JP4416819B2 - 電磁誘導加熱装置の温度制御装置 - Google Patents

電磁誘導加熱装置の温度制御装置 Download PDF

Info

Publication number
JP4416819B2
JP4416819B2 JP2007329861A JP2007329861A JP4416819B2 JP 4416819 B2 JP4416819 B2 JP 4416819B2 JP 2007329861 A JP2007329861 A JP 2007329861A JP 2007329861 A JP2007329861 A JP 2007329861A JP 4416819 B2 JP4416819 B2 JP 4416819B2
Authority
JP
Japan
Prior art keywords
temperature
current
unit
heating element
control loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007329861A
Other languages
English (en)
Other versions
JP2008139015A (ja
Inventor
裕之 渡川
泰三 川村
義隆 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Seta Giken KK
Original Assignee
Omron Corp
Seta Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Seta Giken KK filed Critical Omron Corp
Priority to JP2007329861A priority Critical patent/JP4416819B2/ja
Publication of JP2008139015A publication Critical patent/JP2008139015A/ja
Application granted granted Critical
Publication of JP4416819B2 publication Critical patent/JP4416819B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

本発明は、液体や気体等の流体の通路に設けられた磁性材料の発熱体を電磁誘導加熱で加熱し、前記流体を直接的な熱移動で加熱する電磁誘導加熱装置の温度制御装置及び温度制御方法に関し、特に前記発熱体を構成する磁性材料の磁気変態に拘わらず、加熱や始動可能な電磁誘導加熱装置に関する。
この種の電磁誘導加熱装置31の従来例の構造を図8に基づいて説明する。流体が通過するパイプ40を絶縁体で構成し、このパイプ40内に収納され流体が浸かる発熱体37をパイプ40に巻かれたコイル38による電磁誘導で加熱するものである。このコイル38に交番磁界を生じさせるために、高周波電流発生器としてセンサレス高力率高周波インバータ35が用いられる。この高周波インバータ35の出力を制御するのが、位相シフト制御部33aとゲートドライバー33bからなる制御器33である。パイプ40の出口側には温度検出器41が取り付けられ、温度制御部32が前記位相シフト制御部33aに接続される。なお、高周波電流発生器35は、交流電源34に対する整流部42と、非平滑フィルタ43と、インバータ本体44とからなっている。
上記のように発熱体37は電磁誘導で自己発熱し、この発熱体37が流体を直接加熱する構成になっているため、発熱体37には特殊材料が用いられる。第1に強磁性体である必要があり、第2に、流体に直接接するため耐腐食性に優れる必要がある。このような条件を満たす材料として特許文献1に提案されるようなCr,Feを主成分とするマルテンサイト系ステンレス鋼が用いられる。
上述した構造の電磁誘導加熱装置31の通常の運転時においては、パイプ40の下側から供給される低温流体36は発熱体37内で乱流流体39となって熱交換され、パイプ40の上側から高温流体45となって排出される。この高温流体45の温度が温度検出器41で測定され、所定温度との差に応じた指令が温度制御部32から位相シフト制御部33aに出力され、ゲートドライバー33bを経て高周波インバータ35の出力電流が適正に制御される。この直接加熱による電磁誘導加熱装置31によると、流体が浸かる発熱体37の伝熱面積を大きくすることなどにより、発熱体37から流体への伝熱効率を高め、図9に示すように、安定な温度制御時において発熱体37の加熱温度T37を高温流体45の温度T45近辺に抑えることができるという特徴を持っている。また、温度制御立ち上げ時においては、発熱体37の温度T37が、高温流体45の温度T45よりも先行して高くなるという特徴を持っている。
特開平6−297287号公報
しかしながら、図9に示すように、立ち上げ時には、温度検出器41が検知する流体の温度T45と、実際の発熱体37の温度T37との間には相当の開きが生じるため、制御部33は、温度検出器41の検知する流体の温度T45が上昇するように、センサレス高力率高周波インバータ35を制御する。即ち、発熱体37の温度T37をどんどん上昇させることにより、温度検出器41が検知する流体の温度T45を上昇させようとするため、過度の電流が高周波インバータ35に流れ、機器を破損するという問題を生じた。この原因を追求したところ、下記のことが判明した。
コイル38と発熱体37からなる加熱体系は、漏れインダクタンスの大きいトランス回路モデルで表すことができ、L1、R1からなる単純なR−L回路で表示することができる。このR−L回路の等価抵抗をR、同回路の固有抵抗をrとし、同回路に流れる電流をIc、同回路にかかる電力をP0 とする。図10は、このR、r、Ic、P0 が発熱体37の温度T37と共にどのように変化するかを示している。
固有抵抗rは温度T37と共に上昇するが、等価抵抗Rはある温度T0 から急激に低下する。そのため、発熱体37の温度T37がある温度T0 に達すると、電流Icと電力P0 が増加に転じる。電流Icと電力P0 が増えすぎて定格を越えると、高周波インバータ35を構成する電力素子が破損する。このような現象が生じるのは、発熱体37そのものの温度T37が高温になり、発熱体37を構成する磁性体が磁気変態温度T0 に達するからである。すなわち磁気変態を起こす温度T0 に達すると、発熱体37の磁性が急変して強磁性体から常磁性体に変わるため、コイル38が短絡状態になり、電力素子が破損する。
以上のように、電磁誘導加熱装置の温度制御装置は、図8に示すように、温度検出器41が発熱体37の温度T37を直接検出するのではなく、温度検出器41が発熱体37と熱交換した流体45の温度T45を検出するようになっているため、温度制御立ち上がり時において、温度検出器41が検知する流体の温度T45と、発熱体37の実際の温度T37との間には相当の開きが生じる。その結果、制御部33は、発熱体37の温度T37をどんどん上昇させることにより、温度検出器41が検知する流体の温度T45を上昇させようとする。そして、発熱体37の温度T37が磁気変態温度T0 を越えると、過度の電流が急激にセンサレス高力率高周波インバータ35に流れ込み、高周波インバータ35が暴走し、電力素子等の機器が破損するという問題点がある。
そこで、本発明は、上記問題に鑑みてなされたものであって、その目的とするところは、出力電流を制限することにより、発熱体37の温度T37が磁気変態温度T0 を越えても、出力電流の急増及び高周波電流発生器の暴走、機器の破損を防止する電磁誘導加熱装置の温度制御装置及び温度制御方法を提供することを目的とする。
請求項1記載の発明は、流体通路に設けられた磁性材料の発熱体と、前記発熱体の周囲に設けられたコイルと、前記コイルに対する高周波電流発生器を備え、前記発熱体の磁性材料が、高温になると磁性の程度が急激に減少する磁気変態を起こす電磁誘導加熱装置に対して用いられる温度制御装置であって、前記発熱体により加熱される流体の温度を検出する温度検出手段と、前記温度検出手段の検出温度に基づいて、前記発熱体への投入電力を調整して温度を制御する温度制御部と電流検出部が検出した検出電流と発熱体の素材で決まる基準電流に基づいて作動するスイッチ切替部を備え、前記温度制御部を温度制御ループと電力制御ループで構成してあり、前記温度制御ループを、高温流体の設定温度である第1設定値 と温度検出部の検出温度とに基づいて温度偏差を算出する第1比較部と、この温度偏差に基づいてPID制御を行う第1演算部と、この第1演算部を電力制御ループの第2設定値または電力制御ループの第3設定値が接続する温度制御ループの追従部のいずれかに出力させるよう切り換えるスイッチSW2とを備えた構成にすると共に、前記電力制御ループを、電流検出部が検出した検出電流と温度制御ループの第1演算部に接続する前記第2設定値または温度制御ループの第1演算部に追従部を介して接続する前記第3設定値の何れかに基づいて電流偏差を算出する第2比較部と、この電流偏差に基づいてPID制御を行い高周波電流制御部への操作信号を発生する第2演算部と、前記第2比較部を前記第2設定値か第3設定値の何れかに接続するスイッチSW1とを備えた構成とし、
前記スイッチ切替部を、電流検出部が検出した検出電流が発熱体の素材で決まる基準電流を超えないとき前記温度制御ループの前記第1演算部を電力制御ループの第2設定値に接続するように前記スイッチSW2を作動させると同時に電力制御ループの第2比較部を前記第2設定値に接続するよう前記スイッチSW1を作動させ、電流検出部が検出した検出電流が発熱体の素材で決まる基準電流以上になったとき前記温度制御ループの前記第1演算部を追従部に接続するように前記スイッチSW2を作動させると同時に電力制御フープの第2比較部を前記第3設定値に接続するよう前記スイッチSW1を作動させる構成したことを特徴とする。
これにより、電流検出部で検出した検出電流と発熱体の材質できまる基準電流を比較して、検出電流が基準電流以上となった場合は、独自の設定値(第3設定値)を有する電力制御ループの単独制御により操作信号を制御するので、発熱体を低い温度に保ち高温による発熱体の腐食などによる損傷を防止する。また、検出電流が基準電流より低くなった場合は、電力制御ループが温度制御ル−プで算出された値を設定値(第2設定値)にして、発熱体を高温流体の設定温度に対応するよう制御する。(温度・電力カスケード制御)この様に発熱体を必要時のみに高温にしそれ以外は低い温度にすることで発熱体の保護できるものである。また、電力ループの単独制御時の設定値(第3設置値)は温度制御ループの追従部に追従しているので、電力ループの単独制御から温度・電力カスケード制御に切り替わってもその設定値に変動がないので、電力制御ループの単独制御時にその投入電力の目標値を調整変更しても、バンプレスな(目標値が急変しない)ゼロスターティングができる。
以下、本発明の実施形態を図面に基づいて説明する。図1に示すように、電磁誘導加熱装置1は、装置本体27と、温度制御装置2・3・6・7・13と、交流電源4と、高周波電流発生器5とを有しており、発熱体9を介して低温流体8を加熱するようになっている。
上記の装置本体27は、流体通路を形成する非金属パイプ12内に、発熱体9を収納し、非金属パイプ12の外周にコイル10を巻き付けたものである。このコイル10には、高周波電流発生器5を介して交流電源4が接続されており、発熱体9に磁場を印加するようになっている。また、発熱体9には、流体通路が設けられており、発熱体9の流体通路内で低温流体8を均一加熱するようになっている。
上記の温度制御装置2・3・6・7・13は、温度・電流のカスケード制御手段及び電流制限手段を構成する温度制御部2と、高周波電流制御部3と、温度検出手段を構成する温度検出器13と、電流検出手段を構成する電流検出部6と、電流制限手段及び切替手段を構成するスイッチ切替部7とを有しており、検出温度と検出電流Ieとに基づいて高周波電流発生器5を制御することにより、高温流体28の温度を調整するようになっている。
上記の温度検出器13は、非金属パイプ12の上側の出口付近に設けられており、発熱体9により加熱された高温流体の温度を検出するようになっている。この温度検出器13は、温度制御部2に接続されており、検出温度を温度制御部2に送るようになっている。
上記の電流検出部6は、高周波電流発生器5に接続されており、高周波電流発生器5の出力する電流Icを検出するようになっている。また、温度制御部2に接続されており、検出電流PV2を温度制御部2に送るようになっている。
上記のスイッチ切替部7は、図2で示すように、電流検出部6に接続されており、電流検出部6から検出電流を受取ると、基準電流Idと比較し、(検出電流PV2)<(基準電流Id)の場合、スイッチSW1・SW2をON状態に切り替え、(検出電流PV2)≧(基準電流Id)の場合、OFF状態に切り替えるようになっている。尚、基準電流Idは、発熱体9の材質で決まる値であり、予め設定されている。
上記の温度制御部2は、図2に示すように、温度制御ループ2aと、電力制御ループ2bを有しており、検出温度と検出電流PV2とに基づいた動作信号(温度偏差・電流偏差)を算出するようになっている。この温度制御ループ2aは、第1比較部17と、第1演算部18と、スイッチSW2と、追従部19とを有しており、スイッチSW2がON状態の場合(温度・電力のカスケード制御時)には、高温流体の設定温度である第1設定値SP(set point) と検出温度PV(process value) とに基づいて、出力電流Icの目標値である第2設定値CSP(cascade set point) を算出するようになっている。即ち、第1比較部17が、第1設定値SPと検出温度PVとの温度偏差DV(deviation value)を算出し、第1演算部18が、温度偏差DVに基づいてPID制御を行い、第2設定値CSPを算出するようになっている。尚、第1設定値SPは、オペレータが所望の温度に設定することにより変化する基準値であるが、設定後は、固定の基準値である。また、第2設定値CSPは、温度・電力のカスケード制御によって、検出温度PVの変化に伴い常時変化する基準値である。
また、スイッチSW2がOFF状態の場合(電力制御ループ2bの単独制御時)には、出力電流Icの設定電流である第3設定値FSP(fix set point) が追従部19を介して追従値CTV(cascade tracing value) に変換され、第1演算部18に追従するようになっている。即ち、第1演算部18は、温度偏差DVと追従値CTVに基づいてPID制御を行い、ON状態になったときに第2設定値CSPが急変しないようになっている。尚、第3設定値FSPは、オペレータが設定することにより変化する基準値であるが、設定後は、固定の基準値である。
上記の電力制御ループ2bは、第2比較部20と、第2演算部21と、スイッチSW1とを有しており、操作信号MV(manipulated value)を算出するようになっている。即ち、スイッチSW1・SW2が共にON状態の場合(温度・電力のカスケード制御時)には、第2比較部20は、第2設定値CSPと検出電流PV2(process value) とに基づいて、電流偏差DV2(deviation value)を算出するようになっており、第2演算部21は、その電流偏差DV2に基づいてPID制御を行い、操作信号MVを算出するようになっている。また、スイッチSW1・SW2が共にOFF状態の場合(電力制御ループ2bの単独制御時)には、第2比較部20は、第3設定値FSPと検出電流PV2とに基づいて、電流偏差DV2を算出するようになっており、第2演算部21は、その電流偏差DV2に基づいてPID制御を行い、操作信号MVを算出するようになっている。
上記の高周波電流制御部3は、図1に示すように、位相シフト制御部3aと、ゲートドライバー3bとを有しており、高周波電流発生器5を制御するようになっている。位相シフト制御部3aは、電力制御ループ2bに接続されており、操作信号MVを受信すると、制御信号を算出し、ゲートドライバー3bを介して高周波電流発生器5を制御するようになっている。
高周波電流発生器5は、交流電源4に対する整流部14と、非平滑フィルタ15と、インバータ16とを有しており、操作信号に基づいて交流電流を適当な高周波電流に変換するようになっている。また、コイル10に接続されており、高周波電流をコイル10に通電するようになっている。尚、本実施形態では、センサレス高力率高周波インバータが用いられている。
上記の構成において、電磁誘導加熱装置1の動作を説明する。図3に示すように、オペレータは、予熱運転するか否か判断する(S1)。予熱運転する場合(S1、YES)、温度制御ループ2aの第1設定値SPを所望の予熱温度に設定する。予熱温度が設定されると、図1に示すように、非金属パイプ12内に流体8を導入し、温度検出器13が浸るまで低温流体8を充填する(S2)。低温流体8を充填すると、電磁誘導加熱装置1の運転が開始され、高周波電流発生器5によりコイル10に通電され、発熱体9が加熱される。発熱体9が加熱されると、充填された流体8は、徐々に加熱される。但し、予熱運転の始動時においては、流体8が乱流流体11のように流れておらず、流体全体の熱伝達が自然対流だけであるため、熱伝達効率が悪い。即ち、一定の間、流体温度は、低いままである。一方、温度検出器13は、流体8の温度を検出し、温度制御ループ2aに検出温度PVを送る。また、電流検出部6は、高周波電流発生器5の出力電流を検出し、電力制御ループ2bに検出電流PV2を送る。
温度制御部2が各検出信号PV・PV2を受信すると、温度制御部2は、装置本体27が低温流体8を予熱温度まで加熱するように、予熱での温度・電力のカスケード制御を行う(S3)。図2に示すように、温度制御ループ2aは、第1比較部17により第1設定値SPと検出温度PVとの温度偏差DVを算出し、第1演算部18によりPID制御を行い、第2設定値CSPを算出する。一方、電力制御ループ2bは、第2比較部20により第2設定値CSPと検出電流PV2との電流偏差DV2を算出し、第2演算部21によりPID制御を行って、操作信号MVを算出し、位相シフト制御部3aに送る。
位相シフト制御部3aが操作信号MVを受信すると、図1に示すように、高周波電流制御部3は、ゲートドライバー3bを介して高周波電流発生器5に制御信号を送る。高周波電流発生器5は、制御信号に基づいて交流電流を制御してコイル10に通電する。
以上のように、予熱での温度・電力のカスケード制御を行うが、予熱運転は、流体を流さないで行うため、温度検出器13の検出温度PVは、低いままである。従って、予熱での温度・電力のカスケード制御を継続すると、図5に示すように、発熱体9の温度がどんどん上昇し、従来のように、出力電流Iaが急増するため、高周波電流発生器5が暴走する。そこで、本発明では、暴走しないように、電力制御ループ2bの単独制御を行う。
次に、単独制御について説明する。スイッチ切替部7は、電流検出部6からの検出電流PV2を受取ると、検出電流PV2と、予め設定されている基準電流Ibとを比較し、(検出電流PV2)≧(基準電流Ib)か否かを判定する(S4)。(検出電流PV2)≧(基準電流Id)である場合(S4、YES)、図4に示すように、スイッチ切替部7は、スイッチSW1・SW2をOFF状態にし、電力制御ループ2bの単独制御に切り替える(S5)。
電力制御ループ2bの単独制御に切り替えると、電力制御ループ2bは、単独制御を行う(S6)。具体的には、第2比較部20により第3設定値FSPと検出電流PV2との電流偏差DV2を算出し、第2演算部21によりその電流偏差DVに基づいて、出力電流Icが所定の制限電流Ib(図5参照)を越えないような操作信号MVを算出し、位相シフト制御部3aに送信る(S6)。位相シフト制御部3aが操作信号MVを受取ると、図1に示すように、高周波電流制御部3は、ゲートドライバー3bを介して高周波電流発生器5に制御信号を送る。高周波電流発生器5は、制御信号に基づいて交流電流を制御してコイル10に通電する。
これにより、図5に示すように、発熱体9の温度T9 が、磁気変態温度T0 を越えて上昇しても、コイル10に通電される出力電流Icは、制限電流Ibを越えないように制限されるため、高周波電流発生器5の暴走を防止し、電力素子等の機器の破損を防止できる。
また、S6において、第3設定値FSPは、追従部19により追従値CTVに変換されて第1演算部18に追従される。このように、追従させることとしたのは、通常での温度・電力のカスケード制御に復帰した際に、第2設定値CSPが急変しないようにするためである。即ち、単独制御時において、オペレータは、手動で第3設定値FSPを調整変更するが、その設定値によっては、その後カスケード制御に復帰した際、発熱体9が磁気変態温度に至る程の電流を流す場合があり、従来のように、過度の電流が高周波電流発生器5に急激に流れないようにするためである。
一方、S4において、(検出電流PV2)<(基準電流Id)である場合(S4、NO)、図2に示すように、スイッチSW1・SW2はON状態に維持され、S7へ移行する。
検出温度PVが予熱温度である第1設定値SPを越える場合には(S6′、YES)、S3へ移行し、検出温度PVが第1設定値SPに近づくように予熱での温度・電力のカスケード制御を行い、予熱温度を最適温度に維持しておく。一方、温度検出器13の検出温度PVが第1設定値SPに達し一定時間経過等により、オペレータが予熱運転完了と判断した場合には(S6′、NO,S7、YES)、予熱運転を終了して、図1に示すように、パイプ12内に乱流流体11を流す(S8)。流体11が流れると、通常での温度・電力のカスケード制御を行う(S9)。
通常での温度・電力のカスケード制御では、図2に示すように、予熱での温度・電力のカスケード制御の場合と同様に、スイッチSW1・SW2を共にON状態にして、センサレス高力率高周波インバータ5を制御する。
次に、通常運転時に、何らかの外乱により流体の流れが停止すると、(検出電流PV2)≧(基準電流Id)となり(S10、YES)、電力制御ループ2bの単独制御に切替える(S5)。流体の流れの停止により予熱運転時のように、流体の熱効率が悪化するため、発熱体の温度が上昇している場合でも、温度検出器13の検出温度が低いままになるためである。
外乱での電力制御ループ単独制御が行われると、S5からS6′の処理が繰り返される。そして、オペレータは、外乱による異常から復帰したと判断した場合には(S7、YES)、異常復帰運転を終了して、図1に示すように、再び乱流流体11をパイプ12内に流す(S8)。流体11が流れると、再び、通常での温度・電力のカスケード制御が行われる(S9)。尚、S7において、予熱運転または、異常復帰が完了していない場合は(S7、NO)、単独制御中であれば(S7′、YES)、S6へ移行し、単独制御中でなければ(S7′、NO)、S3へ移行する。
また、S10において、何らかの外乱がない場合には(S10、NO)、オペレータは、運転を継続するか判断する(S11)。運転を継続する場合には(S11、YES)、S9からS10の処理が繰り返される。一方、運転を停止する場合には(S11、NO)、オペレータは、電磁誘導加熱装置1を停止させる(エンド)。
尚、流体として液体を用いる場合のゼロスターティング方法を説明したが、流体として気体を加熱する場合のゼロスターティングにも適用できる。例えば水素を加熱する場合、スタート時から水素を流すのではなく、不活性ガスの窒素を電磁誘導加熱装置を含む加熱系に充満させ、電磁誘導加熱装置の予熱後に水素を流して窒素を追い出すというゼロスターティングが行われる。したがって、予熱時に用いられる流体と、始動後の流体とは必ずしも一致させる必要がない。
また、流体として液体を用いる場合のゼロスターティングであっても、電磁誘導加熱装置を窒素や空気等でパージした状態で予熱してからゼロスターティングさせることができる。この場合も予熱時の流体とゼロスターティングで流す流体が一致しない。しかし予熱時に何らかの流体が充満され、予熱後にこの流体が押し出される点については共通している。
尚、本実施形態に係る電磁誘導加熱装置1の加熱体系は、図6に示すように、インバータ16による非金属パイプ12と導電性金属の発熱体9からなり、漏れインダクタンスの大きいトランス回路モデルで表すことができるため、L1,R1からなる単純なR−L回路で表示することができる。このR−L回路に補償コンデンサC1を直列に接続すると、電気回路定数が殆ど変化しない不時変回路系とすることができる。そのため、共振コンデンサC1でR−L負荷系のL分を補償した同調が取りやすく、作動周波数と共振コンデンサC1の最適設計回路が行える。
インバータ16は、4個のスイッチング素子Q1〜Q4を用いたものであり、Q1とQ2とを直列に接続したものと、Q3とQ4とを直列に接続したものを並列に接続してなっている。このスイッチング素子Q1〜Q4はスイッチS1〜S4とダイオードD1〜D4とを並列に接続した回路で表され、SIT(Static Induction Transistor)、B−SIT、MOSFET(Metal−Oxide Semiconductor FET)、IGBT、MCT等の半導体パワーデバイスを用いて形成される。
スイッチS1,S4が閉じると、a点から負荷L1,R1を経てb点に至る回路に電流が流れ、スイッチS2,S3が閉じると、b点から負荷L1,R1を経てa点に至る回路に電流が流れる。すなわち、負荷L1,R1から見ると、正又は逆に電流が流れたことになる。各スイッチS1〜S4はそれぞれ50%弱のデューティサイクルの電圧パルスで駆動する。スイッチS1,S2の電圧駆動パルスを基準相パルスとし、スイッチS3,S4の電圧駆動パルスを制御相パルスとする。基準相と制御相との電圧駆動パルスの位相差φを0〜180°まで連続的に変化させることにより出力電圧をPWM(Pulse Width Modulation)によって制御することができ、理論的には出力電力を0から負荷回路定数とインバータ動作周波数で決まる最大出力まで連続的に変化させることができる。
尚、上記の電流検出部6は、インバータ16のa点からb点に至る回路の適所に設けられ、この回路に流れる電流を測定する測定部22と、この測定部22からの電流値を変換する整流器23、バイパスコンデンサ24、並列抵抗25、直列抵抗26を有し、これらによって電力制御ループ2bに入力可能な電圧に変換される。
つぎに、発熱体9の好ましい態様を図7により説明する。図7(a)は発熱体9の構造を示す上面図、図7(b)は発熱体9の構造を示す斜視図である。発熱体9は、平板状の第1シート材91と波形状の第2シート材92を交互に積層し、側面の両端には第1シート材91が位置するようにし、全体として円柱状に形成したものである。このような多層積層体にした規則充填材であると、始動時に静止流体と接する面積が大きく、静止流体に対する発熱体からの熱移動が短時間で行われる。そのため、上述したゼロスターティングに有効な発熱体9となる。なお、この発熱体9は流れる流体を均一に加熱することができる構造になっており、その構造を以下に説明する。
第2シート材92の波の山(又は谷)93は中心軸94に対して角度αだけ傾くように配置され、第1シート材91を挟んで隣り合う第2シート材92の波の山(又は谷)93が交差するように配置されている。そして、隣り合う第2シート材92における波の山(又は谷)93の交差点95において、第1シート材91と第2シート材92はスポット溶接で溶着され、電気的に導通可能になっている。また、第2シート材92の表面には、流体の乱流を生じさせるための孔96が設けられている。この孔96に代わるか又は加えて、第1シート材91及び/又は第2シート材92に梨地加工を施して表面をザラザラにすることも有効である。
要するに、発熱体9の中心軸94を通る直径方向Dに対して、略平行に第1シート材91と第2シート材92が配置され、電気的には直径Dと略平行な方向(周辺部を横切る方向)に最も流れやすくなっている。すると、電磁誘導において現れる表皮効果(発熱体9の外周部分だけが加熱される状態)が出現せず、発熱体9の中央部も加熱される。このように発熱体9の中央部が加熱される形式の発熱体としては、シート材91,92の積層構造に限らず、小径管の多数を集合させて形成した発熱体であってもよい。この場合、小径管の各々の表面が加熱され、全体として略均一な加熱が可能な発熱体が得られる。
尚、コイル10の短絡状態を防止する方法として、発熱体9の化学組成を変えて、その磁気変態温度T0 をより高温側にシフトさせることも考えられるが、発熱体9の化学組成を変えると、耐腐食性が悪くなるため、妥当な解決方法ではない。
本発明に係る電磁誘導加熱装置及びその温度制御装置のブロック図である。 温度制御ループと電力制御ループを説明するブロック図である。 電磁誘導加熱装置の温度制御を説明するフローチャートである。 温度制御ループと電力制御ループを説明するブロック図である。 コイルへの出力電流と発熱体の温度との関係を説明する図である。 高周波電流発生器と電流検出部との機器構成図である。 発熱体の構造図である。 従来の電磁誘導加熱装置及びその温度制御装置のブロック図である。 加熱時間と発熱体の温度及び検出温度との関係を説明する図である。 従来の温度制御装置における出力電流と発熱体の温度との関係を説明する図である。
符号の説明
1 電磁誘導流体加熱装置
2 温度制御部
3 高周波電流制御部
4 交流電源
5 高周波電流発生器
6 電流検出部
7 スイッチ切替部
8 低温流体
9 発熱体
10 コイル
11 乱流流体
12 パイプ
13 温度検出器
17 第1比較部
18 第1演算部
19 追従部
20 第2比較部
21 第2演算部

Claims (1)

  1. 流体通路に設けられた磁性材料の発熱体と、前記発熱体の周囲に設けられたコイルと、前記コイルに対する高周波電流発生器を備え、前記発熱体の磁性材料が、高温になると磁性の程度が急激に減少する磁気変態を起こす電磁誘導加熱装置に対して用いられる温度制御装置であって、前記発熱体により加熱される流体の温度を検出する温度検出手段と、前記温度検出手段の検出温度に基づいて、前記発熱体への投入電力を調整して温度を制御する温度制御部と電流検出部が検出した検出電流と発熱体の素材で決まる基準電流に基づいて作動するスイッチ切替部を備え、前記温度制御部を温度制御ループと電力制御ループで構成してあり、
    前記温度制御ループを、高温流体の設定温度である第1設定値 と温度検出部の検出温度とに基づいて温度偏差を算出する第1比較部と、この温度偏差に基づいてPID制御を行う第1演算部と、この第1演算部を電力制御ループの第2設定値または電力制御ループの第3設定値が接続する温度制御ループの追従部のいずれかに出力させるよう切り換えるスイッチSW2とを備えた構成にすると共に
    前記電力制御ループを、電流検出部が検出した検出電流と温度制御ループの第1演算部に接続する前記第2設定値または温度制御ループの第1演算部に追従部を介して接続する前記第3設定値の何れかに基づいて電流偏差を算出する第2比較部と、この電流偏差に基づいてPID制御を行い高周波電流制御部への操作信号を発生する第2演算部と、前記第2比較部を前記第2設定値か第3設定値の何れかに接続するスイッチSW1とを備えた構成とし、
    前記スイッチ切替部を、電流検出部が検出した検出電流が発熱体の素材で決まる基準電流を超えないとき前記温度制御ループの前記第1演算部を電力制御ループの第2設定値に接続するように前記スイッチSW2を作動させると同時に電力制御ループの第2比較部を前記第2設定値に接続するよう前記スイッチSW1を作動させ、電流検出部が検出した検出電流が発熱体の素材で決まる基準電流以上になったとき前記温度制御ループの前記第1演算部を追従部に接続するように前記スイッチSW2を作動させると同時に電力制御フープの第2比較部を前記第3設定値に接続するよう前記スイッチSW1を作動させる構成したことを特徴とする電磁誘導加熱装置の温度制御装置。
JP2007329861A 2007-12-21 2007-12-21 電磁誘導加熱装置の温度制御装置 Expired - Fee Related JP4416819B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329861A JP4416819B2 (ja) 2007-12-21 2007-12-21 電磁誘導加熱装置の温度制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329861A JP4416819B2 (ja) 2007-12-21 2007-12-21 電磁誘導加熱装置の温度制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2067098A Division JPH11219777A (ja) 1998-02-02 1998-02-02 電磁誘導加熱装置の温度制御装置及びその温度制御方法

Publications (2)

Publication Number Publication Date
JP2008139015A JP2008139015A (ja) 2008-06-19
JP4416819B2 true JP4416819B2 (ja) 2010-02-17

Family

ID=39600658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329861A Expired - Fee Related JP4416819B2 (ja) 2007-12-21 2007-12-21 電磁誘導加熱装置の温度制御装置

Country Status (1)

Country Link
JP (1) JP4416819B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929737B (zh) * 2009-08-13 2013-02-27 青岛福润德自动化技术有限公司 一种电磁加热精确温控系统
CN102858041B (zh) * 2009-08-13 2014-12-31 青岛福润德自动化技术有限公司 一种电磁加热精确温控系统
KR101191253B1 (ko) 2011-01-04 2012-10-16 (주)아이엔에이치 초음파를 이용한 열확산 시스템기기
CN104392901B (zh) 2014-10-28 2017-08-25 京东方科技集团股份有限公司 一种柔性衬底基板及其制作方法
JP5815904B1 (ja) * 2015-03-31 2015-11-17 北芝電機株式会社 誘導溶解炉
CN106304425A (zh) * 2016-08-26 2017-01-04 天津市泰斯特仪器有限公司 一种变阻值升温元件的控制系统
CN110289114B (zh) * 2019-06-10 2021-03-09 清华大学 高温气冷堆功率控制方法、控制系统及高温气冷堆核电站

Also Published As

Publication number Publication date
JP2008139015A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
JP3724857B2 (ja) 電磁誘導加熱装置の温度制御装置及び始動方法
JP4416819B2 (ja) 電磁誘導加熱装置の温度制御装置
US5990465A (en) Electromagnetic induction-heated fluid energy conversion processing appliance
JP4521338B2 (ja) 誘導加熱調理器
WO2007088931A1 (ja) 誘導加熱装置
US11038431B2 (en) Isolated power converter for a thermal system
US9844099B2 (en) Induction heating apparatus
JP2006351301A (ja) 誘導加熱調理器
Chudjuarjeen et al. Full-bridge current-fed inverter with automatic frequency control for forging application
JP2014220108A (ja) 誘導加熱装置
US10405378B2 (en) High frequency power supply system with closely regulated output for heating a workpiece
JP2009254031A (ja) 非接触給電装置
JPH11219777A (ja) 電磁誘導加熱装置の温度制御装置及びその温度制御方法
JP4254876B2 (ja) 電源供給回路及びそのpam制御方法
JP2018538778A (ja) ワークピース加熱用の微調整された出力を有する高周波電源システム
KR100693305B1 (ko) 전자유도 가열장치와 그 온도제어 방법
JP5452162B2 (ja) 誘導加熱調理器
Chudjuarjeen et al. Asymmetrical control with phase lock loop for induction cooking appliances
JP5708988B2 (ja) 高周波電源装置
JP6407748B2 (ja) 電磁誘導加熱装置
JP2017163680A (ja) 溶接電源装置
JP4363355B2 (ja) 誘導加熱装置
KR102171316B1 (ko) 열처리용 인버터-고주파 변압기형 전력 변환 장치
WO2019146247A1 (ja) 電源装置および溶接用電源装置
JP2008053070A (ja) 誘導加熱装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees