WO2019072730A1 - Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine - Google Patents

Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine Download PDF

Info

Publication number
WO2019072730A1
WO2019072730A1 PCT/EP2018/077250 EP2018077250W WO2019072730A1 WO 2019072730 A1 WO2019072730 A1 WO 2019072730A1 EP 2018077250 W EP2018077250 W EP 2018077250W WO 2019072730 A1 WO2019072730 A1 WO 2019072730A1
Authority
WO
WIPO (PCT)
Prior art keywords
lambda
signal
value
sensor
way catalyst
Prior art date
Application number
PCT/EP2018/077250
Other languages
English (en)
French (fr)
Inventor
Hong Zhang
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US16/755,468 priority Critical patent/US11143129B2/en
Priority to KR1020207013350A priority patent/KR102302834B1/ko
Priority to CN201880066710.0A priority patent/CN111279056B/zh
Publication of WO2019072730A1 publication Critical patent/WO2019072730A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a method for operating an internal combustion engine, in whose exhaust gas system a three-way ⁇ catalyst is arranged with lambda control.
  • a three-way ⁇ catalyst is arranged with lambda control.
  • Such a three-way catalyst can therefore be used only in vehicles with gasoline engine and lambda control.
  • a lambda probe is also used downstream of the three-way catalytic converter to monitor the operation of the catalytic converter.
  • a lambda probe upstream of the three-way catalyst and a lambda probe downstream of the three-way catalyst The lambda control after the catalyst is realized by specifying a setpoint for the voltage signal (binary signal) of the lambda probe. For example, a setpoint of 750 mV with a bandwidth of ⁇ 20 mV is specified. Within this range, the lambda setpoint upstream of the catalytic converter is not affected by the corrected lambda probe downstream of the catalyst. Outside this range, the lambda setpoint upstream of the catalyst is corrected as a function of the voltage difference between the setpoint and the measured value downstream of the three-way catalyst. If the measured value is below the setpoint, the lambda setpoint upstream of the catalytic converter is reduced in the direction of rich. When the reading is above the setpoint, the lambda setpoint upstream of the catalyst is increased in the lean direction.
  • the desired value of the lambda sensor (of the binary sensor), for example, over 750 mV, in order to be able to prevent a NO x breakthrough in a better manner.
  • a voltage change may result in a larger lambda offset, and the accuracy of the lambda value downstream of the three-way catalyst can no longer be guaranteed by the binary voltage value of the probe. This can lead to higher lambda drift in the direction of rich, causing higher HC and CO emissions.
  • the known procedure is therefore subject to inaccuracies.
  • the present invention has for its object to provide a method of the type mentioned above, with which the emissions of a three-way catalyst can be controlled very precisely.
  • This object is achieved according to the invention in a method of the type indicated by the following steps: arranging an NO x sensor with integrated lambda probe downstream of the three-way catalytic converter; - Generating a lambda value according to the Dreiwegekata ⁇ lysator reproducing electrical signal with the NO x sensor;
  • NH 3 concentration is lower than the NH 3 setpoint, reducing the lambda setpoint upstream of the three-way ⁇ catalyst.
  • a more important for the emission control lambda setpoint value upstream of a three-way catalyst ⁇ by combined measurement of a lambda value and NH 3 -value or by a NO x sensor with integrated lambda probe downstream of the three-way catalyst is determined. established.
  • the precise definition of this lambda value upstream of the three-way catalyst ⁇ lambda can be maintained after the catalyst in a well-defined range to the NO x - and
  • the inventive method is below a threshold value of the lambda value-representing electrical signal (binary signal) which is placed firmly ⁇ for example, 650 mV, the lambda nominal value upstream of the Dreiwegekata- lysators by the difference between the target value of the electrical signal for the lambda value and the measured Lambda value (binary signal) determined.
  • a threshold value of the corresponding lambda signal (binary signal), ie, Example ⁇ example the 650 mV, is determined from the lambda setpoint value upstream of the Ka talysators j edoch in other ways, namely by using the difference between a NH 3 -Sollwert, of the example as a function of Catalyst temperature is set to 10 ppm, the NO x sensor and the measured NH 3 signal of the
  • the NH 3 amount obtained after the three-way catalyst is therefore used according to the invention for control purposes, since in a rich mixture state H 3 is generated by the three-way catalyst and the NH 3 signal is very sensitive to the lambda value after the three-way catalyst. NH 3 can also be measured with the NO x sensor.
  • the lambda target value before the three-way catalyst is now varied in accordance with the aforementioned difference, namely, the lambda target value before the three-way catalyst is increased lean if the measured NH 3 concentration is higher than the NH 3 target value.
  • the measured NH 3 concentration is lower than the NH 3 setpoint, the lambda setpoint is reduced to rich before the Dreiwegekata ⁇ lysator.
  • the NH 3 is adapted -Sollwert because over the life of the catalyst due to aging the decline NH 3 GENERATION Dreiwe ⁇ atalysators at the same lambda value and the NO x -Durch- break probability may increase.
  • the NH 3 setpoint value can be adapted, for example, in the following way:
  • the set point of the electrical signal is slowly reduced at quasi-static conditions toward a low voltage value from the actual voltage value, and the lambda setpoint before the three-way catalyst is adjusted by the difference between the set point of the electrical signal and the actual signal.
  • the speed of the reduction can be, for example, 40 mV per second in the direction of the low voltage (for example, 400 mV).
  • the NO x signal from the NO x sensor can be measured and continuously reduced to a minimum due to the reduction of the NH 3 concentration and then by the higher
  • Breakdown probability of the NO x concentration can be increased again by the catalyst, wherein the minimum value of the NO x signal for the adaptation and the diagnosis of the three-way catalyst ⁇ can be used.
  • the NH 3 setpoint corresponds to the minimum value and a difference (delta, for example 10 ppm). For a new catalyst, the minimum value should be 0.
  • the catalyst is diagnosed as defective.
  • the offset of the NOx sensor In order to increase the accuracy of the NOx sensor at a low Kon ⁇ concentration, preferably the offset of the
  • NO x sensor is adapted during shut-off of fueling or engine stop, during which phase the NO x signal is continuously monitored until a stable minimum value is reached, and this value is used to adapt a NO x signal map, because in this case that NO x output signal should be 0.
  • the NO x -Signalkennfeld ent ⁇ speaks here of the correlation between the power of the
  • the single FIGURE shows a diagram of the NO x signal and the binary lambda signal from a NO x sensor with integrated lambda probe, which is arranged according to a three-way catalytic converter in the exhaust system of a gasoline engine.
  • the abscissa indicates the lambda value after the three-way catalytic converter.
  • the or- dinate represents the NO x signal in ppm and the binary lambda sensor signal in mV.
  • a threshold value of the lambda signal of 750 mV is indicated. Below this threshold value, ie below 750 mV, the lambda desired value upstream of the catalytic converter is determined by the difference between the setpoint value of the binary signal and the measured binary signal. Above this threshold value of 750 mV, the desired lambda value before the catalyst is determined by the difference between an NH 3 setpoint, which is here indicated as 10 ppm, of the NO x sensor and the measured NH 3 signal of the NO x sensor.
  • NH 3 -Konzentratin is higher than the NH 3 setpoint, the lambda setpoint before the catalyst is increased to lean. If the concentration is lower than the NH 3 setpoint, the lambda setpoint will be reduced to rich.
  • the present invention further relates to a Brennkraftma ⁇ machine, in whose exhaust system a three-way catalyst with Lambda control is arranged, wherein a NO x sensor with integrated lambda probe downstream of the three-way catalyst is arranged on ⁇ , which is designed to generate a lambda value after the three-way catalyst reproducing electrical signal and generating a NH 3 concentration in the exhaust gas reproducing NH 3 signal and is designed to forward these signals to a control device.
  • the internal combustion engine arranged downstream of the three-way catalyst NO x sensor for generating a NO x concentration in the exhaust gas reproducing NO x signal and for forwarding this signal to the control device is formed.

Abstract

Es werden ein Verfahren zum Betreiben einer Brennkraftmaschine und eine Brennkraftmaschine beschrieben. Im Abgasstrang der Brennkraftmaschine befindet sich ein Dreiwegekatalysator mit Lambdaregelung, dem ein NOx-Sensor mit integrierter Lambdasonde nachgeordnet ist. Durch kombinierte Messung eines Lambdawertes und NH3-Wertes durch den NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators wird ein Lambdasollwert stromauf des Dreiwegekatalysators bestimmt. Auf diese Weise lässt sich das Emissionsverhalten des Dreiwegekatalysators besonders genau überwachen und steuern.

Description

Beschreibung
Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine, in deren Abgasstrang ein Dreiwege¬ katalysator mit Lambdaregelung angeordnet ist. In Bezug auf die Emissionen von Brennkraftmaschinen werden immer strengere Anforderungen gestellt. Dies betrifft auch den Einsatz von geregelten Dreiwegekatalysatoren, mittels denen in bekannter Weise die Oxidation von CO und CmHn und die Reduktion von NOx parallel zueinander durchgeführt werden. Voraussetzung dafür ist ein konstant stöchiometrisches KraftstoffVerhältnis (Lambda = 1) . Ein derartiger Dreiwegekatalysator kann daher nur bei Fahrzeugen mit Ottomotor und Lambdaregelung eingesetzt werden.
Neben einer Lambdasonde stromauf des Dreiwegekatalysators zur Lambdaregelung wird hierbei ferner eine Lambdasonde stromab des Dreiwegekatalysators zur Überwachung der Funktionsweise des Katalysators eingesetzt. Damit sowohl die NOx- als auch die C02/HC-Emessionen minimiert werden, ist somit eine entsprechend genaue Lambdaregelung bzw. Katalysatorüberwachung von großer Bedeutung.
Wie erwähnt, ist es hierbei bekannt, eine Lambdasonde stromauf des Dreiwegekatalysators und eine Lambdasonde stromab des Dreiwegekatalysators zu verwenden. Die Lambdaregelung nach dem Katalysator wird dabei durch Vorgabe eines Sollwertes für das Spannungssignal (Binärsignal) der Lambdasonde realisiert. Beispielsweise wird ein Sollwert von 750 mV mit einer Bandbreite von ± 20 mV vorgegeben. Innerhalb dieses Bereiches wird der Lambdasollwert stromauf des Katalysators nicht durch das Bi- närsignal der Lambdasonde stromab des Katalysators korrigiert. Außerhalb dieses Bereiches wird der Lambdasollwert stromauf des Katalysators korrigiert, und zwar in Abhängigkeit von der Spannungsdifferenz zwischen dem Sollwert und dem gemessenen Wert stromab des Dreiwegekatalysators. Wenn sich der Messwert unter dem Sollwert befindet, wird der Lambdasollwert stromauf des Katalysators in Richtung auf fett reduziert. Wenn sich der Messwert über dem Sollwert befindet, wird der Lambdasollwert stromauf des Katalysators in die Richtung mager erhöht.
Es kann auch von Vorteil sein, den Sollwert der Lambdasonde (des Binärsensors) beispielsweise über 750 mV einzustellen, um einen NOx-Durchbruch auf bessere Weise verhindern zu können. Bei einer höheren Binärspannung kann jedoch eine Spannungsänderung zu einer größeren Lambdaverschiebung führen, und die Genauigkeit des Lambdawertes stromab des Dreiwegekatalysators kann über den Binärspannungswert der Sonde nicht mehr garantiert werden. Dies kann zu einer höheren Lambdadrift in Richtung auf fett führen, was eine höhere HC- und CO-Emission bewirkt. Die bekannte Vorgehensweise ist daher mit Ungenauigkeiten behaftet.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zur Verfügung zu stellen, mit dem sich die Emissionen eines Dreiwegekatalysators besonders genau steuern lassen.
Diese Aufgabe wird erfindungsgemäß bei einem Verfahren der angegebenen Art durch die folgenden Schritte gelöst: - Anordnen eines NOx-Sensors mit integrierter Lambdasonde stromab des Dreiwegekatalysators; - Erzeugen eines einen Lambdawert nach dem Dreiwegekata¬ lysator wiedergebenden elektrischen Signals mit dem NOx-Sensor ;
- Festlegen eines Schwellenwertes des elektrischen Signals und Bestimmen eines Lambdasollwertes stromauf des Drei¬ wegekatalysators mithilfe der Differenz zwischen dem Sollwert des elektrischen Signals nach dem Dreiwegeka¬ talysator und dem gemessenen elektrischen Signal, wenn das gemessene elektrische Signal unter dem Schwellenwert liegt;
- wenn das gemessene elektrische Signal über dem Schwel¬ lenwert liegt, Bestimmen des Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen einem NH3-Sollwert des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors ; und
- wenn die gemessene NH3-Konzentration höher ist als der NH3-Sollwert , Erhöhen des Lambdasollwertes stromauf des Dreiwegekatalysators und, wenn die gemessene
NH3-Konzentration niedriger ist als der NH3-Sollwert , Reduzieren des Lambdasollwertes stromauf des Dreiwege¬ katalysators .
Bei der vorliegenden Erfindung wird ein für die Emissionssteuerung wichtiger Lambdasollwert stromauf eines Dreiwege¬ katalysators durch kombinierte Messung eines Lambdawertes und NH3-Wertes durch einen NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators bestimmt bzw . festgelegt. Durch die genaue Festlegung dieses Lambdasollwertes vor dem Drei¬ wegekatalysator kann Lambda nach dem Katalysator in einem genau definierten Bereich gehalten werden, um die NOx- und
C02/HC-Emissionen zu minimieren. Bei dem erfindungsgemäßen Verfahren wird unterhalb eines Schwellenwertes des den Lambdawert wiedergebenden elektrischen Signals (Binärsignals) , der beispielsweise auf 650 mV fest¬ gesetzt wird, der Lambdasollwert stromauf des Dreiwegekata- lysators durch die Differenz zwischen dem Sollwert des elektrischen Signals für den Lambdawert und dem gemessenen Lambdawert (Binärsignal) bestimmt. Über einem Schwellenwert des entsprechenden Lambdasignals (Binärsignals), d.h. beispiels¬ weise über 650 mV, wird der Lambdasollwert stromauf des Ka- talysators j edoch auf andere Weise bestimmt , nämlich mithilfe der Differenz zwischen einem NH3-Sollwert , der beispielsweise in Abhängigkeit von der Katalysatortemperatur auf 10 ppm festgelegt wird, des NOx-Sensors und dem gemessenen NH3-Signal des
NOx-Sensors. Die nach dem Dreiwegekatalysator anfallende NH3-Menge wird daher erfindungsgemäß zu Steuerungszwecken verwendet, da in einem fetten Gemischzustand H3 durch den Dreiwegekatalysator erzeugt wird und das NH3-Signal in Bezug auf den Lambdawert nach dem Dreiwegekatalysator sehr sensitiv ist. NH3 kann dabei ebenfalls mit dem NOx-Sensor gemessen werden.
In diesem Bereich wird nunmehr der Lambdasollwert vor dem Dreiwegekatalysator in Abhängigkeit von der vorstehend erwähnten Differenz variiert, und zwar wird der Lambdasollwert vor dem Dreiwegekatalysator auf mager hin erhöht, wenn die gemessene NH3-Konzentration höher ist als der NH3-Sollwert . Wenn im Gegensatz dazu die gemessene NH3-Konzentration geringer ist als der NH3-Sollwert , wird der Lambdasollwert vor dem Dreiwegekata¬ lysator auf fett hin reduziert. In weiterer Ausführung des erfindungsgemäßen Verfahrens wird der NH3-Sollwert adaptiert, da über die Lebensdauer des Dreiwe¬ gekatalysators bei gleichem Lambdawert infolge Alterung des Katalysators die NH3-Erzeugung zurückgehen und die NOx-Durch- bruchswahrscheinlichkeit ansteigen kann. Der NH3-Sollwert kann dabei beispielsweise in der folgenden Weise adaptiert werden:
Der Sollwert des elektrischen Signals wird bei quasistatischen Bedingungen langsam in Richtung auf einen niedrigen Spannungswert vom tatsächlichen Spannungswert reduziert, und der Lambdasollwert vor dem Dreiwegekatalysator wird über die Differenz zwischen dem Sollwert des elektrischen Signals und dem tatsächlichen Signal eingeregelt. Die Geschwindigkeit der Reduzierung kann hier beispielsweise 40 mV pro sec in Richtung der niedrigen Spannung (beispielsweise 400 mV) betragen.
Gleichzeitig kann das NOx-Signal vom NOx-Sensor gemessen und aufgrund der Reduktion der NH3-Konzentration kontinuierlich auf ein Minimum reduziert werden und dann durch die höhere
Durchbruchswahrscheinlichkeit der NOx-Konzentration durch den Katalysator wieder erhöht werden, wobei der Minimalwert des NOx-Signals für die Adaption und auch die Diagnose des Drei¬ wegekatalysators verwendet werden kann. Der NH3-Sollwert entspricht dabei dem Minimalwert und einer Differenz (Delta, beispielsweise 10 ppm) . Bei einem neuen Katalysator sollte der Minimalwert 0 betragen.
Wenn der Minimalwert über einem Schwellenwert liegt, bei- spielsweise 70 ppm (in Abhängigkeit von der Temperatur) , wird der Katalysator als defekt diagnostiziert.
Um die Genauigkeit des NOx-Sensors bei einer niedrigen Kon¬ zentration zu erhöhen, wird vorzugsweise das Offset des
NOx-Sensors während einer Absperrung der Kraftstoffzufuhr oder eines Motorstopps adaptiert, wobei während dieser Phase das NOx-Signal kontinuierlich beobachtet wird, bis ein stabiler Minimalwert erreicht ist, und wobei dieser Wert benutzt wird, um ein NOx-Signalkennfeld zu adaptieren, da in diesem Fall das NOx-Ausgangssignal 0 sein sollte. Das NOx-Signalkennfeld ent¬ spricht hierbei der Korrelation zwischen dem Strom des
NOx-Sensors und dem NOx-Konzentrationsausgangssignal . Die einzige Figur zeigt in einem Diagramm das NOx-Signal und das binäre Lambdasignal von einem NOx-Sensor mit integrierter Lambdasonde, der nach einem Dreiwegekatalysator im Abgasstrang eines Ottomotors angeordnet ist. Auf der Abszisse ist hierbei der Lambdawert nach dem Dreiwegekatalysator eingetragen. Die Or- dinate gibt das NOx-Signal in ppm sowie das binäre Lamb- dasensorsignal in mV wieder.
Im fetten Bereich des Lambdasignals ist ein Schwellenwert des Lambdasignals von 750 mV angegeben. Unterhalb dieses Schwel- lenwertes, d.h. unterhalb 750 mV, wird der Lambdasollwert vor dem Katalysator durch die Differenz zwischen dem Sollwert des Binärsignals und dem gemessenen Binärsignal bestimmt. Oberhalb dieses Schwellenwertes von 750 mV wird der Lambdasollwert vor dem Katalysator durch die Differenz zwischen einem NH3-Sollwert , der hier mit 10 ppm angegeben ist, des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors bestimmt. Wenn die gemessene
NH3-Konzentratin höher ist als der NH3-Sollwert , wird der Lambdasollwert vor dem Katalysator auf mager erhöht. Wenn die Konzentration niedriger ist als der NH3-Sollwert , wird der Lambdasollwert auf fett verringert.
Durch eine kombinierte Messung eines Lambdawertes und eines NH-Wertes durch einen NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators lässt sich somit eine besonders genaue Festlegung des Lambdasollwertes vor dem Katalysator erreichen .
Die vorliegende Erfindung betrifft ferner eine Brennkraftma¬ schine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambdaregelung angeordnet ist, wobei ein NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators an¬ geordnet ist, der zur Erzeugung eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals und zur Erzeugung eines die NH3-Konzentration im Abgas wiedergebenden NH3-Signals ausgebildet und zur Weiterleitung dieser Signale an eine Steuereinrichtung ausgebildet ist.
Vorzugsweise ist bei der Brennkraftmaschine der stromab des Dreiwegekatalysators angeordnete NOx-Sensor zur Erzeugung eines die NOx-Konzentration im Abgas wiedergebenden NOx-Signals und zur Weiterleitung dieses Signals an die Steuereinrichtung ausgebildet .

Claims

Verfahren zum Betreiben einer Brennkraftmaschine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambda- regelung angeordnet ist, mit den folgenden Schritten:
- Anordnen eines NOx-Sensors mit integrierter Lamb- dasonde stromab des Dreiwegekatalysators;
- Erzeugen eines einen Lambdawert nach dem Dreiwege¬ katalysator wiedergebenden elektrischen Signals mit dem NOx-Sensor;
- Festlegen eines Schwellenwertes des elektrischen Signals und Bestimmen eines Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen dem Sollwert des elektrischen Signals nach dem Dreiwegekatalysator und dem gemessenen
elektrischen Signal, wenn das gemessene elektrische Signal unter dem Schwellenwert liegt;
- wenn das gemessene elektrische Signal über dem
Schwellenwert liegt, Bestimmen des Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen einem NH3-Sollwert des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors; und
- wenn die gemessene NH3-Konzentration höher ist als der NH3-Sollwert , Erhöhen des Lambdasollwertes stromauf des Dreiwegekatalysators und, wenn die gemessene NH3-Konzentration niedriger ist als der NH3-Sollwert , Reduzieren des Lambdasollwertes stromauf des Drei¬ wegekatalysators . Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der NH3-Sollwert adaptiert wird.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur Adaption des NH3-Sollwertes der Sollwert des elektrischen Signals bei quasistatischen Bedingungen langsam in Richtung auf einen niedrigen Spannungswert vom tatsächlichen Spannungswert reduziert wird und der Lambdasollwert vor dem Dreiwegekatalysator über die Differenz zwischen dem Sollwert des elektrischen Signals und dem tatsächlichen Signal eingeregelt wird.
Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass gleichzeitig das NOx-Signal vom NOx-Sensor gemessen und aufgrund der Reduktion der NH3-Konzentration kontinuierlich auf ein Minimum reduziert wird und dann durch die höhere Durchbruchswahrscheinlichkeit der
NOx-Konzentration durch den Katalysator wieder erhöht wird, wobei der Minimalwert des NOx-Signals für die Adaption und auch die Diagnose des Dreiwegekatalysators verwendet wird.
Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Offset des NOx-Sensors während einer Absperrung der Kraftstoffzufuhr oder eines Motorstopps adaptiert wird, wobei während dieser Phase das NOx-Signal kontinuierlich beobachtet wird, bis ein stabiler Minimalwert erreicht ist, und wobei dieser Wert benutzt wird, um ein NOx-Signalkennfeld zu adaptieren, da in diesem Fall das NOx-Ausgangssignal Null sein sollte .
Brennkraftmaschine, in deren Abgasstrang ein Dreiwe¬ gekatalysator mit Lambdaregelung angeordnet ist, dadurch gekennzeichnet, dass ein NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators angeordnet ist, der zur Erzeugung eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals und zur Erzeugung eines die NH3-Konzentration im Abgas wiedergebenden NH3-Signals ausgebildet und zur Wei¬ terleitung dieser Signale an eine Steuereinrichtung ausgebildet ist.
7. Brennkraftmaschine nach Anspruch 6, dadurch gekennzeichnet, dass der stromab des Dreiwegekatalysators angeordnete NOx-Sensor zur Erzeugung eines die
NOx-Konzentration im Abgas wiedergebenden NOx-Signals und zur Weiterleitung dieses Signals an die Steuereinrichtung ausgebildet ist.
PCT/EP2018/077250 2017-10-13 2018-10-08 Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine WO2019072730A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/755,468 US11143129B2 (en) 2017-10-13 2018-10-08 Method for operating an internal combustion engine
KR1020207013350A KR102302834B1 (ko) 2017-10-13 2018-10-08 내연기관을 동작시키는 방법 및 내연기관
CN201880066710.0A CN111279056B (zh) 2017-10-13 2018-10-08 用于运行内燃机的方法和内燃机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017218327.6A DE102017218327B4 (de) 2017-10-13 2017-10-13 Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung
DE102017218327.6 2017-10-13

Publications (1)

Publication Number Publication Date
WO2019072730A1 true WO2019072730A1 (de) 2019-04-18

Family

ID=63832406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/077250 WO2019072730A1 (de) 2017-10-13 2018-10-08 Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine

Country Status (5)

Country Link
US (1) US11143129B2 (de)
KR (1) KR102302834B1 (de)
CN (1) CN111279056B (de)
DE (1) DE102017218327B4 (de)
WO (1) WO2019072730A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11143129B2 (en) 2017-10-13 2021-10-12 Vitesco Technologies GmbH Method for operating an internal combustion engine
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018206451B4 (de) 2018-04-26 2020-12-24 Vitesco Technologies GmbH Verfahren zum Betreiben einer Brennkraftmaschine mit 3-Wege-Katalysator und Lambdaregelung über NOx-Emissionserfassung
DE102019210362A1 (de) * 2019-07-12 2021-01-14 Robert Bosch Gmbh Verfahren zum Überwachen mindestens einer Ammoniakmesszelle
DE102020106502B4 (de) 2020-03-10 2024-01-04 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung mit einer Sensoreinrichtung sowie entsprechende Antriebseinrichtung
DE102021203935A1 (de) 2021-04-20 2022-10-20 Volkswagen Aktiengesellschaft Verfahren zur Durchführung einer On-Board-Diagnose eines Abgaskatalysators
DE102021132412B3 (de) 2021-12-09 2023-06-01 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
DE102022103558A1 (de) 2022-02-15 2023-08-17 Audi Aktiengesellschaft Vorrichtung und Verfahren zur Lambdaregelung von Ottomotoren und Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008957A1 (en) * 2000-12-07 2003-01-30 Aep Emtech, Llc COMBINED OXYGEN AND NOx SENSOR
JP2008175173A (ja) * 2007-01-19 2008-07-31 Mitsubishi Motors Corp 空燃比制御装置
EP2207953A2 (de) * 2007-10-24 2010-07-21 Toyota Jidosha Kabusiki Kaisha Vorrichtung zur steuerung des kraftstoff-luft-verhältnisses und verfahren zur steuerung des kraftstoff-luft-verhältnisses in einem verbrennungsmotor
EP2599985A1 (de) * 2011-11-30 2013-06-05 Hoerbiger Kompressortechnik Holding GmbH Steuerung des Luft-Kraftstoff-Verhältnisses und Steuerungsverfahren
US9303575B2 (en) * 2011-09-28 2016-04-05 Continental Controls Corporation Automatic set point adjustment system and method for engine air-fuel ratio control system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852244C1 (de) 1998-11-12 1999-12-30 Siemens Ag Verfahren und Vorrichtung zur Abgasreinigung mit Trimmregelung
DE10117050C1 (de) 2001-04-05 2002-09-12 Siemens Ag Verfahren zum Reinigen des Abgases einer Brennkraftmaschine
EP1960642B1 (de) * 2005-12-05 2009-04-15 Robert Bosch Gmbh Verfahren zur diagnose eines in einem abgasbereich einer brennkraftmaschine angeordneten katalysators und vorrichtung zur durchführung des verfahrens
US8036814B2 (en) 2009-03-23 2011-10-11 Ford Global Technologies, Llc Calibration scheme for an exhaust gas sensor
WO2011033620A1 (ja) * 2009-09-16 2011-03-24 トヨタ自動車株式会社 内燃機関の排気浄化装置及び排気浄化方法
US8915062B2 (en) * 2009-10-09 2014-12-23 GM Global Technology Operations LLC Method and apparatus for monitoring a reductant injection system in an exhaust aftertreatment system
DE102012201767A1 (de) * 2012-02-07 2013-08-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Dynamiküberwachung von Gas-Sensoren
DE102014201000A1 (de) * 2014-01-21 2015-07-23 Volkswagen Aktiengesellschaft Verfahren zur Diagnose eines Abgaskatalysators sowie Kraftfahrzeug
US10046276B2 (en) * 2014-09-24 2018-08-14 Ngk Spark Plug Co., Ltd. Sensor control method and sensor control apparatus
DE102015219113A1 (de) 2015-10-02 2017-04-06 Volkswagen Ag Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
JP6783629B2 (ja) * 2016-11-07 2020-11-11 日本特殊陶業株式会社 センサ制御装置、内燃機関制御システムおよび内燃機関制御装置
DE102017218327B4 (de) 2017-10-13 2019-10-24 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008957A1 (en) * 2000-12-07 2003-01-30 Aep Emtech, Llc COMBINED OXYGEN AND NOx SENSOR
JP2008175173A (ja) * 2007-01-19 2008-07-31 Mitsubishi Motors Corp 空燃比制御装置
EP2207953A2 (de) * 2007-10-24 2010-07-21 Toyota Jidosha Kabusiki Kaisha Vorrichtung zur steuerung des kraftstoff-luft-verhältnisses und verfahren zur steuerung des kraftstoff-luft-verhältnisses in einem verbrennungsmotor
US9303575B2 (en) * 2011-09-28 2016-04-05 Continental Controls Corporation Automatic set point adjustment system and method for engine air-fuel ratio control system
EP2599985A1 (de) * 2011-11-30 2013-06-05 Hoerbiger Kompressortechnik Holding GmbH Steuerung des Luft-Kraftstoff-Verhältnisses und Steuerungsverfahren

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11143129B2 (en) 2017-10-13 2021-10-12 Vitesco Technologies GmbH Method for operating an internal combustion engine
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Also Published As

Publication number Publication date
DE102017218327B4 (de) 2019-10-24
KR102302834B1 (ko) 2021-09-16
CN111279056A (zh) 2020-06-12
KR20200057782A (ko) 2020-05-26
CN111279056B (zh) 2022-03-01
US20200240345A1 (en) 2020-07-30
US11143129B2 (en) 2021-10-12
DE102017218327A1 (de) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2019072730A1 (de) Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine
AT399398B (de) Verfahren zur überprüfung und justierung von lambda-sonden-geregelten katalytischen abgasreinigungsanlagen von verbrennungsmotoren
DE19953601C2 (de) Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine
EP1327138B1 (de) Verfahren und vorrichtung zur eigendiagnose eines nox-sensors
DE10319983B3 (de) Verfahren und Vorrichtung zur Lambda-Regelung und zur Katalysatordiagnose bei einer Brennkraftmaschine
DE102011052804A1 (de) Gassensorsteuervorrichtung, welche die Ausgabecharakteristik eines Gassensors steuert
DE69634580T2 (de) Feststellungsvorrichtung der Katalysatorverschlechterung einer Brennkraftmaschine
EP1272746A1 (de) Verfahren zur diagnose einer abgasreinigungsanlage einer lambdageregelten brennkraftmaschine
DE102004009615B4 (de) Verfahren zur Ermittlung der aktuellen Sauerstoffbeladung eines 3-Wege-Katalysators einer lambdageregelten Brennkraftmaschine
DE19931321A1 (de) Verfahren zum Überprüfen eines Dreiwege-Abgaskatalysators einer Brennkraftmaschine
WO1999047795A2 (de) Verfahren und vorrichtung zum überwachen der funktionsfähigkeit eines katalysators einer brennkraftmaschine
DE102013201228A1 (de) Verfahren und Vorrichtung zur Bestimmung der Sauerstoffspeicherfähigkeit einer Abgasreinigungsanlage
CH667133A5 (de) Verfahren zur optimierung des kraftstoff-luft-verhaeltnisses im instationaeren zustand bei einem verbrennungsmotor.
DE102009045376A1 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE112018002709T5 (de) Gassensor-steuervorrichtung
DE102012221549A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Zusammensetzung eines Gasgemischs
DE102009054935B4 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
EP2142784B1 (de) Lambda-regelung mit einer kennlinienadaption
DE102016210143A1 (de) Verfahren zur Ermittlung eines Alterungszustands eines NOx-Speicherkatalysators einer Abgasnachbehandlungsanlage eines für einen Magerbetrieb ausgelegten Verbrennungsmotors sowie Steuerungseinrichtung
DE102020211108B3 (de) Verfahren und Recheneinheit zur Anpassung einer modellierten Reaktionskinetik eines Katalysators
DE10257059B4 (de) Verfahren und Vorrichtung zur Diagnose von Katalysatoreinheiten
DE102015222022B4 (de) Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Lambdasonde
DE102017214444A1 (de) Verfahren zum Betreiben einer einen Dreiwegekatalysator aufweisenden Abgasnachbehandlungsanlage eines Verbrennungsmotors und Abgasnachbehandlungsanlage
EP2652297A1 (de) Verfahren zur erkennung der betriebsbereitschaft einer sprung-lambdasonde
DE102010030635B4 (de) Verfahren und Vorrichtung zur Aufheizung eines Katalysators zur Abgasreinigung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18785318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207013350

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18785318

Country of ref document: EP

Kind code of ref document: A1