JP4484257B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP4484257B2
JP4484257B2 JP30852997A JP30852997A JP4484257B2 JP 4484257 B2 JP4484257 B2 JP 4484257B2 JP 30852997 A JP30852997 A JP 30852997A JP 30852997 A JP30852997 A JP 30852997A JP 4484257 B2 JP4484257 B2 JP 4484257B2
Authority
JP
Japan
Prior art keywords
memory cell
signal
circuit
sense amplifier
decoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30852997A
Other languages
English (en)
Other versions
JPH11144490A (ja
Inventor
博 高橋
重利 村松
真康 糸魚川
Original Assignee
日本テキサス・インスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テキサス・インスツルメンツ株式会社 filed Critical 日本テキサス・インスツルメンツ株式会社
Priority to JP30852997A priority Critical patent/JP4484257B2/ja
Publication of JPH11144490A publication Critical patent/JPH11144490A/ja
Application granted granted Critical
Publication of JP4484257B2 publication Critical patent/JP4484257B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冗長機能を有する半導体記憶装置、例えば、ROMに関するものである。
【0002】
【従来の技術】
近年、半導体製造技術の進歩に伴い、高集積化が進み、大容量の半導体記憶装置が製品化されている。半導体記憶装置の大容量化に伴い、チップあたりに欠陥が生じる確率が増大する傾向にある。これは、メモリチップの製造歩留りを低下させる大きな原因となる。
このため、製造歩留り低下の主原因である欠陥メモリセルを救済すべく、種々の方法が提案されている。例えば、一般的に、ROMの欠陥メモリセルの救済方法として、PROM,EPROMによる欠陥メモリセルの置き換え、ECC(Error correction code )回路などが一般的に用いられている。
【0003】
PROMまたはEPROMを用いた方法では、複数のPROMまたはEPROMメモリセルにより冗長メモリセルアレイを構成する。検査時にメモリセルアレイに不良メモリセルが検出された場合には、アドレス登録により当該不良メモリセルを代替する冗長メモリセルアレイ内のPROMまたはEPROMのメモリセルが指定される。さらに、不良メモリセルの記憶データが代替用のPROMまたはEPROMの冗長メモリセルに書き込まれる。読み出し時に不良メモリセルへのアクセスが要求された場合に、切り換え回路により当該不良メモリセルの代わりに冗長メモリセルアレイにある代替用のPROMまたはEPROMのメモリセルが選択され、それに対して読み出しが行われる。
【0004】
ECC法では、メモリセルアレイの他にエラー訂正用データを記憶する記憶手段、例えば、PROMまたはEPROMで構成される記憶手段が設けられている。メモリアクセス時には、不良メモリセルを含む読み出しデータと上記記憶手段に記憶されているエラー訂正用データが訂正回路に入力され、訂正回路により、読み出された不良ビットのデータが修正される。
【0005】
また、上述した方法以外に、通常のメモリセルアレイの他に、当該メモリセルアレイと同一特性を持つ複数のメモリセルアレイを備えた冗長メモリセルアレイを設けて、通常のメモリセルアレイに不良メモリセルが検出されたとき、切り換え回路により、冗長メモリセルで通常のメモリセルを代替する置き換え処理が行われる。即ち、読み出しのとき、通常のメモリセルへアクセスする代わりに、冗長メモリセルへのアクセスが実行される。
【0006】
上述した各方法により、メモリセルアレイ中の不良メモリセルなどによる欠陥が救済でき、製造工程における半導体記憶装置の歩留りの向上が図れ、製造コストの削減を実現できる。
【0007】
【発明が解決しようとする課題】
ところで、上述した従来の救済方法においては、それぞれに問題点がある。
例えば、PROMまたはEPROMにより冗長メモリセルアレイを構成し、それを用いて不良メモリセルを代替する方法においては、プロセスの親和性において問題があり、それによる製造工程数の増加がメモリチップのコストの増加を招く。
【0008】
例えば、EPROMにより冗長メモリセルアレイを構成する場合に、EPROMのメモリセルではトンネルオキサイドや小面積で形成するためのONO構造の強誘電体膜形成のための工程が必要であり、それらの工程を標準ロジックプロセスに追加する必要がある。さらに、アクセス速度の点においても大きなメモリセルアレイでの高速化が困難であり、アレイの分割の必要がある。このため、オーバーヘッドにより集積度の大幅な低下が回避できないという不利益がある。
【0009】
また、ECC回路による不良ビットのエラー訂正においては、訂正用データを記憶する記憶手段、例えば、PROMまたはEPROMのメモリアレイが必要となり、メモリチップ面積の増加を招く。さらに、一ワードを訂正するために数ビットのパリティビットが必要となり、エラー検出、訂正のプロセスによってメモリアクセス速度の大幅な低下が避けられない。
【0010】
さらに、通常のメモリセルアレイと同じ構成を有する冗長メモリセルアレイを設けて、通常のメモリセルアレイに欠陥が検出された場合に、冗長メモリセルアレイに切り換える方法では、動作速度の低下がある程度抑制されるが、面積が増加するという不利益がある。
【0011】
本発明は、かかる事情に鑑みてなされたものであり、その目的は、回路レイアウト面積の増加を必要最小限に抑制しながら、高速な読み出しを実現可能な半導体記憶装置を提供することにある。
【0012】
上記目的を達成するため、本願発明に係る半導体記憶装置は、複数のワード線と複数のビット線との交点にそれぞれ配置され、論理値1又は論理値0の固定データを記憶する複数のメモリセルを含むメモリセルアレイと、上記メモリセルから読み出されたデータを増幅して出力するセンスアンプと、上記複数のビット線にそれぞれ接続されており、入力される選択信号に応じて上記ビット線と上記センスアンプとを電気的に接続する複数の選択手段と、入力されるアドレス信号に応じて上記複数のワード線の中から1つのワード線を選択する第1のデコーダと、入力されるアドレス信号に応じて上記複数の選択手段の中から1つの選択手段を選択し、当該選択手段に選択信号を出力する第2のデコーダと、上記メモリセルアレイに含まれる不良メモリセルのアドレスを保持する第1の記憶回路と、上記不良メモリセルの記憶すべきデータを保持する第2の記憶回路と、切換信号に応じて上記第2の記憶回路と上記センスアンプとを電気的に接続する切換回路と、入力されるアドレス信号と上記第1の記憶回路に保持されている不良メモリセルのアドレスとを比較し、それらが一致した場合に一致信号を出力する比較回路と、上記比較回路から一致信号が出力された場合に上記第2のデコーダからの選択信号の出力を禁止すると共に上記切換回路に対して切換信号を出力する第3のデコーダとを有し、上記第1の記憶回路及び上記第2の記憶回路が、フューズの接続状態により論理値1又は論理値0の固定データを保持するフューズ回路により構成されており、上記第2の記憶回路が論理値1又は論理値0に対応する固定レベルの信号を出力しており、上記切換回路の動作に応答して上記固定レベルの信号が上記センスアンプに供給された時点で上記センスアンプの入力信号レベルが確定する、ものである。
【0013】
本発明によれば、半導体記憶装置、例えばROMにおいて、メモリセルアレイに不良メモリセルが検出された場合に、当該不良メモリセルの配置場所に応じたアドレスが第1の記憶回路に記憶され、さらに当該不良メモリセルに記憶されるべき記憶データが第2の記憶回路に記憶される。入力されたアドレスにより不良メモリセルが指定された場合、第3のデコーダにより、不良メモリセルへのアクセスが禁止され、その代わりに、上記第2の記憶回路に記憶されているデータがセンスアンプに入力され、それに応じた読み出し信号が出力される。第2の記憶回路の出力信号は所定の電位レベルに固定されているので、当該第2の記憶回路の出力信号をセンスアンプに転送するとき、電荷のチャージ/ディスチャージが伴わず、センスアンプの状態確定が高速に実現できる。さらに、当該第2の記憶回路はアクセス速度を低下させることなく、基板上の空き領域に配置することが可能であり、回路面積の増加を必要最小限に抑制できる。
【0014】
【発明の実施の形態】
図1は本発明に係る半導体記憶装置の一実施形態を示す回路図である。
図示のように、本実施形態の半導体記憶装置は、メモリセルアレイ10、選択ゲート20、フューズ回路30、行デコーダ(ロウデコーダ)40、列デコーダ(カラムデコーダ)50、冗長デコーダ60、比較回路70およびフューズ回路80により構成されているROMである。
【0015】
メモリセルアレイ10は、行列状に配置されている複数のROMメモリセルMC00,…,MCm0,…,MC0n,…,MCmnにより構成されている。各行に配置されているメモリセルはそれぞれ同じワード線に接続され、各列に配置されているメモリセルはそれぞれ同じビット線に接続されている。
実際のROMのメモリセルアレイ10において、例えば、m=15、n=255となり、即ち、メモリセルアレイ10において、16本のビット線BLと256本のワード線がそれぞれ配線される。この場合に、メモリセルアレイ10は、一つのメモリブロックとして、4096ビットの記憶容量を持つ。
【0016】
メモリセルアレイ10において、(n+1)本のワード線WL0,…,WLnおよび(m+1)本のビット線BL0,…,BLmが交差して配線されている。各ワード線WL0,…,WLnは、ロウデコーダ40に接続され、各ビット線BL0,…,BLmは選択ゲート20を介してセンスアンプSA0に接続されている。
メモリセルMC00,…,MCm0,…,MC0n,…,MCmnは、それぞれ一個のトランジスタにより構成されている。各トランジスタのゲートがそれぞれワード線WL0,…,WLnに接続され、一方の不純物拡散層が共通電位に接続され、他方の不純物拡散層は、例えば、接続手段(ビア)を介してビット線BL0,…,BLmに接続されている。ROM制御工程において、カスタマーデータに応じて各メモリセルのビアの有無が設定され、それに応じて各メモリセルの記憶データが決まる。例えば、図示のように、あるメモリセルにデータ“1”を記憶させる場合に、ビット線とトランジスタの一方の不純物拡散層との間にビアを形成し、逆にあるメモリセルにデータ“0”を記憶させる場合に、ビット線とトランジスタの一方の不純物拡散層との間にビアを形成させず、トランジスタの不純物拡散層とビット線が切り離されたままにする。
【0017】
選択ゲート20は、(m+1)個のトランジスタSG0,…,SGmにより構成されている。これらのトランジスタは、ゲートが選択信号線SL0,…,SLmにそれぞれ接続され、一方の不純物拡散層がビット線BL0,…,BLmにそれぞれ接続され、他方の不純物拡散層がセンスアンプSA0の入力端子に共通に接続されている。選択信号線SL0,…,SLmはカラムデコーダ50に接続されている。
【0018】
フューズ回路30は、転送ゲートTG0を介して、センスアンプSA0に接続されている。フューズ回路30は、図2に示す構成を有する。図2に示すように、フューズ回路30は、フューズFS1、nMOSトランジスタNT1、インバータINVF1,INVF2により構成されている。
【0019】
フューズFS1は、電圧Vddの供給線とノードND1との間に接続されている。トランジスタNT1の一方の拡散層は、ノードND1に接続され、他方の拡散層は接地されている。インバータINVF2の入力端子はノードND1に接続され、出力端子はトランジスタNT1のゲートに接続されている。インバータINVF1の入力端子は、インバータINVF2の出力端子に接続され、その出力端子はフューズ回路30の出力端子を形成する。
【0020】
本実施形態においては、フューズ回路30は電位設定回路として設けられている。即ち、フューズFS1の接続状態によって、フューズ回路30の出力信号の電位が変わる。以下、図2を参照しつつ、これについて詳細に説明する。
デフォルト状態においては、フューズFS1が接続状態になっている。この場合、ノードND1が電圧Vddレベルに保持されているので、インバータINVF2の出力端子がローレベルに保持され、トランジスタNT1がオフ状態に保持される。また、インバータINVF1の出力端子はハイレベルに保持される。即ち、デフォルト状態では、フューズ回路30によりハイレベル、例えば電圧Vddレベルの信号が出力される。
【0021】
一方、フューズFS1が切断された場合には、ノードND1が開放状態となり、例えば、リーク電流などによりノードND1の電位が徐々に低下し、それがインバータINVF2のしきい値電圧以下に下がると、インバータINVF2の状態が反転し、出力端子がローレベルからハイレベルに切り替わる。これに応じてトランジスタNT1がオフ状態からオン状態に切り替わり、ノードND1が接地電位GNDに固定される。さらに、この状態において、インバータINVF1の出力端子がローレベルに保持される。
【0022】
上述したように、フューズ回路30において、フューズFS1の接続状態に応じて、フューズ回路30の出力信号レベルが設定される。このため、必要な信号レベルに応じてフューズFS1を切断またはそのまま保持することにより、フューズ回路30により所定のレベルを有する信号が得られる。例えば、フューズFS1をデフォルトのままにしておけば、フューズ回路30の出力端子からハイレベル、例えば、電圧Vddレベルの信号が得られ、フューズFS1を切断することにより、フューズ回路30の出力端子からローレベル、例えば、接地電位GNDレベルの信号が得られる。
【0023】
フューズ回路30の出力端子は、転送ゲートTG0を介してセンスアンプSA0に接続されている。図示のように、転送ゲートTG0はpMOSトランジスタPT0とnMOSトランジスタNT0により構成されている。これらのトランジスタの一方の不純物拡散層は、フューズ回路30の出力端子に接続され、他方の不純物拡散層は、センスアンプSA0の入力端子に接続されている。さらに、これらのトランジスタPT0,NT0のゲートが冗長デコーダ60に接続され、冗長デコーダ60により、それぞれ相補的なレベルの信号が印加される。例えば、pMOSトランジスタPT0のゲートにローレベルの信号が印加される場合には、nMOSトランジスタNT0のゲートにハイレベルの信号が印加される。逆に、pMOSトランジスタPT0のゲートにハイレベルの信号が印加される場合には、nMOSトランジスタNT0のゲートにローレベルの信号が印加される。
【0024】
pMOSトランジスタPT0のゲートにローレベル、nMOSトランジスタNT0のゲートにハイレベルの信号が印加されている場合には、転送ゲートTG0がオン状態にあり、フューズ回路30により設定された電位レベルがセンスアンプSA0に入力される。逆に、pMOSトランジスタPT0のゲートにハイレベル、nMOSトランジスタNT0のゲートにローレベルの信号が印加されている場合には、転送ゲートTG0がオフ状態にあり、フューズ回路30により設定された電位レベルがセンスアンプSA0入力されない。
【0025】
ロウデコーダ40は、複数の論理ゲートにより構成されている。読み出しのとき、ロウデコーダ40は、アドレスの内、行を指定するロウアドレスROWADRを受けて、それに応じて、(n+1)本のワード線WL0,…,WLnの内、一本のみを選択して、選択されたワード線を活性化する。例えば、ロウアドレスROWADRにより指定されるワード線をハイレベルに保持し、それ以外のワード線をローレベルに保持する。
従って、活性化されたワード線に接続されているメモリセルが選択されることになる。
【0026】
カラムデコーダ50は、複数の論理ゲートにより構成されている。カラムデコーダ50は、カラムアドレスCLMADRに応じて、(m+1)本の選択信号線SL0,…,SLnの内、一本のみを選択して、その選択信号線を活性化する。選択ゲート20を構成する(m+1)個のトランジスタSG0,…,SGmの内、活性化された選択信号線に接続されているトランジスタがオン状態に保持され、それに接続されているビット線の電位がセンスアンプSA0に入力される。なお、それ以外のトランジスタはすべてオフ状態に保持される。
【0027】
冗長デコーダ60は、比較回路70からの比較信号に応じて、転送ゲートTG0のオン/オフ状態を制御し、さらに、カラムデコーダ50の動作/非動作状態を制御する。即ち、比較回路70からの比較信号に応じて、転送ゲートTG0をオン状態に保持する場合に、カラムデコーダ50を停止させ、逆に転送ゲートTG0をオフ状態に保持する場合に、カラムデコーダ50を動作させる。
【0028】
なお、図1に示すように、ロウデコーダ40、カラムデコーダ50および冗長デコーダ60は、全てクロック信号CLKにより同期される。即ち、図1は、同期型メモリを例示した。本実施形態は、これに限定されるわけではなく、非同期型メモリにおいても同様な冗長機能を実現できることはいうまでもない。
【0029】
図示のように、冗長デコーダ60の内、インバータ61の入力端子はNANDゲート62の出力端子に接続され、インバータ63の入力端子は、NANDゲート64の出力端子に接続されている。
NANDゲート62は、比較回路70からの比較信号に応じてその出力信号レベルが設定される。例えば、比較回路から入力アドレスADRとフューズ回路80の出力信号とが一致したことを示す信号を受けた場合には、NANDゲート62の出力端子がローレベルに保持される。NANDゲート62の出力信号がカラムデコーダ50に供給されるので、このローレベルの信号に応じて、カラムデコーダが非動作状態に保持され、全ての選択信号線SL0,…,SLnがローレベルに保持される。これに応じて選択ゲート20を構成する各トランジスタSG0,…,SGmがオフ状態に設定される。
【0030】
また、この状態において、インバータ61の出力端子がハイレベルに設定され、インバータ61の出力信号が比較回路70の他の出力信号とともにNANDゲート64に入力されるので、NANDゲート64の出力信号(入力アドレスADRとフューズ回路80の出力信号との一致を示す信号)がローレベルに保持される。これに応じて、転送ゲートTG0を構成するpMOSトランジスタPT0のゲートにローレベルの信号が印加され、nMOSトランジスタNT0のゲートにハイレベルの信号が印加される。この結果、転送ゲートTG0がオン状態に保持される。
【0031】
一方、比較回路70から一致しないことを示す信号が得られた場合には、NANDゲート62の出力信号がハイレベルに保持される。これに応じてカラムデコーダ50が動作状態に設定され、入力されたカラムアドレスCLMADRに応じて指定された選択信号線のみを活性化させ、他の選択信号線を非活性化状態に設定する。
このとき、NANDゲート64の出力端子もハイレベルに保持されるので、転送ゲートTG0を構成するpMOSトランジスタPT0のゲートにハイレベルの信号が印加され、nMOSトランジスタNT0のゲートにローレベルの信号が印加される。この結果、転送ゲートTG0がオフ状態に保持される。
【0032】
フューズ回路80は、複数のフューズにより構成されている。メモリセルアレイ10にある不良メモリセルの配置場所に応じて、これら複数のフューズに対してプログラミングを行うことにより、不良メモリセルに応じたアドレスが登録される。このプログラミングはアドレス登録とも呼ばれる。通常、フューズ回路のプログラミングは、レーザまたは過電流により、所定のフューズを溶断することにより行われる。
【0033】
アドレス登録により、メモリセルアレイ10にある不良メモリセルのアドレスがフューズ回路80に登録される。登録されたアドレスと外部から入力されたアドレスADRが比較回路70に入力され、比較回路70により、二つのアドレスが比較される。比較の結果、二つのアドレスが一致した場合、それを示す信号、例えば、複数ビットのハイレベルの信号が冗長デコーダ60に供給される。逆に、比較の結果、二つのアドレスが一致しない場合、それを示す信号、例えば、複数ビットの内、少なくとも一ビットがローレベルである信号が冗長デコーダ60に供給される。冗長デコーダ60は、上述したように、比較回路からの比較結果信号に応じて、カラムデコーダ50および転送ゲートTG0を制御する。
【0034】
以下、図1を参照しつつ、本実施形態のROMの動作について説明する。
まず、メモリセルアレイ10の正常なメモリセルに対する読み出し動作について説明する。この場合に、外部から入力されたアドレスADRとフューズ回路80に登録されたアドレスが一致しないので、冗長デコーダ60により、カラムデコーダ50が動作状態に設定され、また、転送ゲートTG0がオフ状態に設定される。
【0035】
入力されたアドレスADRの内、ロウアドレスROWADRに応じて、ロウデコーダ40により指定されたワード線が選択され、活性化される。さらに、カラムアドレスCLMADRに応じて、カラムデコーダ50により、指定された選択信号線が選択され、活性化される。ここで、例えば、メモリセルMC00が選択メモリセルとして、それに対する読み出し動作について説明する。
【0036】
この場合、ロウデコーダ40により、ワード線WL0が選択され、活性化される他、カラムデコーダ50により、選択信号線SL0が選択され、活性化される。このため、選択ゲート20を構成するトランジスタSG0がオン状態に設定され、ビット線BL0がセンスアンプSA0に接続される。
【0037】
図1に示すように、各ビット線BL0,…,BLmは、プリチャージトランジスタPr0,…,Prmを介して、それぞれ電圧Vddの供給線に接続されている。プリチャージトランジスタPr0,…,Prmのゲートにプリチャージ制御信号Prが印加される。なお、プリチャージ制御信号Prは、読み出し前のプリチャージ動作時に、所定の時間においてローレベルに保持される。それ以外の時間はハイレベルに保持される。ここで、プリチャージ制御信号Prがローレベルに保持されている期間をプリチャージ期間という。
プリチャージ期間において、プリチャージトランジスタPr0,…,Prmがオン状態に保持されているので、ビット線BL0,…,BLmはプリチャージ電圧Vddに保持される。ここで、選択ビット線プリチャージ方式を用いる場合には、256本のビット線のうち、例えば16本のビット線のみがプリチャージされる。
【0038】
メモリセルアレイ10を構成する各メモリセルMC00,…,MCm0,…,MC0n,…,MCmnにおいて、図示のように、データ“1”を記憶する場合に、ビット線とメモリトランジスタの不純物拡散層との間にビアが形成され、データ“0”を記憶する場合に、ビット線とメモリセルトランジスタの不純物拡散層との間に、ビアが形成されない。
【0039】
メモリセルMC00が選択された場合に、上述のように、ロウデコーダ40によりワード線WL0が活性化されるので、メモリセルMC00がオン状態に保持される。メモリセルMC00にはデータ“1”が記憶されているので、ビット線BL0とメモリセルMC00の不純物拡散層との間にビアが形成されている。このため、ビット線BL0がメモリセルMC00を介してディスチャージされ、その電位がプリチャージ電圧Vddより降下し、接地電位GNDに保持される。
カラムデコーダ50により、選択信号線SL0が活性化されるので、選択ゲート20のトランジスタSG0がオン状態に保持され、他のトランジスタが全てオフ状態に保持される。このため、ビット線BL0がセンスアンプSA0に接続され、ローレベルのビット線電位がセンスアンプSA0に入力される。
【0040】
センスアンプSA0により、ビット線BL0の電位が反転して増幅されるので、ハイレベルの出力信号DOUT が出力される。
このように、選択メモリセルにデータ“1”が記憶されている場合に、ハイレベルの読み出し信号DOUT が出力される。
逆に、選択メモリセルにデータ“0”が記憶されている場合には、ビット線とメモリセルの不純物拡散層との間にビアが形成されていない。この場合には、選択メモリセルがオン状態に設定されても、ビット線のディスチャージが行われず、ビット線はほぼプリチャージ電圧Vddのレベルに保持されたままである。このハイレベルのビット線電圧が選択ゲート20にあるトランジスタを介してセンスアンプSA0に入力されるので、センスアンプSA0からローレベルの読み出し信号DOUT が出力される。
【0041】
以下、メモリセルアレイ10にある不良メモリセルに対してアクセスを行う場合の読み出し動作について説明する。
ここで、出荷前の検査時に、メモリセルアレイ10に不良メモリセルの存在が検出され、それに応じてアドレス登録が行われ、さらに、不良メモリセルの記憶データに応じて、フューズ回路30においてフューズFS1の状態が設定されたものとして説明を行う。外部からのアドレスADRにより、不良メモリセルが指定された場合に、まず、比較回路70により、入力アドレスとフューズ回路80に登録されたアドレスが一致することを示す比較結果が出力される。
【0042】
比較回路70の比較結果に応じて、冗長デコーダ60において、NANDゲート62の出力信号がローレベルに保持される。これに応じて、カラムデコーダ50が非動作状態に設定され、選択ゲート20にある全てのトランジスタSG0,…,SGmがオフ状態に設定される。即ち、このとき、メモリセルアレイ10にある全てのビット線BL0,…,BLmはセンスアンプSA0から切り離されることになる。
【0043】
冗長デコーダ60により、転送ゲートTG0がオン状態に設定される。このため、フューズ回路30の出力信号が転送ゲートTG0を介してセンスアンプSA0に入力される。
上述したように、アドレス登録の際、不良メモリセルの記憶データに応じて、フューズ回路30のフューズFS1の状態が設定される。例えば、不良メモリセルの記憶データが“0”である場合には、フューズFS1をデフォルトのままにし、逆に不良メモリセルの記憶データが“1”である場合には、フューズFS1が切断される。即ち、不良メモリセルの記憶データが“0”の場合には、フューズ回路30からハイレベルの信号が出力され、不良メモリセルの記憶データが“1”の場合には、フューズ回路30からローレベルの信号が出力される。
【0044】
このため、不良メモリセルの記憶データが“0”の場合には、転送ゲートTG0がオン状態に設定されたとき、センスアンプSA0から、ローレベルの出力信号DOUT が得られ、逆に、不良メモリセルの記憶データが“1”の場合には、転送ゲートTG0がオン状態に設定されたとき、センスアンプSA0から、ハイレベルの出力信号DOUT が得られる。即ち、不良メモリセルの代わりに、転送ゲートTG0、フューズ回路30、冗長デコーダ60、比較回路70およびフューズ回路80からなる冗長回路により、正確な読み出しデータが得られる。
【0045】
このように、不良メモリセルの記憶データに応じて、フューズ回路30におけるフューズFS1の状態が設定されるので、フューズ回路30の出力信号が、固定のレベル、例えば、電圧Vddレベルまたは接地電位GNDレベルの何れかに保持されている。このため、転送ゲートTG0がオン状態になった時点でセンスアンプSA0の入力信号レベルが確定される。この間に電荷のチャージ/ディスチャージが伴わないため、転送ゲートTG0がオン状態に切り替わってから、センスアンプSA0の出力信号レベルが確定するまでの時間は非常に短い。
【0046】
このため、冗長回路動作時に、登録アドレスと入力アドレスの一致判別から、センスアンプSA0の出力信号レベルの確定までの所要時間が短縮され、不良メモリセルが選択された場合でも高速な読み出しが実現可能である。
また、不良メモリセルを救済するために設けられたフューズ回路30,80は、固定レベルの信号のみを供給するので、信号転送速度を低下させることなく転送ゲートTG0まで長い配線を経由することが可能である。このため、フューズ回路30,80は基板レイアウト上の空き領域に配置させることが可能であり、フューズ回路30,80を設けることによる基板面積の増加をわずかに抑えることができる。
【0047】
以上説明したように、本実施形態によれば、メモリセルアレイ10に不良メモリセルが検出された場合に、フューズ回路80に不良メモリセルの配置場所に応じたアドレスを登録し、不良メモリセルの記憶データに応じてフューズ回路30の出力信号レベルを設定する。入力アドレスが不良メモリセルを指定する場合には、比較回路から入力アドレスと登録アドレスの一致を示す判別結果が出力され、これに応じて冗長デコーダ60はカラムデコーダ50を非動作状態に設定し、全てのビット線をセンスアンプSA0から切り離し、さらに転送ゲートTG0をオン状態に設定し、フューズ回路30から出力される信号をセンスアンプSA0に入力するので、不良メモリセルが指定されたとき、高速な読み出しを実現でき、且つ回路面積の増大を必要最小限に抑制できる。
【0048】
以上の説明においては、メモリセルアレイ10が一つのみ設けられているものを例示したが、本発明はこれに限定されるものではなく、メモリセルアレイ10と並列に複数のメモリセルアレイを同時に設けることも可能である。例えば、ROMの記憶データのワード長が16ビットの場合に、16個のメモリセルアレイを並列に設けることができる。
さらに、図1において、フューズ回路30およびそれに応じた転送ゲートTG0が一組設けられているが、本発明はこれに限定されず、ビット線の本数分まで複数のフューズ回路を設け、それぞれのフューズ回路に転送ゲートを設けて、各フューズ回路を転送ゲートを介してセンスアンプSA0に接続することにより、一本のワード線毎に、複数の不良メモリセルに対して救済することが可能である。
【0049】
【発明の効果】
以上説明したように、本発明の半導体記憶装置によれば、回路の面積の増加を必要最小限に抑制でき、不良メモリセル救済時の読み出し速度の低下を回避でき、メモリアクセスの高速化を図れる利点がある。また、救済用アドレス(不良メモリセルのアドレス)、データ線は直流的に固定され、スピードの低下がないので、自動配線により自由度の高い配線を行っても、タイミング検証する必要がなく、高集積化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る半導体記憶装置の一実施形態を示す回路図である。
【図2】フューズ回路の一構成例を示す回路図である。
【符号の説明】
10…メモリセルアレイ
20…転送ゲート
30…フューズ回路
40…ロウデコーダ
50…カラムデコーダ
60…冗長デコーダ
70…比較回路
80…フューズ回路
TG0…転送ゲート
SA0…センスアンプ
FS1…フューズ

Claims (6)

  1. 複数のワード線と複数のビット線との交点にそれぞれ配置され、論理値1又は論理値0の固定データを記憶する複数のメモリセルを含むメモリセルアレイと、
    上記メモリセルから読み出されたデータを増幅して出力するセンスアンプと、
    上記複数のビット線にそれぞれ接続されており、入力される選択信号に応じて上記ビット線と上記センスアンプとを電気的に接続する複数の選択手段と、
    入力されるアドレス信号に応じて上記複数のワード線の中から1つのワード線を選択する第1のデコーダと、
    入力されるアドレス信号に応じて上記複数の選択手段の中から1つの選択手段を選択し、当該選択手段に選択信号を出力する第2のデコーダと、
    上記メモリセルアレイに含まれる不良メモリセルのアドレスを保持する第1の記憶回路と、
    上記不良メモリセルの記憶すべきデータを保持する第2の記憶回路と、
    切換信号に応じて上記第2の記憶回路と上記センスアンプとを電気的に接続する切換回路と、
    入力されるアドレス信号と上記第1の記憶回路に保持されている不良メモリセルのアドレスとを比較し、それらが一致した場合に一致信号を出力する比較回路と、
    上記比較回路から一致信号が出力された場合に上記第2のデコーダからの選択信号の出力を禁止すると共に上記切換回路に対して切換信号を出力する第3のデコーダと、
    を有し、
    上記第1の記憶回路及び上記第2の記憶回路が、フューズの接続状態により論理値1又は論理値0の固定データを保持するフューズ回路により構成されており、
    上記第2の記憶回路が論理値1又は論理値0に対応する固定レベルの信号を出力しており、上記切換回路の動作に応答して上記固定レベルの信号が上記センスアンプに供給された時点で上記センスアンプの入力信号レベルが確定する、
    半導体記憶装置。
  2. 上記第2の記憶回路が、上記メモリアレイ、上記センスアンプ、上記選択手段、上記第1のデコーダ及び上記第2のデコーダのレイアウトと無関係に配置されている請求項1に記載の半導体記憶装置。
  3. 上記メモリセルはトランジスタで構成され、当該トランジスタが上記ビット線に接続されるか否かにより論理値1又は論理値0の固定データを記憶する請求項1又は2に記載の半導体記憶装置。
  4. 上記複数の選択手段はトランジスタで構成される請求項1、2又は3に記載の半導体記憶装置。
  5. 上記センスアンプは入出力端子が互いに接続されている2つのインバータにより構成される請求項1、2、3又は4に記載の半導体記憶装置。
  6. 上記複数のビット線は読み出し動作に先立ち第1の電位にプリチャージされ、ワード線の選択に伴い第2の電位にディスチャージされる又は第1の電位に保持される請求項1、2、3、4又は5に記載の半導体記憶装置。
JP30852997A 1997-11-11 1997-11-11 半導体記憶装置 Expired - Fee Related JP4484257B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30852997A JP4484257B2 (ja) 1997-11-11 1997-11-11 半導体記憶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30852997A JP4484257B2 (ja) 1997-11-11 1997-11-11 半導体記憶装置

Publications (2)

Publication Number Publication Date
JPH11144490A JPH11144490A (ja) 1999-05-28
JP4484257B2 true JP4484257B2 (ja) 2010-06-16

Family

ID=17982137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30852997A Expired - Fee Related JP4484257B2 (ja) 1997-11-11 1997-11-11 半導体記憶装置

Country Status (1)

Country Link
JP (1) JP4484257B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100534206B1 (ko) * 1999-07-05 2005-12-08 삼성전자주식회사 반도체 메모리 장치의 리던던시 디코더

Also Published As

Publication number Publication date
JPH11144490A (ja) 1999-05-28

Similar Documents

Publication Publication Date Title
JP2914171B2 (ja) 半導体メモリ装置およびその駆動方法
US6462995B2 (en) Semiconductor memory device capable of recovering defective bit and a system having the same semiconductor memory device
JP3657290B2 (ja) 半導体集積回路メモリ装置およびその中のメモリセルの欠陥列を修理するための方法
KR0119888B1 (ko) 반도체 메모리장치의 결함구제방법 및 그 회로
US20040218431A1 (en) Semiconductor memory device and method of operating the same
JP2001229690A (ja) 半導体集積回路装置
JP2003272397A (ja) 不揮発性メモリ装置
US5847995A (en) Nonvolatile semiconductor memory device having a plurality of blocks provided on a plurality of electrically isolated wells
US6418051B2 (en) Non-volatile memory device with configurable row redundancy
EP0881571B1 (en) Semiconductor memory device with redundancy
JPH06275095A (ja) 半導体記憶装置及び冗長アドレス書込方法
JP2000276896A (ja) 半導体記憶装置
EP0472209B1 (en) Semiconductor memory device having redundant circuit
JP3542649B2 (ja) 半導体記憶装置およびその動作方法
US6178127B1 (en) Semiconductor memory device allowing reliable repairing of a defective column
JP2010277662A (ja) 半導体装置及びその製造方法
JPH06203586A (ja) リードオンリメモリ装置の欠陥救済回路
JP3940513B2 (ja) 半導体記憶装置
JPH09147595A (ja) 半導体記憶装置
JPH03179780A (ja) 半導体装置
US5390150A (en) Semiconductor memory device with redundancy structure suppressing power consumption
JPH09162308A (ja) 半導体記憶装置
US6366509B2 (en) Method and apparatus for repairing defective columns of memory cells
US5877992A (en) Data-bit redundancy in semiconductor memories
JP2003187591A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080124

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080516

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees