DE102017218327B4 - Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung - Google Patents

Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung Download PDF

Info

Publication number
DE102017218327B4
DE102017218327B4 DE102017218327.6A DE102017218327A DE102017218327B4 DE 102017218327 B4 DE102017218327 B4 DE 102017218327B4 DE 102017218327 A DE102017218327 A DE 102017218327A DE 102017218327 B4 DE102017218327 B4 DE 102017218327B4
Authority
DE
Germany
Prior art keywords
setpoint
lambda
signal
way catalyst
electrical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102017218327.6A
Other languages
English (en)
Other versions
DE102017218327A1 (de
Inventor
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Priority to DE102017218327.6A priority Critical patent/DE102017218327B4/de
Priority to US16/755,468 priority patent/US11143129B2/en
Priority to PCT/EP2018/077250 priority patent/WO2019072730A1/de
Priority to KR1020207013350A priority patent/KR102302834B1/ko
Priority to CN201880066710.0A priority patent/CN111279056B/zh
Publication of DE102017218327A1 publication Critical patent/DE102017218327A1/de
Application granted granted Critical
Publication of DE102017218327B4 publication Critical patent/DE102017218327B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Verfahren zum Betreiben einer Brennkraftmaschine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambdaregelung angeordnet ist, mit den folgenden Schritten:- Anordnen eines NO-Sensors mit integrierter Lambdasonde stromab des Dreiwegekatalysators;- Erzeugen eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals mit dem NO-Sensor;- Festlegen eines Schwellenwertes des elektrischen Signals und Bestimmen eines Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen dem Sollwert des elektrischen Signals nach dem Dreiwegekatalysator und dem gemessenen elektrischen Signal, wenn das gemessene elektrische Signal unter dem Schwellenwert liegt;- wenn das gemessene elektrische Signal über dem Schwellenwert liegt, Bestimmen des Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen einem NH-Sollwert des NO-Sensors und dem gemessenen NH-Signal des NO-Sensors;- wenn die gemessene NH-Konzentration höher ist als der NH-Sollwert, Erhöhen des Lambdasollwertes stromauf des Dreiwegekatalysators und, wenn die gemessene NH-Konzentration niedriger ist als der NH-Sollwert, Reduzieren des Lambdasollwertes stromauf des Dreiwegekatalysators;- Adaption des NH-Sollwertes, wobei zur Adaption des NH-Sollwertes der Sollwert des elektrischen Signals bei quasistatischen Bedingungen langsam in Richtung auf einen niedrigen Spannungswert vom tatsächlichen Spannungswert reduziert wird und der Lambdasollwert vor dem Dreiwegekatalysator über die Differenz zwischen dem Sollwert des elektrischen Signals und dem tatsächlichen Signal eingeregelt wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambdaregelung angeordnet ist.
  • In Bezug auf die Emissionen von Brennkraftmaschinen werden immer strengere Anforderungen gestellt. Dies betrifft auch den Einsatz von geregelten Dreiwegekatalysatoren, mittels denen in bekannter Weise die Oxidation von CO und CmHn und die Reduktion von NOx parallel zueinander durchgeführt werden. Voraussetzung dafür ist ein konstant stöchiometrisches Kraftstoffverhältnis (Lambda = 1). Ein derartiger Dreiwegekatalysator kann daher nur bei Fahrzeugen mit Ottomotor und Lambdaregelung eingesetzt werden.
  • Neben einer Lambdasonde stromauf des Dreiwegekatalysators zur Lambdaregelung wird hierbei ferner eine Lambdasonde stromab des Dreiwegekatalysators zur Überwachung der Funktionsweise des Katalysators eingesetzt. Damit sowohl die NOx- als auch die CO2/HC-Emessionen minimiert werden, ist somit eine entsprechend genaue Lambdaregelung bzw. Katalysatorüberwachung von großer Bedeutung.
  • Wie erwähnt, ist es hierbei bekannt, eine Lambdasonde stromauf des Dreiwegekatalysators und eine Lambdasonde stromab des Dreiwegekatalysators zu verwenden. Die Lambdaregelung nach dem Katalysator wird dabei durch Vorgabe eines Sollwertes für das Spannungssignal (Binärsignal) der Lambdasonde realisiert. Beispielsweise wird ein Sollwert von 750 mV mit einer Bandbreite von ± 20 mV vorgegeben. Innerhalb dieses Bereiches wird der Lambdasollwert stromauf des Katalysators nicht durch das Binärsignal der Lambdasonde stromab des Katalysators korrigiert. Außerhalb dieses Bereiches wird der Lambdasollwert stromauf des Katalysators korrigiert, und zwar in Abhängigkeit von der Spannungsdifferenz zwischen dem Sollwert und dem gemessenen Wert stromab des Dreiwegekatalysators. Wenn sich der Messwert unter dem Sollwert befindet, wird der Lambdasollwert stromauf des Katalysators in Richtung auf fett reduziert. Wenn sich der Messwert über dem Sollwert befindet, wird der Lambdasollwert stromauf des Katalysators in die Richtung mager erhöht.
  • Es kann auch von Vorteil sein, den Sollwert der Lambdasonde (des Binärsensors) beispielsweise über 750 mV einzustellen, um einen NOx-Durchbruch auf bessere Weise verhindern zu können. Bei einer höheren Binärspannung kann jedoch eine Spannungsänderung zu einer größeren Lambdaverschiebung führen, und die Genauigkeit des Lambdawertes stromab des Dreiwegekatalysators kann über den Binärspannungswert der Sonde nicht mehr garantiert werden. Dies kann zu einer höheren Lambdadrift in Richtung auf fett führen, was eine höhere HC- und CO-Emission bewirkt. Die bekannte Vorgehensweise ist daher mit Ungenauigkeiten behaftet.
  • In der DE 101 17 050 C1 ist ein Verfahren zur Reinigung des Abgases einer unter Lambda-Regelung betriebenen Brennkraftmaschine beschrieben. Die Brennkraftmaschine weist einen Abgastrakt auf, in dem ein Katalysator angeordnet ist, wobei fortlaufend ein Vorkat-Lambdawert des Abgases stromauf des Katalysators erfasst wird, wobei ein Vorkat-Lambdasignal erzeugt wird, das Vorkat-Lambdasignal als Führungsgröße der Lambda-Regelung verwendet wird, fortlaufend ein Nachkat-Lambdawert des Abgases stromab des Katalysators erfasst wird, wobei ein Nachkat-Lambdasignal erzeugt wird, das monoton fallend vom Lambdawert des Abgases stromab des Katalysators abhängt, und mittels des Nachkat-Lambdasignals in einer Trimmregelung eine Korrektur der Lambda-Regelung durchgeführt wird. Dabei wird ein Messsignal erzeugt, das zumindest unterhalb eines bestimmten Lambdawertes nahe Lambda = 1 streng monoton steigend oder fallend vom Lambdawert des Abgases stromab des Katalysators abhängt. Bei Signalpegeln des Nachkat-Lambdasignals oberhalb eines Schwellenwertes wird das weitere Messsignal und bei Signalpegeln des Nachkat-Lambdasignals unterhalb dieses Schwellenwertes wird das Nachkat-Lambdasignal selbst zur Trimmregelung verwendet.
  • Aus der DE 198 52 244 C1 sind ein Verfahren und eine Vorrichtung zur Abgasreinigung mit Trimmregelung einer Brennkraftmaschine bekannt. Zur Trimmregelung bei einer Brennkraftmaschine mit Drei-Wege-Katalysator wird statt einer stromab des Drei-Wege-Katalysators Lambda-Sonde ein NOx-empfindlicher Messaufnehmer verwendet. Ein Zusammenhang zwischen NOx-Konzentration im Abgas und Lambda-Wert wird ausgenutzt und ein internes, einen Vorzeichenwechsel bei Lambda = 1 aufweisendes Signal des Messaufnehmers verwendet, da das Signal des Messaufnehmers aufgrund einer NH3-Querempfindlichkeit bei Lambda = 1 lediglich ein lokales Minimum aufweist.
  • Aus der US 2010/0241340 A1 ist es bekannt, die Alterung eines NOx-Sensors bei der Steuerung einer Brennkraftmaschine mit Abgasnachbehandlungssystem zu berücksichtigen. Dabei wird u. a. vorgeschlagen, Offset-Abweichungen während einer Absperrung der Kraftstoffzufuhr oder bei abgestellter Brennkraftmaschine zu messen und zu korrigieren.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zur Verfügung zu stellen, mit dem sich die Emissionen eines Dreiwegekatalysators besonders genau steuern lassen.
  • Diese Aufgabe wird erfindungsgemäß bei einem Verfahren der angegebenen Art durch die folgenden Schritte gelöst:
    • - Anordnen eines NOx-Sensors mit integrierter Lambdasonde stromab des Dreiwegekatalysators;
    • - Erzeugen eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals mit dem NOx-Sensor;
    • - Festlegen eines Schwellenwertes des elektrischen Signals und Bestimmen eines Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen dem Sollwert des elektrischen Signals nach dem Dreiwegekatalysator und dem gemessenen elektrischen Signal, wenn das gemessene elektrische Signal unter dem Schwellenwert liegt;
    • - wenn das gemessene elektrische Signal über dem Schwellenwert liegt, Bestimmen des Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen einem NH3-Sollwert des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors;
    • - wenn die gemessene NH3-Konzentration höher ist als der NH3-Sollwert, Erhöhen des Lambdasollwertes stromauf des Dreiwegekatalysators und, wenn die gemessene NH3-Konzentration niedriger ist als der NH3-Sollwert, Reduzieren des Lambdasollwertes stromauf des Dreiwegekatalysators;
    • - Adaption des NH3-Sollwertes, wobei zur Adaption des NH3-Sollwertes der Sollwert des elektrischen Signals bei quasistatischen Bedingungen langsam in Richtung auf einen niedrigen Spannungswert vom tatsächlichen Spannungswert reduziert wird und der Lambdasollwert vor dem Dreiwegekatalysator über die Differenz zwischen dem Sollwert des elektrischen Signals und dem tatsächlichen Signal eingeregelt wird.
  • Bei der vorliegenden Erfindung wird ein für die Emissionssteuerung wichtiger Lambdasollwert stromauf eines Dreiwegekatalysators durch kombinierte Messung eines Lambdawertes und NH3-Wertes durch einen NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators bestimmt bzw. festgelegt. Durch die genaue Festlegung dieses Lambdasollwertes vor dem Dreiwegekatalysator kann Lambda nach dem Katalysator in einem genau definierten Bereich gehalten werden, um die NOx- und CO2/HC-Emissionen zu minimieren.
  • Bei dem erfindungsgemäßen Verfahren wird unterhalb eines Schwellenwertes des den Lambdawert wiedergebenden elektrischen Signals (Binärsignals), der beispielsweise auf 650 mV festgesetzt wird, der Lambdasollwert stromauf des Dreiwegekatalysators durch die Differenz zwischen dem Sollwert des elektrischen Signals für den Lambdawert und dem gemessenen Lambdawert (Binärsignal) bestimmt. Über einem Schwellenwert des entsprechenden Lambdasignals (Binärsignals), d.h. beispielsweise über 650 mV, wird der Lambdasollwert stromauf des Katalysators jedoch auf andere Weise bestimmt, nämlich mithilfe der Differenz zwischen einem NH3-Sollwert, der beispielsweise in Abhängigkeit von der Katalysatortemperatur auf 10 ppm festgelegt wird, des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors. Die nach dem Dreiwegekatalysator anfallende NH3-Menge wird daher erfindungsgemäß zu Steuerungszwecken verwendet, da in einem fetten Gemischzustand NH3 durch den Dreiwegekatalysator erzeugt wird und das NH3-Signal in Bezug auf den Lambdawert nach dem Dreiwegekatalysator sehr sensitiv ist. NH3 kann dabei ebenfalls mit dem NOx-Sensor gemessen werden.
  • In diesem Bereich wird nunmehr der Lambdasollwert vor dem Dreiwegekatalysator in Abhängigkeit von der vorstehend erwähnten Differenz variiert, und zwar wird der Lambdasollwert vor dem Dreiwegekatalysator auf mager hin erhöht, wenn die gemessene NH3-Konzentration höher ist als der NH3-Sollwert. Wenn im Gegensatz dazu die gemessene NH3-Konzentration geringer ist als der NH3-Sollwert, wird der Lambdasollwert vor dem Dreiwegekatalysator auf fett hin reduziert.
  • Des Weiteren wird der NH3-Sollwert adaptiert, da über die Lebensdauer des Dreiwegekatalysators bei gleichem Lambdawert infolge Alterung des Katalysators die NH3-Erzeugung zurückgehen und die NOx-Durchbruchswahrscheinlichkeit ansteigen kann. Der NH3-Sollwert wird dabei in der folgenden Weise adaptiert:
  • Der Sollwert des elektrischen Signals wird bei quasistatischen Bedingungen langsam in Richtung auf einen niedrigen Spannungswert vom tatsächlichen Spannungswert reduziert, und der Lambdasollwert vor dem Dreiwegekatalysator wird über die Differenz zwischen dem Sollwert des elektrischen Signals und dem tatsächlichen Signal eingeregelt. Die Geschwindigkeit der Reduzierung kann hier beispielsweise 40 mV pro sec in Richtung der niedrigen Spannung (beispielsweise 400 mV) betragen.
  • Gleichzeitig kann das NOx-Signal vom NOx-Sensor gemessen und aufgrund der Reduktion der NH3-Konzentration kontinuierlich auf ein Minimum reduziert werden und dann durch die höhere Durchbruchswahrscheinlichkeit der NOx-Konzentration durch den Katalysator wieder erhöht werden, wobei der Minimalwert des NOx-Signals für die Adaption und auch die Diagnose des Dreiwegekatalysators verwendet werden kann. Der NH3-Sollwert entspricht dabei dem Minimalwert und einer Differenz (Delta, beispielsweise 10 ppm). Bei einem neuen Katalysator sollte der Minimalwert 0 betragen.
  • Wenn der Minimalwert über einem Schwellenwert liegt, beispielsweise 70 ppm (in Abhängigkeit von der Temperatur), wird der Katalysator als defekt diagnostiziert.
  • Um die Genauigkeit des NOx-Sensors bei einer niedrigen Konzentration zu erhöhen, wird vorzugsweise das Offset des NOx-Sensors während einer Absperrung der Kraftstoffzufuhr oder eines Motorstopps adaptiert, wobei während dieser Phase das NOx-Signal kontinuierlich beobachtet wird, bis ein stabiler Minimalwert erreicht ist, und wobei dieser Wert benutzt wird, um ein NOx-Signalkennfeld zu adaptieren, da in diesem Fall das NOx-Ausgangssignal 0 sein sollte. Das NOx-Signalkennfeld entspricht hierbei der Korrelation zwischen dem Strom des NOx-Sensors und dem NOx-Konzentrationsausgangssignal.
  • Die einzige Figur zeigt in einem Diagramm das NOx-Signal und das binäre Lambdasignal von einem NOx-Sensor mit integrierter Lambdasonde, der nach einem Dreiwegekatalysator im Abgasstrang eines Ottomotors angeordnet ist. Auf der Abszisse ist hierbei der Lambdawert nach dem Dreiwegekatalysator eingetragen. Die Ordinate gibt das NOx-Signal in ppm sowie das binäre Lambdasensorsignal in mV wieder.
  • Im fetten Bereich des Lambdasignals ist ein Schwellenwert des Lambdasignals von 750 mV angegeben. Unterhalb dieses Schwellenwertes, d.h. unterhalb 750 mV, wird der Lambdasollwert vor dem Katalysator durch die Differenz zwischen dem Sollwert des Binärsignals und dem gemessenen Binärsignal bestimmt. Oberhalb dieses Schwellenwertes von 750 mV wird der Lambdasollwert vor dem Katalysator durch die Differenz zwischen einem NH3-Sollwert, der hier mit 10 ppm angegeben ist, des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors bestimmt. Wenn die gemessene NH3-Konzentratin höher ist als der NH3-Sollwert, wird der Lambdasollwert vor dem Katalysator auf mager erhöht. Wenn die Konzentration niedriger ist als der NH3-Sollwert, wird der Lambdasollwert auf fett verringert.
  • Durch eine kombinierte Messung eines Lambdawertes und eines NH-Wertes durch einen NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators lässt sich somit eine besonders genaue Festlegung des Lambdasollwertes vor dem Katalysator erreichen.
  • Die vorliegende Erfindung betrifft ferner eine Brennkraftmaschine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambdaregelung angeordnet ist, wobei ein NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators angeordnet ist, der zur Erzeugung eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals und zur Erzeugung eines die NH3-Konzentration im Abgas wiedergebenden NH3-Signals ausgebildet und zur Weiterleitung dieser Signale an eine Steuereinrichtung ausgebildet ist.
  • Vorzugsweise ist bei der Brennkraftmaschine der stromab des Dreiwegekatalysators angeordnete NOx-Sensor zur Erzeugung eines die NOx-Konzentration im Abgas wiedergebenden NOx-Signals und zur Weiterleitung dieses Signals an die Steuereinrichtung ausgebildet.

Claims (3)

  1. Verfahren zum Betreiben einer Brennkraftmaschine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambdaregelung angeordnet ist, mit den folgenden Schritten: - Anordnen eines NOx-Sensors mit integrierter Lambdasonde stromab des Dreiwegekatalysators; - Erzeugen eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals mit dem NOx-Sensor; - Festlegen eines Schwellenwertes des elektrischen Signals und Bestimmen eines Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen dem Sollwert des elektrischen Signals nach dem Dreiwegekatalysator und dem gemessenen elektrischen Signal, wenn das gemessene elektrische Signal unter dem Schwellenwert liegt; - wenn das gemessene elektrische Signal über dem Schwellenwert liegt, Bestimmen des Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen einem NH3-Sollwert des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors; - wenn die gemessene NH3-Konzentration höher ist als der NH3-Sollwert, Erhöhen des Lambdasollwertes stromauf des Dreiwegekatalysators und, wenn die gemessene NH3-Konzentration niedriger ist als der NH3-Sollwert, Reduzieren des Lambdasollwertes stromauf des Dreiwegekatalysators; - Adaption des NH3-Sollwertes, wobei zur Adaption des NH3-Sollwertes der Sollwert des elektrischen Signals bei quasistatischen Bedingungen langsam in Richtung auf einen niedrigen Spannungswert vom tatsächlichen Spannungswert reduziert wird und der Lambdasollwert vor dem Dreiwegekatalysator über die Differenz zwischen dem Sollwert des elektrischen Signals und dem tatsächlichen Signal eingeregelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass gleichzeitig das NOx-Signal vom NOx-Sensor gemessen und aufgrund der Reduktion der NH3-Konzentration kontinuierlich auf ein Minimum reduziert wird und dann durch die höhere Durchbruchswahrscheinlichkeit der NOx-Konzentration durch den Katalysator wieder erhöht wird, wobei der Minimalwert des NOx-Signals für die Adaption und auch die Diagnose des Dreiwegekatalysators verwendet wird.
  3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Offset des NOx-Sensors während einer Absperrung der Kraftstoff zufuhr oder eines Motorstopps adaptiert wird, wobei während dieser Phase das NOx-Signal kontinuierlich beobachtet wird, bis ein stabiler Minimalwert erreicht ist, und wobei dieser Wert benutzt wird, um ein NOx-Signalkennfeld zu adaptieren, da in diesem Fall das NOx-Ausgangssignal Null sein sollte.
DE102017218327.6A 2017-10-13 2017-10-13 Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung Active DE102017218327B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102017218327.6A DE102017218327B4 (de) 2017-10-13 2017-10-13 Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung
US16/755,468 US11143129B2 (en) 2017-10-13 2018-10-08 Method for operating an internal combustion engine
PCT/EP2018/077250 WO2019072730A1 (de) 2017-10-13 2018-10-08 Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine
KR1020207013350A KR102302834B1 (ko) 2017-10-13 2018-10-08 내연기관을 동작시키는 방법 및 내연기관
CN201880066710.0A CN111279056B (zh) 2017-10-13 2018-10-08 用于运行内燃机的方法和内燃机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017218327.6A DE102017218327B4 (de) 2017-10-13 2017-10-13 Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung

Publications (2)

Publication Number Publication Date
DE102017218327A1 DE102017218327A1 (de) 2019-04-18
DE102017218327B4 true DE102017218327B4 (de) 2019-10-24

Family

ID=63832406

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017218327.6A Active DE102017218327B4 (de) 2017-10-13 2017-10-13 Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung

Country Status (5)

Country Link
US (1) US11143129B2 (de)
KR (1) KR102302834B1 (de)
CN (1) CN111279056B (de)
DE (1) DE102017218327B4 (de)
WO (1) WO2019072730A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017218327B4 (de) 2017-10-13 2019-10-24 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung
DE102018206451B4 (de) 2018-04-26 2020-12-24 Vitesco Technologies GmbH Verfahren zum Betreiben einer Brennkraftmaschine mit 3-Wege-Katalysator und Lambdaregelung über NOx-Emissionserfassung
DE102019210362A1 (de) * 2019-07-12 2021-01-14 Robert Bosch Gmbh Verfahren zum Überwachen mindestens einer Ammoniakmesszelle
DE102020106502B4 (de) 2020-03-10 2024-01-04 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung mit einer Sensoreinrichtung sowie entsprechende Antriebseinrichtung
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
DE102021203935A1 (de) 2021-04-20 2022-10-20 Volkswagen Aktiengesellschaft Verfahren zur Durchführung einer On-Board-Diagnose eines Abgaskatalysators
DE102021132412B3 (de) 2021-12-09 2023-06-01 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
DE102022103558A1 (de) 2022-02-15 2023-08-17 Audi Aktiengesellschaft Vorrichtung und Verfahren zur Lambdaregelung von Ottomotoren und Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852244C1 (de) 1998-11-12 1999-12-30 Siemens Ag Verfahren und Vorrichtung zur Abgasreinigung mit Trimmregelung
DE10117050C1 (de) 2001-04-05 2002-09-12 Siemens Ag Verfahren zum Reinigen des Abgases einer Brennkraftmaschine
US20100241340A1 (en) 2009-03-23 2010-09-23 Ford Global Technologies, Llc Calibration scheme for an exhaust gas sensor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116543B2 (ja) * 2000-12-07 2008-07-09 エーイーピー・インヴェストメンツ・インコーポレーテッド 酸素・窒素酸化物複合センサ
JP4755697B2 (ja) * 2005-12-05 2011-08-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の排ガス領域内に配置された触媒を診断する方法、および、該方法を実施するための装置
JP2008175173A (ja) * 2007-01-19 2008-07-31 Mitsubishi Motors Corp 空燃比制御装置
JP4492669B2 (ja) * 2007-10-24 2010-06-30 トヨタ自動車株式会社 内燃機関の空燃比制御装置
WO2011033620A1 (ja) * 2009-09-16 2011-03-24 トヨタ自動車株式会社 内燃機関の排気浄化装置及び排気浄化方法
US8915062B2 (en) * 2009-10-09 2014-12-23 GM Global Technology Operations LLC Method and apparatus for monitoring a reductant injection system in an exhaust aftertreatment system
EP2761154A4 (de) * 2011-09-28 2016-01-06 Continental Controls Corp Automatisches sollwerteinstellungssystem und -verfahren für ein system zur steuerung des luft-kraftstoff-verhältnisses in einem motor
PL2599985T3 (pl) * 2011-11-30 2015-04-30 Hoerbiger Kompressortech Hold Sterownik stosunku powietrze/paliwo i sposób sterowania
DE102012201767A1 (de) * 2012-02-07 2013-08-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Dynamiküberwachung von Gas-Sensoren
DE102014201000A1 (de) * 2014-01-21 2015-07-23 Volkswagen Aktiengesellschaft Verfahren zur Diagnose eines Abgaskatalysators sowie Kraftfahrzeug
US10046276B2 (en) * 2014-09-24 2018-08-14 Ngk Spark Plug Co., Ltd. Sensor control method and sensor control apparatus
DE102015219113A1 (de) 2015-10-02 2017-04-06 Volkswagen Ag Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
JP6783629B2 (ja) * 2016-11-07 2020-11-11 日本特殊陶業株式会社 センサ制御装置、内燃機関制御システムおよび内燃機関制御装置
DE102017218327B4 (de) 2017-10-13 2019-10-24 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852244C1 (de) 1998-11-12 1999-12-30 Siemens Ag Verfahren und Vorrichtung zur Abgasreinigung mit Trimmregelung
DE10117050C1 (de) 2001-04-05 2002-09-12 Siemens Ag Verfahren zum Reinigen des Abgases einer Brennkraftmaschine
US20100241340A1 (en) 2009-03-23 2010-09-23 Ford Global Technologies, Llc Calibration scheme for an exhaust gas sensor

Also Published As

Publication number Publication date
CN111279056B (zh) 2022-03-01
DE102017218327A1 (de) 2019-04-18
US11143129B2 (en) 2021-10-12
KR102302834B1 (ko) 2021-09-16
US20200240345A1 (en) 2020-07-30
WO2019072730A1 (de) 2019-04-18
KR20200057782A (ko) 2020-05-26
CN111279056A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
DE102017218327B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung
DE102018206451B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit 3-Wege-Katalysator und Lambdaregelung über NOx-Emissionserfassung
DE102008042549B4 (de) Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE102008038677B4 (de) Verfahren und Vorrichtung zum Diagnostizieren eines Abgaskatalysators
DE10319983B3 (de) Verfahren und Vorrichtung zur Lambda-Regelung und zur Katalysatordiagnose bei einer Brennkraftmaschine
EP1084331A2 (de) Verfahren und vorrichtung zum überwachen der funktionsfähigkeit eines katalysators einer brennkraftmaschine
DE102013201228A1 (de) Verfahren und Vorrichtung zur Bestimmung der Sauerstoffspeicherfähigkeit einer Abgasreinigungsanlage
DE102016211595A1 (de) Verfahren und Vorrichtung zur Steuerung und/ oder Überwachung der Funktion einer Sekundärluftzuführung in einer Abgasreinigungsanlage
EP0530655B1 (de) Verfahren und Vorrichtung zur Regelung eines Otto-Motors und Prüfung eines ihm nachgeschalteten Katalysators
DE10309422B4 (de) Verfahren und Vorrichtung zur Kalibrierung eines NOx-Sensors
DE102009045376A1 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102012221549A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Zusammensetzung eines Gasgemischs
DE19819461A1 (de) Verfahren und Vorrichtung zur Abgasreinigung mit Trimmregelung
DE102009054935B4 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102016210143B4 (de) Verfahren zur Ermittlung eines Alterungszustands eines NOx-Speicherkatalysators einer Abgasnachbehandlungsanlage eines für einen Magerbetrieb ausgelegten Verbrennungsmotors sowie Steuerungseinrichtung
DE102005062116A1 (de) Verfahren zur Überwachung eines Abgasnachbehandlungssystems
DE102017205325A1 (de) Verfahren und Steuereinheit zum Betrieb eines Partikelfilters
DE102015222022B4 (de) Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Lambdasonde
WO1999056012A1 (de) Verfahren zur abgasreinigung mit trimmregelung
DE102017214444A1 (de) Verfahren zum Betreiben einer einen Dreiwegekatalysator aufweisenden Abgasnachbehandlungsanlage eines Verbrennungsmotors und Abgasnachbehandlungsanlage
DE10023072B4 (de) Verfahren sowie Vorrichtung zur Bestimmung einer NOx-Konzentration eines Abgasstromes einer Verbrennungskraftmaschine
DE10014881A1 (de) Vorrichtung und Verfahren zur Kalibrierung von Lambdasonden
DE102013200573A1 (de) Verfahren und Vorrichtung zur aktiven Diagnose von Komponenten einer Abgasreinigungsanlage einer Brennkraftmaschine
DE10300939A1 (de) Verfahren und Vorrichtung zur Überwachung des NOx-Signals eines NOx-Sensors
EP1434049B1 (de) Verfahren und Vorrichtung zur Überwachung des NOx-Signals eines NOx-Sensors

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE