以下、本発明をより詳細に説明する。
本発明のトナーは、結着樹脂、着色剤及びワックスを少なくとも含有するカラートナーであり、23℃においてn−ヘキサン中に15mg/cm3の濃度で該トナーを分散させて1分間抽出して得られる抽出液のワックス濃度が0.080〜0.500mg/cm3であることが必須である。前記ワックス濃度がこの範囲を外れると、優れた低温定着性や耐高温オフセット性が発現されない。
本発明のトナーは、ワックスが微細化、均一化されるように、すなわち、トナーの結着樹脂中にワックスの少なくとも一部を分子レベルで均一に分散させた状態となるように製造する。なお、本発明においては、結着樹脂として主にポリエステル系樹脂が好適に用いられる。
なお、ここでいう「ポリエステル系樹脂」とは、ポリエステルユニットを有している樹脂のことであり、ポリエステルユニットとビニル系共重合体ユニットとを有するハイブリッド樹脂、又はポリエステル樹脂、又はビニル系共重合体とこれらの樹脂との混合物のいずれかを示しており、本発明においてはハイブリッド樹脂が好適に用いられる。また、本発明においては、結着樹脂全体の50質量%以上がポリエステルユニットを有する樹脂が好ましく、さらに結着樹脂全体の70質量%以上がポリエステルユニットを有する樹脂が好ましい。
本発明者等は、トナー中のワックスを均一に微分散させるために、結着樹脂の種類、組成及び製造条件、ワックスの種類、融点、添加量、並びにその他のトナー原材料の種類、添加量、トナーの製造条件等について種々の検討を行い、得られたトナーの定着性について検討を行った結果、ワックスを微分散するほど低温定着性と耐高温オフセット性が良好となることを見出した。また同時に、特殊な手法を用いて、ワックスのさらなる微細化と均一化を行い、結着樹脂中にワックスの少なくとも一部を分子レベルで均一に分散させた状態とすることにより、例えば、厚紙を転写材として出力したフルカラー画像を折り曲げても、定着画像の剥離による画像欠陥が生じにくく、美しい画像が転写材に保持されるという、従来に無い優れた低温定着性が発現されることを見出した。
また、トナー中のワックスの分散度合いと、トナーをn−ヘキサンに分散したときのトナーからn−ヘキサンへのワックスの溶出速度との間には相関があり、トナー中にワックスが高度に分散しトナー中に存在するワックス粒子やワックスドメインの存在量が減少するほど、n−ヘキサンへのトナーからのワックスの溶出速度が速くなるということも見出した。そして、ワックスの分散度合いを簡便且つ再現性良く定量化する手段について検討を行った結果、23℃においてn−ヘキサン中に15mg/cm3の濃度でトナーを分散させて、1分間抽出して得られる抽出液のワックス濃度をガスクロマトグラフ法により定量するという方法で、ワックスの分散度合いを簡便且つ再現性良く判定できることを見出した。
種々のトナーについて、23℃においてn−ヘキサン中に15mg/cm3での濃度で該トナーを分散させて1分間抽出して得られる抽出液のワックス濃度の測定と、トナーの定着性についての検討を行った結果、抽出液のワックス濃度が0.080mg/cm3以上、より好ましくは0.120mg/cm3以上となるトナーにすることで、ワックスの少なくとも一部が分子レベルで結着樹脂中に均一に分散された状態となり、トナー中に存在するワックス粒子やワックスドメインの存在量が減少することがわかった。このことにより定着時にトナー内部からも速やかにワックスがしみ出し、ワックスの添加効果が最大限に発現され、前述したように、厚紙を転写材として出力したフルカラー画像を折り曲げても、定着画像の剥離による画像欠陥が生じにくく、美しい画像が転写材に保持されるという、従来に無い優れた低温定着性が発現されることを見出した。
一方で、前記抽出液のワックス濃度が高いほど定着性が向上する傾向があるものの、トナー中のワックス含有量を大幅に増やし、ワックス濃度が0.500mg/cm3を超えるトナーとした場合には、例えば高温高湿環境下にトナーを放置したときに、分子レベルで結着樹脂中に均一に分散していたワックスが凝集を起こしてワックス分散の急激な悪化を生じやすく、優れた定着性が発現しない場合がある。従って、環境変動によらず長期にわたって優れた定着性を発現させるためには、前記抽出液のワックス濃度は、0.500mg/cm3以下となるトナーにすることが必須であり、好ましくは前記抽出液のワックス濃度が0.400mg/cm3以下となるトナーにすることで、再現性良く優れた定着性が発現される。
以上の理由から、本発明のトナーは、23℃においてn−ヘキサン中に15mg/cm3の濃度でトナーを分散させて1分間抽出して得られる抽出液のワックス濃度が0.080〜0.500mg/cm3の範囲にあることが必須であり、好ましくは0.120〜0.400mg/cm3の範囲であるものがよい。
なお、ワックスの少なくとも一部が分子レベルで結着樹脂中に均一に分散された状態となることで、n−ヘキサンへのワックスの溶出速度が速くなる理由については必ずしも定かではないが、本発明者等は以下のように推定している。
結着樹脂に比較して極性が低く、融点が低いワックスは、非極性溶媒であるn−ヘサンに対する飽和溶解度が常温で数質量%と比較的高いものの、その溶解速度は非常に遅く、数時間をかけて膨潤した後に、徐々に均一に溶解していく。その溶解速度はワックスの粒子径に強く依存しており、粒子径が小さいほど、その溶解速度は加速度的に上昇していく。従って、トナー中に存在するワックスについても同様のことが予想され、トナー中におけるワックスの分散粒子径が小さいほどn−ヘキサンへの溶出速度が上昇すると考えられ、その究極の状態が分子レベルでのワックスの均一分散といえる。また、トナーにワックスを微分散させると、本来n−ヘキサンとは相互作用のほとんどない結着樹脂であっても、分子レベルで均一に分散したワックスの影響で、n−ヘキサンと結着樹脂との馴染み性が良好となる。以上のような理由から、ワックスの少なくとも一部を分子レベルで結着樹脂中に均一に分散させた状態とした本発明のトナーは、n−ヘキサンに分散したときに、トナー内部からも極めて速やかにワックスの溶出が見られるようになったものと考えられる。
前述したように、結着樹脂へのワックスの分散性を改良したトナーがいくつか知られている。しかし、本発明の特徴である、23℃においてn−ヘキサン中に15mg/cm3の濃度で該トナーを分散させて1分間抽出して得られる抽出液のワックス濃度を特定の範囲に調整したトナーについては知られておらず、これらの従来知られているワックスを含有するトナーは、前記した23℃においてn−ヘキサン中に15mg/cm3の濃度で該トナーを分散させて1分間抽出して得られる抽出液のワックス濃度は0.080mg/cm3未満であった。また、そのトナーの定着性能を評価したところ、低温定着性、耐高温オフセット性に改善の余地があることが明らかとなった。
例えば、前述した特許文献1に記載されている、ビニル系モノマー、酸及びアルコール成分、並びにワックスからなる混合物から合成したハイブリッド樹脂をトナー原材料として用いた場合、溶融混練を行った際に樹脂中に分散していたワックス粒子の再凝集が生じやすく、結果として前記抽出液のワックス濃度が0.080mg/cm3未満となる。
また、特許文献2及び3に記載されている、スチレン、N含有ビニルモノマー及び(メタ)アクリル酸系モノマーからなる共重合体をポリオレフィンにグラフトしたワックス分散剤を用いて製造されたトナーや、特許文献4に記載されている混練を段階的に繰り返すことにより製造されたトナーは、ワックスの一次平均分散粒子径自体は微粒子化しているものの、トナー製造工程においてワックスと結着樹脂を混合するという工程を経るため、どうしても分散粒子が近接して凝集したワックスドメインを多数形成しやすく、また、このドメインの粒子径が溶融混練条件により大きくなり過ぎたり、場合によってはワックス分散粒子の再凝集が生じ、ワックス分散粒子径の粗大化を起こすことがあり、結果として前記抽出液のワックス濃度が0.080mg/cm3未満となってしまう。
さらに、特許文献5に記載されている、溶剤に溶解したポリエステルの溶液に、微粒子化したワックスのスラリー及び顔料スラリーを混合してこれを水中で造粒し、その後に溶剤を常温で留去することにより製造したトナーは、ワックスを機械的に微粒子化してこれを溶液状の結着樹脂と混合するというものであり、ワックスの数平均分散粒子径は1μm程度と微分散とは言い難く、前記抽出液のワックス濃度も0.080mg/cm3未満である。
本発明のトナーにおいて、23℃においてn−ヘキサン中に15mg/cm3の濃度で該トナーを分散させて1分間抽出して得られる抽出液のワックス濃度を0.080〜0.500mg/cm3とするためには、ワックスの少なくとも一部を分子レベルで結着樹脂中に均一に分散させた状態とすることにより、製造することができる。
本発明において、ワックスの少なくとも一部を分子レベルで結着樹脂中に均一に分散させた状態とする方法としては、例えば、ワックス、ビニル系共重合体ユニットを形成するためのビニル系モノマー及びポリエステルユニットを形成するための酸及びアルコール成分の混合物からハイブリッド樹脂を合成する際に、ビニル系モノマーの重合反応を、水素引き抜き能力の比較的強い重合開始剤(例えば、t−ブトキシラジカルが分解により生成するジ−t−ブチルパーオキサイド等)を使用して比較的高い重合温度で行い、ビニル系モノマーの重合と共にビニル系モノマーのワックスや樹脂へのグラフト重合を意図的に起こし、ワックスのビニル系共重合体への相溶性及びワックスのハイブリッド樹脂への相溶性を向上させる方法が挙げられる。また、上記モノマー混合物にワックス及びハイブリッド樹脂の良溶媒を添加し、完全に溶解した状態でハイブリッド樹脂を合成し、ワックスを分子レベルで均一に分散する方法、さらに、溶剤に溶解したワックスとハイブリッド樹脂の均一混合物から、低温で溶剤を除去してワックスの高分散性を維持する方法等が適用可能であり、もちろんこれらを組み合わせて適用することもできる。
本発明のトナーは、円相当径が3μm以上の粒子において、平均円形度が0.920〜0.950の範囲である。トナーの平均円形度を上記範囲とすることにより、トナーの流動性、転写性、帯電性を好適なものとすることが出来る。平均円形度が0.920より小さいと転写性、特に転写効率に劣る場合があり、逆に、平均円形度が0.950より大きいと形状が球形となりすぎるため、電子写真感光体のクリーニングの際に転写残トナーがクリーニングブレードをすり抜ける等、クリーニング不良による画像欠陥が出る場合がある。
次に、本発明のトナーの組成について説明する。
本発明のトナーは結着樹脂を少なくとも含有する。
本発明のトナーに含有される結着樹脂は、トナー中にワックスが高分散される限り、従来トナーに用いられる一般的なものが用いられ特に限定されないが、ポリエステルユニットとビニル系共重合体ユニットとを有するハイブリッド樹脂、又はポリエステル樹脂、又はビニル系共重合体とこれらの樹脂との混合物のいずれかのポリエステル系樹脂であることが好ましく、ハイブリッド樹脂がより好ましい。
上述しているが「ポリエステル系樹脂」とは、ポリエステルユニットを有している樹脂のことであり、結着樹脂全体の50質量%以上がポリエステルユニットを有する樹脂が好ましく、さらに結着樹脂全体の70質量%以上がポリエステルユニットを有する樹脂が好ましい。結着樹脂全体の50質量%以上がポリエステルユニットを有する樹脂とすることにより、高い着色力、鮮明な色味と良好な混色性、そして優れた透明性がより顕著に発現できる。さらに、結着樹脂全体の50質量%以上がポリエステルユニットを有するハイブリッド樹脂とすることにより、良好な顔料分散性、ワックス分散性、低温定着性、さらに耐高温オフセット性の向上が期待できる。
なお、本発明において「ポリエステルユニット」とはポリエステルに由来する部分を示し、「ビニル系共重合体ユニット」とはビニル系共重合体に由来する部分を示す。ポリエステルユニットを構成するポリエステル系モノマーは、多価カルボン酸成分と多価アルコール成分である。ビニル系共重合体ユニットを構成するビニル系モノマーは、ビニル基を有するモノマー成分である。
本発明において「ハイブリッド樹脂」とは、ビニル系共重合体ユニットとポリエステルユニットが化学的に結合された樹脂を意味する。具体的には、例えば(メタ)アクリル酸エステル等のカルボン酸エステル基を有するモノマーを重合したビニル系共重合体ユニットとポリエステルユニットとがエステル交換反応によって形成されるものであり、好ましくはビニル系共重合体ユニットを幹重合体、ポリエステルユニットを枝重合体としたグラフト共重合体(又はブロック共重合体)を形成するものである。
本発明のトナーに含有される結着樹脂として、ポリエステル樹脂又はポリエステルユニットを有するハイブリッド樹脂を用いる場合、ポリエステル樹脂又はハイブリッド樹脂のポリエステルユニットを生成するためのポリエステル系モノマーとして、多価のアルコールと多価カルボン酸、多価カルボン酸無水物、又は多価カルボン酸エステル等が原料モノマーとして使用できる。
具体的には、例えば2価アルコール成分としては、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(3.3)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(2.0)−ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(6)−2,2−ビス(4−ヒドロキシフェニル)プロパン等のビスフェノールAのアルキレンオキシド付加物や、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−ブテンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ビスフェノールA、水素添加ビスフェノールA等が挙げられる。
3価以上のアルコール成分としては、例えばソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン等が挙げられる。
2価カルボン酸成分としては、例えばフタル酸、イソフタル酸及びテレフタル酸等の芳香族ジカルボン酸類又はその無水物;コハク酸、ドデセニルコハク酸、アジピン酸、セバシン酸及びアゼライン酸等のアルキルジカルボン酸類又はその無水物;炭素数6〜12のアルキル基で置換されたコハク酸又はその無水物;フマル酸、マレイン酸及びシトラコン酸等の不飽和ジカルボン酸類又はその無水物;が挙げられる。
また、3価以上のカルボン酸成分としては、例えば、1,2,4−ベンゼントリカルボン酸(別名トリメリット酸)、1,2,5−ベンゼントリカルボン酸、1,2,4−ナフタレントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4,5−ベンゼンテトラカルボン酸及びこれらの無水物やエステル化合物が挙げられる。
なお、上記の中でも、特に、下記一般式(1)で代表されるビスフェノール誘導体をジオール成分とし、2価以上のカルボン酸又はその酸無水物、又はその低級アルキルエステルとからなるカルボン酸成分(例えば、フマル酸、マレイン酸、無水マレイン酸、フタル酸、テレフタル酸、トリメリット酸、ピロメリット酸等)を酸成分として用いることが好ましい。この組成としたポリエステル樹脂又はポリエステルユニットを含有する樹脂は、良好な帯電特性を有する。
(式中、Rはエチレンまたはプロピレン基を示し、x及びyはそれぞれ1以上の整数であり、且つx+yの平均値は2〜10である。)
本発明のトナーに含有される結着樹脂として、ビニル系共重合体又はビニル系共重合体ユニットを有するハイブリッド樹脂を用いる場合、ビニル系共重合体又はハイブリッド樹脂のビニル系共重合体ユニットを生成するためのビニル系モノマーとして、次のようなものを用いることができる。スチレン;o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、p−フェニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−クロルスチレン、3,4−ジクロルスチレン、m−ニトロスチレン、o−ニトロスチレン、p−ニトロスチレン等のスチレン及びその誘導体;エチレン、プロピレン、ブチレン、イソブチレン等の不飽和モノオレフィン類;ブタジエン、イソプレン等の不飽和ポリエン類;塩化ビニル、塩化ビニリデン、臭化ビニル、フッ化ビニル等のハロゲン化ビニル類;酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニル等のビニルエステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のα−メチレン脂肪族モノカルボン酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニル等のアクリル酸エステル類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニルケトン類;N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドン等のN−ビニル化合物;ビニルナフタリン類;アクリロニトリル、メタクリロニトリル、アクリルアミド等のアクリル酸又はメタクリル酸誘導体等が挙げられる。
さらに、マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物;マレイン酸メチルハーフエステル、マレイン酸エチルハーフエステル、マレイン酸ブチルハーフエステル、シトラコン酸メチルハーフエステル、シトラコン酸エチルハーフエステル、シトラコン酸ブチルハーフエステル、イタコン酸メチルハーフエステル、アルケニルコハク酸メチルハーフエステル、フマル酸メチルハーフエステル、メサコン酸メチルハーフエステル等の不飽和二塩基酸のハーフエステル;ジメチルマレイン酸、ジメチルフマル酸等の不飽和二塩基酸エステル;アクリル酸、メタクリル酸、クロトン酸、ケイヒ酸等のα,β−不飽和酸;クロトン酸無水物、ケイヒ酸無水物等のα,β−不飽和酸無水物、該α,β−不飽和酸と低級脂肪酸との無水物;アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物及びこれらのモノエステル等のカルボキシル基を有するモノマーが挙げられる。さらに、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート等のアクリル酸又はメタクリル酸エステル類;4−(1−ヒドロキシ−1−メチルブチル)スチレン、4−(1−ヒドロキシ−1−メチルヘキシル)スチレン等のヒドロキシ基を有するモノマーが挙げられる。
本発明のトナーに含有させる結着樹脂として、ビニル系共重合体又はビニル系共重合体ユニットを有するハイブリッド樹脂を用いる場合には、これらの樹脂はビニル基を2個以上有する架橋剤で架橋されたものであってもよい。この場合に用いられる架橋剤としては、以下のものが挙げられる。ジビニルベンゼン、ジビニルナフタレン等の芳香族ジビニル化合物;エチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート等のアルキル鎖で結ばれたジアクリレート化合物類及び以上の化合物のアクリレートをメタクリレートに代えたもの;ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600ジアクリレート、ジプロピレングリコールジアクリレート等のエーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類及び以上の化合物のアクリレートをメタクリレートに代えたもの;ポリオキシエチレン(2)−2,2−ビス(4−ヒドロキシフェニル)プロパンジアクリレート、ポリオキシエチレン(4)−2,2−ビス(4−ヒドロキシフェニル)プロパンジアクリレート等の芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物類及び以上の化合物のアクリレートをメタクリレートに代えたもの等が挙げられる。
上記以外に多官能の架橋剤を用いることもでき、多官能架橋剤としては、ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート及び以上の化合物のアクリレートをメタクリレートに代えたもの;トリアリルシアヌレート、トリアリルトリメリテート等が挙げられる。
ビニル系共重合体ユニットやポリエステルユニットを有するハイブリッド樹脂をトナーに含有させる場合、そのビニル系共重合体ユニットやポリエステルユニット中には、両樹脂成分と互いに反応し得るモノマー成分を含むことが好ましい。ポリエステルユニットを構成するポリエステル系モノマーのうちビニル系共重合体ユニットと反応し得るものとしては、例えば、フタル酸、マレイン酸、シトラコン酸、イタコン酸等の不飽和ジカルボン酸又はその無水物等が挙げられる。ビニル系共重合体ユニットを構成するビニル系モノマーのうちポリエステルユニットと反応し得るものとしては、カルボキシル基又はヒドロキシ基を有するもの、アクリル酸又はメタクリル酸エステル類が挙げられる。
ビニル系共重合体ユニットとポリエステルユニットとの反応生成物を得る方法としては、先にあげたビニル系共重合体ユニット及びポリエステルユニットのそれぞれと反応し得るモノマー成分を含むポリマーが存在しているところで、どちらか一方又は両方の樹脂の重合反応をさせることにより得る方法が好ましい。
ビニル系共重合体やビニル系共重合体ユニットを有するハイブリッド樹脂を製造する場合に用いられるラジカル重合開始剤としては、例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(−2メチルブチロニトリル)、ジメチル−2,2’−アゾビスイソブチレート、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)、2−(カーバモイルアゾ)−イソブチロニトリル、2,2’−アゾビス(2,4,4−トリメチルペンタン)、2−フェニルアゾ−2,4−ジメチル−4−メトキシバレロニトリル、2,2’−アゾビス(2−メチル−プロパン)、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド類、2,2−ビス(t−ブチルパーオキシ)ブタン、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、ジ−クミルパーオキサイド、α,α’−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド、m−トリオイルパーオキサイド、ジ−イソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ−2−エトキシエチルパーオキシカーボネート、ジ−メトキシイソプロピルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パーオキシカーボネート、アセチルシクロヘキシルスルホニルパーオキサイド、t−ブチルパーオキシアセテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシネオデカノエイト、t−ブチルパーオキシ2−エチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシベンゾエイト、t−ブチルパーオキシイソプロピルカーボネート、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシアリルカーボネート、t−アミルパーオキシ2−エチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート,ジ−t−ブチルパーオキシアゼレート等が挙げられる。
本発明のトナーに含有させることができるハイブリッド樹脂の製造方法としては、例えば、以下の(1)〜(6)に示す製造方法を挙げることができる。
(1)ビニル系共重合体、ポリエステル樹脂及びハイブリッド樹脂をそれぞれ製造後にブレンドする方法であり、ブレンドは有機溶剤(例えば、キシレン)に溶解・膨潤した後に有機溶剤を留去することで行う。尚、ハイブリッド樹脂は、ビニル系共重合体とポリエステル樹脂を別々に製造後、少量の有機溶剤に溶解・膨潤させ、エステル化触媒及びアルコールを添加し、加熱することによりエステル交換反応を行って合成されるエステル化合物を用いることができる。
(2)ビニル系共重合体ユニット製造後に、これの存在下にポリエステルユニット及びハイブリッド樹脂を製造する方法である。ハイブリッド樹脂はビニル系共重合体ユニット(必要に応じてビニル系モノマーも添加できる)とポリエステル系モノマー(アルコール、カルボン酸)及び/又はポリエステルとの反応により製造される。この場合も適宜、有機溶剤を使用することができる。
(3)ポリエステルユニット製造後に、これの存在下にビニル系共重合体ユニット及びハイブリッド樹脂を製造する方法である。ハイブリッド樹脂はポリエステルユニット(必要に応じてポリエステル系モノマーも添加できる)とビニル系モノマー及び/又はビニル系共重合体ユニットとの反応により製造される。
(4)ビニル系共重合体ユニット及びポリエステルユニット製造後に、これらの重合体ユニット存在下にビニル系モノマー及び/又はポリエステル系モノマー(アルコール、カルボン酸)を添加することによりハイブリッド樹脂が製造される。この場合も適宜、有機溶剤を使用することができる。
(5)ハイブリッド樹脂を製造後、ビニル系モノマー及び/又はポリエステル系モノマー(アルコール、カルボン酸)を添加して付加重合及び/又は縮重合反応を行うことによりビニル系共重合体ユニット及びポリエステルユニットが製造される。この場合、ハイブリッド樹脂は上記(2)〜(4)の製造方法により製造されるものを使用することもでき、必要に応じて公知の製造方法により製造されたものを使用することもできる。さらに、適宜、有機溶剤を使用することができる。
(6)ビニル系モノマー及びポリエステル系モノマー(アルコール、カルボン酸等)を混合して付加重合及び縮重合反応を連続して行うことによりビニル系共重合体ユニット、ポリエステルユニット及びハイブリッド樹脂が製造される。さらに、適宜、有機溶剤を使用することができる。
上記(1)〜(5)の製造方法において、ビニル系共重合体ユニット及び/又はポリエステルユニットは複数の異なる分子量、架橋度を有する重合体ユニットを使用することができる。
上記の(1)〜(6)の製造方法のうち、本発明のトナーを得るためには(6)の製造方法が好適に採用される。(6)の製造方法により得られたハイブリッド樹脂は、ビニル系共重合体ユニットとポリエステルユニットが非常に均一な状態となりやすく、好ましい。
また、本発明においては、ビニル系モノマー及びポリエステル系モノマーに加えて、さらにワックスもモノマー混合物に共存させ、その状態で付加重合及び縮重合反応を連続して行えば、ワックスの分散性が向上しやすく、好ましい。
さらに、ビニル系モノマーの付加重合の際に、水素引き抜き能力の比較的強い重合開始剤を使用して比較的高い重合温度で行う等、適当に重合条件を選択して、ビニル系共重合体の生成とともにワックスや樹脂へのビニル系モノマーのグラフト重合を意図的に起こせば、ワックスのビニル系共重合体への相溶性、及びワックスのハイブリッド樹脂への相溶性をさらに向上させることができ、結果として、トナー中にワックスの少なくとも一部を分子レベルで均一に分散することが容易であり、特に好ましい。
本発明において用いられる結着樹脂は、ゲルパーミエーションクロマトグラフィー(GPC)測定における分子量分布において、テトラヒドロフラン(THF)に可溶な成分のピーク分子量(Mp)が4000〜20000の範囲にあることが好ましく、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が5以上であることが好ましい。前記Mpが4000未満の場合、得られるトナーの保存安定性に問題が生じたり、耐高温オフセット性が不充分になるとともに、電子写真感光体への融着及びフィルミング等が発生しやすくなる場合がある。一方、Mpが20000を超える場合、低温定着性が不充分となるとともに、画像のグロスが低くなりすぎたり、混色性に問題が生じる場合がある。また、Mw/Mnが5未満である場合には耐高温オフセット性に問題が生じる場合がある。
本発明のトナーは、GPC測定における分子量分布において、該トナーに含有されるTHFに可溶な結着樹脂成分のMpが4000〜20000の範囲にあることが好ましく、MwとMnとの比(Mw/Mn)が100以上であることが好ましい。トナーに含有される樹脂成分のMpが4000未満の場合、トナーの保存安定性に問題が生じたり、耐高温オフセット性が不充分になるとともに、電子写真感光体への融着及びフィルミング等が発生しやすくなる場合がある。一方、Mpが20000を超える場合、低温定着性が不充分となるとともに、画像のグロスが低くなりすぎたり、混色性に問題が生じる場合がある。また、Mw/Mnが100未満である場合には耐高温オフセット性に問題が生じる場合がある。
本発明のトナーに含有されるTHFに可溶な結着樹脂成分のMpを4000〜20000の範囲にするためには、THFに可溶な成分のMpが4000〜20000の結着樹脂をトナーの原材料として用いればよい。また、(Mw/Mn)を100以上とするためには、(Mw/Mn)が100以上である結着樹脂を用いても良いし、(Mw/Mn)が100未満の結着樹脂と後述する有機金属化合物とをトナー製造工程のひとつである混練工程において金属架橋させて、Mw/Mnを100以上とすることもできる。また、この金属架橋による方法を用いて(Mw/Mn)を調整する場合には、有機金属化合物の種類、添加量や混練時の温度の調整で、(Mw/Mn)の調整が可能である。
本発明のトナーは、シアントナー用、マゼンタトナー用、イエロートナー用又はブラックトナー用の着色剤を含有する。
例えば、シアントナー用の着色剤としては、C.I.ピグメントブルー2,3,15:1,15:2,15:3,16,17,C.I.アシッドブルー6,C.I.アシッドブルー45又はフタロシアニン骨格にフタルイミドメチル基を1〜5個置換した銅フタロシアニン顔料等が挙げられる。
また、マゼンタトナー用の着色顔料としては、C.I.ピグメントレッド1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,30,31,32,37,38,39,40,41,48,49,50,51,52,53,54,55,57,58,60,63,64,68,81,83,87,88,89,90,112,114,122,123,163,202,206,207,209,238,C.I.ピグメントバイオレット19、C.I.バットレッド1,2,10,13,15,23,29,35等が挙げられる。さらに、マゼンタトナー用の染料としては、C.I.ソルベントレッド1,3,8,23,24,25,27,30,49,81,82,83,84,100,109,121,C.I.ディスパースレッド9、C.I.ソルベントバイオレット8,13,14,21,27、C.I.ディスパースバイオレット1等の油溶染料;C.I.ベーシックレッド1,2,9,12,13,14,15,17,18,22,23,24,27,29,32,34,35,36,37,38,39,40、C.I.ベーシックバイオレット1,3,7,10,14,15,21,25,26,27,28等の塩基性染料が挙げられる。
イエロートナー用の着色顔料としては、C.I.ピグメントイエロー1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,23,65,73,74,83,93,97,155,180、C.I.バットイエロー1,3,20等が挙げられる。
ブラックトナー用の着色剤としては、カーボンブラック、アセチレンブラック、ランプブラック、黒鉛、鉄黒、アニリンブラック、シアニンブラック等が挙げられる。
着色剤の使用量は、中間色の再現性と着色力とのバランスから、結着樹脂100質量部に対して、1〜15質量部、好ましくは3〜10質量部含有していることが良い。
着色剤の含有量が15質量部より多い場合には、透明性が低下し、加えて人間の肌色に代表される様な中間色の再現性も低下し易くなり、更にはトナーの帯電性の安定性が低下し、目的とする帯電量が得られにくくなる。また、着色剤の含有量が1質量部より少ない場合には、目的とする着色力が得られ難く、高い画像濃度の高品位画像が得られ難い。
本発明のトナーはワックスを含有する。
本発明のトナーに含有させることができるワックスとしては、例えば次のものが挙げられる。ポリエチレンワックス、ポリプロピレンワックス、オレフィン共重合体ワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス、パラフィンワックス等の脂肪族炭化水素系ワックス、また酸化ポリエチレンワックス等の脂肪族炭化水素系ワックスの酸化物、又はそれらのブロック共重合物;カルナウバワックス、モンタン酸エステルワックス等の脂肪酸エステルを主成分とするワックス類、ベヘン酸ベヘニルやステアリン酸ベヘニル等の高級脂肪酸と高級アルコールとの合成反応物であるエステルワックス、及び脱酸カルナウバワックス等の脂肪酸エステル類を一部又は全部を脱酸化したもの等が挙げられる。
さらに、パルミチン酸、ステアリン酸、モンタン酸等の飽和直鎖脂肪酸類;ブラシジン酸、エレオステアリン酸、バリナリン酸等の不飽和脂肪酸類;ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコール等の飽和アルコール類;ソルビトール等の多価アルコール類;リノール酸アミド、オレイン酸アミド、ラウリン酸アミド等の脂肪酸アミド類;メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミド等の飽和脂肪酸ビスアミド類;エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’ジオレイルアジピン酸アミド、N,N’ジオレイルセバシン酸アミド等の不飽和脂肪酸アミド類;m−キシレンビスステアリン酸アミド、N,N’ジステアリルイソフタル酸アミド等の芳香族系ビスアミド類;ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の脂肪族金属塩(一般に金属石けんといわれているもの);脂肪族炭化水素系ワックスにスチレンやアクリル酸等のビニル系モノマーを用いてグラフト化させたワックス類;ベヘニン酸モノグリセリド等の脂肪酸と多価アルコールの部分エステル化物;植物性油脂の水素添加等によって得られるヒドロキシル基を有するメチルエステル化合物等が挙げられる。
本発明において、好ましく用いられるワックスとしては脂肪族炭化水素系ワックスが挙げられ、より好ましくはポリエチレンワックス、フィッシャートロプシュワックス、パラフィンワックス、特に好ましくはパラフィンワックスが挙げられる。脂肪族炭化水素系ワックスを用いると、ワックスのトナー中での分散状態を最適としやすく、低温定着性に優れるだけでなく、高い着色力、鮮明な色味と混色性が発現され、現像性、転写性、耐久性等の各種特性のバランスの優れたトナーが得られやすい。
また、優れた低温定着性、高い着色力、鮮明な色味と混色性、及び優れた環境安定性、耐久性を達成するために、前記ワックスの示差熱分析(DSC)測定における吸熱曲線において、最大吸熱ピークのピーク温度が60〜105℃の範囲にあることが好ましく、70〜90℃の範囲にあることがより好ましい。60℃未満であると、例えばトナーの保存安定性が劣る場合があり、105℃を超えると省エネの観点から望まれる低温定着を行うことが困難となる場合がある。
ワックスは結着樹脂100質量部あたり1〜10質量部、好ましくは2〜7質量部使用するのが良い。1質量部よりも少ないと低温定着性に効果が無く、10質量部を超えるとトナーの保存安定性や現像性に問題が出る場合がある。
本発明のトナーは、示差熱分析(DSC)測定における吸熱曲線において、温度30〜200℃の範囲に1個又は複数の吸熱ピークを有し、該吸熱ピーク中の最大吸熱ピークのピーク温度が60〜105℃の範囲にあることが好ましく、特に好ましくは70〜90℃の範囲である。最大吸熱ピークのピーク温度がこの範囲にあれば、優れた低温定着性と現像性とのバランスが良好となる。最大吸熱ピークのピーク温度が60℃未満であるとトナーの保存安定性が劣る場合があり、105℃を超えると省エネの観点から望まれる低温定着を行うことが困難となる場合がある。なお、最大吸熱ピークのピーク温度を60〜105℃とするには、前述した最大吸熱ピークのピーク温度が60〜105℃のワックスを、トナーに含有させることにより達成可能である。
また、本発明のトナーには、さらに有機金属化合物を含有させてもよい。有機金属化合物を含有させると、帯電レベルを調整でき、帯電の立ち上がりを良くし、トナーの熱溶融特性を改良することが出来る等の点で好ましい。本発明のトナーに含有させる有機金属化合物としては、芳香族オキシカルボン酸及び芳香族アルコキシカルボン酸から選択される芳香族カルボン酸誘導体、該芳香族カルボン酸誘導体の金属化合物であることが好ましく、その金属としては、2価以上の金属が好ましい。また、芳香族カルボン酸誘導体としては、サリチル酸誘導体が好ましい。
芳香族カルボン酸の金属化合物は、例えば、2価以上の金属イオンが溶解している水溶液を、芳香族カルボン酸を溶解した水酸化ナトリウム水溶液に滴下し、加熱撹拌し、次に水溶液のpHを調整し、常温まで冷却した後、ろ過水洗することにより合成することができるが、上記の合成方法だけに限定されるものではない。2価の金属としてMg2+、Ca2+、Sr2+、Pb2+、Fe2+、Co2+、Ni2+、Zn2+、Cu2+が挙げられる。これらのうち、Zn2+、Ca2+、Mg2+、Sr2+が好ましい。3価以上の金属としてはAl3+、Cr3+、Fe3+、Ni3+、Zr4+が挙げられる。これら3価以上の金属の中で好ましいのはAl3+、Cr3+、Zr4+であり、特に好ましいのはAl3+、Zr4+である。
本発明のトナーに有機金属化合物を含有させる場合、有機金属化合物は結着樹脂100質量部あたり0.1〜5質量部含有させることが好ましい。この範囲の含有量とするとトナーの帯電レベルを適度に調整できるため現像時に必要な絶対帯電量が得られやすくなり、前述した混練時の金属架橋による(Mw/Mn)の調整も可能であり、トナーの熱溶融特性も改良することができる。
本発明のトナーは、トナー粒子に流動性向上剤が外部添加(以下、「外添」という)されているトナーであることが好ましい。ここで、流動性向上剤とは、トナー粒子に外添することにより、流動性が増加し得る機能を有するものであり、画質向上の観点から添加される。例えば、フッ化ビニリデン微粉末、ポリテトラフルオロエチレン微粉末等のフッ素系樹脂粉末;湿式製法で得られるシリカ微粉末、乾式製法で得られるシリカ微粉末等のシリカ微粉末;それらシリカ微粉末をシラン化合物、チタンカップリング剤、シリコーンオイル等の処理剤により表面処理を施した処理シリカ微粉末;酸化チタン微粉末;アルミナ微粉末、処理酸化チタン微粉末、処理酸化アルミナ微粉末等が用いられる。このような流動性向上剤は、BET法で測定した窒素吸着による比表面積が30m2/g以上、好ましくは50m2/g以上のものが良好な結果を与える。
流動性向上剤は、トナー粒子100質量部に対して0.01〜10質量部、好ましくは0.05〜5質量部使用するのが良い。
本発明のトナーは、少なくとも結着樹脂、着色剤、ワックスを含有するトナー粒子と、必要に応じてトナー粒子に外添される流動性向上剤等の外添剤とから構成される。本発明におけるトナー粒子は、以下で述べる方法により得ることができる。すなわち、トナー原材料をヘンシェルミキサー、ボールミル等の混合機により充分混合し、ニーダー、エクストルーダー等の熱混練機を用いて溶融、捏和及び練肉し、溶融混練物を冷却固化後に固化物を粉砕し、粉砕物を分級することにより、所定の平均粒径のトナー粒子を得ることができる。
本発明のトナーは重量平均粒径が4〜9μmであることが好ましい。このようにトナーの重量平均粒径を小粒径化することにより、画像の輪郭部分、特に文字画像やラインパターンの現像での再現性が良好なものとなる。重量平均粒径が4μm未満であると、例えば電子写真感光体の表面への付着力が高くなり、転写不良に基づく画像の不均一ムラの原因となりやすい。また、トナーの単位質量あたりの帯電量が高くなり、例えば低温低湿環境下において画像濃度が低下してしまう場合がある。さらに、流動性の低下や部材への付着性の増加により、例えば二成分系現像剤とした場合、キャリアとの摩擦帯電がスムーズに行われにくく、充分に帯電し得ないトナーが増大し、非画像部のカブリが目立つ様になる。
また、重量平均粒径が9μmを超えると、高画質化に寄与し得る微粒子が少ないことを意味し、トナーの流動性に優れるというメリットがあるものの、電子写真感光体上の微細な静電荷像上に忠実に付着しづらく、ハイライト部の再現性が低下し、さらに階調性も低下する場合がある。また、電子写真感光体表面等の部材への融着が起きやすい。
さらに、4μm以下の粒径を有するトナーが3〜40個数%含有され、10μm以上の粒径を有するトナーが10体積%以下含有されていると、現像性、転写性のバランスの取れたトナーが得られやすく、特に好ましい。
本発明のトナーは、一成分系現像剤としても二成分系現像剤としても使用可能であるが、二成分系現像剤として使用すると、長期に渡り鮮明なフルカラー画像がより得られやすく、好ましい。
本発明のトナーを二成分系現像剤として用いる場合、本発明のトナーと磁性キャリアとを混合して二成分系現像剤とすればよい。磁性キャリアとしては、例えば表面酸化又は未酸化の鉄、ニッケル、銅、亜鉛、コバルト、マンガン、クロム、カルシウム、マグネシウム、希土類等の金属及びそれらの合金又は酸化物及び磁性フェライト等の磁性キャリアが使用出来る。
また、上記磁性キャリアの表面を樹脂等で被覆した樹脂コートキャリアは、本発明において好適に用いられる。樹脂コートキャリアの製造方法としては、従来公知の方法を採用することができ特に限定されないが、一例を挙げれば、磁性キャリアを浮遊流動させながら樹脂溶液をスプレーしキャリア表面にコート膜を形成させる方法、スプレードライ法、樹脂等の被覆材を溶剤中に溶解又は懸濁させて磁性キャリアと混合し、剪断応力を加えながら溶剤を徐々に揮発させる方法、単に粉体と磁性キャリアを混合する方法等が挙げられる。
磁性キャリアの被覆材料としては、トナー融着等の磁性キャリアへのスペント化を防ぐ為に有用と考えられる表面エネルギーの小さい樹脂、例えばシリコーン樹脂、フッ素樹脂等が挙げられ、その他にもポリエステル樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド、ポリビニルブチラール、アミノアクリレート樹脂等が例示され、これらは単独又は組み合わせて用いられる。
また、磁性キャリアに対する接着性を高めるために、種々の添加物を併用し被膜の強靭性を高めることが好ましい。特にシリコーン樹脂を被覆する際は使用する被覆樹脂希釈溶剤中に水を添加することで、得られる被覆キャリアの耐久性及び帯電特性が更に改良される。これは、硬化型シリコーン樹脂の架橋点及びシランカップリング剤の加水分解が促進され、硬化反応がより進行すること、及び短時間ではあるがシリコーン樹脂の表面エネルギーが増加し、磁性キャリアとの密着性が向上することによるものである。
被膜樹脂の磁性キャリアに対する塗布量は、磁性キャリア100質量部あたり樹脂固形分が0.05〜10質量部、好ましくは0.1〜5質量部である。
また、磁性キャリアの重量平均粒径は25〜80μm、より好ましくは30〜65μmであることが好ましい。粒径の測定はマイクロトラック粒度分析計(日機装(株)製)のSRAタイプを使用し、0.7〜125μmのレンジ設定で行うことができる。磁性キャリアの重量平均粒径が25μmよりも小さい場合、トナーとの混合が難しくなる。また、重量平均粒径が80μmを超えると、磁性キャリアの比表面積が小さいことから、トナー補給時の帯電能力が劣り、カブリやトナー飛散の原因となることがある。
本発明のトナーと上記形態の磁性キャリアとを混合して二成分系現像剤を調製する場合、その混合比率は現像剤中のトナー濃度として、2〜15質量%、好ましくは4〜13質量%にすると通常良好な結果が得られる。トナー濃度が2質量%未満では画像濃度が低下しやすく、15質量%を超えるとカブリや機内飛散が発生しやすく、現像剤の耐用寿命が低下しやすい。
次に、本発明の電子写真感光体について説明する。
本発明の電子写真感光体は、支持体上に感光層を有する電子写真感光体である。
感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層であっても、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層であってもよい。
また、支持体と感光層との間には、レーザー光などの散乱による干渉縞の防止、支持体の傷の被覆を目的とした導電層や、バリア機能や接着機能を有する中間層などを設けてもよい。
上記各層の一部または全部は、少なくとも、それぞれの層用の塗布液を塗布して塗膜を得る塗布工程、および、塗布工程により得られた塗膜を乾燥して乾燥塗膜を得る乾燥工程を経て形成される。
本発明の電子写真感光体の表面層の純水に対する接触角は、90°以上であることが必須である。接触角が90°未満では表面層のトナーに対する離型性が劣るため、画像を出力した停止後に、本発明のトナーが電子写真感光体の表面とクリーニングブレードとの接触部で軽固着してしまい、一定時間放置後の画像出力において、画像スジが発生してしまう。
本発明の表面層には、高離型性を付与するため、ケイ素原子含有グラフト共重合体やフッ素原子含有樹脂微粒子、ジオルガノポリシロキサンなど、種々の添加剤を含有させることが好ましい。
ケイ素原子含有グラフト共重合体としては、ケイ素原子を側鎖に有し末端に重合性の官能基を有する単量体と、ケイ素原子を有しない重合性の単量体もしくは末端に重合性の官能基を有する分子量1000〜10,000の比較的低分子量のオリゴマーからなるマクロモノマーとを共重合して得られるものであり、主鎖に対してケイ素原子を含有する側鎖が枝状にぶら下がった構造をしている。
ケイ素原子を側鎖に有する重合性単量体としては以下のような化合物があげられるが、本発明はこれらの例に限られるものではない。
一方の重合性単量体、もしくはマクロモノマーは上記グラフト重合体を添加しようとする樹脂と親和性のあるものが選択され、たとえばアクリル酸エステル類、メタクリル酸エステル類、スチレン及びスチレン誘導体等が用いられる。
ケイ素原子含有グラフト共重合体中のケイ素原子を側鎖に有する重合性単量体の含有量(共重合比率)は、ケイ素原子含有グラフト共重合体全質量に対して5質量%以上であることが好ましい。
得られた共重合体の重量平均分子量は500〜100,000であること好ましく、1,000〜10,000であることがより好ましい。
表面層におけるケイ素原子含有グラフト共重合体の含有量は表面層の全体100質量部に対して、0.1〜10質量部が好ましい。0.1質量部未満では、クリーニング性向上の効果が少なく、10質量部を超えると電位特性などに悪影響を与える。
フッ素原子含有樹脂微粒子としては、四フッ化エチレン樹脂、三フッ化塩化エチレン樹脂、四フッ化エチレン六フッ化エチレンプロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂およびこれらの共重合樹脂などの粒子が挙げられる。これらの中では、特に四フッ化エチレン樹脂(ポリテトラフルオロエチレン)が好ましい。
また、粒径は体積平均粒径で0.05〜0.5μmであることが好ましく、特には0.1〜0.4μmであることが好ましい。
ジオルガノポリシロキサンとしては、下記式(11)で示される繰り返し構造単位αおよび下記式(12)で示される繰り返し構造単位βを有し、重量平均分子量が1000〜1000000である。
上記式(11)、(12)中、R11、R12は、それぞれ独立に、置換または無置換の1価の炭化水素基を示し、B11は、パーフルオロアルキル基を有する1価の有機基を示し、D11は、重合度3以上の置換または無置換のポリスチレン鎖を有する1価の有機基、置換または無置換のアルキレンオキシ基を有する1価の有機基、置換または無置換のシロキサン鎖を有する1価の有機基、および、炭素原子数12以上の1価の有機基からなる群より選択される1価の基を示す。
また、上記ジオルガノポリシロキサンは、さらに下記式(13)で示される繰り返し構造単位γを有してもよい。
上記式(13)中、R13、R14は、それぞれ独立に、置換または無置換の1価の炭化水素基を示す。
また、上記ジオルガノポリシロキサンの末端基としては、例えば、下記式(14)で示される構造を有する末端基I、下記式(15)で示される構造を有する末端基IIが挙げられる。
上記式(14)、(15)中、R15、R16は、それぞれ独立に、置換または無置換の1価の炭化水素基を示し、E11、E12は、それぞれ独立に、置換または無置換の1価の炭化水素基、パーフルオロアルキル基を有する1価の有機基、重合度3以上の置換または無置換のポリスチレン鎖を有する1価の有機基、置換または無置換のアルキレンオキシ基を有する1価の有機基、置換または無置換のシロキサン鎖を有する1価の有機基、および、炭素原子数12以上の1価の有機基からなる群より選択される1価の基を示し、ただし、上記式(14)中のE11は上記ジオルガノポリシロキサンが有する繰り返し構造単位の主鎖(−Si−O−)中のSiと結合し、上記式(15)中のSiは上記ジオルガノポリシロキサンが有する繰り返し構造単位の主鎖(−Si−O−)中のOと結合する。
本発明において、有機基とは、置換または無置換の炭化水素基を意味する。また、炭化水素基としては、アルキル基、アルケニル基、アリール基、アリールアルケニル基などが挙げられる。
上記R11〜R16の1価の炭化水素基としては、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアリール基、置換または無置換のアリールアルケニル基などが挙げられる。これらの基の炭素原子数は1〜30であることが好ましく、特にはメチル基、フェニル基がより好ましい。
上記B11のパーフルオロアルキル基を有する1価の有機基は、下記式(3)で示される構造を有する1価の基であることが好ましい。
上記式(3)中、R21は、アルキレン基またはアルキレンオキシアルキレン基を示し、aは、3以上の整数を示す。
上記アルキレン基としては、エチレン基、プロピレン基などが挙げられる。上記アルキレンオキシアルキレン基としては、エチレンオキシエチレン基、エチレンオキシプロピレン基、プロピレンオキシプロピレン基などが挙げられる。
上記D11の重合度3以上の置換または無置換のポリスチレン鎖を有する1価の有機基は、下記式(4)で示される構造を有する1価の基であることが好ましい。
上記式(4)中、R31は、置換または無置換の2価の炭化水素基を示し、R32、R33は、それぞれ独立に、置換または無置換のアルキル基、または、置換または無置換のアリール基を示し、W31は、重合度3以上の置換または無置換のポリスチレン鎖を示し、R34は、置換または無置換のアルキル基、または、置換または無置換のアリール基を示し、bは、0または1を示す。
上記2価の炭化水素基としては、メチレン基、エチレン基、プロピレン基などのアルキレン基が挙げられ、炭素原子数1〜10であることが好ましい。上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基などが挙げられる。上記アリール基としては、無置換であることが好ましく、フェニル基などが挙げられる。
上記D11の置換または無置換のアルキレンオキシ基を有する1価の有機基は、下記式(5)で示される構造を有する1価の基であることが好ましい。
上記式(5)中、R41、R42は、それぞれ独立に、置換または無置換の2価の炭化水素基を示し、R43は、水素原子、または、置換または無置換の1価の炭化水素基を示し、cは、0または1を示し、dは、1以上300以下の整数を示す。
上記2価の炭化水素基としては、メチレン基、エチレン基、プロピレン基などのアルキレン基や、フェニレン基などのアリーレン基などが挙げられる。上記1価の炭化水素基としては、メチル基、エチル基、プロピル基などのアルキル基や、フェニル基などのアリール基などが挙げられる。上記dは、5以上であることが好ましい。
上記D11の置換または無置換のシロキサン鎖を有する1価の有機基は、下記式(6)で示される構造を有する1価の基であることが好ましい。
上記式(6)中、R51は、アルキレン基、アルキレンオキシ基、または、酸素原子を示し、R52〜R56は、それぞれ独立に、置換または無置換のアルキル基、または、置換または無置換のアリール基を示し、eは、3以上の整数を示す。
上記アルキレン基としては、エチレン基、プロピレン基などが挙げられる。アルキレンオキシ基としては、エチレンオキシ基、プロピレンオキシ基などが挙げられる。上記アルキル基としては、メチル基、エチル基などが挙げられる。上記アリール基としては、フェニル基などが挙げられる。上記eは、5以上であることが好ましい。
上記D11の炭素原子数12以上の1価の有機基としては、n−ドデシル基、n−テトラドデシル基、n−ヘキサデシル基およびn−オクタデシル基などのアルキル基が挙げられる。上記炭素原子数は、100以下であることが好ましい。
上記各基が有してもよい置換基としては、フッ素原子、塩素原子、ヨウ素原子などのハロゲン原子や、メチル基、エチル基、プロピル基などのアルキル基や、フェニル基などのアリール基などが挙げられる。
上記ジオルガノポリシロキサンにおける上記式(11)で示される繰り返し構造単位αの数(平均)は、1〜1000であることが好ましく、特には10〜200であることがより好ましい。
上記ジオルガノポリシロキサンにおける上記式(11)で示される繰り返し構造単位αの数(平均)は、1〜1000であることが好ましく、特には10〜200であることがより好ましい。
上記ジオルガノポリシロキサンにおける上記式(12)で示される繰り返し構造単位βの数(平均)は、1〜1000であることが好ましく、特には5〜100であることがより好ましい。
上記ジオルガノポリシロキサンにおける上記式(13)で示される繰り返し構造単位γの数(平均)は、0〜1000であることが好ましく、特には100〜200であることがより好ましい。
上記ジオルガノポリシロキサンが有する繰り返し構造単位は、上記式(11)で示される繰り返し構造単位αと上記式(12)で示される繰り返し構造単位βのみ、または、上記式(11)で示される繰り返し構造単位αと上記式(12)で示される繰り返し構造単位βと上記式(13)で示される繰り返し構造単位γのみであることが好ましい。
上記ジオルガノポリシロキサンにおける上記式(11)で示される繰り返し構造単位αと上記式(12)で示される繰り返し構造単位βと上記式(13)で示される繰り返し構造単位γとの和(平均)は、2〜2000であることが好ましく、特には5〜1000であることがより好ましく、さらには20〜500であることがより一層好ましい。
上記式(11)で示される繰り返し構造単位αの数が2以上の場合、複数のR11は同一の基であっても異なる2種以上の基であってもよく、複数のB11は同一の基であっても異なる2種以上の基であってもよい。
上記式(12)で示される繰り返し構造単位βの数が2以上の場合、複数のR12は同一の基であっても異なる2種以上の基であってもよく、複数のD11は同一の基であっても異なる2種以上の基であってもよい。D11は、上述のとおり、重合度3以上の置換または無置換のポリスチレン鎖を有する1価の有機基、置換または無置換のアルキレンオキシ基を有する1価の有機基、置換または無置換のシロキサン鎖を有する1価の有機基、および、炭素原子数12以上の1価の有機基のいずれかであるが、D11が複数の場合は、少なくとも1個のD11は、置換または無置換のシロキサン鎖を有する1価の有機基であることが好ましい。
上記式(13)で示される繰り返し構造単位γの数が2以上の場合、複数のR13は同一の基であっても異なる2種以上の基であってもよく、複数のR14は同一の基であっても異なる2種以上の基であってもよい。
同様のことが、上記式(4)中のR32、R33、上記式(5)中のR42、上記式(6)中のR52、R53についてもいえる。
以下に、本発明に用いられるジオルガノポリシロキサンの具体例を示す。ただし、本発明はこれら具体例に限定されない。また、下記ジオルガノポリシロキサン(7−1)〜(7−23)は、いずれも、末端基として上記式(14)で示される構造を有する末端基I(E11:メチル基)、下記式(15)で示される構造を有する末端基II(E12、R15、R16:メチル基)を有する。
これらの中では、(7−1)、(7−4)、(7−5)、(7−7)、(7−10)、(7−14)、(7−15)、(7−22)が好ましく、特には(7−1)、(7−5)、(7−10)、(7−22)がより好ましい。
また、本発明に用いられるジオルガノポリシロキサンの重量平均分子量は、1000〜1000000であるが、10000〜200000であることが好ましく、特には10000〜100000であることがより好ましく、さらには20000〜40000であることがより一層好ましい。
本発明の電子写真感光体表面層の結着樹脂としては、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、アクリロニトリル樹脂、ポリアミド樹脂、ポリビニルブチラール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノキシ樹脂、フェノール樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリフェニレンオキシド樹脂、エポキシ樹脂、ポリウレタン樹脂、アルキド樹脂、不飽和樹脂などが挙げられるが、高寿命の観点からポリアリレート樹脂が好ましい。
ポリアリレート樹脂としては、下記式(8)で示される繰り返し構造単位を有するポリアリレート樹脂が好ましい。
上記式(8)中、X701は、単結合、カルボニル基、エーテル基、チオエーテル基、または、−CR701R702−基(R701、R702は、それぞれ独立に、水素原子、置換または無置換のアルキル基、または、置換または無置換のアリール基を示す、あるいは、R701とR702とが結合して形成される置換または無置換のシクロアルキリデン基を示す。)を示し、R701〜R704、R707〜R714は、それぞれ独立に、水素原子、ハロゲン原子、置換または無置換のアルキル基、または、置換または無置換のアリール基を示す。
これらの中でも、上記X701は、単結合、−CR701R702−基が好ましく、R702、R704、R707、R709は水素原子が好ましい。
上記式(7)中、ハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子などが挙げられ、アルキル基としては、メチル基、エチル基、プロピル基などが挙げられ、アリール基としては、フェニル基、ナフチル基などが挙げられ、アルキリデン基としてはシクロヘキシリデン基などが挙げられる。
これら各基が有してもよい置換基としては、フッ素原子、塩素原子、ヨウ素原子などのハロゲン原子や、メチル基、エチル基、プロピル基などのアルキル基や、フェニル基などのアリール基などが挙げられる。
以下に、上記式(8)で示される繰り返し構造単位の具体例を示す。
これらの中では、(8−2)、(8−3)、(8−6)、(8−13)、(8−22)、(8−23)が好ましく、特には(8−3)、(8−13)、(8−22)がより好ましい。
次に、本発明の電子写真感光体の構成について説明する。
感光層は、上述のとおり、単層型感光層であっても、積層型(機能分離型)感光層であってもよいが、電子写真特性の観点からは積層型感光層が好ましい。また、積層型感光層には、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層と、支持体側から電荷輸送層、電荷発生層の順に積層した逆層型感光層があるが、電子写真特性の観点からは順層型感光層が好ましい。
支持体としては、導電性を有していればよく(導電性支持体)、例えば、アルミニウム、アルミニウム合金、ステンレスなどの金属製の支持体を用いることができる。また、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金などを真空蒸着によって被膜形成された層を有する上記金属製支持体やプラスチック製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子を適当な結着樹脂と共にプラスチックや紙に含浸した支持体や、導電性結着樹脂を有するプラスチック製の支持体などを用いることもできる。支持体の形状としては、円筒状、ベルト状などが挙げられる。
上述のとおり、支持体と感光層または中間層との間には、レーザー光などの散乱による干渉縞の防止や、支持体の傷の被覆を目的とした導電層を設けてもよい。導電層は、カーボンブラック、金属粒子などの導電性粒子を結着樹脂に分散させて形成することができる。導電層の膜厚は、0.1〜30μmであることが好ましく、特には0.5〜20μmであることがより好ましい。
また、レーザー光などの散乱による干渉縞の防止を目的として、導電層を設ける代わりに、支持体の表面に切削処理、疎面化処理、アルマイト処理などを施してもよい。
また、支持体または導電層と感光層との間には、バリア機能や接着機能を有する中間層を設けてもよい。中間層は、感光層の接着性改良、塗工性改良、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護などのために形成される。中間層は、カゼイン樹脂、ポリビニルアルコール樹脂、エチルセルロース樹脂、エチレン−アクリル酸コポリマー、ポリアミド樹脂、変性ポリアミド樹脂、ポリウレタン樹脂、ゼラチン樹脂、酸化アルミニウムなどの材料を用いて形成することができる。中間層の膜厚は0.05〜5μmであることが好ましく、特には0.3〜1.5μmであることがより好ましい。
本発明の電子写真感光体に用いられる電荷発生物質としては、例えば、モノアゾ、ジスアゾ、トリスアゾなどのアゾ顔料や、金属フタロシアニン、非金属フタロシアニンなどのフタロシアニン顔料や、インジゴ、チオインジゴなどのインジゴ顔料や、ペリレン酸無水物、ペリレン酸イミドなどのペリレン顔料や、アンスラキノン、ピレンキノンなどの多環キノン顔料や、スクワリリウム色素や、ピリリウム塩およびチアピリリウム塩や、トリフェニルメタン色素や、セレン、セレン−テルル、アモルファスシリコンなどの無機物質や、キナクリドン顔料や、アズレニウム塩顔料や、シアニン染料や、キサンテン色素や、キノンイミン色素や、スチリル色素や、硫化カドミウムや、酸化亜鉛などが挙げられる。これら電荷発生物質は1種のみ用いてもよく、2種以上用いてもよい。
感光層が積層型感光層である場合、電荷発生層に用いる結着樹脂としては、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ブチラール樹脂、ポリスチレン樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、アクリル樹脂、メタクリル樹脂、酢酸ビニル樹脂、フェノール樹脂、シリコーン樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、アルキッド樹脂、エポキシ樹脂、尿素樹脂、塩化ビニル−酢酸ビニル共重合体樹脂などが挙げられる。特には、ブチラール樹脂などが好ましい。これらは単独、混合または共重合体として1種または2種以上用いることができる。
電荷発生層は、電荷発生物質を結着樹脂および溶剤と共に分散して得られる電荷発生層用塗布液を塗布し、乾燥することによって形成することができる。分散方法としては、ホモジナイザー、超音波、ボールミル、サンドミル、ロールミル、振動ミル、アトライター、液衝突型高速分散機などを用いた方法が挙げられる。電荷発生物質と結着樹脂との割合は、1:0.3〜1:4(質量比)の範囲が好ましい。
電荷発生層用塗布液に用いる溶剤は、使用する結着樹脂や電荷発生物質の溶解性や分散安定性から選択されるが、有機溶剤としてはアルコール、スルホキシド、ケトン、エーテル、エステル、脂肪族ハロゲン化炭化水素、芳香族化合物などが挙げられる。
電荷発生層の膜厚は5μm以下であることが好ましく、特には0.1〜2μmであることがより好ましい。
また、電荷発生層には、種々の増感剤、酸化防止剤、紫外線吸収剤、可塑剤などを必要に応じて添加することもできる。
本発明の電子写真感光体に用いられる電荷輸送物質としては、例えば、トリアリールアミン化合物、ヒドラゾン化合物、スチリル化合物、スチルベン化合物、ピラゾリン化合物、オキサゾール化合物、チアゾール化合物、トリアリールメタン化合物などが挙げられる。これら電荷輸送物質は1種のみ用いてもよく、2種以上用いてもよい。
感光層が積層型感光層である場合、電荷輸送層に用いる結着樹脂としては、例えば、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、アクリロニトリル樹脂、ポリアミド樹脂、ポリビニルブチラール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノキシ樹脂、フェノール樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリフェニレンオキシド樹脂、エポキシ樹脂、ポリウレタン樹脂、アルキド樹脂、不飽和樹脂などが挙げられる。特には、ポリカーボネート樹脂、ポリアリレート樹脂などが好ましい。これらは単独、混合または共重合体として1種または2種以上用いることができる。
電荷輸送層は、電荷輸送物質と結着樹脂を溶剤に溶解して得られる電荷輸送層用塗布液を塗布し、乾燥することによって形成することができる。電荷輸送物質と結着樹脂との割合は、5:1〜1:5(質量比)の範囲が好ましく、3:1〜1:3(質量比)の範囲がより好ましい。
電荷輸送層用塗布液に用いる溶剤としては、アセトン、メチルエチルケトンなどのケトン、酢酸メチル、酢酸エチルなどのエステル、トルエン、キシレンなどの芳香族炭化水素、1,4−ジオキサン、テトラヒドロフランなどのエーテル、クロロベンゼン、クロロホルム、四塩化炭素などのハロゲン原子で置換された炭化水素などが用いられる。
電荷輸送層用塗布液を塗布する際には、例えば、浸漬塗布法(浸漬コーティング法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法などの塗布方法を用いることができる。
また、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルビレンなどの有機光導電性ポリマーを用いることもできる。
電荷輸送層の膜厚は5〜50μmであることが好ましく、特には10〜35μmであることがより好ましい。
感光層が単層型感光層である場合、該単層型感光層は、上記電荷発生物質および上記電荷輸送物質を上記結着樹脂および上記溶剤と共に分散して得られる単層型感光層用塗布液を塗布し、乾燥することによって形成することができる。
また、感光層上には、該感光層を保護することを目的とした保護層を設けてもよい。保護層は、上述した各種結着樹脂を溶剤に溶解して得られる保護層用塗布液を塗布し、乾燥することによって形成することができる。
保護層の膜厚は0.5〜10μmであることが好ましく、特には1〜5μmであることが好ましい。
上記各層の塗布液を塗布する際には、例えば、浸漬コーティング法(浸漬塗布法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法などの塗布方法を用いることができる。
次に、本発明の電子写真装置について説明する。
本発明の電子写真装置は、弾性ゴムブレードを電子写真感光体に当接させて転写残トナーを除去するクリーニング手段を有している。
弾性ゴムブレードの電子写真感光体に対する線圧は、14.7〜98.0N/m(15〜100g/cm)の範囲であることが必須であり、好ましくは19.6〜49.0N/m(20〜50g/cm)の範囲がよい。線圧が14.7N/m(15g/cm)未満では、本発明のトナーがブレードをすり抜けてしまい、クリーニング不良による画像欠陥が発生し、98.0N/m(100g/cm)を超える圧力が加わると、電子写真感光体の表面とブレードとの接触部でのトナーの軽固着を加速してしまい、画像スジが発生する。
図1に、プロセスカートリッジを備えた電子写真装置の概略構成の一例を示す。
図1において、1は円筒状の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。
回転駆動される電子写真感光体1の表面は、帯電手段(一次帯電手段:帯電ローラーなど)3により、正または負の所定電位に均一に帯電され、次いで、スリット露光やレーザービーム走査露光などの露光手段(不図示)から出力される露光光(画像露光光)4を受ける。こうして電子写真感光体1の表面に、目的の画像に対応した静電潜像が順次形成されていく。
電子写真感光体1の表面に形成された静電潜像は、現像手段5の現像剤に含まれるトナーにより現像されてトナー像となる。次いで、電子写真感光体1の表面に形成担持されているトナー像が、転写手段(転写ローラーなど)6からの転写バイアスによって、転写材供給手段(不図示)から電子写真感光体1と転写手段6との間(当接部)に電子写真感光体1の回転と同期して取り出されて給送された転写材(紙など)Pに順次転写されていく。
トナー像の転写を受けた転写材Pは、電子写真感光体1の表面から分離されて定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。
トナー像転写後の電子写真感光体1の表面は、クリーニング手段(クリーニングブレード)7によって転写残りの現像剤(トナー)の除去を受けて清浄面化され、さらに前露光手段(不図示)からの前露光光(不図示)により除電処理された後、繰り返し画像形成に使用される。なお、図1に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
上述の電子写真感光体1、帯電手段3、現像手段5、転写手段6およびクリーニング手段7などの構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱自在に構成してもよい。図1では、電子写真感光体1と、帯電手段3、現像手段5およびクリーニング手段7とを一体に支持してカートリッジ化して、電子写真装置本体のレールなどの案内手段10を用いて電子写真装置本体に着脱自在なプロセスカートリッジ9としている。
図2に、中間転写方式のカラー電子写真装置の概略構成の一例を示す。中間転写方式の場合、転写手段は主に一次転写部材、中間転写体、二次転写部材から構成される。
図2において、1は円筒状の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。
回転駆動される電子写真感光体1の表面は、帯電手段(一次帯電手段:帯電ローラーなど)3により、正または負の所定電位に均一に帯電され、次いで、スリット露光やレーザービーム走査露光などの露光手段(不図示)から出力される露光光(画像露光光)4を受ける。この際の露光光は、目的のカラー画像の第1色成分像(例えばイエロー成分像)に対応した露光光である。こうして電子写真感光体1の表面に、目的のカラー画像の第1色成分像に対応した第1色成分静電潜像(イエロー成分静電潜像)が順次形成されていく。
張架ローラー12および二次転写対向ローラー13によって張架された中間転写体(中間転写ベルト)11は、矢印方向に電子写真感光体1とほぼ同じ周速度(例えば電子写真感光体1の周速度に対して97〜103%)で回転駆動される。
電子写真感光体1の表面に形成された第1色成分静電潜像は、第1色用現像手段(イエロー用現像手段)5Yの現像剤に含まれる第1色トナー(イエロートナー)により現像されて第1色トナー像(イエロートナー像)となる。次いで、電子写真感光体1の表面に形成担持されている第1色トナー像が、一次転写部材6pからの一次転写バイアスによって、電子写真感光体1と一次転写部材(一次転写ローラー)6pとの間を通過する中間転写体11の表面に順次一次転写されていく。
第1色トナー像転写後の電子写真感光体1の表面は、クリーニング手段7によって一次転写残りの現像剤(トナー)の除去を受けて清浄面化された後、次色の画像形成に使用される。
第2色トナー像(マゼンタトナー像)、第3色トナー像(シアントナー像)、第4色トナー像(ブラックトナー像)も、第1色トナー像と同様にして電子写真感光体1の表面に形成され、中間転写体11の表面に順次転写される。こうして中間転写体11の表面に目的のカラー画像に対応した合成トナー像が形成される。第1色〜第4色の一次転写の間は、二次転写部材(二次転写ローラー)6sは中間転写体11の表面から離れている。
中間転写体11の表面に形成された合成トナー像は、二次転写部材6sからの二次転写バイアスによって、転写材供給手段(不図示)から二次転写対向ローラー13・中間転写体11と二次転写部材6sとの間(当接部)に中間転写体11の回転と同期して取り出されて給送された転写材(紙など)Pに順次二次転写されていく。
合成トナー像の転写を受けた転写材Pは、中間転写体11の表面から分離されて定着手段8へ導入されて像定着を受けることによりカラー画像形成物(プリント、コピー)として装置外へプリントアウトされる。
また、クリーニング手段7による転写残りの現像剤(トナー)除去後の電子写真感光体1の表面を、前露光手段からの前露光光により除電処理してもよいが、図2に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
また、図2に示される構成のカラー電子写真装置においても、図1に示される構成の電子写真装置と同様、電子写真感光体、帯電手段、現像手段、転写手段およびクリーニング手段などの構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱自在に構成してもよい。
以下、本発明で用いられる各種物性の測定方法について説明する。
<トナー抽出液のワックス濃度の定量>
(1)サンプルの調製
以下の操作は、23℃に温度制御された室内で行う。
30cm3のサンプルビン(例えば、商品名「SV−30」、日電理化硝子(株)製)にトナー300mgを精秤し、これにマグネティックスターラー用の長さ2cmの撹拌子を入れる。次いで、マグネティックスターラーを用いて撹拌子を回転させながら、液温を23℃に調整した溶剤(n−ヘキサン又はトルエン)20cm3を速やかに容器に入れて密閉し、トナーが溶剤に充分に分散するように撹拌子の回転数を調整し、抽出時間の計測を行う。所定時間が経過したら直ちに抽出液をシリンジで吸引し、ポア径が0.45μmの耐溶剤性メンブランフィルター(例えば、商品名「マエショリディスク」、東ソー(株)製)で濾過して、トナー抽出液としてのサンプル溶液とする。
(2)ガスクロマトグラフ測定装置及び測定条件
得られたサンプル溶液について、以下の条件でガスクロマトグラフ分析を行う。抽出液のワックス濃度の算出には、予めワックスをn−ヘキサン又はトルエンに完全に溶解した標品数点を用意し、これをガスクロマトグラフ分析することでワックス濃度とガスクロマトグラフチャートにおけるワックスピークの面積値から検量線を作成し、この検量線に基づいて、サンプル溶液中のワックス濃度を算出する。
ガスクロマトグラフ:HEWLETT PACKARD 6890GC
検出器:FID(水素炎イオン化検出器)
カラム:DB−1ht
(J&W(株)製 キャピラリーカラム、長さ30m、内径0.25mm、膜厚0.10μm)
注入口温度:400℃
検出器温度:430℃
キャリアーガス:He
オーブン温度:150℃スタート、10℃/分で400℃まで昇温、15分ホールド
注入量:5.0×10-3cm3
スプリットレス、コンスタントフロー1.0cm3/min
<トナーの平均円形度の測定>
トナーの平均円形度は、フロー式粒子像測定装置「FPIA−2100型」(シスメックス(株)製)を用いて測定を行い、下式を用いて算出する。
ここで、「粒子投影面積」とは二値化されたトナー粒子像の面積であり、「粒子投影像の周囲長」とは該トナー粒子像のエッジ点を結んで得られる輪郭線の長さと定義する。測定は、512×512の画像処理解像度(0.3μm×0.3μmの画素)で画像処理した時の粒子像の周囲長を用いる。
本発明における円形度はトナー粒子の凹凸の度合いを示す指標であり、トナー粒子が完全な球形の場合に1.000を示し、表面形状が複雑になる程、円形度は小さな値となる。
また、円形度頻度分布の平均値を意味する平均円形度Cは、粒度分布の分割点iでの円形度(中心値)をci、測定粒子数をmとすると、次式から算出される。
なお、本発明で用いている測定装置である「FPIA−2100」は、各粒子の円形度を算出後、平均円形度の算出に当たって、得られた円形度によって、粒子を円形度0.4〜1.0を0.01ごとに等分割したクラスに分け、その分割点の中心値と測定粒子数を用いて平均円形度の算出を行う。
具体的な測定方法としては、容器中に予め不純固形物などを除去したイオン交換水10mlを用意し、その中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を加えた後、更に測定試料を0.02g加え、均一に分散させる。分散させる手段としては、超音波分散機「Tetora150型」(日科機バイオス(株)製)を用い、2分間分散処理を行い、測定用の分散液とする。その際、該分散液の温度が40℃以上とならない様に適宜冷却する。また、円形度のバラツキを抑えるため、フロー式粒子像分析装置FPIA−2100の機内温度が26〜27℃になるよう装置の設置環境を23℃±0.5℃にコントロールし、一定時間おきに、好ましくは2時間おきに2μmラテックス粒子を用いて自動焦点調整を行う。
トナー粒子の円形度測定には、前記フロー式粒子像測定装置を用い、測定時のトナー粒子濃度が3000〜1万個/μlとなる様に該分散液濃度を再調整し、トナー粒子を1000個以上計測する。計測後、このデータを用いて、円相当径3μm未満のデータをカットして、トナー粒子の平均円形度を求める。
さらに本発明で用いている測定装置である「FPIA−2100」は、従来トナーの形状を算出するために用いられていた「FPIA−1000」と比較して、シースフローの薄層化(7μm→4μmに)及び処理粒子画像の倍率の向上、さらに取り込んだ画像の処理解像度を向上(256×256→512×512)によりトナーの形状測定の精度が上がっており、それにより微粒子のより確実な捕捉を達成している装置である。従って、本発明のように、より正確に形状を測定する必要がある場合には、より正確に形状に関する情報が得られるFPIA−2100の方が有用である。
<トナーの重量平均粒径及び粒度分布の測定>
トナーの重量平均粒径及び粒度分布はコールターカウンターTA−II型又はコールターマルチサイザー(ベックマンコールター(株)製)等種々の方法で測定可能である。本発明においては、コールターマルチサイザーを用い、個数分布、体積分布を出力するインターフェイス(日科機バイオス(株)製)及びパーソナルコンピュータを接続し、電解液は1級塩化ナトリウムを用いて1%NaCl水溶液を調整する。たとえば、ISOTONR−II(コールターサイエンティフィックジャパン(株)製)が使用できる。
測定法としては、前記電解水溶液100〜150cm3中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルフォン酸塩0.1〜0.3cm3を加え、さらに測定試料を2〜20mg加える。試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行い、前記コールターマルチサイザーにより100μmアパーチャーを用いて、2μm以上のトナー粒子の体積、個数を測定して体積分布と個数分布とを算出する。
それから、本発明に係わるところの体積分布から求めた重量平均粒径(D4:各チャンネルの中央値をチャンネルの代表値とする)を求めることができる。
以下、本発明を実施例にしたがってより詳細に説明する。ただし、本発明はこれらに限定されるものではない。なお、実施例中の「部」は「質量部」を意味する。
<トナー結着樹脂の製造>
(ハイブリッド樹脂Aの製造例)
温度計、撹拌機、コンデンサー及び窒素導入管を備えたオートクレーブに、トルエン100.00部、オクタン100.00部、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン48.10部(35.0モル%)、ポリオキシエチレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン19.20部(15.0モル%)、テレフタル酸20.40部(31.3モル%)、無水トリメリット酸9.40部(12.4モル%)、フマル酸2.90部(6.3モル%)、DSCにおける最大吸熱ピークのピーク温度が75℃の精製ノルマルパラフィンワックス4.00部及び酸化ジブチル錫0.30部を入れ、オートクレーブ内を窒素ガスで置換した後、密閉した。その後、撹拌しながら徐々に昇温し、180℃で保持した。
一方、スチレン17.80部、アクリル酸2−エチルヘキシル4.80部、フマル酸2.00部、ジ−t−ブチルパーオキサイド0.50部を常温でよく混合し、この混合物を先のオートクレーブに3時間かけて注入してビニル系モノマーのラジカル重合を行い、ビニル系共重合体の生成と共に、前記パラフィンワックスへのビニル系モノマーのグラフト化反応を行った。その後、反応液を200℃まで昇温して3時間保持した後、一旦反応液を100℃まで冷却、保持し、減圧下で、反応で生成した縮合水と共にトルエン、オクタンの大部分を留去した。その後、さらに反応液を200℃まで昇温し、3時間保持することで、縮合反応を完結すると共に脱水、脱溶剤を行い、ハイブリッド樹脂Aを得た。
(ハイブリッド樹脂Bの製造例)
温度計、撹拌機、コンデンサー及び窒素導入管を備えた反応容器に、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン48.10部(35.0モル%)、ポリオキシエチレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン19.20部(15.0モル%)、テレフタル酸20.40部(31.3モル%)、無水トリメリット酸9.40部(12.4モル%)、フマル酸2.90部(6.3モル%)及び酸化ジブチル錫0.30部を入れ、反応容器内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、130℃の温度で撹拌した。
一方、スチレン4.18部、アクリル酸2−エチルヘキシル1.15部、フマル酸0.52部、α−メチルスチレンの2量体0.12部、ジクミルパーオキサイド0.20部を常温でよく混合し、これを先の反応容器に5時間かけて滴下した。その後、反応液を200℃まで昇温し、6時間反応させてハイブリッド樹脂Bを得た。
(ポリエステル樹脂Cの製造例)
温度計、撹拌機、コンデンサー及び窒素導入管を備えた反応容器に、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン48.10部(35.0モル%)、ポリオキシエチレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン19.20部(15.0モル%)、テレフタル酸20.40部(31.3モル%)、無水トリメリット酸9.40部(12.4モル%)、フマル酸2.90部(6.3モル%)及び酸化ジブチル錫0.30部を入れ、反応容器内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、215℃で4時間縮合反応させ、ポリエステル樹脂Cを得た。
(ビニル系共重合体Dの製造例)
温度計、撹拌機、コンデンサー及び窒素導入管を備えた反応容器にキシレン200.00部を仕込み、撹拌しながら容器内を十分に窒素で置換して120℃に昇温させた。そこに、下記の各成分を常温でよく混合したものを5時間かけて滴下して、ラジカル重合を行った。さらに昇温を行い、キシレン還流下でラジカル重合を完了し、減圧下で溶媒を蒸留除去して、ビニル系共重合体Dを得た。
・スチレン 77.00部
・アクリル酸2−エチルヘキシル 18.00部
・マレイン酸モノブチル 5.00部
・ジ−t−ブチルパーオキサイド 1.00部
<トナーの製造>
(トナーの製造例1)
・前記ハイブリッド樹脂A 104.00部
・C.I.Pigment Blue 15:3 4.00部
・3,5−ジ−t−ブチルサリチル酸アルミニウム化合物 2.00部
上記の材料を十分にヘンシェルミキサーにより予備混合した。その後、二軸押出し混練機で溶融混練し、冷却後ハンマーミルを用いて約1〜2mm程度に粗粉砕し、次いでエアージェット方式による微粉砕機で20μm以下の粒径に微粉砕した。
その後、機械式衝撃力を用いる表面改質処理(球形化処理)と分級を同時に行う装置にて微粉砕物を処理して、トナー粒子1を得た。前述したFPIA−2100によりトナー粒子1の平均円形度を測定したところ、0.930であった。
さらに、このトナー粒子1 100.00部と、i−C4H9Si(OCH3)3 30.00部で処理した疎水性酸化チタン微粉末(BET法による比表面積150m2/g)1.50部とをヘンシェルミキサーにより混合して、シアントナー1とした。トナー1の物性を表1に示す。
(トナーの製造例2)
ハイブリッド樹脂A 104.00部を、ハイブリッド樹脂A 78.00部とハイブリッド樹脂B 25.00部に代え、ハイブリッド樹脂Aの製造例で使用したDSCにおける最大吸熱ピークのピーク温度が75℃の精製ノルマルパラフィンワックスを1.00部さらに加えた以外はトナーの製造例1と同様にして、シアントナー2を得た。トナー2の物性を表1に示す。
(トナーの製造例3)
ハイブリッド樹脂A 104.00部を、ハイブリッド樹脂A 78.00部とポリエステル樹脂C 25.00部に代え、ハイブリッド樹脂Aの製造例で使用したDSCにおける最大吸熱ピークのピーク温度が75℃の精製ノルマルパラフィンワックスを1.00部さらに加えた以外はトナーの製造例1と同様にして、シアントナー3を得た。トナー3の物性を表1に示す。
(トナーの製造例4)
ハイブリッド樹脂A 104.00部を、ハイブリッド樹脂A 78.00部とビニル系共重合体D 25.00部に代え、ハイブリッド樹脂Aの製造例で使用したDSCにおける最大吸熱ピークのピーク温度が75℃の精製ノルマルパラフィンワックスを1.00部さらに加えた以外はトナーの製造例1と同様にして、シアントナー4を得た。トナー4の物性を表1に示す。
(トナーの製造例5)
DSCにおける最大吸熱ピークのピーク温度が75℃の精製ノルマルパラフィンワックスの添加量をさらに8.00部添加した以外はトナーの製造例1と同様にして、シアントナー5を得た。トナー5の物性を表1に示す。
(トナーの製造例6)
・前記ハイブリッド樹脂B 100.00部
・ハイブリッド樹脂Aの製造例で使用したDSCにおける最大吸熱ピークのピーク温度が75℃の精製ノルマルパラフィンワックス 4.00部
・C.I.Pigment Blue 15:3 4.00部
・3,5−ジ−t−ブチルサリチル酸アルミニウム化合物 2.00部
上記の材料を十分にヘンシェルミキサーにより予備混合した。その後、二軸押出し混練機で溶融混練し、冷却後ハンマーミルを用いて約1〜2mm程度に粗粉砕し、次いでエアージェット方式による微粉砕機で20μm以下の粒径に微粉砕した。その後、風力分級装置(エルボージェット分級機)を用いて分級を行い、トナー粒子6を得た。
さらに、このトナー粒子6 100.00部と、i−C4H9Si(OCH3)3 30.00部で処理した疎水性酸化チタン微粉末(BET法による比表面積150m2/g)1.50部とをヘンシェルミキサーにより混合して、シアントナー6を得た。トナー6の物性を表1に示す。
(トナーの製造例7)
ハイブリッド樹脂Aの製造例で使用したDSCにおける最大吸熱ピークのピーク温度が75℃の精製ノルマルパラフィンワックスを15.00部さらに加え、装置による微粉砕物の処理を行わず、風力分級装置(エルボージェット分級機)を用いて分級を行った以外はトナーの製造例1と同様にして、シアントナー7を得た。トナー7の物性を表3に示す。
(トナーの製造例8)
トナーの製造例1において装置の運転条件を変更した以外はトナーの製造例1と同様にして、平均円形度が0.960のシアントナー8を得た。トナー8の物性を表3に示す。
<二成分現像剤の調製>
トナーの製造例1〜8で製造した各トナーについて、磁性フェライトキャリアをシリコーン樹脂で表面被覆した樹脂コートキャリア(平均粒径50μm:Mn−Mgフェライト)と、トナー濃度が6質量%になるように均一に混合し、二成分系現像剤1〜8を作製した。
<電子写真感光体の作製>
(ケイ素原子含有グラフト共重合体の合成)
下記にケイ素原子含有グラフト共重合体の合成例を示す。
(ジオルガノジオルガノポリシロキサンの合成例1)
フラスコに、下記繰り返し構造単位α、β、γを有するポリシロキサンを3.23gと、
塩化白金酸20ppm(5%イソプロピルアルコール溶液)と、下記式で示される構造を有するポリスチレン(n:平均25)18.9gと、
m−キシレンヘキサフルオライド80gとを混合し、徐々に加熱した。さらに、80℃で6時間反応を続けた。次いで、140℃の条件下で20Torrまで減圧して、溶媒や低沸点成分を除去した。
このようにして、得られた反応生成物を、29Si−NMR、13C−NMRおよびFT−IRにより分析したところ、ジオルガノポリシロキサン(7−1)であることが判明した。
(ジオルガノジオルガノポリシロキサンの合成例2)
合成例1において、ポリスチレンを下記式で示される構造を有するポリスチレン(n:平均25)13.4g
に変更した以外は、合成例1と同様にして合成を行った。
得られた反応生成物を、29Si−NMR、13C−NMRおよびFT−IRにより分析したところ、ジオルガノポリシロキサン(7−4)であることが判明した。
他の構造の本発明に用いられるジオルガノポリシロキサンも、合成例1や合成例2と同様にして合成することができる。
(電子写真感光体の製造例1)
直径62mm、長さ370mmのアルミニウムシリンダーを支持体とした。
次に、SnO2コート処理硫酸バリウム(導電性顔料)10部、酸化チタン(抵抗調整用顔料)2部、フェノール樹脂6部、シリコーンオイル(レベリング剤)0.001部、および、メタノール4部/メトキシプロパノール16部の混合溶媒を、直径1mmのガラスビーズを用いたサンドミル装置で2時間分散して、導電層用塗布液を調整した。
この導電層用塗布液を、支持体上に浸漬塗布し、140℃で30分間熱硬化して、膜厚が15μmの導電層を形成した。
次に、N−メトキシメチル化ナイロン3部および共重合ナイロン3部を、メタノール65部/n−ブタノール30部の混合溶媒に溶解して、中間層用塗布液を調整した。
この中間層用塗布液を、導電層上に浸漬塗布し、80℃で10分間乾燥して、膜厚が0.5μmの中間層を形成した。
次に、下記式で示される構造を有するアゾ顔料(電荷発生物質) 4部、
ポリビニルブチラール(商品名:エスレックBLS、積水化学(株)製)2部およびシクロヘキサノン35部を、直径1mmのガラスビーズを用いたサンドミル装置で12時間分散し、次に、メチルエチルケトン60部を加えて電荷発生層用塗布液を調製した。
この電荷発生層用塗布液を、中間層上に浸漬コーティングし、80℃で10分間乾燥して、膜厚が0.3μmの電荷発生層を形成した。
次に、下記式で示される構造を有するアミン化合物A 7部、
下記式で示される構造を有するアミン化合物B 1部、
上記式(8−2)で示される繰り返し構造単位を有するポリアリレート樹脂10部、上記式(9−1)で示されるケイ素原子含有グラフト共重合体0.2部をクロロベンゼン80部に溶解して、電荷輸送層用塗布液を調製した。
この電荷輸送層用塗布液を、電荷発生層上に浸漬塗布し、120℃で1時間乾燥して、膜厚が30μmの電荷輸送層が表面層である電子写真感光体1を作製した。
この電子写真感光体1の表面層の純水に対する接触角は96°であった。
(電子写真感光体の製造例2)
電子写真感光体の製造例1において、電荷輸送層を以下のように形成した以外は、電子写真感光体の製造例1と同様にして電子写真感光体2を作製した。
すなわち、上記式(8−2)で示される繰り返し構造単位を有するポリアリレート樹脂10部をクロロベンゼン100部に溶解し、フッ素原子含有樹脂粒子としての四フッ化エチレン樹脂粒子(商品名:ルブロンL−2、ダイキン工業(株)製、平均粒径(1次粒子)0.3μm、平均粒径(2次粒子)5μm)10部およびジオルガノポリシロキサン(7−4)2部を添加してよく振り混ぜた。この混合物を、液突型分散機を用い、2回分散することによって、フッ素原子含有樹脂粒子分散液を調製した。
次に、上記式(8−2)で示される繰り返し構造単位を有するポリアリレート樹脂:上記アミン化合物A:上記アミン化合物B:上記四フッ化エチレン樹脂粒子:上記ジオルガノポリシロキサン(7−4):上記溶剤(クロロベンゼン)が、最終質量比で10:7:1:1:0.2:80となるように、上記式(8−2)で示される繰り返し構造単位を有するポリアリレート樹脂、上記アミン化合物Aおよび上記アミン化合物Bを上記フッ素原子含有樹脂粒子分散液に添加して電荷輸送層用塗布液を調製した。
この電荷輸送層用塗布液を、電荷発生層上に浸漬塗布し、120℃で1時間乾燥して、膜厚が30μmの電荷輸送層が表面層である電子写真感光体2を作製した。
この電子写真感光体2の表面層の純水に対する接触角は95°であった。
(電子写真感光体の製造例3)
電子写真感光体の製造例1において、電荷輸送層用塗布液中のケイ素原子含有グラフト共重合体0.2部を、ジオルガノポリシロキサン(7−17)1.0部に変更した以外は、電子写真感光体の製造例1と同様にして電子写真感光体3を作製した。
この電子写真感光体3の表面層の純水に対する接触角は105°であった。
(電子写真感光体の製造例4)
電子写真感光体の製造例1において、電荷輸送層用塗布液中のポリアリレート樹脂を、ポリカーボネート樹脂(商品名:ユーピロンZ200、三菱ガス化学(株)製)に変更した以外は、電子写真感光体の製造例1と同様にして電子写真感光体4を作製した。
この電子写真感光体4の表面層の純水に対する接触角は96°であった。
(電子写真感光体の製造例5)
電子写真感光体の製造例1において、電荷輸送層用塗布液中のケイ素原子含有グラフト共重合体を添加しなかった以外は、電子写真感光体の製造例1と同様にして電子写真感光体5を作製した。
この電子写真感光体5の表面層の純水に対する接触角は80°であった。
<実施例1>
本実施例の評価について説明する。評価する装置としては、図2に示す構成の中間転写方式のカラー電子写真装置であるキヤノン(株)製複写機iR C3100を用いた。シアン現像器を複写機本体から取り外して内部の現像剤を抜き取り、現像剤1を充填した。次に、クリーニングブレード(弾性ゴムブレード)の電子写真感光体に対する線圧が29.4N/mになるように調整し、感光体ユニットに電子写真感光体1を装着した。
なお、評価はすべてシアン単色画像を出力して行った。
次に、各評価項目について説明する。評価結果を表2に示す。
(1)低温定着性
以下の評価は低温低湿(15℃、10%RH)環境下で行った。
本体の電源を入れ2時間放置した後、A4サイズのカラー複写機用厚紙(104.7g/m2、キヤノン(株)製)を転写材として用い、紙上のトナーの載り量が0.50〜0.55mg/cm2のベタ画像を連続20枚出力した。20枚目の画像の後端から5cmの部分について、4.9kPaの荷重をかけつつ柔和な薄紙(例えば、商品名「ダスパー」、小津産業(株)製)により5往復摺擦し、摺擦前と摺擦後の画像濃度の低下率を確認した。なお、評価1〜3は、数字が大きいほど低下率が低く、低温定着性が良好であることを示す。
(2)耐高温オフセット性
以下の評価を高温高湿(30℃、80%RH)環境下で行った。
A4サイズの複写機用再生紙(64g/m2、キヤノン(株)製)を転写材として用い、紙上のトナーの載り量が0.50〜0.55mg/cm2のベタ画像を連続100枚出力した。その直後に、前記複写機用再生紙1枚をベタ白画像で出力した。そして、最後に出力した再生紙と未使用の再生紙の白色度の変化率を確認した。なお、評価1〜3は、数字が大きいほど変化率が低く、耐高温オフセット性が良好であることを示す。
(3)クリーニング性
クリーニング性は画像スジとトナーすり抜けの2種類の評価を行った。
画像スジの評価は高温高湿(30℃、80%RH)環境下で行い、まず、A3サイズの複写機用再生紙(64g/m2、キヤノン(株)製)を転写材として用い、紙上のトナーの載り量が0.50〜0.55mg/cm2のベタ画像を連続10枚出力した。画像を出力した後、そのままの状態で本体を24時間放置し、再び前記複写機用再生紙1枚を用い、紙上のトナーの載り量が0.20mg/cm2のハーフトーン画像を出力し、電子写真感光体周期の画像スジの有無を確認した。
トナーすり抜けの評価は低温低湿(15℃、10%RH)環境下で、前記本体を改造して行った。改造は、中間転写ベルトユニットおよび、定着器を装着せず、かつ、コピー用紙の無い状態でも動作するようにした。
本体の中間転写ベルトユニットおよび、定着器を取り外した後、電子写真感光体上のトナーの載り量が0.55〜0.60mg/cm2のA3原稿3枚分のベタ画像を形成し、電子写真感光体のクリーニングまで行った。その後、本体から電子写真感光体を取り出し、クリーニングブレードをすり抜けた電子写真感光体上のトナーの量を確認した。なお、評価1〜3は、数字が大きいほどトナーの量が少なく、クリーニング性が良好であることを示す。
<実施例2>
実施例1において、現像剤1を現像剤2に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<実施例3>
実施例1において、現像剤1を現像剤3に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<実施例4>
実施例1において、現像剤1を現像剤4に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<実施例5>
実施例1において、現像剤1を現像剤5に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<参考例1>
実施例1において、電子写真感光体1を電子写真感光体2に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<参考例2>
実施例1において、電子写真感光体1を電子写真感光体3に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<実施例8>
実施例1において、電子写真感光体1を電子写真感光体4に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<実施例9>
実施例1において、線圧を98.0N/mに変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<比較例1>
実施例1において、現像剤1を現像剤6に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<比較例2>
実施例1において、現像剤1を現像剤7に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<比較例3>
実施例1において、現像剤1を現像剤8に、線圧を98.0N/mに変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<比較例4>
実施例1において、電子写真感光体1を電子写真感光体5に変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<比較例5>
実施例1において、線圧を117.6N/mに変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。
<比較例6>
実施例1において、線圧を9.8N/mに変更した以外は、実施例1と同様にして評価を行った。評価結果を表2に示す。