9は、本実施形態のシステムの構成を説明するための図である。図9に示すシステムは、酸素センサ40を備えている点を除いて、図1に示すシステムと同様の構成を有している。以下、図9において、図1に示す構成要素と同一の要素については、共通する符号を付してその説明を省略又は簡略する。
本実施形態のシステムは、図9に示すように、三元触媒14の下流に酸素センサ40を備えている。酸素センサ40の出力は、アンモニアセンサ18の出力等と同様に、ECU30に供給されている。ECU30は、酸素センサ40の出力に基づいて、三元触媒14の下流がリッチであるかリーンであるかを判断することができる。
[実施の形態4の特徴]
図10は、本実施形態のシステムが排気空燃比を制御することのできる領域を説明するための図である。酸素センサ40の出力に基づいてサブフィードバック制御を行う場合、通常は、空燃比の制御点が、図10中に「比較例の制御点」として示される範囲、つまり、酸素センサ40の反転空燃比の近傍に制限される。
本実施形態のシステムでは、アンモニアセンサ18の出力を基礎としてサブフィードバック制御を行うことにより、空燃比の制御点を、上述した「比較例の制御点」よりリッチ側の領域に設定することができる。また、酸素センサ40の出力と比較する判定値を十分に小さな値に設定すれば、酸素センサ40の出力に基づく制御点を「比較例の制御点」よりリーン側のシフトさせることもできる。このため、本実施形態のシステムによれば、触媒の下流に酸素センサのみを配置するシステムが一般的に実現する制御点の幅に比して、十分に広い領域を、制御点の設定可能域とすることができる(図10中に「本案の制御点(可変)」として示す領域参照)。
内燃機関10の空燃比制御に関する自由度は、空燃比の制御点が設定できる範囲が広いほど大きくなる。従って、本実施形態のシステムによれば、触媒の下流に酸素センサのみを備えるシステムに比して、高い自由度の下に空燃比のサブフィードバック制御を行うことができる。
図11は、酸素センサ40とアンモニアセンサ18の長所と短所を比較して図である。図11に示すように、酸素センサについては、絶対精度が高い点、応答性が良い点が長所である。他方、出力にリニアリティがない点、経時劣化に伴って出力低下を生じさせる点が短所である。一方、アンモニアセンサ18については、出力にリニアリティがある点が長所であり、絶対精度がない点、応答性が悪い点、及びNH3とNOxを区別することができないという点が短所である。
上述した実施の形態2で説明した通り、低負荷低回転領域では、HC、COに対する浄化能力の低下を考慮して、サブフィードバック制御のAF目標値をリーン寄りに設定することが望ましい。他方、高負荷高回転領域では、NOxの放出抑制を優先して、そのAF目標値をリッチ側にシフトさせることが望ましい。
本実施形態のシステムでは、サブフィードバック制御の基礎データとして、酸素センサ40の出力と、アンモニアセンサ18の出力を利用することができる。酸素センサ40は、理論空燃比の近傍でリッチ出力とリーン出力を反転させ、その出力は、理論空燃比より僅かにリーンな領域においてリーン出力に収束する。このため、酸素センサ40の出力を基礎としてサブフィードバック制御を行えば、AF目標値をリーン寄りに設定することが可能である。他方、アンモニアセンサ18は、リッチ領域において空燃比に対して感度を有している。このため、アンモニアセンサ18の出力を基礎としてサブフィードバック制御を行えば、AF目標値をリッチよりに設定することが可能である。
図12は、本実施形態において実行されるサブフィードバック制御の概要と、内燃機関10の運転領域との関係を定めたマップである。このマップに示すように、本実施形態では、低負荷低回転領域では、判定値を0.4Vとして、酸素センサ40の出力を基礎とするサブフィードバック制御が行われる。この場合、AF目標値を十分にリーン寄りに設定した状態でサブフィードバック制御を実行することができる。
また、第1中負荷中回転領域では、判定値を0.5Vとして、酸素センサ40の出力を基礎とするサブフィードバック制御が行われる。判定値が0.5Vに設定されるため、この領域では、AF目標値が、低負荷低回転領域でのAF目標値に比して、僅かにリッチ側に戻される。
第1中負荷中回転領域に比して負荷又は回転数が僅かに高い領域、つまり、第2中負荷中回転領域では、NH3の判定値を20ppmとして、アンモニアセンサ18の出力を基礎とするサブフィードバック制御が実行される。NH3濃度は、リッチ領域において発生する。このため、この領域においては、理論空燃比の僅かにリッチ側にAF目標値を設定してサブフィードバック制御を行うことができる。
高負荷高回転領域では、NH3の判定値を30ppmとして、アンモニアセンサ18の出力を基礎とするサブフィードバック制御が実行される。判定値が30ppmに増えているため、この領域では、第2中負荷中回転領域で設定されるAF目標値に比して更にリッチなAF目標値を用いてサブフィードバック制御を実行することができる。
以上説明した通り、本実施形態のシステムは、内燃機関10の運転状態に応じて、サブフィードバック制御に利用するセンサ出力及び判定値を切り換える。このような手法によれば、実施の形態2又は3の場合に比して更に広い範囲で、AF目標値を変化させることができる。このため、本実施形態のシステムによれば、実施の形態2又は3の場合に比して、空燃比制御の自由度を更に高めることができる。
また、図11を参照して説明した通り、AF目標値をリーン寄りとするために用いられる酸素センサ40は、アンモニアセンサ18に比して優れた応答性を有している。酸素センサ40を用いてAF目標値をリーン寄りに設定した場合(実施の形態2の場合に比してさらいリーン寄りとなる)、センサの応答性が悪いと、空燃比が過大にリーン化し易い。低負荷低回転領域では、NOxの排出量が少ないが、良好なエミッション特性を得るためには、そのような領域でも、空燃比の過大なリーンずれは阻止することが望ましい。酸素センサ40を用いてAF目標値をリーン側にシフトさせることによれば、センサの応答性が良いため、AF目標値をリーン側にシフトさせつつ、空燃比の過大なリーンずれを防ぐことができる。このため、本実施形態のシステムによれば、低負荷低回転領域でNOxが不当に排出されるのを防ぐことができる。
また、図11を参照して説明した通り、アンモニアセンサ18は、絶対精度はないものの、NH3濃度に対してリニアな出力を発する。このため、アンモニアセンサ18の出力を基礎としてサブフィードバックを実行する場合は、AF目標値を十分にリッチ側にシフトさせることができる。この場合、センサの応答性が悪いため、空燃比には比較的大きなずれが生じやすい。しかしながら、本実施形態のシステムは、三元触媒14が十分に活性化する高負荷高回転側の領域でのみアンモニアセンサ18によるサブフィードバック制御を行う。この場合、空燃比のリッチずれに伴ってHC、COの発生量が増えても、三元触媒14は、それらを十分に浄化することができる。他方、AF目標値が大きくリッチ化されているので、NOxを過大に発生させるほどの空燃比ずれは生じ難い。
以上説明した理由により、本実施形態のシステムは、空燃比制御に関して、実施の形態2又は3の場合に比して更に大きな自由度を確保することができる。また、このシステムによれば、実施の形態2又は3のシステムに比して、内燃機関10の全運転領域において、更に優れたエミッション特性を実現することができる。
[実施の形態4における具体的処理]
図13は、上記の機能を実現するために、本実施形態においてECU30が実行するルーチンのフローチャートである。図13に示すルーチンは、ステップ124がステップ140に置き換えられている点、及び、ステップ140の後に、ステップ142〜150が挿入されている点を除いて、図5に示すルーチンと同様である。以下、図13に示すステップのうち、図5に示すステップと共通するものについては、同一の符号を付してその説明を省略又は簡略する。
図13に示すルーチンでは、ステップ120及び122の処理に続いて、機関回転数Neと機関負荷とに基づいて、サブフィードバック制御に利用するセンサ出力が選択され、かつ、サブフィードバック目標値が決定される(ステップ140)。ECU30は、図12に示すマップを記憶しており、このマップに従って、上記の処理を実行する。例えば、機関回転数Ne及び機関負荷が、低負荷低回転領域に属している場合は、サブフィードバック制御に利用する出力として酸素センサ40の出力が選択され、サブフィードバック目標値が0.4Vとされる。
次に、選択された出力が酸素センサ40の出力であるか、或いはアンモニアセンサ18の出力であるかが判別される(ステップ142)。その結果、アンモニアセンサ18の出力が選択されていると判別された場合(判別Nの場合)は、以後、ステップ100〜110の処理が実行されることにより、AF目標値にフィードバック制御が施される。
他方、ステップ142において、選択された出力が酸素センサ40の出力であると判別された場合は、以後、その出力に基づくサブフィードバック制御を進めるための処理が実行される。具体的には、先ず、酸素センサ40の出力が読み込まれる(ステップ144)。次に、酸素センサ40の出力が、上記ステップ140で設定された目標値に比して小さいか否かが判別される(ステップ146)。
その結果、酸素センサ40の出力が目標値に比して小さいと判別された場合は、三元触媒14の下流における空燃比が、目標の空燃比に対してリーン側にずれていると判断できる。この場合は、サブフィードバック更新量DSFBGに-0.01がセットされる(ステップ148)。
一方、酸素センサ40の出力が目標値に比して小さくないと判別された場合は、三元触媒14の下流における排気空燃比が、目標の空燃比に対してリッチ側にずれていると判断できる。この場合は、サブフィードバック更新量DSFBGに0.01がセットされる(ステップ150)。
以後、ステップ108及び110の処理により、サブフィードバック更新量DSFBGに基づくAF目標値の修正処理が行われる。その結果、触媒下流の排気空燃比がリーン側にずれている場合は、AF目標値がリッチ側に修正され、その結果、排気空燃比が目標に近づけられる。他方、排気空燃比がリッチ側にずれている場合は、AF目標値がリーン側に修正されることにより、排気空燃比が目標に近づけられる。
以上説明した処理によれば、内燃機関10の運転状態に応じて、サブフィードバック制御の基礎となるセンサ及び目標値を、図12に示すように切り換えることができる。このため、本実施形態のシステムによれば、内燃機関10の運転状態に合わせて、排気空燃比を、HC、CO及びNOxの排出量を抑制するうえで好ましい値に制御することができ、その結果、運転状態に全域において、優れたエミッション特性を実現することができる。
ところで、上述した実施の形態4においては、低負荷低回転側の領域では、酸素センサ40の出力のみを基礎としてサブフィードバック制御を行うこととしているが、本発明はこれに限定されるものではない。すなわち、低負荷低回転側では、酸素センサ40の出力とアンモニアセンサ18の出力の双方を基礎としてサブフィードバック制御を実行することとしてもよい。
尚、上述した実施の形態4においては、ECU30が、ステップ144〜150並びにステップ108及び110の処理を実行することにより前記第の発明における「第3フィードバック手段」が実現されている。また、ECU30が、ステップ140の処理を実行することにより前記第の発明における「第2フィードバック選択手段」が実現されている。更に、ここでは、ECU30が、ステップ120及び122の処理を実行することにより前記第の発明における「運転状態検知手段」が実現されている。
実施の形態5.
[実施の形態5の特徴]
次に、図14乃至図16を参照して、本発明の実施の形態5について説明する。本実施形態のシステムは、図9に示すシステムにおいて、ECU30に、後述する図15に示すルーチンを実行させることにより実現することができる。
本実施形態のシステムは、実施の形態4のシステムと同様に、三元触媒14の下流に、アンモニアセンサ18と共に酸素センサ40を備えている。図14は、本実施形態のシステムが、それら2つのセンサを使い分ける手法を説明するための図である。
図14に示すように、本実施形態のシステムは、酸素センサ40がリーン出力を発する領域(リーン領域)では、その出力に基づくサブフィードバック制御が実行される。酸素センサ40は、図11を参照して説明した通り、優れた応答性を有している。このため、本実施形態のシステムでは、排気空燃比がリーンとなり、酸素センサ40がリーン出力を発すると、優れた応答性の下に、その空燃比が迅速に理論空燃比に向かって修正される。
リーン領域は、NOxが発生し易い領域である。また、図3を参照して説明した通り、三元触媒14は、排気空燃比がリーン化するに伴って急激にNOxに対する浄化率を低下させる。空燃比のリーンずれが迅速に解消されれば、NOxの発生が抑制され、また、三元触媒14のNOx浄化率の低下も回避できる。このため、本実施形態のシステムによれば、NOxの排出量を十分に抑制することができる。
図14に示すように、本実施形態のシステムは、酸素センサ40がリッチ出力を発する領域(リッチ領域)では、アンモニアセンサ18の出力に基づいてサブフィードバック制御が実行される。アンモニアセンサ18は、リッチな空燃比に対して感度を有している。このため、その出力を基礎とするサブフィードバック制御では、AF目標値を、理論空燃比からリッチ側にシフトした値に設定することができる。
この設定によれば、空燃比がリーン領域に進入する頻度を下げることができ、NOxが生成され難い状況を作り出すことができる。また、アンモニアセンサ18の出力は、空燃比に対してリニアリティがあるため、その出力を基礎とする制御によれば、空燃比のずれ量を正確にフィードバックすることができる。このため、本実施形態のシステムによれば、リッチ領域において、NOxの生成を抑えながら空燃比を正確に制御することができる。
以上説明した理由により、本実施形態のシステムによれば、排気空燃比がリーン領域に進入した際には、そのリーンずれを迅速に消滅させることができる。また、排気空燃比リッチ領域に属している間は、理論空燃比に対してリッチ側にシフトしたAF目標値に、排気空燃比を精度良く制御することができる。このため、本実施形態のシステムによれば、内燃機関10のエミッション特性を総合的に改善することができる。
[実施の形態5における具体的処理]
図15は、上記の機能を実現するために、ECU30が実行するルーチンのフローチャートである。図15に示すルーチンは、ステップ124がステップ160に置き換えられている点、及びステップ160の後ろにステップ162〜166が挿入されている点を除いて、図5に示すルーチンと同様である。以下、図15において、図5に示すステップと同一のステップについては、共通する符号を付してその説明を省略又は簡略する。
図15に示すルーチンでは、ステップ120及び122の処理に続いて、サブフィードバック目標値が算出される(ステップ160)。ここでは、具体的には、酸素センサ40の出力に対するサブフィードバック目標値、及びアンモニアセンサ18の出力に対するサブフィードバック目標値が算出される。
図16は、酸素センサ40の出力に対するサブフィードバック目標値を定めたマップである。また、図17は、アンモニアセンサ18の出力に対するサブフィードバック目標値を定めたマップである。尚、図17に示すマップは、実施の形態2において用いられたマップ(図6参照)と同一である。ECU30は、これらのマップを記憶しており、上記ステップ160では、それらのマップを参照して、それぞれの目標値を算出する。
図15に示すルーチンでは、次に、酸素センサ40の出力が読み込まれる(ステップ162)。次いで、その出力が、酸素センサ40の出力に対するサブフィードバック目標値より小さいか否かが判別される(ステップ164)。
酸素センサ40の出力は、理論空燃比の前後で急変し、その急変が生ずる領域では、排気空燃比のリーン化に伴う減少を示している。このため、上記ステップ164の条件が成立するか否かを分ける空燃比(以下、「リッチリーン閾値」と称す)は、サブフィードバック目標値が小さいほどリーン寄りの値となり、その目標値が大きいほどリッチ寄りの値となる。図16に示すマップは、回転数及び負荷が高くなるに連れて、サブフィードバック目標値が0.4Vから0.55Vまで順次大きくなるように設定されている。このため、上記のリッチリーン閾値は、低負荷低回転領域での運転時に最もリーン寄りの値となり、機関負荷及び機関回転数が高まるに連れて、リッチ寄りの値に変化する。
上記ステップ164の条件成立が認められた場合は、排気空燃比が、リッチリーン閾値のリーン側に位置していると判断できる。この場合、ECU30は、サブフィードバック更新値DSFBGに-0.01をセットする(ステップ166)。その結果、以後、ステップ108及び100の処理が実行されることにより、AF目標値がリッチ側にシフトする。
酸素センサ40は、アンモニアセンサに比して優れた応答性を有している。このため、上述したAF目標値のリッチシフトは、排気空燃比がリッチリーン閾値を超えた後、速やかに行われる。その結果、排気空燃比のリーンずれが速やかに解消され、NOxの排出が抑制される。
また、リッチリーン閾値が、上述した通り機関回転数及び機関負荷の上昇に伴ってリッチ側にシフトすることから、上記の処理に伴って実現される排気空燃比も、機関回転数及び機関負荷の上昇に伴ってリッチ側にシフトする。実施の形態2において説明した通り、空燃比の制御中心を、機関負荷及び機関回転数の上昇に伴ってリッチ化させると、内燃機関10のエミッション特性を総合的に改善することができる。このため、本実施形態のシステムによれば、その効果によっても、内燃機関10のエミッション特性を改善することができる。
排気空燃比がリーン領域、つまり、リッチリーン閾値よりリーン側の領域に属している場合は、上記ステップ164において、酸素センサ40の出力が、その出力に対するサブフィードバック目標値より小さくないと判断される。この場合、以後、ステップ100〜110の処理により、アンモニアセンサ18の出力が、その出力に対するサブフィードバック目標値と一致するように、AF目標値が修正される。その結果、実施の形態2の場合と同様の原理により、優れたエミッション特性が実現される(図5及び図6参照)。
以上説明した通り、図15に示すルーチンによれば、排気空燃比がリーン領域に属している場合は、実施の形態2の場合と同様の原理により、優れたエミッション特性を実現することができる。また、このルーチンによれば、排気空燃比がリーン領域に進入した際には、酸素センサ40の出力を基礎とするサブフィードバック制御により、排気空燃比のリーンずれを速やかに解消し、NOxの放出を抑えることができる。このため、本実施形態のシステムによれば、実施の形態2の場合に比して、更に優れたエミッション特性を実現することができる。
尚、上述した実施の形態5においては、ECU30がステップ164の処理を実行することにより前記第の発明における「方向判断手段」が実現されている。また、ECU30が、ステップ164の判定結果に応じてステップ166の処理、及びステップ100〜106の処理の一方を選択的に実行することにより、前記第の発明における「第2フィードバック選択手段」が実現されている。
また、上述した実施の形態5においては、ECU30が、ステップ100〜106の処理を実行することにより前記第の発明における第2フィードバック手段」が実現されている。更に、ECU30が、ステップ164及び166の処理を実行することにより前記第の発明における「第3フィードバック手段」が実現されている。
実施の形態6.
[実施の形態6の特徴]
次に、図17を参照して本発明の実施の形態6について説明する。本実施形態のシステムは、図9に示すシステムにおいて、ECU30に、後述する図17に示すルーチンを実行させることにより実現することができる。
上述した実施の形態5のシステムは、排気空燃比がリーン領域に属している場合は、一定のゲインで、酸素センサ40の出力を、その目標値に近づけるためのフィードバック制御を実行する。また、実施の形態5のシステムは、排気空燃比がリッチ領域に属している場合は、一定のゲインで、アンモニアセンサ18の出力を、その目標値に近づけるためのフィードバック制御を実行する。本実施形態のシステムは、このようなフィードバック手法に、センサ出力と目標値との乖離量をゲインに反映させる処理を組み合わせた点に特徴を有している。
[実施の形態6の具体的処理]
図17は、本実施形態において、ECU30が実行するルーチンのフローチャートである。図17に示すルーチンは、以下の3点を除いて、実施の形態5において実行されるルーチン(図15参照)と同様である。
1.ステップ160と162の間にステップ170が挿入されている点、
2.ステップ164で条件成立が判定された場合のルートに、ステップ172及び174が挿入されている点、及び
3.ステップ164で条件不成立が判定された場合のルートに、ステップ130〜136が挿入されている点。
上記の相違点3を構成するステップ130〜136は、実施の形態3で実行されるルーチン(図8参照)中に含まれる処理と同一である。以下、図17に示すステップのうち、図15又は図8に示すステップと同一のものについていては、共通する符号を付してその説明を省略又は簡略する。
図17に示すルーチンでは、ステップ160において、実施の形態5の場合と同様の手法でサブフィードバック目標値が算出される。具体的には、ここでは、図16(A)及び図16(B)に示すマップに従って、酸素センサ40の出力に対するサブフィードバック目標値と、アンモニアセンサ18の出力に対するサブフィードバック目標値の双方が算出される。
次に、アンモニアセンサ18の出力、及び酸素センサ40の出力が順次読み込まれる(ステップ170,162)。次いで、ステップ164において、酸素センサ40の出力がその出力に対する目標値より小さいか否かが判別される。
ステップ164の条件は、排気空燃比がリーン領域に属している場合に成立する。従って、この条件が否定された場合は、排気空燃比がリッチ領域に属していると判断できる。この場合は、以後、ステップ130以降の処理により、アンモニアセンサ18の出力を、その目標値に近づけるためのサブフィードバック更新量DSFBGが算出される。
特に、ステップ130において、アンモニアセンサ18の出力が目標値の近傍にないと判別された場合、図17に示すルーチンでは、その出力が目標値の近傍にあると判断された場合の3倍のゲインでサブフィードバック更新量DSFBGが算出される(ステップ134,136参照)。
ステップ164において、酸素センサ40の出力が目標値より小さいと判別された場合は、排気空燃比が、リーン領域に属していると判断できる。図17に示すルーチンでは、この場合、先ず、アンモニアセンサ18の出力が判定値(本実施形態では10ppm)より小さいか否かが判別される(ステップ172)。
図2を参照して説明した通り、アンモニアセンサ18は、NH3に対して感度を有していると共に、NOxに対しても感度を有している。そして、アンモニアセンサ18は、排気空燃比が大きくリーン化している状況下では、排気ガス中のNOxに反応して出力を上昇させる。このため、リーン領域で、排気空燃比が大きな出力を発している場合は、排気空燃比が大幅にリーン側にずれていると判断できる。
ECU30は、ステップ172において、アンモニアセンサ18の出力が判定値より小さいと判断された場合は、大きなリーンずれが生じていないと判断する。この場合、以後、ステップ166において、空燃比を僅かにリッチ側に修正するため、サブフィードバック更新量DSFBGに-0.01がセットされる。他方、ステップ172において、アンモニアセンサ18の出力が判定値を超えていると判断された場合、ECU30は、空燃比が大きくリーン側にずれていると判断する。この場合、排気空燃比を大きくリッチ側に修正するため、サブフィードバック更新量DSFBGに-0.03がセットされる。
以上説明した通り、図17に示すルーチンによれば、排気空燃比がリッチ領域に属しているかリーン領域に属しているかに応じて、酸素センサ40の出力と、アンモニアセンサ18の出力とを選択的にサブフィードバック制御の基礎とすることができる。また、このルーチンによれば、それらのセンサの出力が目標値から大きく離れている場合は、それらの出力が目標値の近傍にある場合に比して3倍のサブフィードバックゲインを設定することができる。このため、本実施形態のシステムによれば、実施の形態5のシステムと同様の効果を達成すると共に、実施の形態5のシステムに比して、更に優れた応答性の下に、排気空燃比のずれを消滅させることができる。
尚、上述した実施の形態6においては、ECU30が、ステップ172,166及び174の処理を実行することにより前記第の発明における「第3フィードバック手段」が、つまり、前記第の発明における「制御パラメータ設定手段」及び「ゲイン設定手段」が実現されている。
本発明の実施の形態1の構成を説明するための図である。 図1に示すアンモニアセンサの特性と酸素センサの劣化特性を説明するための図である。 三元触媒の浄化率と空燃比との関係、及び、空燃比フィードバックによる空燃比の制御領域を説明するための図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 本発明の実施の形態2において実行されるルーチンのフローチャートである。 図5に示すルーチン中で参照されるマップを示す図である。 本発明の実施の形態2のシステムが達成する効果を、酸素センサを用いて達成する場合に要求されるマップを示す図である。 本発明の実施の形態3において実行されるルーチンのフローチャートである。 本発明の実施の形態4の構成を説明するための図である。 本発明の実施の形態4のシステムが排気空燃比を制御することのできる領域を説明するための図である。 酸素センサとアンモニアセンサの長所と短所を比較して図である。 本発明の実施の形態4において実行されるサブフィードバック制御の概要と、内燃機関の運転領域との関係を定めたマップである。 本発明の実施の形態4において実行されるルーチンのフローチャートである。 本発明の実施の形態5のシステムが、酸素センサとアンモニアセンサを使い分ける手法を説明するための図である。 本発明の実施の形態5において実行されるルーチンのフローチャートである。 本発明の実施の形態5において、酸素センサの出力に対するサブフィードバック目標値、及びアンモニアセンサの出力に対するサブフィードバック目標値を設定するための参照されるマップである。 本発明の実施の形態6において実行されるルーチンのフローチャートである。
符号の説明
10 内燃機関
14 三元触媒
16 空燃比センサ
18 アンモニアセンサ
30 ECU(Electronic Control Unit)
40 酸素センサ

Claims (9)

  1. 内燃機関の空燃比を調整するための空燃比調整機構と、
    排気空燃比を検知する排気空燃比検知手段と、
    前記排気空燃比が理論空燃比近傍の目標空燃比に近づくように前記空燃比調整機構に第1フィードバック制御を施す第1フィードバック手段と、
    内燃機関の排気系に配置されるアンモニアセンサと、
    前記アンモニアセンサの出力値に基づく第2フィードバック制御を前記空燃比調整機構に施す第2フィードバック手段と、
    前記アンモニアセンサの上流に位置するように前記排気系に配置される触媒と、
    前記触媒の下流側に配置される酸素センサと、
    前記アンモニアセンサ及び前記酸素センサの出力値、或いは前記酸素センサの出力値に基づく第2フィードバック制御を前記空燃比調整機構に施す第3フィードバック手段と、
    前記第2フィードバック手段と、前記第3フィードバック手段とを選択的に作動させる第2フィードバック選択手段と、を備え、
    前記排気空燃比検知手段は、前記触媒の上流側に配置される空燃比センサを備え、
    前記第1フィードバック手段は、前記空燃比センサの出力に基づいて前記第1フィードバック制御を実行することを特徴とする内燃機関の空燃比制御装置。
  2. 前記アンモニアセンサの上流に位置するように前記排気系に配置される触媒を備え、
    前記排気空燃比検知手段は、前記触媒の上流側に配置される空燃比センサを備え、
    前記第1フィードバック手段は、前記空燃比センサの出力に基づいて前記第1フィードバック制御を実行することを特徴とする請求項1記載の内燃機関の空燃比制御装置。
  3. 内燃機関の運転状態を検知する運転状態検知手段を備え、
    前記第2フィードバック手段は、
    前記アンモニアセンサの出力とアンモニア目標値との比較結果に基づいて前記空燃比の制御パラメータを設定する制御パラメータ設定手段と、
    高負荷運転条件の成立下で前記アンモニア目標値をリッチ側目標値に設定し、低負荷運転条件の成立下で前記アンモニア目標値を、前記リッチ側目標値に比してリーンなリーン側目標値に設定する目標値変更手段と、を備えることを特徴とする請求項1又は2記載の内燃機関の空燃比制御装置。
  4. 前記第2フィードバック手段は、
    前記アンモニアセンサの出力とアンモニア目標値との比較結果を所定のゲインで前記空燃比にフィードバックする比較結果反映手段と、
    前記アンモニアセンサの出力と前記アンモニア目標値との乖離量が大きいほど、前記ゲインを大きくするゲイン設定手段と、
    を備えることを特徴とする請求項1乃至3の何れか1項記載の内燃機関の空燃比制御装置。
  5. 内燃機関の運転状態を検知する運転状態検知手段を備え、
    前記第2フィードバック選択手段は、高負荷運転条件の成立下で前記第2フィードバック手段を作動手段として選択し、低負荷運転条件の成立下で前記第3フィードバック手段を作動手段として選択することを特徴とする請求項1乃至4の何れか1項記載の内燃機関の空燃比制御装置。
  6. 排気空燃比が目標空燃比に対してリッチ側にずれているかリーン側にずれているかを判断するずれ方向判断手段を備え、
    前記第2フィードバック選択手段は、排気空燃比がリッチ側にずれていると判断される条件下で、前記第2フィードバック手段を作動手段として選択し、排気空燃比がリーン側にずれていると判断される条件下で、前記第3フィードバック手段を作動手段として選択することを特徴とする請求項1乃至4の何れか1項記載の内燃機関の空燃比制御装置。
  7. 前記ずれ方向判断手段は、前記酸素センサの出力が酸素目標値に比して大きい場合に、排気空燃比が目標空燃比に対してリッチ側にずれていると判断し、前記酸素センサの出力が前記酸素目標値に比して小さい場合に、排気空燃比が目標空燃比に対してリーン側にずれていると判断することを特徴とする請求項記載の内燃機関の空燃比制御装置。
  8. 前記第2フィードバック手段は、前記アンモニアセンサの出力がアンモニア目標値に近づくように前記第2フィードバック制御を実行し、
    前記第3フィードバック手段は、前記酸素センサの出力が酸素目標値に近づくように前記第2フィードバック制御を実行し、
    前記アンモニアセンサの出力を前記アンモニア目標値に一致させるための排気空燃比は、前記酸素センサの出力を前記酸素目標値に一致させるための排気空燃比に比してリッチ側にシフトしていることを特徴とする請求項乃至の何れか1項記載の内燃機関の空燃比制御装置。
  9. 前記第3フィードバック手段は、
    前記酸素センサの出力と酸素目標値との比較結果を所定のゲインで前記空燃比の制御パラメータに反映させる制御パラメータ設定手段と、
    前記酸素センサの出力と前記酸素目標値との乖離量が大きいほど、前記ゲインを大きくするゲイン設定手段と、
    を備えることを特徴とする請求項乃至の何れか1項記載の内燃機関の空燃比制御装置。
JP2007275974A 2007-10-24 2007-10-24 内燃機関の空燃比制御装置 Expired - Fee Related JP4492669B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007275974A JP4492669B2 (ja) 2007-10-24 2007-10-24 内燃機関の空燃比制御装置
PCT/IB2008/002814 WO2009053814A2 (en) 2007-10-24 2008-10-22 Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine
US12/670,171 US8249793B2 (en) 2007-10-24 2008-10-22 Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine
CN2008800169173A CN101790631B (zh) 2007-10-24 2008-10-22 用于内燃发动机的空燃比控制设备和空燃比控制方法
EP08842827.1A EP2207953B1 (en) 2007-10-24 2008-10-22 Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275974A JP4492669B2 (ja) 2007-10-24 2007-10-24 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2009103061A JP2009103061A (ja) 2009-05-14
JP4492669B2 true JP4492669B2 (ja) 2010-06-30

Family

ID=40580153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275974A Expired - Fee Related JP4492669B2 (ja) 2007-10-24 2007-10-24 内燃機関の空燃比制御装置

Country Status (5)

Country Link
US (1) US8249793B2 (ja)
EP (1) EP2207953B1 (ja)
JP (1) JP4492669B2 (ja)
CN (1) CN101790631B (ja)
WO (1) WO2009053814A2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617272B2 (ja) * 2009-11-13 2014-11-05 マツダ株式会社 空燃比検出手段の出力特性測定方法及び出力特性測定装置
CN103080518B (zh) * 2010-09-03 2015-11-25 本田技研工业株式会社 内燃机诊断装置和内燃机诊断方法
DE102011017486A1 (de) * 2011-04-19 2012-10-25 Daimler Ag Betriebsverfahren für einen Kraftfahrzeug-Dieselmotor mit einer Abgasreinigungsanlage
US9664094B2 (en) * 2013-09-26 2017-05-30 General Electric Company Systems and methods for monitoring catalyst deactivation and controlling an air/fuel ratio
JP6101669B2 (ja) * 2013-12-16 2017-03-22 株式会社日本自動車部品総合研究所 ガスセンサ
JP6750536B2 (ja) * 2017-02-28 2020-09-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6601449B2 (ja) * 2017-04-04 2019-11-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6572932B2 (ja) * 2017-04-04 2019-09-11 トヨタ自動車株式会社 アンモニア検出装置の異常診断装置
JP2018178762A (ja) * 2017-04-04 2018-11-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102017218327B4 (de) * 2017-10-13 2019-10-24 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung
DE102018206451B4 (de) * 2018-04-26 2020-12-24 Vitesco Technologies GmbH Verfahren zum Betreiben einer Brennkraftmaschine mit 3-Wege-Katalysator und Lambdaregelung über NOx-Emissionserfassung
JP7448072B1 (ja) 2023-06-06 2024-03-12 いすゞ自動車株式会社 排気制御装置及び排気制御方法
JP7448073B1 (ja) 2023-06-06 2024-03-12 いすゞ自動車株式会社 排気制御装置及び排気制御方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276419A (ja) * 2001-03-22 2002-09-25 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP2005048711A (ja) * 2003-07-30 2005-02-24 Toyota Motor Corp 内燃機関の空燃比制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308870B1 (en) * 1987-09-22 1992-05-06 Japan Electronic Control Systems Co., Ltd. Electronic air-fuel ratio control apparatus in internal combustion engine
US4878473A (en) * 1987-09-30 1989-11-07 Japan Electronic Control Systems Co. Ltd. Internal combustion engine with electronic air-fuel ratio control apparatus
JPH02293655A (ja) 1989-05-09 1990-12-04 Mitsubishi Motors Corp 空燃比検出方法
JP3119704B2 (ja) * 1991-11-26 2000-12-25 ヤンマーディーゼル株式会社 内燃機関の空燃比制御装置
JPH08158917A (ja) * 1994-12-09 1996-06-18 Tokyo Gas Co Ltd 内燃機関の空燃比制御方法及び装置
JP3158444B2 (ja) * 1995-11-09 2001-04-23 トヨタ自動車株式会社 内燃機関の排気を浄化する方法および装置
JPH1068346A (ja) * 1996-06-21 1998-03-10 Ngk Insulators Ltd エンジン排ガス系の制御法
DE19852244C1 (de) * 1998-11-12 1999-12-30 Siemens Ag Verfahren und Vorrichtung zur Abgasreinigung mit Trimmregelung
US6292739B1 (en) * 1998-12-17 2001-09-18 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engine
US6540968B1 (en) * 1999-05-19 2003-04-01 Ford Global Technologies, Inc. Low-precious metal/high-rare earth oxide catalysts
DE19929042A1 (de) 1999-06-25 2000-12-28 Audi Ag Verfahren zur Steuerung der Regenerationsphasen eines NO¶x¶-Speicherkatalysators
DE10014238A1 (de) 2000-03-22 2001-09-27 Volkswagen Ag Vorrichtung und Verfahren zur Führungsregelung eines stöchiometrischen Betriebs einer Verbrennungskraftmaschine
US6698188B2 (en) 2000-12-08 2004-03-02 Toyota Jidosha Kabushiki Kaisha Emission control apparatus of internal combustion engine
DE10117050C1 (de) 2001-04-05 2002-09-12 Siemens Ag Verfahren zum Reinigen des Abgases einer Brennkraftmaschine
JP4158674B2 (ja) 2003-10-15 2008-10-01 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4321485B2 (ja) * 2005-04-12 2009-08-26 トヨタ自動車株式会社 排ガス浄化装置およびその方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276419A (ja) * 2001-03-22 2002-09-25 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP2005048711A (ja) * 2003-07-30 2005-02-24 Toyota Motor Corp 内燃機関の空燃比制御装置

Also Published As

Publication number Publication date
CN101790631A (zh) 2010-07-28
WO2009053814A2 (en) 2009-04-30
US8249793B2 (en) 2012-08-21
JP2009103061A (ja) 2009-05-14
EP2207953A2 (en) 2010-07-21
US20100204904A1 (en) 2010-08-12
EP2207953B1 (en) 2016-07-06
CN101790631B (zh) 2013-09-04
WO2009053814A3 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP4492669B2 (ja) 内燃機関の空燃比制御装置
JP4957559B2 (ja) 内燃機関の空燃比制御装置
US7159388B2 (en) Air-fuel ratio control device for internal-combustion engine
JP3348434B2 (ja) 内燃機関の空燃比制御装置
US6904899B2 (en) Air-fuel ratio controller for internal-combustion engine
JP4314636B2 (ja) 内燃機関の空燃比制御装置
JP2007107512A (ja) 内燃機関の空燃比制御装置
US20060242948A1 (en) Air-fuel ratio controller for internal combustion engine
EP2354502B1 (en) Control diagnostic apparatus for an internal combustion engine
US20070169465A1 (en) Air-fuel ratio control apparatus for internal combustion engine
US8347866B2 (en) Fuel control system and method for more accurate response to feedback from an exhaust system with an air/fuel equivalence ratio offset
US10161343B2 (en) Correction device for air/fuel ratio sensor
JP2004285859A (ja) 酸素センサの劣化判定装置
JP4586678B2 (ja) 内燃機関の触媒劣化検出装置
JP2009167944A (ja) 内燃機関の燃料噴射制御装置
JP2005061356A (ja) 内燃機関の制御装置
JPS63205441A (ja) 内燃機関の空燃比制御装置
JP4419952B2 (ja) 内燃機関の空燃比制御装置
JP4155662B2 (ja) 三元触媒の酸素ストレージ量制御装置
JP4032840B2 (ja) 内燃機関の排出ガス浄化装置
JP2007032438A (ja) 内燃機関の空燃比制御装置
JPH01106936A (ja) 内燃機関の空燃比制御装置
JP2006002579A (ja) 内燃機関の空燃比制御装置
JP4501769B2 (ja) 内燃機関の排気浄化装置
US8186336B2 (en) Fuel control system and method for improved response to feedback from an exhaust system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees