JP4481392B2 - X線診断装置 - Google Patents

X線診断装置 Download PDF

Info

Publication number
JP4481392B2
JP4481392B2 JP21252799A JP21252799A JP4481392B2 JP 4481392 B2 JP4481392 B2 JP 4481392B2 JP 21252799 A JP21252799 A JP 21252799A JP 21252799 A JP21252799 A JP 21252799A JP 4481392 B2 JP4481392 B2 JP 4481392B2
Authority
JP
Japan
Prior art keywords
ray
ring
arm
rotation
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21252799A
Other languages
English (en)
Other versions
JP2001037747A (ja
Inventor
直人 渡▲辺▼
恒司 網田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21252799A priority Critical patent/JP4481392B2/ja
Publication of JP2001037747A publication Critical patent/JP2001037747A/ja
Application granted granted Critical
Publication of JP4481392B2 publication Critical patent/JP4481392B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4464Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling

Description

【0001】
【発明の属する技術分野】
本発明は、循環器検査や血管造影検査等に用いて好適なX線診断装置に関し、特にリング形状のアームにX線発生手段及びX線平面検出器を対向配置して構成することで、3次元画像の収集及び透視撮影の両方を可能とすると共に、アクセス性及びカテーテル操作の操作性の向上等を図ったX線診断装置に関する。
【0002】
【従来の技術】
従来のX線診断装置である循環器用保持装置の概略図を図18に示す。この図18からわかるように、従来の循環器用保持装置は、X線発生部250とX線検出部251とがアーム(C型アーム252)の両端部に対向配置され固定保持されている。アーム形状は大きく分けて、C型とU型が知られているが、三次元的ポジショニングの効率化の観点から、現在ではC型が主流になってきている。
【0003】
このC型アーム252は、ホルダ支柱部254に支軸回転可能に保持されたホルダ253によってスライド回転可能に保持されている。ホルダ支柱部254は、このホルダ支柱部254を支柱回転可能に支持する天井取り付け部255に取り付けられている。天井取り付け部255は、天井に設けられたレールに取り付けられており、このレールに沿って当該保持装置を被検体の体軸方向及び被検体の体軸方向と直交する方向に移動可能としている。
【0004】
なお、この図18に示す循環器用保持装置は天井吊り型であるため、C型アーム252は、ホルダ支柱部254及び天井取り付け部255を介して天井に取り付けられているが、据え置き型の場合、C型アームは、床に取り付けられた支柱に支軸回転可能に取り付けられている。
【0005】
X線検出部251としては、被検体を透過したX線情報をイメージ・インテンシファイヤ(I.I.)で光学情報に変換し、この光学情報を光学レンズで集光してTVカメラ装置(TV)で撮像するI.I.−TV系が設けられている。このX線検出部251は移動機構により、上下(X線発生部250側及び反X線発生部250側)に移動可能となっており、この移動により撮像するX線像の拡大率を可変するようになっている。
【0006】
次に、このような循環器用保持装置は、2次元的な画像収集が可能なのであるが、図19に示すような3次元的な画像収集が可能な循環器保持装置も従来より知られている。この循環器保持装置は、外観がX線CT装置のガントリと同じような形状のカバー270を有している。このカバー270には、寝台274に載置された被検体が挿入される開口部271と、X線発生部272及びX線検出部273とが設けられている。X線発生部272とX線検出部273とは、リング状のアームにより対向支持されており、このアームに沿って回転することで開口部271の外周に沿って360°回転するようになっている。
【0007】
カバー270は、図19に矢印で示すように寝台274側及び反寝台274側に傾くようになっており、この傾きにより所望の角度付けをして被検体の3次元的なX線画像を収集するようになっている。
【0008】
次に、血管造影検査(IVR:Interventional radiology)において、通常の血管造影撮影像と、X線CT装置で撮影した横断像とを併用することで検査精度及び治療精度が向上することが知られている。従来、これを可能とする図20に示すような循環器用保持装置300とX線CT装置301を組み合わせたIVR−CTシステムが知られている。
【0009】
循環器用保持装置300は、図18を用いて説明した循環器用保持装置と同様にX線発生部250とX線検出部251とがC型アーム252の両端部に対向配置され固定保持されている。C型アーム252は、ホルダ支柱部254に支軸回転可能に保持されたホルダ253によってスライド回転可能に保持されており、ホルダ支柱部254は、このホルダ支柱部254を支柱回転可能に支持する天井取り付け部255に取り付けられている。天井取り付け部255は、天井に設けられたレール260に取り付けられており、このレール260に沿って当該保持装置を被検体の体軸方向と直交する方向に移動可能としている。
【0010】
X線CT装置301は、循環器用保持装置300の裏側に位置するように設けられており、寝台256に載置された被検体を挿入する開口部280を有している。カバー281内には、相対向するように設けられたX線発生部及びX線検出部が設けられており、この相対向する位置関係を保持した状態で開口部280の内周に沿ってそれぞれ回転することで、該開口部280に挿入された被検体の横断像を撮影するようになっている。
【0011】
このようなIVR−CTシステムにおいて、例えば肝癌の治療を行う場合、循環器用保持装置300で撮影した撮影画像を見ながらカテーテルを目的部位まで進めて血管造影し、X線CT装置301で横断像を撮影し、この横断像により三次元的に癌組織の形状を確認しながら肝動脈塞栓療(TAE)を施す。これにより、精度よく癌細胞だけを死滅させることができる。
【0012】
血管造影検査において、X線CT装置で撮影されたX線画像を併用する場合、通常、循環器用保持装置が設けられている検査室と、X線CT装置が設けられている検査室とは別々の部屋であるため、検査中にこれらの部屋の間を、被検体をストレッチャに載せて移送する必要がある。このような被検体の移送は面倒であり、また、カテーテルの逸脱等の虞があるが、このIVR−CTシステムは、一つの部屋に循環器用保持装置300及びX線CT装置301が組み合わされて設けられているため、面倒な被検体の移送を不要とすることができ、また、この移送によりカテーテルが逸脱する等の不都合を防止することができる。
【0013】
【発明が解決しようとする課題】
ここで、図18を用いて説明した従来の循環器用保持装置において、C型アーム252を回転させながら画像を取り込み、この投影画像を三次元再構成して立体像を得ようとする試みがなされているが、C型アーム252のスライドストロークには限界があり、三次元再構成に必要な画像情報を得ることは困難である。このため、三次元画像を得る場合には、C型アーム252を支軸回転で回転させ画像収集を行なうようになるのであるが、C型アームと被検体の干渉を回避するために被検体の頭側からアクセスする必要があり、適用部位領域には限界があった。また、C型アーム252の両端部には、それぞれ自重の重いX線発生部250とX線検出部251が保持されている。このため、C型アーム252を支軸回転させた際に、C型アーム252に撓みや振動が発生していた。従って、支軸回転により収集した各収集画像を再構成して得られる三次元画像に画質の劣化が生ずる問題があった。
【0014】
次に、図19を用いて説明した三次元画像収集可能な循環器用保持装置は、装置全体がX線CT装置のガントリのようなカバー270で覆われており、矢印で示すようにカバー270を寝台274側及び反寝台274側に傾けて撮影の角度付けを行うようになっているうえ、被検体は開口部271内に配置されることとなるため、深い角度付けで撮影を行うことは困難であった。
【0015】
また、撮影系が回転し、X線検出部273(I.I.−TV系)が真下に位置した際に、該X線検出部273と床とが干渉する不都合を防止するために、アイソセンタ(X線中心軸の中点)の高さは、通常の循環器用保持装置のアイソセンタの高さよりもかなり高くなっており、術者は、無理な姿勢でカテーテル操作を行うこととなる。このため、この循環器用保持装置は、カテーテル操作が困難であるうえ、操作に伴う術者の疲労が大きいという問題があった。
【0016】
また、この循環器用保持装置は、このような術者の負担を軽減するためにアイソセンタの高さをできるだけ低く抑えているが(それでも、通常の循環器用保持装置のアイソセンタの高さよりもかなり高くなっている。)、このために、X線発生部272の焦点からX線検出部273の受像面までの距離(SID)を大きくとることはできない。従って、最大SIDはアイソセンタ高さに基づく制約を受け、また、最小SIDは被検体を配置する開口部271の径から制約を受けることとなり、結局、固定値のSIDとなり、撮影拡大率を変えることはできない問題があった。
【0017】
このように、図19を用いて説明した三次元画像収集可能な循環器用保持装置は、三次元画像収集は可能であるが、被検体に対するポジショニングの自由度や操作性にかなりの制約があり、限定された使われ方をしているのが現状である。
【0018】
次に、図20を用いて説明したIVR−CTシステムは、被検体の移送を不要とすることができるのはよいのであるが、循環器用保持装置300による撮影とX線CT装置301による撮影とを切り換える際、寝台256のテーブルスライドによる被検体のロングスパンの移動が必要となり、迅速な撮影の切り換えを行うことができない問題があった。また、テーブルスライドによる被検体の移動量が大きくなるため、やはり、この移動によりカテーテルが逸脱する等の虞があった。
【0019】
また、循環器用保持装置300及びX線CT装置301の2つの装置を単に組み合わせただけなので、それぞれの装置を単独で使うときには、他方の装置を退避させる必要がある。このため、レール260等の退避機構を設ける必要があり、システム自体が高価となるうえ、大きな設置スペースを必要とする問題があった。そして、これらを改善する要望が高まっている。
【0020】
本発明は、上述の課題に鑑みてなされたものであり、
深い角度付けや、被検体の頭側から或いは足側から等の自由なアクセスを可能とすることができ、
アームで支持するX線発生部及びX線検出部を軽量化して、アームの撓みや振動による三次元画像の画質劣化を防止することができ、
アイソセンタを低くしてカテーテル操作等の施術を容易化すると共に、術者の負担を軽減することができ、
SIDを可変可能として撮影拡大率を変更可能とすることができ、
2次元画像の撮影と3次元画像の撮影とを迅速に切り換え可能とすることができ、
2次元画像の撮影と3次元画像の撮影との切り換えの際に被検体の移送や移動を不要として、該移送や移動によりカテーテルが逸脱する不都合を防止することができ、
退避機構を不要としてシステムを安価に製造することができるうえ、一つの装置で2次元画像及び3次元画像の両方を撮影可能として設置スペースの削減を図ることができるようなX線診断装置の提供を目的とする。
【0021】
【課題を解決するための手段】
本発明に係るX線診断装置は、上述の課題を解決するための手段として、X線の曝射を行うX線発生手段と、複数のX線検出素子を2次元的に配列してなり、前記X線発生手段からX線が曝射されることで形成されたX線像の取り込みを行うX線平面検出器と、前記X線発生手段及びX線平面検出器を対向支持するリング形状のリングアームと、前記X線発生手段を前記リングアームの外方向にオフセットさせる第1のオフセット手段と、前記X線平面検出器を前記リングアームの外方向にオフセットさせる第2のオフセット手段と、前記リングアームを、その形成方向に沿って回転駆動する回転駆動手段と、2次元画像の撮像を行う2次元画像撮像モード及び3次元画像の撮像を行う3次元画像撮像モードを少なくとも有し、前記2次元画像撮像モードにおいては、前記リングアームが所望の回転角度に固定されるように前記回転駆動手段を回転制御すると共に前記X線発生手段を曝射制御することで2次元画像の撮像を行い、前記3次元画像撮像モードにおいては、前記リングアームを回転するように前記回転駆動手段を回転制御すると共に前記X線発生手段を曝射制御し、これにより得られた複数の収集画像に基づいて3次元画像を形成する制御手段とを有する。
【0022】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記第1のオフセット手段が前記X線発生手段を前記リングアームの外方向に回転させる第1の回転支持手段を有する。
【0023】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記第1のオフセット手段が前記X線発生手段を直線的に移動させる第1の伸縮機構を有する。
【0024】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記第2のオフセット手段が前記X線平面検出器を前記リングアームの外方向に回転させる第2の回転支持手段を有する。
【0025】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記第2のオフセット手段が前記X線発生手段を直線的に移動させる第2の伸縮機構を有する。
【0026】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記回転駆動手段が少なくとも前記X線発生手段から曝射されるX線のファン角度に180度を加算した角度分、前記リングアームを回転駆動する。
【0027】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記X線発生手段及びX線平面検出器を、前記リングアームの径方向に沿って相対向するように設ける。
【0028】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記リングアームをその形成方向に沿って回転可能に支持するリングホルダと、前記リングホルダをスライド可能に支持する略円弧状のスライドアームと、前記スライドアームをその形成方向に沿ってスライド可能に支持すると共に、設置面に対して垂直な回転軸を中心として回転支持する架台とを有する。
【0029】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記リングアームをその形成方向に沿って回転可能に挟持する一対のリングホルダと、床に据え付けられ、前記一対のリングホルダを結ぶ直線を回転軸として、該リングホルダを介して前記リングアームを回転可能に支持する一対の支持手段とを有する。
【0030】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記一対の支持手段が床に設けられたレールに沿って平行移動可能となっている。
【0031】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記一対の支持手段のいずれかに設けられる支持アームと、この支持アームに支持される表示手段を有する。
【0032】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、記支持アームが、鉛直方向への移動、水平方向への移動、または鉛直軸周りの回転の少なくともひとつが可能なように、前記表示手段を支持する。
【0033】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記リングアームをその形成方向に沿って回転自在に支持する支持手段と、前記支持手段をスライド及び回転可能に支持する略円弧状のスライド回転アームと、天井に設けられ、前記スライド回転アームをその形成方向に沿ってスライド回転可能に支持すると共に、該スライド回転アームを天井に対して垂直方向の回転軸を中心として回転可能に支持する回転支持手段とを有する。
【0034】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記回転支持手段が天井に設けられたレールに沿って平行移動可能となっている。
【0035】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記リングアームをその形成方向に沿って回転自在に挟持する一対のリングホルダと、前記一対のリングホルダを結ぶ直線を回転軸とし、該リングホルダを介して前記リングアームを回転可能に支持する略半円弧状の円弧支持手段と、前記円弧支持手段の外周の所定位置に設けられた支持ポールと、天井に設けられ、前記支持ポールを天井に対して垂直方向の回転軸を中心として回転可能に支持する回転支持手段とを有する。
【0036】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記支持ポール天井に対して垂直方向に伸縮自在となっている。
【0037】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記回転支持手段が天井に設けられたレールに沿って平行移動可能となっている。
【0038】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記リングアームのX線平面検出器が設けられている側には、前記X線発生手段を曝射制御するためのX線発生部が設けられている。
【0039】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記X線発生手段及びX線平面検出器が前記リングアームの径方向に沿って相対向するように設けられた際に、リングアームの中心に所定の開口部を形成すると共に、該X線発生手段及びX線平面検出器を被覆する安全カバーを有する。
【0040】
また、本発明に係るX線診断装置は、上述の課題を解決するための手段として、前記安全カバーが複数の安全カバー片に分割されて前記リングアームに収納されている。
【0041】
【発明の実施の形態】
〔第1の実施の形態〕
[第1の実施の形態の構成]
図1は、本発明の第1の実施の形態のX線診断装置の斜視図である。この図1からわかるように、当該第1の実施の形態のX線診断装置は、リング状のアーム1(リングアーム1)と、このリングアーム1に対向配置されたX線発生部2及びX線平面検出器3と、リングアーム1を該そのリングアーム1の形成方向に沿って回転可能(リング回転)に支持するリングホルダ4と、リングホルダ4を介してリングアーム1をスライド可能(スライド回転)に支持する例えば略1/4円弧状のアーム5(スライドアーム5)と、床に固定され、スライドアーム5を床と垂直な回転軸を中心として回転可能(支軸回転)に支持すると共に、スライドアーム5の形成方向に沿ってスライド可能(架台スライド回転)に支持する架台部6とを有している。
【0042】
「X線平面検出器3の構成」
X線平面検出器3は、複数のX線検出素子を2次元的に配列することで形成されている。このX線平面検出器3としては、X線を直接的に電荷に変換して電気信号である投影情報を得る直接変換型のX線平面検出器、或いはX線を一旦光に変換し、この光の光量に対応する電荷を形成して投影情報を得る間接変換型のX線平面検出器等を設けることができる。
【0043】
なお、このX線平面検出器3の代わりに、他のX線検出手段としてイメージ・インテンシ・ファイヤ(I.I.)とテレビジョンカメラ装置(TV)とで構成されるI.I.−TV系を設けるようにしてもよい。
【0044】
このようなX線平面検出器3の、X線発生部2と相対向する受像面3aの背面側に相当する背面部3bには、回転支持部10が設けられている。この回転支持部10には、リングアーム1の径方向に直線的に伸縮する伸縮アーム11の一端が、X線平面検出器3をリングアーム1の両外方側に回動可能なように設けられている。伸縮アーム11の他端は、リングアーム1の内周側に固定されている。
【0045】
このX線平面検出器3の支軸回転は、保持ベアリング内蔵のダイレクト・ドライブ・モータ(D.D.モータ)で行われるようになっている。D.D.モータは、減速機等を必要とすることなく、直接的に動力伝達することができるため、小さなスペースで回転動作を可能とすることができる。また、X線平面検出器3の伸縮動は、油圧等による伸縮機構ユニットで行われるようになっている。なお、この伸縮動は、ローラとレール又はリニアガイド等でX線平面検出器3を保持し、モータ動力をベルト等を介してスクリューに伝達するスクリュー駆動で行ってもよい。
【0046】
「各接続部の構成」
(リングアーム1とリングホルダ4の接続部の構成)
図2(a)〜(c)は、当該X線診断装置の各接続部の断面を示した図である。このうち、図2(a)には、リングアーム1とリングホルダ4の接続断面を示している。この図2(a)からわかるように、リングアーム1は保持ベアリング15によって、リングホルダ4にスライド可能に保持されている。図2(b)は、この保持ベアリング15を拡大して表した図なのであるが、この図2(b)からわかるように保持ベアリング15は、リングホルダ4の全域、或いは複数箇所に分割して設けられており、リングホルダ4の両端部に組み込まれたボール循環型のベアリング16を有している。
【0047】
リングアーム1のレール部1aは、このリングホルダ4の両端部に組み込まれたベアリング16によって保持されている。このようなベアリング16を用いることにより、複数のベアリング16で荷重を分散することができ、リングホルダ4を小型化してコンパクトな保持を可能とすることができる共に、リングアーム1とリングホルダ4との摩擦を軽減して円滑なリング回転を可能とすることができる。なお、この例では、リングアーム1の両端部の2カ所にベアリング16を設けることとしたが、これは、両端部と中間部との4カ所、或いは8カ所に設ける等、設計等に応じて適宜変更してもよい。
【0048】
次に、リングアーム1とリングホルダ4との間には、回転機を平板上に展開したタイプのモータであるリニアモータ18が設けられている。具体的には、リニアモータ18の固定子18aはリングアーム1側に、移動子18bはリングホルダ4側に設けられており、リングホルダ4に対してリングアーム1が回転駆動するようになっている。リニアモータ18は、非接触式で直接的に動力を伝達することができるため、リングアーム1の高速回転を可能とすることができる。そして、通常のモータのように減速機や動力伝達系を必要としないため、リングホルダ4を薄型化及び小型化を可能とすることができる。
【0049】
次に、リングアーム1の回転動によるケーブルの吸収は、たるませて外部で処理したり内部で巻き取ったりしてもよいが、この例では、図2(a),(b)に示すようにリングアーム1のレール部1aとリングホルダ4との間にスリップリング19を用いている。このスリップリング19は、図2(b)に拡大して示すように、リングアーム1のレール部1a側に設けられた必要なチャンネル数の導電リング19aと、リングホルダ4側に設けられた、該各導電リング19aに対応するブラシ19bとで構成されており、リングアーム1の回転時、常に導電リング19aがブラシ19bに接触するように設けられている。
【0050】
リングアーム1が回転することにより、リングホルダ4の内側面、又はリングアーム1の外側面が露出するが、当該X線診断装置においては、図2(a),(b)に示すようにスリップリング19を内部に設けているため、リングアーム1の回転時に、操作者や患者の指等が直接スリップリング19に触れて負傷する不都合を防止することができ、当該X線診断装置の安全性の向上を図ることができる。
【0051】
(リングホルダ4とスライドアーム5の接続部の構成)
次に、図2(c)は、図2(a)に示すA−A線で切断したリングホルダ4及びスライドアーム5の断面図である。この図2(c)からわかるように、リングホルダ4及びスライドアーム5の接続部も、前述のリングアーム1及びリングホルダ4の接続部と同様の構成を有しており、リングホルダ4は、図2(b)を用いて説明した保持ベアリング15と同様の保持ベアリング21によって、スライドアーム5にスライド可能に保持されている。具体的には、スライドアーム5の両端部に組み込まれたベアリング22により、リングホルダ4のレール部4aを保持することでリングホルダ4がスライドアーム5に沿ってスライド可能に保持されている。
【0052】
リングホルダ4とスライドアーム5との間には、固定子23aがリングホルダ4側に、移動子23bがスライドアーム5側に設けられたリニアモータ23が設けられており、このリニアモータ23により、リングホルダ4がスライドアーム5に沿ってスライド駆動されるようになっている。
【0053】
また、リングホルダ4のレール部4aとスライドアーム5との間には、スリップリング24が設けられている。このスリップリング24は、図2(b)を用いて説明したスリップリング19と同様に、リングホルダ4のレール部4a側に設けられた必要なチャンネル数の導電リングと、スライドアーム5側に設けられた、該各導電リングに対応する数のブラシとで構成されており、リングホルダ4の円滑なスライド移動を可能としている。
【0054】
(スライドアーム5と架台部6の接続部の構成)
スライドアーム5と架台部6は、架台部6に設けられた保持ローラでスライドアーム5のレールを挟み込むことにより、架台部6に対してスライドアーム5がスライド可能に保持されている。スライドアーム5の駆動系は、モータ,減速機,ベルト等で構成されており、前記スライド動作を実現している。
【0055】
架台部6の支軸回転を行う回転機構は、保持ベアリング内蔵のD.D.モータで構成されており、このD.D.モータによりスライドアーム5を直接的に回転駆動するようになっている。これにより、小さなスペースで回転動作を可能とすることができる。なお、この架台部6の支軸回転は、通常のモータ、及びベルト或いはチェーンを介して行うようにしてもよい。
【0056】
「電気系の構成」
次に、図3は、当該第1の実施の形態のX線診断装置の電気系の構成を示している。この図3からわかるように、当該第1の実施の形態のX線診断装置は、リングアーム1やX線平面検出器3等を回転駆動すると共に、その回転位置を検出する駆動位置検出系30と、被検体が載置される寝台を駆動すると共に、その回転位置を検出する寝台駆動位置検出系31と、当該X線診断装置の撮影モード等を設定するための操作部32と、操作部32で設定された撮影モードの表示等を行う表示部33と、操作部32の設定内容,駆動位置検出系30及び寝台駆動位置検出系31からの位置検出出力に基づいてリングアーム1やX線平面検出器3及び寝台等を回転或いは移動制御すると共に、この制御内容に応じた表示を表示部33に表示制御する制御系34とを有している。
【0057】
(駆動位置検出系30の構成)
駆動位置検出系30は、リングアーム1を回転駆動するリングアーム回転駆動部40と、リングアーム1の回転位置を検出するリングアーム回転位置検出部41と、X線平面検出器3を回転及び移動駆動するX線平面検出器移動駆動部42と、X線平面検出器3の位置を検出するX線平面検出器位置検出部43と、スライドアーム5等の他の可動部を駆動する他可動駆動部44と、該他の可動部の位置を検出する他可動部位置検出部45とを有している。
【0058】
(寝台駆動位置検出系31の構成)
寝台駆動位置検出系31は、被検体が載置された寝台を上下(床面に対する高さ調整)及び左右(床と平行方向)に駆動する寝台駆動部46と、寝台の位置を検出する寝台位置検出部47とを有している。
【0059】
(操作部32の構成)
操作部32は、被検体に少量のX線を曝射して粗いX線画像を得る透視モード或いは被検体の3次元画像を得る3Dモードを設定するモード設定キー48と、リングアーム1の位置を設定するリングアーム位置設定キー49と、X線平面検出器3の位置を設定するX線平面検出器位置設定キー50と、寝台の位置を設定する寝台位置設定キー51と、スライドアーム5等の他の可動部の位置を設定する他可動位置設定キー52と、モード設定キー48で設定した撮像モードでの撮像開始を指定するための撮像開始キー60等を有している。
【0060】
(制御系34の構成)
制御系34は、駆動位置検出系30のリングアーム回転位置検出部41からの回転位置検出出力に基づいてリングアーム1の回転量を演算し、この演算出力をリングアーム回転駆動部40に供給するリングアーム回転量算出部53と、X線平面検出器位置検出部43からの回転位置検出出力に基づいてX線平面検出器3の回転量を演算し、この演算出力をX線平面検出器移動駆動部42に供給するX線平面検出器移動量算出部54と、他可動部位置検出部45からの回転位置検出出力に基づいて他可動部の回転量を演算し、この演算出力を他可動駆動部44に供給する他可動部移動量算出部55と、寝台位置検出部47からの寝台位置検出出力に基づいて寝台の移動量を演算し、この演算出力を寝台駆動部46に供給する寝台移動量算出部56とを有している。
【0061】
また、制御系34は、操作部32で設定された回転速度となるようにリングアーム1の回転速度を制御するリングアーム回転速度制御部57と、X線平面検出器3が回転可能範囲内で回転動作を行うように該X線平面検出器3の回転制御を行うX線平面検出器位置リミット制御部58と、当該X線診断装置全体の制御を行う主制御部59とを有している。
【0062】
[第1の実施の形態の動作]
次に、このような構成を有する当該第1の実施の形態のX線診断装置の動作説明をする。当該実施の形態のX線診断装置は、撮影モードとして被検体に少量のX線を曝射して粗い2次元的なX線像を得る「透視モード」と、被検体の回りを回転しながらX線を曝射することで3次元的なX線像を得る「3Dモード」とを有している。
【0063】
「透視モード時の動作」
まず、透視を行う場合、操作者は、操作部32のモード設定キー48を操作して透視モードの選択を行う。このモード設定キー48は、例えばオン操作する毎に撮像モードが「透視モード,3Dモード,透視モード,3Dモード・・・」の順に切り替わるようになっており、操作者は、このモード設定キー48を適宜オン操作することで透視モードの選択を行う。なお、この撮像モードの選択は、例えば透視モード選択用のキーと、3Dモード選択用のキーとの両方を設け、いずれか所望のキーを操作することで選択させるようにしてもよい。
【0064】
また、操作者は、この撮像モードの選択と共に、リングアーム位置設定キー49を操作してリングアーム1の回転位置を設定し、X線平面検出器位置設定キー50を操作してX線平面検出器3の回転位置を設定する。さらに、寝台位置設定キー51を操作して寝台の位置を設定すると共に、他可動部位置設定キー52を操作して例えばスライドアーム5等の他可動部の位置を設定する。
【0065】
主制御部59は、このように操作部32の各キー48〜52が操作されることで各設定がなされると、この設定された撮像モード,X線平面検出器3の位置,寝台位置,他可動部の位置等をモニタ装置33に表示制御する。これにより、操作者は、これから行おうとする撮像の撮像内容をモニタ装置33を介して認識可能とすることができる。このため、誤った撮像内容で撮像が行われる不都合を防止することができる。なお、この撮像内容の表示は、当該「透視モード時」のみならず、後に説明する「3Dモード時」においても行われるようになっている。
【0066】
駆動位置検出系30及び寝台駆動位置検出系31は、いわゆるフィードバック制御を行っている。具体的には、寝台駆動位置検出系31の寝台位置検出部47は、現在の寝台位置を検出しており、この寝台位置検出出力を制御系34の寝台移動量算出部56に供給している。寝台移動量算出部56は、この寝台位置検出出力及び寝台位置設定キー51で設定された目標寝台位置に基づいて寝台の移動量を算出し、この演算出力を寝台駆動部46に供給する。寝台駆動部46は、この演算出力に基づいて寝台を上下及び左右に移動制御する。これにより、寝台が目標位置まで移動制御されることとなる。
【0067】
また、駆動位置検出系30のリングアーム回転位置検出部41は、現在のリングアーム1の位置を検出しており、このリングアーム位置検出出力を制御系34のリングアーム回転量算出部53に供給している。リングアーム回転量算出部53には、この他、操作部32のリングアーム位置設定キー49で設定された目標となるリングアーム1の回転位置を示すデータが主制御部59及びリングアーム回転速度制御部57を介して供給されている。
【0068】
リングアーム回転量算出部53は、前記リングアーム位置検出出力及び目標のリングアーム1の回転位置を示すデータに基づいてリングアーム1の移動量を算出し、この演算出力をリングアーム回転駆動部40に供給する。リングアーム回転駆動部40は、この演算出力に基づいて、図1に矢印で示すようにリングアーム1を右回転駆動或いは左回転駆動する。これにより、リングアーム1がリングホルダ4上をスライド回転し、このリングアーム1の回転と共に相対向して設けられたX線発生部2及びX線平面検出器3が回転し、被検体のLAO方向或いはRAO方向の角度付けがなされることとなる。
【0069】
次に、駆動位置検出系30のX線平面検出器位置検出部43は、現在のX線平面検出器3の位置を検出しており、このX線平面検出器位置検出出力を制御系34のX線平面検出器移動量算出部54に供給している。X線平面検出器移動量算出部54には、この他、操作部32のX線平面検出器位置設定キー50で設定された目標となるX線平面検出器3の位置を示すデータが主制御部59及びX線平面検出器位置リミット制御部58を介して供給されている。
【0070】
X線平面検出器移動量算出部54は、前記X線平面検出器位置検出出力及び目標のX線平面検出器3の移動位置を示すデータに基づいてX線平面検出器3の移動量を算出し、この演算出力をX線平面検出器移動駆動部42に供給する。X線平面検出器移動駆動部42は、この演算出力に基づいて、図1に矢印で示すように伸縮アーム11をリングアーム1の径方向に伸縮駆動する。これにより、X線発生部2とX線平面検出器3と間の距離が変化し、撮像する透視画像や3D画像の観察領域(Field of View:FOV)を変えることができる。また、X線平面検出器3を被検体側に移動する場合、関心領域を高解像度で観察可能とすることができる。
【0071】
また、X線平面検出器3を伸縮移動させることにより、当該X線平面検出器3を被検体に密着させた状態での透視撮影が可能となり、X線発生部2の焦点サイズに起因する半影の影響を最小限に抑え、画像の劣化の少ない高画質な透視画像を得ることができる。
【0072】
また、X線平面検出器移動駆動部42は、この演算出力に基づいて、図1に矢印で示すように回転支持部10を回転軸としてX線平面検出器3をリングアーム1の両外方向に回転駆動する。これにより、X線発生部2からのX線の曝射角度(受像角度)を可変することができる。
【0073】
次に、当該X線診断装置においては、このようなリングアーム1の回転駆動及びX線平面検出器3の伸縮,回転駆動の他、スライドアーム5上をリングホルダ4がスライド移動する「スライド回転」、架台部6上をスライドアーム5がスライド移動する「架台スライド回転」、及びスライドアーム5が架台部6の中心軸を中心として回転する「支軸回転」が可能となっている。図3に示す他可動駆動部44〜他可動部移動量算出部55は、これら「スライド回転」,「架台スライド回転」,「支軸回転」の回転量を制御するようになっており、他可動位置検出部45で検出されたスライドアーム5の現在位置等と、操作部32の他可動部位置設定キー52で設定されたスライドアーム5等の目標位置とに基づいて、他可動移動量算出部55がスライドアーム5やリングホルダ4等の移動量を算出し、他可動駆動部44がリングホルダ4をスライド回転制御し、スライドアーム5を架台スライド回転制御し、架台部6を支軸回転制御する。
【0074】
これにより、図1に示すようにリングホルダ4がスライドアーム5に沿って半円弧状の軌跡を描いてスライド回転し、スライドアーム5がその形状に沿って架台部6上を移動して半円弧状の軌跡を描いて架台スライド回転し、被検体のCRA方向或いはCAU方向の角度付けがなされることとなる。また、スライドアーム5が架台部6の回転軸を中心として支軸回転することとなる。
【0075】
次に、操作者は、このようにリングアーム1やスライドアーム5を回転操作して撮影位置や撮像角度を設定した後に、操作部32に設けられている撮像開始キー60を操作する。これにより、図1に示すX線発生部2から寝台に載置された被検体に対して少量のX線が曝射されX線像が形成されることとなる。このX線像は、X線平面検出器3により取り込まれ、電気信号に変換されて図3に示すモニタ装置33に供給される。これにより、所望の撮影位置及び撮像角度で撮像された透視画像がモニタ装置33の表示画面に表示されることとなる。
【0076】
「3Dモード時の動作」
次に、3次元画像の撮影を行う場合、操作者は、操作部32のモード設定キー48をオン操作して3Dモードの選択を行うと共に、リングアーム位置設定キー49を操作してリングアーム1の回転位置を設定し、X線平面検出器位置設定キー50を操作してX線平面検出器3の回転位置を設定する。さらに、寝台位置設定キー51を操作して寝台の位置を設定すると共に、他可動部位置設定キー52を操作して例えばスライドアーム5等の他可動部の位置を設定する。
【0077】
主制御部59は、このように操作部32の各キー48〜52が操作されることで各設定がなされると、上述のようにこの設定された撮像モード,X線平面検出器3の位置,寝台位置,他可動部の位置等をモニタ装置33に表示制御する。
【0078】
また、駆動位置検出系30及び寝台駆動位置検出系31及び制御系34は、上述のフィードバック制御により、寝台,リングアーム1,リングホルダ4,スライドアーム5及び架台部6を移動,回転制御して撮影の位置決めを行う。
【0079】
次に、操作者は、このようにして撮影の位置決めを行うと、操作部32に設けられている撮影開始キー60を操作する。
【0080】
ここで、例えば血管造影像を収集する場合、被検体に造影剤を注入して、関心領域の画像収集範囲に造影剤が充填されたときに投影画像の収集を開始するが、収集終了時も充填された状態を維持してないと、再構成画像にはアーテイファクトが生じる。注入できる造影剤の量には限界があり、規定以上の注入は人体に悪影響を及ぼす。よって、画像収集時間が長いと造影剤が不足してアーチファクトが生じてしまう。また、動脈に注入した造影剤が静脈相に流れ始めるころまで投影画像の収集をしていると関心領域が見ずらくなるばかりでなく、やはりアーチファクトの原因となる。さらに、体動の影響等も考えると投影画像を収集する時間は短い程よい。
【0081】
このため、この3Dモード時となると主制御部59は、前記撮影開始キー60が操作されたことを検出すると、リングアーム回転速度制御部57及びリングアーム回転駆動部40を介してリングアーム1を連続的かつ高速に360°(或いは180°+X線放射角度)回転制御すると共に、図1に示すX線発生部2を曝射制御する。
【0082】
X線平面検出器3は、このようにX線発生部2が曝射制御されることで形成されるX線像を取り込み、この取り込んだX線像に対応する電気信号である投影データを形成する。そして、この投影データを図示しない画像処理部に供給する。画像処理部は、この投影データと共に、その投影データが形成されたリングアーム1の回転角度を示す角度情報を取り込み、この投影データ及び角度情報に基づいて、例えばフィルタード・バック・プロジェクション法(FBP:Filtered Back Projection)等の三次元再構成技術を用いて三次元画像を再構成し、これを例えばモニタ装置等に供給する。これにより、この3Dモードで撮影された三次元画像をモニタ装置に表示することができる。
【0083】
当該X線診断装置においては、リングアーム1を高速に回転制御して3次元画像を再構成処理するようになっている。このため、画像収集時間を短縮化することができるうえ、造影剤が充填された状態のうちに撮影を完結させることができ、アーチファクトのない明瞭な3次元画像を得ることができる。
【0084】
なお、架台部6を被検体の体軸方向に移動(又は、被検体が載置された寝台を体軸方向に移動)しながら画像収集を行うことにより、X線CT装置のヘリカルスキャン同様に効率的に三次元像の収集を行うことができる。
【0085】
次に、主制御部59は、このリングアーム1を回転制御する際に、X線検出器位置検出部54で検出されたX線検出器位置検出出力、他可動部の位置検出部45で検出された他可動の位置検出出力、及び寝台位置検出部47で検出された寝台位置検出出力(上下,左右,前後)に基づいて、X線平面検出器3が少なくとも寝台と干渉しないようにX線平面検出器3の移動可能量を算出し、この移動可能量算出出力をリングアーム回転速度制御部57及びX線検出器位置リミット制御部58に供給する。なお、人体モデルデータに基づき、被検体を含めた干渉対応をしてもよい。
【0086】
リングアーム回転速度制御部57及びX線検出器位置リミット制御部58は、この移動可能量算出出力に基づいて、リングアーム1及びX線平面検出器3をそれぞれ実際に駆動制御するための駆動信号を形成し、これらをリングアーム回転量算出部53及びX線平面検出器移動量算出部54にそれぞれ供給する。これにより、リングアーム1を高速で回転制御する場合でも、リングアーム1やX線平面検出器3が被検体と干渉する不都合を防止することができ、安全に3次元画像の収集を可能とすることができる。
【0087】
次に、三次元再構成時において、ミッドプレーン上の画像には歪みは生じないのであるが、ミッドプレーンからの距離が大きくなるに連れ画像に生ずる歪みが大きくなる。X線平面検出器3の受像面が、X線発生部2の焦点からX線平面検出器3の受像面までの距離がどの位置でも等しくなるような、中空半球状(お椀形)の受像面形状をしていれば画像に歪みは生じないのであるが、このような受像面の成形は困難な場合が多く、通常は投影データに対して歪み補正を施すことで対処している。
【0088】
しかし、当該X線診断装置は、前述の「スライド回転」、「架台スライド回転」、及び「支軸回転」等によりミッドプレーンを変更することができる。このため、ミッドプレーンを関心領域断面に設定することにより、精度良くかつ明瞭な関心部位の三次元画像(断面像)を得ることができる。
【0089】
[第1の実施の形態の効果]
以上の説明から明らかなように、当該第1の実施の形態のX線診断装置は、リングアーム1の内周側にX線発生部2及びX線平面検出器3を相対向させて配置し、このリングアーム1を該リングアーム1の形成方向に沿ってリング回転可能なようにリングホルダ4で保持すると共に、このリングホルダ4を略1/4円弧状のスライドアーム5で、該スライドアーム5の形成方向に沿ってスライド回転可能なように保持する。また、このスライドアーム5を、床に据え付けられた架台部6により支軸回転可能なように保持する。そして、透視モード時においては、リング回転,スライド回転,架台スライド回転及び支軸回転を用いて所望のポジショニングに固定して透視画像の撮像を行う。また、3Dモード時においては、リング回転,スライド回転,架台スライド回転及び支軸回転を用いて所望のポジショニングとしたうえで、リングアーム1を連続的に回転駆動して3次元画像の撮像を行う。
【0090】
これにより、一つの装置でありながら2次元画像(透視画像)及び3次元画像の両方を撮影可能とすることができる。このため、2次元画像の撮像装置及び3次元画像の撮像装置の両方を設ける場合と比較して、設置スペースを大幅に削減することができ、また、一方の撮像装置のみ使用する場合に他方の撮像装置を退避させる退避機構を不要とすることができる。従って、退避機構を不要とすることができることから当該装置を安価に製造可能とすることができる。また、当該一つの装置で2次元画像及び3次元画像の両方を撮像可能とすることができるため、当該装置を設置する病院側のコスト面の負担も軽減することができるうえ、設置スペースを大幅に削減することができることから病院側の設置場所に対する負担も軽減することができる。
【0091】
また、三次元画像により複雑な血管走行を立体的に把握することができ、確実かつ迅速なカテーテル操作等を可能とすることができる。また、1回の造影剤の注入で必要な血管情報(狭窄や動脈瘤等の三次元形状)や癌組織の状態を認識可能となり、効果的かつ精度よく治療を施すことを可能とすることができる。
【0092】
また、アーム(リングアーム1)がリング状であることから、被検体へのアクセスに制約がなく、被検体の頭から足先までの所望の部位の三次元像を得ることができる。この場合、リングアーム1をリング回転することにより臨床角RAO/LAOのポジショニングを行い、リングアーム1を「スライド回転」することにより臨床角CRA/CAUのポジショニングが可能となる。CRA/CAUの深い角度付けをしたいときはスライドアーム5の「架台スライド回転」を併用すればよい。また、リングアーム1の「スライド回転」と架台部6の「支軸回転」を組み合わせることによっても、臨床角RAO/LAO、CRA/CAUの複合ポジショニングが可能である。
【0093】
従って、これらリングアーム1,リングホルダ4,スライドアーム5、及び架台部6の各回転を組み合わせることにより、術者の邪魔にならないポジショニングで、例えばカテーテル操作等の手技を進めることを可能とすることができ、臨床アプリケーションの拡大を図ることができる。
【0094】
〔第2の実施の形態〕
次に、本発明の第2の実施の形態のX線診断装置の説明をする。上述の第1の実施の形態のX線診断装置は、X線発生部2及びX線平面検出器3が、リングアーム1の径方向に沿ってそれぞれ相対向するように設けられたものであったが、この第2の実施の形態のX線診断装置は、X線発生部2及びX線平面検出器3をリングアーム1の一外方向に突出させて設けることで、該X線発生部2及びX線平面検出器3に、いわばオフセットを持たせたものである。なお、この点以外は、上述の第1の実施の形態と第2の実施の形態とは同じ動作を示すため、以下、この差異の説明のみ行い重複説明は省略することとする。
【0095】
[第2の実施の形態の構成]
すなわち、この第2の実施の形態のX線診断装置は、図4の斜視図に示すように、リングアーム1の径方向に直交する方向に沿って突出するかたちで(リングアーム1に対して所定のオフセットを持って)、X線発生部2及びX線平面検出器3がそれぞれ相対向してリングアーム1に設けられている。
【0096】
X線平面検出器3は、図5に示すようにリングアーム1に設けられる回転支持部65に伸縮アーム11の他端を回転自在に接続することでオフセット支持されている。X線発生部2は、このX線平面検出器3と同様に、リングアーム1に設けられる回転支持部69に支持アーム68の一端を回転自在に接続すると共に、この支持アーム68の他端を回転支持部67を介して回転自在にX線発生部2に接続することでリングアーム1にオフセット支持されている。なお、支持アーム68は、伸縮アーム11と同じく伸縮自在としてもよい。
【0097】
[第2の実施の形態の動作]
このようなX線診断装置は、X線平面検出器3が、伸縮アーム11による伸縮動、回転支持部10による回転動、及び回転支持部65によるリングアーム1の外方向への回転動によりそれぞれ移動及び回転が可能となっている。同様に、X線発生部2が、各回転支持部67,69による回転動により回転可能となっている。操作者は、このようなX線発生部2及びX線平面検出器3の伸縮動及び回転動を用いて当該X線診断装置を所望のポジショニングに設定し、上述の透視画像或いは三次元画像の撮影を行う。
【0098】
[第2の実施の形態の効果]
このような第2の実施の形態のX線診断装置は、上述の第1の実施の形態のX線診断装置と同じ効果を得ることができる他、X線発生部2及びX線平面検出器3がリングアーム1によりオフセット支持されているため、リアルタイム透視によりカテーテル操作を行うとき等、被検体周りのクリアランスを確保することができ、被検体への自在なアクセスを可能とすることができる。また、術者のワークスペースも十分得ることができ、手技を円滑に進めることを可能とすることができる。
【0099】
また、場合によっては、架台部6の支軸回転及びスライドアーム5の「架台スライド回転」、リングアーム1の「スライド回転」等を用いて、被検体の左右いずれかの側面側から被検体に対してアクセスすることができる(所定のオフセットを有するX線発生部2及びX線平面検出器3の間に被検体を横入れのかたちでアクセスすることができる。)。これにより、被検体の右側(又は左側)及び頭側にワークスペースを形成することができ、当該X線診断装置が載置された部屋のスペースを有効利用することができる。
【0100】
〔第3の実施の形態〕
次に、本発明の第3の実施の形態のX線診断装置の説明をする。上述の各実施の形態のX線診断装置は、リングホルダ4、スライドアーム5及び架台部6でリングアーム1を保持するものであったが、この第3の実施の形態のX線診断装置は、図7に示すようにリングアーム1を一対の支柱部70により挟持して保持するようにしたものである。なお、この点以外は、上述の各実施の形態と当該第3の実施の形態とは同じであるため、以下、この差異の説明のみ行い重複説明は省略することとする。
【0101】
[第3の実施の形態の構成]
すなわち、図7からわかるように、この第3の実施の形態のX線診断装置は、上述の第1の実施の形態と同様にオフセットを有することなくX線発生部2及びX線検出器3が設けられたリングアーム1を、2つのリングホルダ71により該リングアーム1の形成方向に沿って回転自在に挟持すると共に、この各リングホルダ71を、床に対して鉛直方向に立設された各支柱部70により、床と平行な回転軸を中心として支軸回転可能に挟持して形成されている。各支柱部70は、床に設けられたレール72に沿って並進動可能となっており、また、床に対して垂直な方向に伸縮可能となっている。
【0102】
図8は、リングアーム1とリングホルダ71との接続部の一部を切り欠いて示す図である。この図8において、モータ75の回転軸75aは、ターンベルト76を介して減速器77の第1の回転軸77aに接続されている。この減速器77は、第1の回転軸77aに伝達されたモータ75の回転力が減速されて伝達される第2の回転軸77bを有している。この第2の回転軸77bは、ターンベルト78aを介してプーリ79aに接続されている。このプーリ79aには、リングアーム1内を周回するように設けられているシンクロベルト80aが該リングアーム1内から引き出され、2つのアイドラプーリ81a,81bにより所定の張力が付加されて掛け回されている。
【0103】
また、この図8は、前記接続部を横側から見た図であるため当該図面上には現れていないのであるが、前記減速器77には、第1の回転軸77aの他、モータ75の回転力が減速されて伝達される第2の回転軸77bが設けられており、モータ75の減速された回転力は、第1の回転軸77a及び第2の回転軸77bにそれぞれ伝達されるようになっている。
【0104】
また、前記ターンベルト78a,プーリ79a,シンクロベルト80a及び2つのアイドラプーリ81a,81bと同様のターンベルト78b,プーリ79b,シンクロベルト80b及び2つのアイドラプーリ81c,81dも設けられている。この減速器77の第3の回転軸77cは、ターンベルト78bを介してプーリ79bに接続されており、このプーリ79bには、リングアーム1内を周回するように設けられているシンクロベルト80bが該リングアーム1内から引き出され、2つのアイドラプーリ81c,81dにより所定の張力が付加されて掛け回されている。
【0105】
これら、ターンベルト78b,プーリ79b,シンクロベルト80b及び2つのアイドラプーリ81c,81dは、ターンベルト78a,プーリ79a,シンクロベルト80a及び2つのアイドラプーリ81a,81bが設けられている面の反対の面側から当該接続部を見た際に確認できるもの理解されたい。
【0106】
次に、図9は、上半分が、図8に示すA−A線によりリングアーム1及びリングホルダ71を切断し、この切断面側から両者を見た図、また、下半分が、図8に示すB−B線によりリングアーム1及びリングホルダ71を切断し、この切断面側から両者を見た図である。この図9からわかるように、リングアーム1の外周側は、内方向に折曲加工されており、レール片1a及びレール片1bが形成されている。
【0107】
リングアーム1及びリングホルダ71は、リングホルダ71側に設けられた一対のローラ85a,85bでレール片1aを挟持し、また、リングホルダ71側に設けられたローラ85cをレール片1b上に載置することで、リングホルダ71に対してリングアーム1がスライド可能に保持されている。
【0108】
次に、図10は、図8に示すC−C線によりリングアーム1及びリングホルダ71を切断し、この切断面側から両者を見た図である。この図10からわかるように、リングアーム1及びリングホルダ71の接続面には、スリップリング87が設けられている。このスリップリング87は、図11に拡大して示すように、リングホルダ71側に設けられた必要なチャンネル数の導電リング87aと、リングアーム1側に設けられた、該各導電リング87aに対応するブラシ87bとで構成されており、リングアーム1のリング回転時に、常に導電リング87aがブラシ87bに接触するように設けられている。
【0109】
リングアーム1が回転することにより、リングホルダ71の内側面、又はリングアーム1の外側面が露出するが、当該X線診断装置においては、図9〜図11に示すようにスリップリング87を内部に設けているため、リングアーム1の回転時に、操作者や患者の指等が直接スリップリング87に触れて負傷する不都合を防止することができ、当該X線診断装置の安全性の向上を図ることができる。
【0110】
[第3の実施の形態の動作]
(リング回転)
このような構成を有する当該第3の実施の形態のX線診断装置は、リングアーム1のリング回転時となると、図8に示すモータ75が回転駆動される。このモータ75が回転駆動されることにより発生した回転力は、ターンベルト76を介して減速器77の第1の回転軸77aに伝達される。減速器77は、この伝達された回転力を(回転速度を)所定分減速して第2,第3の回転軸77b,77cに伝達する。これにより、減速器77の第2,第3の回転軸77b,77cは、それぞれ前記減速された回転速度で回転することとなる。
【0111】
この第2,第3の回転軸77b,77cに伝達された回転力は、ターンベルト78aを介してプーリ79aに伝達され、プーリ79a,79bが回転する。これにより、図7に示すようにこのプーリ79a,79bにそれぞれ掛け回されたシンクロベルト80a,80bによりリングアーム1が、その形成方向に沿ってリング回転することとなる。このリング回転は、主にRAO/LAOの位置決めに用いられる。
【0112】
(支軸回転)
次に、前述のようにこのリングアーム1は、2つのリングホルダ71を介してに各支柱部70により挟持されるかたちで保持されている。この各支柱部70には、図7に示すようにリングホルダ71との接続部に、床と平行の支軸を有しており、この支軸を中心としてリングアーム1を支軸回転可能となっている。この支軸回転は、主にCRA/CAUの位置決めに用いられる。
【0113】
(支柱移動)
次に、この支柱部70は、床に設けられた一対のレール72上に載置されている。このため、レール72に沿って支柱部70を移動させることにより、リングアーム1を被検体の体軸方向へ移動可能となっている。このため、カテーテル操作の準備等を行うときには、リングアーム1を該操作の邪魔にならない位置に退避させておくことができる。
【0114】
なお、X線平面検出器3の伸縮動,回転動等は、第1の実施の形態のX線診断装置と同様である。
【0115】
[第3の実施の形態の効果]
以上の説明から明らかなように、当該第3の実施の形態のX線診断装置は、リング回転,支柱回転及び支柱移動等により、所望の様々なポジショニングを可能とすることができ、上述の第1の実施の形態のX線診断装置と同様の効果を得ることができる
なお、この第3の実施の形態では、リングホルダ71を対で設けることとしたが、これは、一つのリングホルダ71でリングアーム1を保持するようにしてもよい。これにより、支柱部70も一つとすることができ、当該X線診断装置の構成の簡略化及びこれを通じてローコスト化を図ることができる。
【0116】
また、モータ75やシンクロベルト80a,80b等によりリング回転を可能としたが、これは、第1の実施の形態で説明したようにリニアモータを用いるようにしてもよい。さらに、このリング回転を可能とする回転駆動も、両方のリングアーム1及びリングホルダ4に設けることとしたが、これはいずれか一方でもよい。
【0117】
〔第4の実施の形態〕
次に、本発明の第4の実施の形態のX線診断装置の説明をする。上述のように、当該X線診断装置においてはX線検出手段としてX線平面検出器3を用いているのであるが、このX線平面検出器3は、X線発生部2と比較して軽量である。このため、X線発生部2とX線平面検出器3との重量の違いから、3Dモード等でリングアーム1を高速回転させると、該リングアーム1の回転にブレを生ずる虞がある。この第4の実施の形態のX線診断装置は、このX線発生部2とX線平面検出器3との重量の違いを是正して、リングアーム1の円滑な回転動作を可能としたものである。なお、この点以外は、上述の第3の実施の形態と当該第4の実施の形態とは同じであるため、以下、この差異の説明のみ行い重複説明は省略することとする。
【0118】
[第4の実施の形態の主構成及び効果]
すなわち、この第4の実施の形態のX線診断装置は、図12に示すように、これまでキャビネット内に置かれていたX線発生器90をリングアーム1のX線平面検出器3側に設けた構成となっている。
【0119】
これにより、X線発生部2側の重量と、X線平面検出器3側の重量とを略均等なものとすることができ、3Dモード等でリングアーム1を高速回転させる際に、バランスの取れた状態でリングアーム1を回転させることができる。
【0120】
また、リングアーム1をバランスの取れた状態で回転駆動することができるため、小さな動力源で安定した回転を可能とすることができる。さらに、X線発生器90をリングアーム1側に設けているため、当該X線診断装置からキャビネットまでの間を接続するのに必要であった高圧ケーブルを不要とすることができ、また、スリップリング部もより小型化することができる他、上述の第3の実施の形態と同じ効果を得ることができる。
【0121】
[第4の実施の形態のモニタ装置の取り付け位置]
ここで、従来、循環器用保持装置等のX線診断装置には、画像モニタ、生体波形モニタ、表示パネル(装置の状態:X線条件、装置のポジショニング、X線管ヒートインジケータ等)が術者によく見えるように、天井から吊されている。しかし、装置自体が天井吊である場合は、この画像モニタ等も比較的設置し易いのであるが、上述の第1〜第3の実施の形態及び当該第4の実施の形態のように、装置が床置きである場合は、画像モニタ等を天井吊りするためだけに天井工事を必要とし、コスト高になるばかりか、据付期間(工事期間)の観点からも思わしいことではない。
【0122】
このため、当該第4の実施の形態のX線診断装置では、図12に示すようにいずれか一方の支柱部70に設けられた略逆L字状のモニタ支持アーム92に、画像モニタ装置93,生体波形モニタ装置94及び表示パネル95(装置の状態:X線条件、装置のポジショニング、X線管ヒートインジケータ等)が設けられている。
【0123】
モニタ支持アーム92は、床と平行方向に伸縮可能であると共に、支柱部70の形成方向(床に対して垂直方向)の回転軸を中心として回転可能な第1の支持アーム92aと、該第1の支持アーム92aの反支柱部70側の一端に、床に対して垂直となるように設けられ、床に対して垂直な方向に伸縮可能であり、床に対して垂直な方向の回転軸を中心として回転可能な第2の支持アーム92bとで構成されている。
【0124】
前記画像モニタ装置93及び生体波形モニタ装置94は、並設されるかたちで第2の支持アーム92bに設けられており、表示パネル95は、生体波形モニタ装置94の底面部に接続されるかたちで設けられている。
【0125】
モニタ支持アーム92は、第1の支持アーム92aにより床と平行な方向に伸縮すると共に、支柱部70の形成方向(床に対して垂直方向)の回転軸を中心として回転する。また、第2の支持アーム92bにより床と垂直な方向に伸縮すると共に、床に対して垂直な方向の回転軸を中心として回転する。術者は、このモニタ支持アーム92を手動或いは電動で伸縮,回転操作することで、画像モニタ装置93〜表示パネル95を、自分の見やすい位置に設定する。
【0126】
このようなモニタ支持アーム92の各回転は、例えば保持ベアリング内蔵のダイレクト・ドライブモータで行われ、各伸縮動は油圧等による伸縮機構ユニットにより行われる。なお、各伸縮動は、例えばローラ及びレール又はリニアガイド等で各アーム92a,92bを保持し、モータ動力をベルト等を介してスクリューに伝達するスクリュー駆動としてもよい。
【0127】
[モニタ装置を支柱部70に設置したことの効果]
このように、当該第4の実施の形態のX線診断装置は、支柱部70に画像モニタ装置93等を設けることができるため、X線診断装置自体が床置きの装置である場合に該画像モニタ装置を天井吊りするための天井工事を不要とすることができ、該天井工事のために工事費用及び据付期間(工事期間)を要する不都合を省略することができる。
【0128】
なお、この画像モニタ装置93〜表示パネル95の設定位置は、各術者毎に異なることが多い。このため、各術者毎に好みの設定位置を予めプリセットしておき、実際に当該X線診断装置を操作する際に自動的に位置設定されるようにしてもよい。更に、選択された撮影術式や装置及び寝台のポジショニングから術者の位置を算出し、自動ポジショニングしてもよい。
【0129】
また、この第4の実施の形態の説明では、モニタ支持アーム92には2つのモニタ装置(93,94)が設けられることとしたが、これは、専用フレームを用意することで3つ或いは4つ等、任意の数のモニタ装置を設けることができることは勿論である。
【0130】
〔第5の実施の形態〕
次に、本発明の第5の実施の形態のX線診断装置の説明をする。上述の第3或いは第4の実施の形態のX線診断装置は、リングアーム1を支柱部70に直接的に取り付け、このリングアーム1の内周側にX線発生部2及びX線平面検出器3をそれぞれ対向配置したものであったが、この第5の実施の形態のX線診断装置は、支柱部70に対して所定のオフセットを持たせてリングアーム1を取り付けると共に、リングアーム1に対して所定のオフセットを持たせてX線発生部2及びX線平面検出器3をそれぞれ対向配置したものである。なお、この点以外は、上述の第3,第4の実施の形態と当該第5の実施の形態とは同じであるため、以下、この差異の説明のみ行い重複説明は省略することとする。
【0131】
[第5の実施の形態の構成]
すなわち、この第5の実施の形態のX線診断装置は、図13に示すように支柱部70の反床側の一端部に支軸回転可能に設けられた一対の支持アーム97を有しており、リングアーム1は、リングホルダ71を介してこの支持アーム97に回転自在に取り付けられることで、支柱部70に対して支持アーム97の長さ分のオフセットを有する構成となっている。
【0132】
また、X線発生部2は、リングアーム1に設けられる回転支持部69に支持アーム68の一端を回転自在に接続すると共に、この支持アーム68の他端を回転支持部67を介して回転自在にX線発生部2に接続することで該リングアーム1にオフセット支持されている(図6参照)。また、X線平面検出器3は、このX線発生部2と同様に、リングアーム1に設けられる回転支持部65に伸縮アーム11の他端を回転自在に接続することでオフセット支持されている(図5参照)。
【0133】
[第5の実施の形態の動作及び効果]
このようなX線診断装置は、X線発生部2及びX線平面検出器3が、リングアーム1にオフセット支持されているうえ、各支持アーム97によりリングアーム1が、支柱部70に対してオフセットを持った状態で支柱回転駆動される。これにより、リアルタイム透視によりカテーテル操作を行うとき等、被検体周りのクリアランスを確保することができ、被検体への自在なアクセスを可能とすることができる。また、術者のワークスペースも十分得ることができ、手技を円滑に進めることを可能とすることができる他、上述の第3,第4の実施の形態のX線診断装置と同じ効果を得ることができる。
【0134】
なお、この第5の実施の形態においても、X線平面検出器3側に図8を用いて説明したX線発生器90を設けるようにしてもよい。これにより、X線発生部2側の重量と、X線平面検出器3側の重量とを略均等なものとすることができ、3Dモード等でリングアーム1を高速回転させる際に、バランスの取れた状態でリングアーム1を回転させることができる。
【0135】
〔第6の実施の形態〕
次に、本発明の第6の実施の形態のX線診断装置の説明をする。上述の第1〜第5の実施の形態のX線診断装置は、床置き型のX線診断装置であったが、この第6の実施の形態のX線診断装置は天井吊り型とした点が上述の各実施の形態と異なる。なお、この天井吊り型とした点以外は、当該第6の実施の形態は上述の各実施の形態と同じであるため、以下、この差異の説明のみ行い重複説明は省略することとする。
【0136】
[第6の実施の形態の構成]
すなわち、この第6の実施の形態のX線診断装置は、図14に示すように天井に設けられたレール99により保持される支柱部100と、支柱部100により回転及びスライド可能に支持される略1/4円弧状のスライドアーム101と、スライドアーム101の形成方向に沿ってスライド可能に支持されるスライドホルダ102と、スライドホルダ102により固定して保持され、リングアーム1をその内周に沿って回転自在に保持するリングホルダ103とを有している。リングアーム1の内周側には、X線発生部2及びX線平面検出器3がリングアーム1に対してオフセットすることなく相対向して設けられている。
【0137】
リングアーム1のスライド回転は、ローラ及びレール又はリニアガイド等によりリングアーム1をスライドホルダ102で保持し、モータ動力をボールスクリュー等に伝達することにより行うようになっている。また、支柱部100は、レール99に沿って移動可能となっており、前後左右に移動することで、当該X線診断装置全体が前後左右に移動するようになっている。
【0138】
これらの連動制御は、リングアーム1、X線発生部2及びX線平面検出器3のそれぞれの位置をリニアセンサーまたはポテンショメータやエンンコーダ等で検知し、各駆動軸の移動量を算出し、これに基づき連動動作させることで実現することができる。
【0139】
[第6の実施の形態の動作及び効果]
このような第6の実施の形態のX線診断装置は、当該X線診断装置全体が支柱部100を介して天井に設けられたレール99に沿って移動する「レール移動」、支柱部100が、天井に対して垂直な回転軸を中心として回転する「支柱回転」、支柱部100に保持されたスライドアーム101が、その形成方向に沿ってスライド回転する「支柱スライド回転」、スライドホルダ102がスライドアーム101の形成方向に沿ってスライド回転する「スライド回転」、及びリングホルダ103の内周に沿ってリングアーム1が回転する「リング回転」がそれぞれ可能となっている。これにより、透視モード及び3Dモードでの2次元的な透視画像の撮影及び3次元的なX線画像の撮影を1台の装置で可能とすることができる等、上述の第1の実施の形態と同様の効果を得ることができる。
【0140】
なお、この第6の実施の形態において、X線平面検出器3側に図8を用いて説明したX線発生器90を設けるようにしてもよい。これにより、X線発生部2側の重量と、X線平面検出器3側の重量とを略均等なものとすることができ、3Dモード等でリングアーム1を高速回転させる際に、バランスの取れた状態でリングアーム1をリング回転させることができる。
【0141】
〔第7の実施の形態〕
次に、本発明の第7の実施の形態のX線診断装置の説明をする。上述の第6の実施の形態では、リングアーム1の内周側にX線発生部2及びX線平面検出器3をオフセットさせることなく相対向して設けたものであったが、この第7の実施の形態では、X線発生部2及びX線平面検出器3とリングアーム1との取り付け部にそれぞれ回転機構を設け、X線発生部2及びX線平面検出器3のオフセットの有無を自由に調整可能としたものである。なお、この点以外は、当該第7の実施の形態と上述の第6の実施の形態とは同じであるため、以下、この差異の説明のみ行い重複説明は省略することとする。
【0142】
[第7の実施の形態の構成]
すなわち、この第7の実施の形態のX線診断装置は、図15(a),(b)に示すように、X線発生部2を支持する支持アーム68と、支持アーム68を回転自在にリングアーム1に固定する回転支持部69とを有している(図6参照)。また、X線平面検出器3を伸縮自在に支持する伸縮アーム11と、この伸縮アーム11を回転自在にリングアーム1に固定する回転支持部65とを有している(図5参照)。
【0143】
[第7の実施の形態の動作及び効果]
このようなX線診断装置は、3Dモードで3次元画像の撮像を行う場合には、X線発生部2及びX線平面検出器3をオフセットを持たせない状態として行い、透視モードで透視画像の撮像を行う場合には、図15(a),(b)に示すようにX線発生部2及びX線平面検出器3にオフセットを持たせた状態で行うようになっている。
【0144】
具体的には、透視モードにおいて透視画像の撮影を行う場合には、回転支持部69及び回転支持部65を介してX線発生部2及びX線平面検出器3を、それぞれリングアーム1のいずれか一方の外方向に回転駆動し、図15(a)に示すように、X線発生部2及びX線平面検出器3がリングアーム1に対して一外方向に所定分オフセットした状態として透視画像の撮影を行う。
【0145】
或いは、X線発生部2を回転支持部69を介してリングアーム1の一方の外方向に回転駆動し、X線平面検出器3を回転支持部65を介してリングアーム1の他方の外方向に回転駆動し、図15(b)に示すように、X線発生部2及びX線平面検出器3が所定分オフセットした状態でリングアーム1の中心(アイソセンタ)を介して相対向する状態として透視画像の撮影を行う。これにより、透視モードにおいては、被検体周りのクリアランスを確保することができ、また術者のワークスペースも十分得ることができる等、上述の第2の実施の形態のX線診断装置と同じ効果を得ることができる。
【0146】
特に、図15(b)に示すようにX線発生部2及びX線平面検出器3を、リングアーム1の異なる外方向にそれぞれオフセットさせた状態とした場合には、図15(a)に示したX線発生部2及びX線平面検出器3をリングアーム1の同じ外方向にオフセットさせた状態とした場合に比べ、深い角度付けを可能とすることができる。これは、スライドアーム101のスライド回転の限界を補うことを意味するが、それだけではなく、むしろ被検体とリングアーム1との干渉回避、被検体の圧迫感の軽減、術者の邪魔にならないポジショニング設定を可能とする等、重要な効果を得ることができる。
【0147】
次に、3Dモードにおいて3次元画像の撮像を行う場合には、前述の透視モードによる透視により決定された3次元画像の収集を行う部位に対するX線発生部2及びX線平面検出器3の撮影系の相対位置が変化しないように、リングアーム1を移動制御して、X線発生部2及びX線平面検出器3を図14に示すようにリングアーム1の径方向に沿って相対向する状態とする(オフセットレスとする。)。
【0148】
すなわち、透視モードでオフセットさせた状態となっているX線発生部2及びX線平面検出器3の位置は動かさず、リングアーム1を移動制御することでオフセットレス状態とする。そして、この状態で、リングアーム1を回転駆動し、3次元画像の撮像を行う。
【0149】
このように3Dモード時には、X線発生部2及びX線平面検出器3をオフセットレスとすることで、3Dモードにおける三次元画像の収集の際に、スライド回転のバランスを保つことができ、ぶれの少ない高速回転を可能とすることができる。
【0150】
〔第8の実施の形態〕
次に、本発明の第8の実施の形態のX線診断装置の説明をする。上述の第6,第7の実施の形態では、スライドアーム101により「スライド回転」を行うようになっていたため、該「スライド回転」に限界があったが(スライドアーム101の形成長以上のスライド回転は行うことができない。)、この第8の実施の形態のX線診断装置は、半円弧状のリング支持アームでリングアーム1を回転自在に挟持することで限界なく「スライド回転」を可能としたものである。なお、この第8の実施の形態の説明において、上述の各実施の形態と同じ動作を示す箇所には同じ符号を付し重複した説明は省略することとする。
【0151】
[第8の実施の形態の構成]
すなわち、この第8の実施の形態のX線診断装置は、図16に示すように天井に設けられたレール109に沿って移動可能とされた天井支持部110と、天井支持部110に設けられた伸縮自在の支持ポール111と、支持ポール111に対して外周側の略中央部が回転自在に接続された略半円弧状のリング支持アーム112と、リング支持アーム112の両端部112aにより、リングホルダ71を介して回転自在に挟持されたリングアーム1とを有している。
【0152】
リングアーム1に設けられたX線発生部2及びX線平面検出器3はオフセットレスの状態で設けられているが、これは、図15を用いて説明したように回転支持部を設けて所定のオフセットを有するように調整可能としてもよい。
【0153】
[第8の実施の形態の動作]
まず、当該X線診断装置は、天井支持部110がレール109に沿って移動することで当該X線診断装置全体が前後左右に移動する「レール移動」が可能となっている。この「レール移動」は、天井支持部110に設けられたローラをモータで駆動しレール109上を走行させることで行われるようになっている。この「レール移動」により、被検体を移動させることなく頭から足先まで全ての部位の診断及び治療を可能とすることができる。
【0154】
また、当該X線診断装置は、支持ポール111が、床(或いは天井)に対して垂直な方向に伸縮する「上下移動」が可能となっている。この「上下移動」は、例えばローラ及びレール又はリニアガイド等で当該X線診断装置を保持し、モータ動力をベルト等を介してスクリューに伝達するスクリュー駆動により行われるようになっている、なお。油圧等による伸縮機構ユニットを用いてもよい。この「上下移動」により、アイソセンタの高さを術者の好みの高さに調整可能とすることができる。
【0155】
また、当該X線診断装置は、支持ポール111の中心軸を中心として当該X線診断装置全体が床と平行方向に回転する「支柱回転」が可能となっている。この「支柱回転」は、天井支持部110に設けられたモータの回転力を、減速機を介してチェーン及びスプロケットを介してリング支持アーム112に動力伝達することで行われるようになっている。なお、この「支柱回転」は、支持ポール111の回転軸に保持ベアリング内蔵のD.D.モータを設けて行うようにしてもよい。このD.D.モータを用いると、減速機等を介さないで直接動力伝達可能となるため、小さなスペースで「支柱回転」を可能とすることができる。この「支柱回転」により、三次元画像収集時のミッドプレーンを、頭尾方向の傾斜のみならず、体軸回転方向にも角度付けできるようになり関心部位をより精度よく観察することを可能とすることができる。また、この「支柱回転」により、リングアーム1が術者の邪魔にならない角度に臨床角を調整することを可能とすることができる。
【0156】
さらに、当該X線診断装置は、リングホルダ71に沿って「リング回転」するリングアーム1を、床に対して平行なリングホルダ71の支軸を中心として回転させる「支持アーム回転」が可能となっている。この「支持アーム回転」は、リング支持アーム112のその回転機構が内蔵されており、モータの回転力を減速機を介してチェーン及びスプロケット等でリングホルダ71に動力伝達する。なお、この回転機構は、リング支持アーム112の両端部112aにそれぞれ設けてもよいし、いずれか一端に設けてもよい。この「支持アーム回転」は、リングアーム1の「リング回転」の回転軸に対して直交する回転軸を中心としてリングアーム1全体を回転させることができるため、限界なく角度付けを行うことを可能とすることができる。このため、上述のスライドアーム101のスライド回転角度の限界を補うことができる。
【0157】
このように、当該X線診断装置は、「レール移動」,「上下移動」,「支柱回転」,「支持アーム回転」及び「リング回転」を組み合わせて用いることで、様々なポジショニングを可能とすることができ、この様々なポジショニングで透視画像及び三次元画像の両方の撮像を可能とすることができる等、上述の各実施の形態のX線診断装置と同じ効果を得ることができる。
【0158】
〔第9の実施の形態〕
次に、本発明の第9の実施の形態のX線診断装置の説明をする。上述の各実施の形態のX線診断装置においては、透視画像(2次元画像)及び3次元画像の収集が可能であることを説明したが、3次元画像の収集時には、リングアーム1を「リング回転」させてX線発生部2及びX線平面検出器3を回転させることが必要となるため、この回転するX線発生部2及びX線平面検出器3が被検体,術者,寝台或いは造影剤注入器等の周辺機器等と干渉する虞がある。この第9の実施の形態のX線診断装置は、X線発生部2及びX線平面検出器3の回転軌道を安全カバーで覆うことで、回転するX線発生部2及びX線平面検出器3が被検体や術者等と干渉する不都合を防止するようにしたものである。なお、当該第9の実施の形態と上述の各実施の形態とでは、この安全カバーを設けた点のみ異なるため、以下、この差異の説明のみ行い、重複した説明は省略することとする。
【0159】
[第9の実施の形態の構成]
図17(a)は、リングアーム1に設けられた安全カバー120の一部を示す斜視図、図17(b)は、安全カバー120の構成を説明するための要部の斜視図、図17(c)は、安全カバー120を引き出す前の状態のリングアーム1の斜視図、図17(d)は、安全カバー120を引き出した後のリングアーム1の斜視図である。
【0160】
まず、図17(a)において、安全カバー120は、例えば周方向に2等分割、或いは3等分割されており、この分割された状態でリングアーム1の内周側に巻装されて収納されている。すなわち、安全カバー120は、図17(b)に示すように、リングアーム1の内周側の幅方向の両端部に、該リングアーム1の形成方向に沿って設けられた、例えば1/2リング状、或いは1/3リング状等の各回転ワイヤ123と、安全カバー120の非使用時には各回転ワイヤ123により巻き取られた状態となっており、安全カバー120の使用時に引き出される側面カバー121と、側面カバー121が引き出された際に、リングアーム1の回転軸と同軸となる所定の径のガントリを形成するメッシュ構造とされた筒状カバー122とで構成されている。
【0161】
側面カバー121は、丈夫で伸縮性のあるラバー等で形成されており、筒状カバー122は、弾性変形可能なステンレス等で形成されている。また、筒状カバー122には、それぞれ分割されて巻装されている各側面カバー121を引き出した際に、各筒状カバー122を同士を接続するための、例えばフック、ベロクロテープ,接続ボタン、或いはファスナ等で形成された接続部124が設けられている。
【0162】
回転ワイヤ123は、フレキシブルなピアノ線のような材質からなり、リングアーム1に内蔵されたバネにより常に側面カバー121を巻き取る方向にテンションが掛けられている。リングアーム1には図示しないガイドが設けられており、このガイドにより回転ワイヤ123が脱落しないように保持するようになっている。
【0163】
[第9の実施の形態の動作]
このような安全カバー120は、透視撮影モードでは、前記バネのテンションにより側面カバー121が回転ワイヤ123に巻き取られ、筒状カバー122はリングアーム1の内周側に張り付くように収納されている。
【0164】
一方、3Dモードでは、X線発生部2及びX線平面検出器3にオフセットを有する場合は、図17(c)に示すようにX線発生部2及びX線平面検出器3をオフセットレスの状態とし、リングアーム1に内蔵された伸縮可能な動力ロッドによって2分割された筒状カバー121をそれぞれ半径方向に引き出すと共に、各筒状カバー122の接続部124同士を接続する。これにより、図17(d)に示すようにX線発生部2及びX線平面検出器3が側面カバー121により覆われたうえで、リングアーム1の回転軸と同軸で所定の径のガントリが筒状カバー122により形成される。そして、この安全カバー120内をX線発生部2及びX線平面検出器3が回転し、メッシュ構造とされた筒状カバー122を介してX線が曝射され3次元画像の収集が行われることとなる。
【0165】
[第9の実施の形態の効果]
このようにリングアーム1に安全カバー120を設けることにより、リングアーム1の回転時に、X線発生部2及びX線平面検出器3の回転軌道を覆うことができるため、回転するX線発生部2及びX線平面検出器3が被検体,術者,寝台或いは造影剤注入器等の周辺機器等と干渉する不都合を防止することができる。また、安全カバー120は、複数に分割されているため、引き出し時に筒状カバー121を被検体体軸方向に移動するような手間がなく、リングアーム1の前後に周辺機器等があってもスムーズに安全カバー120の装着を可能とすることができる。そして、この他、当該第9の実施の形態のX線診断装置は、上述の各実施の形態と同じ効果を得ることができることは上述の通りである。
【0166】
なお、この第9の実施の形態において、安全カバー120の装着,収納は、透視モード及び3Dモードの各モード別に自動的に行ってもよいし、手動で行ってもよい。
【0167】
最後に、上述の各実施の形態のX線診断装置は本発明の一例である。このため、本発明は上述の各実施の形態に限定されることはない。例えば、リングアーム1はリングホルダ4,71により保持してスライド回転する構成としたが、これは、リングアーム1を2重リング構造とし、内輪と外輪の間に駆動機構を設けて内輪を回転し、外輪をホルダで固定保持するようにしてもよく、この他、上述の実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、例えば設計等に応じて種々の変更が可能であることは勿論である。
【0168】
【発明の効果】
本発明に係るX線診断装置は、一つの装置でありながら2次元画像(透視画像等)及び3次元画像の両方を撮影可能とすることができる。このため、2次元画像の撮像装置及び3次元画像の撮像装置の両方を設ける場合と比較して、設置スペースを大幅に削減することができ、また、一方の撮像装置のみ使用する場合に他方の撮像装置を退避させる退避機構を不要とすることができる。従って、退避機構を不要とすることができることから当該装置を安価に製造可能とすることができる。また、当該一つの装置で2次元画像及び3次元画像の両方を撮像可能とすることができるため、当該装置を設置する病院側のコスト面の負担も軽減することができるうえ、設置スペースを大幅に削減することができることから病院側の設置場所に対する負担も軽減することができる。
【0169】
また、リングアーム1がリング形状であるため、被検体へのアクセスに制約がなく、臨床角RAO/LAO及び臨床角CRA/CAUの様々な複合的なポジショニングを可能とすることができ、被検体の頭から足先までの所望の部位の二次元画像及び三次元像を得ることができる。
【0170】
また、このように様々な複合的なポジショニングを可能とすることができるため、リングアームを術者の邪魔にならないポジショニングに調整して、例えばカテーテル操作等の手技を進めることを可能とすることができ、臨床アプリケーションの拡大を図ることができる。
【0171】
また、複雑な血管走行を三次元画像により立体的に把握することができ、確実かつ迅速なカテーテル操作等を可能とすることができる。
【0172】
また、1回の造影剤の注入で必要な血管情報(狭窄や動脈瘤等の三次元形状)や癌組織の状態を認識可能となり、効果的かつ精度よく治療を施すことを可能とすることができる。
【図面の簡単な説明】
【図1】本発明に係るX線診断装置を適用した第1の実施の形態のX線診断装置の斜視図である。
【図2】前記第1の実施の形態のX線診断装置の各接続部の構成を示す断面図である。
【図3】前記第1の実施の形態のX線診断装置の電気的な構成を説明するためのブロック図である。
【図4】本発明に係るX線診断装置を適用した第2の実施の形態のX線診断装置の斜視図である。
【図5】前記第2の実施の形態のX線診断装置に設けられているX線平面検出器の回転機構を説明するための側面図である。
【図6】前記第2の実施の形態のX線診断装置に設けられているX線発生部の回転機構を説明するための側面図である。
【図7】本発明に係るX線診断装置を適用した第3の実施の形態のX線診断装置の斜視図である。
【図8】前記第3の実施の形態のX線診断装置に設けられているリングアームとリングホルダとの接続構成を説明するための一部切り欠き側面図である。
【図9】前記リングアームとリングホルダとの接続構成を説明するための断面図(図8のA−A線断面図及びB−B線断面図)である。
【図10】前記リングアームとリングホルダとの接続構成を説明するための断面図(図8のC−C線断面図)である。
【図11】前記リングアームとリングホルダとの接続部に設けられているスリップリングの拡大図である。
【図12】本発明に係るX線診断装置を適用した第4の実施の形態のX線診断装置の斜視図である。
【図13】本発明に係るX線診断装置を適用した第5の実施の形態のX線診断装置の斜視図である。
【図14】本発明に係るX線診断装置を適用した第6の実施の形態のX線診断装置の斜視図である。
【図15】本発明に係るX線診断装置を適用した第7の実施の形態のX線診断装置の斜視図である。
【図16】本発明に係るX線診断装置を適用した第8の実施の形態のX線診断装置の斜視図である。
【図17】本発明に係るX線診断装置を適用した第9の実施の形態のX線診断装置に設けられている安全カバーを説明するための図である。
【図18】従来のX線診断装置の一つである循環器用保持装置の斜視図である。
【図19】従来の3次元的な画像収集が可能な循環器保持装置の斜視図である。
【図20】従来のIVR−CTシステムの斜視図である。
【符号の説明】
1…リングアーム、2…X線発生部、3…X線平面検出器、4…リングホルダ、5…スライドアーム、6…架台部、10…回転支持部、11…伸縮アーム、15…保持ベアリング、16…ベアリング、18…リニアモータ、19…スリップリング、21…保持ベアリング、22…ベアリング、23…リニアモータ、24…スリップリング、30…駆動系位置検出系、31…寝台駆動位置検出系、32…操作部、33…モニタ装置、34…制御系、40…リングアーム回転駆動部、41…リングアーム回転位置検出部、42…X線平面検出器移動駆動部、43…X線平面検出器位置検出部、44…他可動部の駆動部、45…他可動部の位置検出部、46…寝台駆動部、47…寝台位置検出部、48…モード設定キー、49…リングアーム位置設定キー、50…X線平面検出器位置設定キー、51…寝台位置設定キー、52…他可動部位置設定キー、53…リングアーム回転量算出部、54…X線平面検出器移動量算出部、55…他可動部移動量算出部、56…寝台移動量算出部、57…リングアーム回転速度制御部、58…X線平面検出器位置リミット制御部、59…主制御部、60…撮影開始キー、75…モータ、76…ターンベルト、77…減速機、78a,78b…ターンベルト、79a,79b…プーリ、80a,80b…シンクロベルト、81a,81b…アイドラプーリ、87…スリップリング、90…X線発生器、92…モニタ支持アーム、93…画像モニタ装置、94…生体波形モニタ装置、95…表示パネル、100…支柱部、101…スライドアーム、102…スライドホルダ、103…リングホルダ、110…天井支持部、111…支持ポール、112…リング支持アーム、120…安全カバー、121…側面カバー、122…筒状カバー

Claims (20)

  1. X線の曝射を行うX線発生手段と、
    複数のX線検出素子を2次元的に配列してなり、前記X線発生手段からX線が曝射されることで形成されたX線像の取り込みを行うX線平面検出器と、
    前記X線発生手段及びX線平面検出器を対向支持するリング形状のリングアームと、
    前記X線発生手段を前記リングアームの外方向にオフセットさせる第1のオフセット手段と、
    前記X線平面検出器を前記リングアームの外方向にオフセットさせる第2のオフセット手段と、
    前記リングアームを、その形成方向に沿って回転駆動する回転駆動手段と、
    2次元画像の撮像を行う2次元画像撮像モード及び3次元画像の撮像を行う3次元画像撮像モードを少なくとも有し、前記2次元画像撮像モードにおいては、前記リングアームが所望の回転角度に固定されるように前記回転駆動手段を回転制御すると共に前記X線発生手段を曝射制御することで2次元画像の撮像を行い、前記3次元画像撮像モードにおいては、前記リングアームを回転するように前記回転駆動手段を回転制御すると共に前記X線発生手段を曝射制御し、これにより得られた複数の収集画像に基づいて3次元画像を形成する制御手段とを有することを特徴とするX線診断装置。
  2. 前記第1のオフセット手段は、前記X線発生手段を前記リングアームの外方向に回転させる第1の回転支持手段を有することを特徴とする請求項1記載のX線診断装置。
  3. 前記第1のオフセット手段は、前記X線発生手段を直線的に移動させる第1の伸縮機構を有することを特徴とする請求項1または2のいずれか一項に記載のX線診断装置。
  4. 前記第2のオフセット手段は、前記X線平面検出器を前記リングアームの外方向に回転させる第2の回転支持手段を有することを特徴とする請求項1記載のX線診断装置。
  5. 前記第2のオフセット手段は、前記X線発生手段を直線的に移動させる第2の伸縮機構を有することを特徴とする請求項1またはのいずれか記載のX線診断装置。
  6. 前記回転駆動手段は、少なくとも前記X線発生手段から曝射されるX線のファン角度に180度を加算した角度分、前記リングアームを回転駆動することを特徴とする請求項1乃至5のいずれか記載のX線診断装置。
  7. 前記X線発生手段及びX線平面検出器は、前記リングアームの径方向に沿って相対向するように設けられていることを特徴とする請求項1乃至5のいずれか一項に記載のX線診断装置。
  8. 前記リングアームをその形成方向に沿って回転可能に支持するリングホルダと、
    前記リングホルダをスライド可能に支持する略円弧状のスライドアームと、
    前記スライドアームをその形成方向に沿ってスライド可能に支持すると共に、設置面に対して垂直な回転軸を中心として回転支持する架台とを有することを特徴とする請求項1乃至7のいずれか記載のX線診断装置。
  9. 前記リングアームをその形成方向に沿って回転可能に挟持する一対のリングホルダと、
    床に据え付けられ、前記一対のリングホルダを結ぶ直線を回転軸として、該リングホルダを介して前記リングアームを回転可能に支持する一対の支持手段とを有することを特徴とする請求項1乃至7のいずれか記載のX線診断装置。
  10. 前記一対の支持手段は、床に設けられたレールに沿って平行移動可能となっていることを特徴とする請求項9記載のX線診断装置。
  11. 前記一対の支持手段のいずれかに設けられる支持アームと、
    この支持アームに支持される表示手段を有することを特徴とする請求項9または1のいずれか一項に記載のX線診断装置。
  12. 記支持アームは、鉛直方向への移動、水平方向への移動、または鉛直軸周りの回転の少なくともひとつが可能なように、前記表示手段を支持することを特徴とする請求項11記載のX線診断装置。
  13. 前記リングアームをその形成方向に沿って回転自在に支持する支持手段と、
    前記支持手段をスライド及び回転可能に支持する略円弧状のスライド回転アームと
    井に設けられ、前記スライド回転アームをその形成方向に沿ってスライド回転可能に支持すると共に、該スライド回転アームを天井に対して垂直方向の回転軸を中心として回転可能に支持する回転支持手段とを有することを特徴とする請求項1乃至7のいずれか記載のX線診断装置。
  14. 前記回転支持手段は、天井に設けられたレールに沿って平行移動可能となっていることを特徴とする請求項13記載のX線診断装置。
  15. 前記リングアームをその形成方向に沿って回転自在に挟持する一対のリングホルダと、
    前記一対のリングホルダを結ぶ直線を回転軸とし、該リングホルダを介して前記リングアームを回転可能に支持する略半円弧状の円弧支持手段と、
    前記円弧支持手段の外周の所定位置に設けられた支持ポールと、
    天井に設けられ、前記支持ポールを天井に対して垂直方向の回転軸を中心として回転可能に支持する回転支持手段とを有することを特徴とする請求項1乃至7のいずれか記載のX線診断装置。
  16. 前記支持ポールは、天井に対して垂直方向に伸縮自在となっていることを特徴とする請求項15記載のX線診断装置。
  17. 前記回転支持手段は、天井に設けられたレールに沿って平行移動可能となっていることを特徴とする請求項15または1のいずれか一項に記載のX線診断装置。
  18. 前記リングアームのX線平面検出器が設けられている側には、前記X線発生手段を曝射制御するためのX線発生部が設けられていることを特徴とする請求項1乃至1のいずれか記載のX線診断装置。
  19. 前記X線発生手段及びX線平面検出器が前記リングアームの径方向に沿って相対向するように設けられる際に、リングアームの中心に所定の開口部を形成すると共に、該X線発生手段及びX線平面検出器を被覆する安全カバーを有することを特徴とする請求項1乃至1のいずれか記載のX線診断装置。
  20. 前記安全カバーは、複数の安全カバー片に分割されて前記リングアームに収納されていることを特徴とする請求項19記載のX線診断装置。
JP21252799A 1999-07-27 1999-07-27 X線診断装置 Expired - Fee Related JP4481392B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21252799A JP4481392B2 (ja) 1999-07-27 1999-07-27 X線診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21252799A JP4481392B2 (ja) 1999-07-27 1999-07-27 X線診断装置

Publications (2)

Publication Number Publication Date
JP2001037747A JP2001037747A (ja) 2001-02-13
JP4481392B2 true JP4481392B2 (ja) 2010-06-16

Family

ID=16624159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21252799A Expired - Fee Related JP4481392B2 (ja) 1999-07-27 1999-07-27 X線診断装置

Country Status (1)

Country Link
JP (1) JP4481392B2 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482837B1 (en) 2002-03-13 2005-09-14 Breakaway Imaging, Llc Systems and methods for quasi-simultaneous multi-planar x-ray imaging
DE10211016A1 (de) * 2002-03-13 2003-09-25 Philips Intellectual Property Röntgengerät mit lageveränderlichem Röntgendetektor
US7108421B2 (en) 2002-03-19 2006-09-19 Breakaway Imaging, Llc Systems and methods for imaging large field-of-view objects
CN100482165C (zh) 2002-06-11 2009-04-29 分离成像有限责任公司 用于x射线成像的悬臂式支架装置
US7338207B2 (en) * 2002-08-21 2008-03-04 Medtronic Navigation, Inc. Gantry positioning apparatus for X-ray imaging
AU2003262726A1 (en) 2002-08-21 2004-03-11 Breakaway Imaging, Llc Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system
JP2004205384A (ja) * 2002-12-26 2004-07-22 Hitachi Zosen Corp X線検査装置
JP4393105B2 (ja) * 2003-05-14 2010-01-06 キヤノン株式会社 放射線撮像装置及びその作動方法
US7052421B2 (en) * 2003-07-01 2006-05-30 Ge Medical Systems Global Technology Company, Llc Belt tensioning system for use with a motorized mobile C-arm
DE102005032288B4 (de) * 2005-07-11 2008-10-16 Siemens Ag Röntgenaufnahmeeinrichtung
JP5025178B2 (ja) * 2005-09-28 2012-09-12 株式会社東芝 X線コンピュータ断層撮影装置
US8348506B2 (en) 2009-05-04 2013-01-08 John Yorkston Extremity imaging apparatus for cone beam computed tomography
JP5504705B2 (ja) * 2009-06-22 2014-05-28 株式会社島津製作所 X線撮影装置
US8325873B2 (en) * 2010-10-20 2012-12-04 Medtronic Navigation, Inc. Selected image acquisition technique to optimize patient model construction
US8768029B2 (en) * 2010-10-20 2014-07-01 Medtronic Navigation, Inc. Selected image acquisition technique to optimize patient model construction
WO2013188617A1 (en) 2012-06-14 2013-12-19 Gregerson Eugene A Vertical scan imaging system
US9962132B2 (en) 2012-06-14 2018-05-08 Mobius Imaging, Llc Multi-directional X-ray imaging system with single support column
US10987068B2 (en) 2012-06-14 2021-04-27 Mobius Imaging Llc Multi-directional x-ray imaging system
EP2866664B1 (en) * 2012-06-29 2020-05-06 General Electric Company Medical imaging system comprising a c-arm protection tunnel
KR101386062B1 (ko) * 2012-09-13 2014-04-16 한국생산기술연구원 갠트리 포지셔닝 장치 및 이를 이용한 영상 획득 장치
CN104968273B (zh) 2012-10-08 2019-03-29 卡尔斯特里姆保健公司 用于锥形束计算机断层摄影的肢体成像装置
US9980688B2 (en) * 2013-01-17 2018-05-29 Koninklijke Philips N.V. Ceiling suspension system
JP6516984B2 (ja) * 2014-08-13 2019-05-22 キヤノンメディカルシステムズ株式会社 X線診断装置
US10278654B2 (en) 2015-02-25 2019-05-07 J. Morita Manufacturing Corporation Medical X-ray photographing apparatus and X-ray photographing method
JP6050905B2 (ja) * 2015-02-25 2016-12-21 株式会社モリタ製作所 医療用x線撮影装置及びx線撮影方法
US10624596B2 (en) 2016-11-23 2020-04-21 Mobius Imaging, Llc Cantilevered x-ray CT system for multi-axis imaging
WO2019131859A1 (ja) * 2017-12-28 2019-07-04 株式会社モリタ製作所 X線ct撮影装置
JP6793764B2 (ja) * 2019-02-13 2020-12-02 キヤノンメディカルシステムズ株式会社 X線診断装置
JP7154200B2 (ja) 2019-09-30 2022-10-17 富士フイルム株式会社 放射線撮影装置及び放射線撮影装置の制御方法
US20230355194A1 (en) * 2020-09-15 2023-11-09 Mobius Imaging, Llc Medical Imaging Device And Methods

Also Published As

Publication number Publication date
JP2001037747A (ja) 2001-02-13

Similar Documents

Publication Publication Date Title
JP4481392B2 (ja) X線診断装置
JP3664462B2 (ja) X線診断装置
EP1752099B1 (en) Combined panoramic and computed tomography photographing apparatus
US8746973B2 (en) Systems and methods for quasi-simultaneous multi-planar x-ray imaging
US6325537B1 (en) X-ray diagnosis apparatus
WO2001078603A1 (fr) Dispositif de radiographie
US8534915B2 (en) Imaging apparatus comprising a ring-shaped gantry
JP5220355B2 (ja) X線複合診断システム
WO2000057785A1 (fr) Appareil de radiographie medicale
EP1721574A1 (en) Combined panoramic, CT (computed tomography) and cephalometric X-ray apparatus
JP2008018249A6 (ja) X線複合診断システム
JP4508326B2 (ja) X線透視撮影装置
JP2011072655A (ja) X線画像診断装置
KR20130058633A (ko) 의료용 3d 디지털 방사선 촬영 시스템의 튜브 지지대, 메인 구동부 및 이를 이용한 촬영 포지션 조정 방법
JP2002263094A (ja) X線透視撮影装置
JPH11206744A (ja) X線診断装置
JPH0654843A (ja) X線検査装置
JP3432270B2 (ja) ディジタルx線撮影装置
JP2000116632A (ja) X線装置
JP2000262502A (ja) 医用x線装置
JP2001161671A (ja) 医用x線装置
JP2000271115A (ja) 医用x線装置
JP2001046362A (ja) X線装置
CN213046941U (zh) 一种悬吊式断层融合x射线机
JP2004216193A (ja) 2方向x線透視撮影装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050427

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees