JP4391567B2 - 積層構造のシリカナノ粒子の製造方法、積層構造のシリカナノ粒子、及びそれを用いた標識試薬 - Google Patents
積層構造のシリカナノ粒子の製造方法、積層構造のシリカナノ粒子、及びそれを用いた標識試薬 Download PDFInfo
- Publication number
- JP4391567B2 JP4391567B2 JP2008068594A JP2008068594A JP4391567B2 JP 4391567 B2 JP4391567 B2 JP 4391567B2 JP 2008068594 A JP2008068594 A JP 2008068594A JP 2008068594 A JP2008068594 A JP 2008068594A JP 4391567 B2 JP4391567 B2 JP 4391567B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- molecule
- functional molecule
- laminated structure
- molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Silicon Compounds (AREA)
Description
シリカ自身には光吸収特性や磁性がないためその粒子を検出することができず、標識試薬として用いることはできない。しかし、シリカには高い化学的安定性や表面修飾についての高い自由度、生体に対する無害性といった標識試薬にとって好ましい特性をいくつも兼ね備えている。そのため、例えばシリカ粒子の内部もしくは表面に蛍光もしくは発色特性を有する有機色素分子を結合させれば、光学的にその存在を検出することができる標識試薬を得ることができる。
色素の種類によっては前記色素結合APSのシリカ粒子への取り込み効率が非常に低いものもある。そのような場合十分な量の色素をシリカ粒子に取り込ませるためには過剰量の前記色素結合APSを前記アンモニア水含有溶媒に含有させなければならず、前記色素結合APSが高価であるため、コストがかさんでしまう。
また、表面修飾の際などに前記の手法で得られたシリカ粒子をアンモニア水や水酸化ナトリウムなどの塩基性溶液に曝すと、前記シリカ粒子表面のシロキサン結合(Si−O結合)が加水分解され、粒子表面に偏在していた色素結合オルガノシロキサン成分が脱離してしまう問題があった。色素分子をシリカ粒子に取り込んで標識試薬とする場合、シリカ粒子から脱離した色素分子はターゲット物質以外のものと非特異的結合を起こしてシグナル/ノイズ比低下の原因となってしまう。さらに、シリカ粒子表面に存在する色素分子がシリカ粒子の表面修飾処理の際に悪影響を及ぼすという問題もあった。
(1) 次の工程(a)及び(b)を含んでなることを特徴とする積層構造のシリカナノ粒子の製造方法、
[(a)機能性分子結合オルガノアルコキシシラン化合物をテトラアルコキシシランとともにアンモニア水含有溶媒中で加水分解した後、加水分解物を縮重合させ、機能性分子を含有するシリカ粒子を調製する工程。]
[(b)前記工程(a)により前記機能性分子含有シリカ粒子を調製した後に、前記機能性分子結合オルガノアルコキシシラン化合物が残存する前記アンモニア水含有溶媒にテトラアルコキシシランをさらに含有させ、加水分解と縮重合とにより前記機能性分子を含有するシリカの層を前記シリカ粒子の表面上に形成し、調製されるシリカ粒子1個当たりの前記機能性分子の含有量を増大する工程。]
[前記機能性分子は、蛍光色素分子、吸光色素分子、磁性分子、放射線標識分子、及びpH感受性色素分子から選らばれる。]
(3) 前記(1)又は(2)に記載の製造方法によって得られた積層構造のシリカナノ粒子であって、蛍光色素分子、吸光色素分子、磁性分子、放射線標識分子、及びpH感受性色素分子から選らばれる前記機能性分子を含有するシリカ粒子の表面上に、該機能性分子を含有するシリカの層を有することを特徴とするシリカナノ粒子。
(5) 平均粒径が100〜500nmであり、かつ変動係数が10%以下であることを特徴とする(3)に記載の積層構造のシリカナノ粒子、及び
(6) 前記(3)〜(5)のいずれか1項に記載の積層構造のシリカナノ粒子を用いて調製される標識試薬
を提供するものである。
本明細書及び特許請求の範囲において、「シリカナノ粒子」とは、平均粒径が、1,000nm以下のコロイドシリカ粒子をいう。前記シリカナノ粒子を標識試薬として用いる場合、検出物質や検出法によって使用するのに好適な粒子径は様々であるが、20〜500nmの範囲内である場合が多く、この範囲にあるシリカナノ粒子であることが好ましい。
本発明の積層構造のシリカナノ粒子は平均粒径がナノメートルサイズであり、かつ粒度分布の幅が狭く粒径が揃っている。
本発明の標識試薬は、平均粒径が揃った前記シリカナノ粒子を用いてなるので、測定結果の再現性に優れ、信頼性が高い極微量標的物質の高感度定量分析が可能である。
本発明の製造方法は、次の工程(a)及び(b)を含んでなる。
(a)機能性分子結合オルガノアルコキシシラン化合物をテトラアルコキシシランとともにアンモニア水含有溶媒中で加水分解した後、加水分解物を縮重合させシロキサン結合を形成させることにより、前記機能性分子結合オルガノアルコキシシラン化合物に由来する機能性分子結合オルガノシロキサン成分を含有するコアとなるシリカ粒子(以下、「機能性分子含有シリカ粒子」という。)を調製する工程、及び
(b)前記工程(a)により前記コアとなる前記機能性分子含有シリカ粒子を調製した後に、前記機能性分子結合オルガノアルコキシシラン化合物が残存する前記アンモニア水含有溶媒に前記テトラアルコキシシランをさらに含有させ、加水分解と縮重合とによるシロキサン結合形成により、前記機能性分子を含有するシリカの層を前記シリカ粒子の表面上に形成し、調製されるシリカ粒子1個当たりの前記機能性分子の含有量を増大する工程。
本発明に用いる前記機能性分子結合オルガノアルコキシシラン化合物は、互いに反応して結合を形成する活性部位を持つ機能性分子とオルガノアルコキシシランとを反応させることで得ることができる。例えば、3−アミノプロピルトリエトキシシラン(APS)のアミノ基と機能性分子が持つカルボキシル基を脱水縮合させてペプチド結合を形成させる手法がある。カルボキシル基とスクシンイミドを縮合させたN−ヒドロキシスクシンイミド(NHS)エステル基を持つ機能性分子であれば、APSと混合させるだけでアミノ基と反応してペプチド結合でつながれた機能性分子結合オルガノアルコキシシラン化合物を得ることができ、好ましい。
前記活性基を有する前記機能性分子の好ましい具体例として、下記式でそれぞれ表される5−カルボキシTAMRA−NHSエステル、5−カルボキシローダミン6G−NHSエステル、5−カルボキシフルオレセイン−NHSエステル(いずれも商品名;Invitrogen社製)等のNHSエステル基を有する蛍光色素化合物を挙げることができる。
前記反応性基を有するオルガノアルコキシシランの具体例として、3−アミノプロピルトリエトキシシラン(APS)、3−アミノプロピルトリメトキシシラン等のアミノ基を有するオルガノアルコキシシラン、3−メルカプトプロピルトリメトキシシラン等のメルカプト基を有するオルガノアルコキシシラン等を挙げることができる。中でも、APSが好ましい。メルカプト基を有するオルガノアルコキシシランを用いる場合は、マレイミド基を持つ機能性分子と結合させることができる。
その場合反応に用いる前記NHSエステル基を有する機能性分子と前記アミノ基を有するオルガノアルコキシシランとの割合は、モル換算で等量であることが好ましい。NHSエステル基を有する機能性分子は一般に高価なためできるだけ無駄を少なくしたいが、アミノ基を有するオルガノアルコキシシランの割合が高いと未反応のアミノ基を持つオルガノアルコキシシランがシリカ粒子に取り込まれることになり、シリカ粒子が純水中で凝集傾向を持ってしまうことがある。
一般にシリカとは、シロキサン結合(Si−O結合)に基づくケイ素原子及び酸素原子からなる3次元構造体を指すが、ここでは前述のようなオルガノシロキサン成分を含有するケイ素原子及び酸素原子からなる3次元構造体を含むものとする。
本発明の製造方法の前記工程(a)において、前記機能性分子結合オルガノアルコキシシラン化合物の前記アンモニア水含有溶媒中に含有させる量は、前記テトラアルコキシシランとの混合モル比率として、1:100〜1:5の範囲で反応させることが好ましく、1:50〜1:10の範囲で反応させることがより好ましい。
この溶解ないしは含有させておく前記機能性分子結合オルガノアルコキシシラン化合物の量により、得られる積層構造のシリカナノ粒子中の前記機能性分子の含有量を制御できる。
本発明の製造方法で用いられるアンモニア水含有溶媒に含有させるアンモニア水の濃度は、目的の積層構造のシリカナノ粒子の平均粒径を制御する観点から、1〜28質量%であることが好ましく、2〜14質量%であることがより好ましい。
前記工程(a)における前記コアとなる前記シリカ粒子の形成の温度条件としては特に制限はないが、高温で合成を行うとシリカへの機能性分子の取り込み効率を高めることができる。したがって、機能性分子の取り込み効率を高くしたい場合は35〜60℃の温度条件下で行うことが好ましい。反応時間としては特に制限はないが、反応時間を長くするとシリカへの機能性分子の取り込み効率を高めることができる。したがって、機能性分子の取り込み効率を高くしたい場合は4〜48時間反応させることが好ましい。
前記工程(b)における前記シリカ層の形成温度条件としては特に制限はないが、前記工程(a)の場合と同様機能性分子の取り込み効率を高くしたい場合は35〜60℃の温度条件下で行うことが好ましい。反応時間としては特に制限はないが、前記工程(a)の場合と同様機能性分子の取り込み効率を高くしたい場合は4〜48時間反応させることが好ましい。
所望の平均粒径のシリカ粒子を得るためには、適切な重力加速度で遠心分離を行い、上清または沈殿のみを回収する手法がある。
本発明の積層構造のシリカナノ粒子は、前述した本発明の製造方法により製造することができる。
本発明の積層構造のシリカナノ粒子は、前記工程(a)により得られた前記機能性分子含有シリカ粒子をコアとし、前記シリカ粒子の表面上を1層又は2層以上のシリカの層がシロキサン結合により包囲してなる積層構造のシリカナノ粒子であることを特徴とする。
本発明の積層構造のシリカナノ粒子において、前記シリカの層数としては、1〜6層であることが好ましい。
前述のように、前記工程(a)により得られたコアとなる前記シリカ粒子を調製する場合、テトラアルコキシシランの方が前記機能性分子結合オルガノアルコキシシラン化合物よりも反応速度が速い。そのため、合成初期にはテトラアルコキシシランが反応して形成されるシリカに含有される前記機能性分子結合オルガノシロキサン成分の比率が低く、逆に合成後期には前記機能性分子結合オルガノシロキサン成分の比率が高くなる。結果として、前記コアとなる前記シリカ粒子の内部においては、前記機能性分子結合オルガノシロキサン成分が表面近傍ないしは表面に高濃度に偏在することになる。前記工程(b)により前記シリカの層を形成する場合においても同様に、前記シリカの層の外側に前記機能性分子結合オルガノシロキサン成分が高濃度に偏在することになる。
そこで、本発明の積層構造のシリカナノ粒子において、前記シリカの層の厚みは、前記FRETによる自己消光を防止する観点から、7nm以上が好ましく、10nm以上がより好ましく、10〜20nmがさらに好ましい。
ただし、前記シリカの層が厚くなるとシリカ粒子の重量が増大し、それによりコロイド重量あたりの蛍光強度が減少することになる。そのため、コロイド重量あたりの蛍光強度を高くするには前記FRETによる自己消光が抑制される範囲で前記シリカの層を極力薄くすることが好ましい。
本発明において、前記平均粒径は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)等の画像から直接各粒子(少なくとも100個)の長径と短径を測定し、その平均値を計算して求めたものである。
本発明により得られたシリカナノ粒子の粒度分布の変動係数(以下CVということもある。)は、15%以下が好ましく、10%以下がより好ましい。ここで、前記変動係数は、粒度の分布の標準偏差を平均粒径で割った値をいう。
本発明の積層構造のシリカナノ粒子は、前述のように、本発明の製造方法における前記アンモニア水含有溶媒中のアンモニアの含有量を制御すること、並びに前記工程(b)を1回又は2回以上繰り返すことで制御することにより20〜100nmの範囲にある平均粒径とした場合、変動係数は15%以下とすることができる。
本明細書及び特許請求の範囲において、単分散とはCV15%以下の粒子群をいう。
前述の通り、例えばAPSなどのオルガノアルコキシシランと結合させてテトラアルコキシシランと共に反応させることで、前記機能性分子をシリカ粒子に取り込むことができる。ただしその取り込み効率は結合させる機能性分子の種類によって異なり、例えば蛍光色素であるカルボキシフルオレセイン色素をAPSと結合させたオルガノアルコキシシラン化合物は取り込み効率が低い。取り込み効率の低い機能性物質をシリカ粒子に十分取り込ませるためには合成の際に多くのオルガノアルコキシシラン化合物を投入する必要があり、その場合投入した大部分のオルガノアルコキシシラン化合物が取り込まれずに廃棄されることになるため、コスト増大の要因となる。
一般的には前記機能性分子の取り込み量は多いほど好ましいが、蛍光色素に関しては濃度消光による蛍光強度の低下があるため最適な取り込み量が存在する。その量は1mlあたり3×1017分子程度であり、これは粒径100nmのシリカ粒子に換算すると約13,000分子に相当する。本発明の積層構造のシリカナノ粒子では、シリカ粒子への取り込み効率の低いカルボキシフルオレセイン色素分子でも少ない投入量でこのシリカ粒子内密度を達成することができる。
シリカは、一般に、化学的に不活性であると共に、その修飾が容易であることが知られている。本発明の積層構造のシリカナノ粒子もまた、容易に所望の物質を表面に結合させることが可能である。
本発明の積層構造のシリカナノ粒子は、所望の標的生体分子を分子認識する物質を表面に結合もしくは吸着させることが好ましい。
前記積層構造のシリカナノ粒子が、前記機能性分子として蛍光色素分子もしくは吸光色素分子を含有する場合、検体(例えば、任意の細胞抽出液、溶菌液、培地・培養液、溶液、バッファー)中の標的生体分子(生理活性物質を含む。)を蛍光ないしは吸光色素標識付けすることができる。
前記積層構造のシリカナノ粒子を表面修飾する前記標的生体分子を分子認識する物質としては、抗体、抗原、ペプチド、DNA、RNA、糖鎖、リガンド、受容体、化学物質等が挙げられる。
ここで、分子認識とは、(1)DNA分子間又はDNA−RNA分子間のハイブリダイゼーション、(2)抗原抗体反応、(3)酵素(受容体)−基質(リガンド)間の反応など、生体分子間の特異的相互作用をいう。
また化学物質とは天然有機化合物に限らず、人工的に合成された生理活性を有する化合物や環境ホルモン等を含む。
すなわち、前記シリカナノ粒子を表面修飾した標的生体分子を分子認識する物質は、それ自体が受容体部位となって、例えば抗原−抗体反応、ビオチン−アビジン反応、塩基配列の相補性を利用したハイブリダイゼーションなどの特異的な分子認識を利用して、標的生体分子に特異的に結合することができる。
本発明の積層構造のシリカナノ粒子の表面への、前記生体分子による吸着等の表面修飾が、縮合剤ないしは架橋剤の存在下又は非存在下にて、前記積層構造のシリカナノ粒子のコロイドと前記生体分子の溶液とを混合することにより行われることが好ましい。
例えば、縮合剤等の非存在下、前記積層構造のシリカナノ粒子のコロイドと前記生体分子の溶液とを混合することにより、前記生体分子は、前記シリカナノ粒子の表面と吸着することができる。
表面修飾に用いる前記縮合剤ないしは架橋剤の当量数、前記コロイドの分散媒、前記生体分子の溶液の溶媒の種類・容量、及び反応温度等の反応条件については表面修飾が進行する限り特に制限はない。
前記表面修飾した後、前記積層構造のシリカナノ粒子と前記シリカナノ粒子に結合ないし吸着していない前記生体分子との分離は、遠心分離または限外ろ過によって可能である。
前記生体分子により前記シリカナノ粒子を表面修飾した後は、前述の非特異的吸着をさらに防止する観点から、PEG、BSAなどの任意のブロッキング剤でブロッキング処理を施してもよい。
前記生体分子の表面修飾が出来たかどうかの確認は、混合液から遠心分離または限外ろ過で粒子を除去した溶液に含まれる前記生体分子を一般的なタンパク質定量法(例えば、UV法、Lowry法、Bradford法)で定量し、減少した前記生体分子の量を定量することで行うことができる。
本発明の標識試薬は、本発明の積層構造のシリカナノ粒子を用いてなる。前記積層構造のシリカナノ粒子を用いて、蛍光ないし吸光色素標識を付与することが好ましい。さらに前述のシリカナノ粒子の表面修飾により抗体やホルモンなどの標的生体分子を分子認識する物質でシリカ粒子表面を修飾し、光学特性を検出する装置又は目視によって前記標的生体分子が評価されるべき試料中に存在するか否か等の評価を可能にする標識試薬として利用することができる。
本発明の標識試薬の具体例としては、生体分子検出試薬、生体分子定量試薬、生体分子分離試薬、生体分子回収試薬または免疫染色用試薬が挙げられる。
前記標的生体分子を検出、定量、分離または回収する分析試薬とすることができる。また、前記標的生体分子との分子認識が、抗原−抗体反応である場合は、前記シリカナノ粒子を用いてなる免疫染色用試薬とすることができる。
実施例1(本発明の積層構造のシリカナノ粒子の調製)
1.工程(a)
14質量%のアンモニア水をさらにエタノールで5倍に希釈しアンモニア水含有溶媒100mlとし、その中に0.5体積%となる体積500μlのTEOSを、前記TEOSと同体積のカルボキシフルオレセイン‐APSのDMF溶液を、それぞれ、添加して室温(25℃)にて撹拌した。
ここで、前記機能性分子結合オルガノアルコキシシラン化合物としての前記カルボキシフルオレセイン‐APSは下記式で表され、前記カルボキシフルオレセイン−NHSエステルとAPSとを反応させたものを用いた。前記DMF溶液は40mMの濃度に調整したものを用いた。
蛍光強度の測定の結果から、反応開始から4〜5時間経過すると前記カルボキシフルオレセイン‐APSの取り込み速度が減少してきた。ここまでの操作を工程(a)とする。
前記工程(a)により得られたシェル層無しのシリカナノ粒子の蛍光強度を後述する図1において対照とした。
なお、前記シリカ粒子の蛍光強度の測定は、蛍光分光光度計FP−6500(商品名、日本分光社製)を用いて、490nmの励起光における520nmの蛍光強度を測定した。
工程(a)で得られたシリカ粒子に、前記カルボキシフルオレセイン‐APSを取り込む余地の豊富なシリカを提供するため、TEOSを追加投入し室温5時間反応させ、1層のシリカ層を有するシリカナノ粒子を得た。
TEOSの追加投入量は、工程(a)における投入量の50%分とした。
さらに、この工程(b)のシェル形成操作を繰り返して積層構造とした粒子も調製した。すなわち、この工程(b)をさらに1回繰り返して2層のシェル層を有するシリカナノ粒子、この工程(b)をさらに2回繰り返して3層のシェル層を有するシリカナノ粒子を、それぞれ、調製した。2回目以降のTEOSの追加投入量も工程(a)における投入量の50%分とした。
上記得られた各シリカナノ粒子を、それぞれ、洗浄し、平均粒径及び蛍光強度を測定した。
具体的な洗浄操作としては、反応終了後、遠心分離(5000×g)を30分行い、粒子を沈降させた後、直ちに上清液を除去した。得られた沈殿物をエタノールに再分散させ、再度遠心分離(5000×g)を30分行い、粒子を沈降させた。同様のエタノール洗浄操作をさらに1回繰り返し、未反応のTEOS等を除去した。さらにエタノールの代わりに蒸留水を用いた以外は同様な洗浄操作を4回行い、遊離色素等を除去した。
上記得られた各シリカナノ粒子の平均粒径は、SEM画像に写っている各粒子(100個以上)の直径を測定し、その平均値として算出した。
前記工程(a)により得られた対照としてのシェル層無しのシリカナノ粒子の平均粒径は、変動係数9.0%の粒度分布で平均粒径190nmであった。
前記工程(b)により得られたシェル層を1層、2層、3層を有するシリカナノ粒子の平均粒径は、それぞれ、シェル層分だけ平均粒径が増加し、198nm(変動係数8.6%)、204nm(変動係数7.8%)、209nm(変動係数6.1%)であった。
4.蛍光強度測定
前記工程(a)により得られた対照としてのシェル層無しのシリカナノ粒子、前記工程(b)により得られたシェル層を1層、2層、3層有するシリカナノ粒子、それぞれの蛍光強度を前述と同様な装置、測定条件で測定した。図1に得られた結果を示す。
図1において、一定量である工程(a)において添加したカルボキシフルオレセイン‐APSの添加量で規格化(ノーマライズ)したシリカナノ粒子の蛍光強度(前記カルボキシフルオレセイン‐APS添加量当りの蛍光強度)、及び測定対象となったシリカコロイドの質量濃度で規格化した蛍光強度(シリカナノ粒子の質量当りの蛍光強度)の2通りで示した。いずれも単位はarbitrary unit(au:任意単位)として表した。以下同様である。
一方、シリカナノ粒子の質量当りの蛍光強度については、シェルを1層形成(実施例)することでシェル無し(比較例)の場合より13%増大し、シェルを2層形成(実施例)するとシェル無しの対照の場合より43%増大した。しかしシェルを3層形成(実施例)すると、その増大量は29%に低下した。これは、シェルを形成することによってシリカナノ粒子の質量が増大し、その結果蛍光強度の増大率がシリカコロイドの質量濃度の増大率を下回ったからである。このことから、2層のシェルを形成することが最も機能性分子の取り込み効率が高い結果となった。
しかし、シェル形成のために追加するTEOSの量を適宜減じることにより、シリカナノ粒子の質量の増加率を抑えられるため、上記結果よりもさらにシリカコロイドの質量濃度当りの蛍光強度、すなわち機能性分子の取り込み効率を高めることができる。
1.工程(a)
色素を高濃度に含有する吸光型シリカコロイドを合成すべく、2質量%のアンモニア水をさらにエタノールで5倍に希釈してアンモニア水含有溶媒100mlとし、その中に0.5体積%となる体積500μlのTEOSを前記TEOSと同体積のカルボキシTAMRA‐APSのDMF溶液を、それぞれ、添加して室温にて撹拌した。
ここで、前記機能性分子結合オルガノアルコキシシラン化合物としての前記カルボキシTAMRA‐APSは下記式で表され、前記5−カルボキシTAMRA−NHSエステルとAPSとを反応させたものを用いた。前記DMF溶液は40mMの濃度に調整したものを用いた。
溶液中の遊離色素による蛍光強度の測定の結果から、反応開始から7〜8時間経過すると前記カルボキシTAMRA‐APSの取り込み速度が減少し、反応終了とした。得られた粒子は、カルボキシTAMRA色素がシリカ粒子の表面近傍ないしは表面に偏在していた。
実施例1の工程(b)と同様な操作によりTEOSを追加投入し反応させ、反応終了後、実施例1と同様な洗浄操作を行った。その結果、1層のシリカ層を有するシリカナノ粒子を得た(平均粒径87nm)。得られたシリカ粒子を実施例2のシリカナノ粒子とする。
溶液中に前記カルボキシTAMRA‐APSが残存する状態で反応させ、シェルを形成しているので、シェル層の表面近傍ないしは表面にも多くの色素が結合していた。
(積層構造のシリカナノ粒子のコロイドへの抗体の吸着)
遠心管に50mM KH2PO4(pH6.5)を1mLと、実施例2の積層構造のシリカナノ粒子のコロイド(10mg/mL)9mLを加えて軽く撹拌した。遠心管に抗hCG抗体(Anti−hCG clone codes/5008, Medix Biochemica社製)1mL(60μg/mL)を撹拌しながら加え、室温で1時間静置した。これに1質量%のPEG(ポリエチレングリコール、分子量20000、和光純薬工業社製)を0.55mL加え軽く撹拌し、更に10%BSAを1.1mL加え軽く撹拌した。
混合液を12,000×Gで15分間遠心分離し、上清を1mL程度残して取り除き、残した上清に沈殿を分散させた。この分散液に保存用バッファー(20mM Tris−HCl(pH 8.2), 0.05% PEG20,000, 1%BSA, 0.1%NaN3)を20mL加え、再度遠心分離し、上清を1mL程度残して取り除き、残した上清に沈殿を分散させた(コロイドA)。
続いて、前記抗hCG抗体を表面修飾した積層構造のシリカナノ粒子のコロイド(コロイドA)100μlを96穴マイクロプレートのウェルの1つに入れた。次に、抗IgG抗体(Anti Mouse IgG、Dako社製)が1mg/mL含まれる溶液(50mMKH2PO4,pH7.0)を用意した。図5は、分子認識試験に用いたストリップ1の平面図である。一方の末端2から約15mmの位置3にライン状に、前記溶液を0.75μL/cmの塗布量(約1mm幅)で塗布したメンブレン4(Hi−Flow Plus120 membrane、MILLIPORE社製)を5mm幅にカットし、ストリップ1(丈25mm)とした。
前記ストリップ1の末端を前記96穴マイクロプレートのウェルの1つに入れた抗hCG抗体を表面修飾した積層構造のシリカナノ粒子のコロイドに浸し、1時間放置した。
図2に示した、抗IgG抗体がライン状に塗布された部分3が赤く発色したことを確認した。よって、前記抗hCG抗体を表面修飾した積層構造のシリカナノ粒子が形成されていることが確認された。また、本発明の積層構造のシリカナノ粒子が分析試薬として好適であることが分かる。
Claims (6)
- 次の工程(a)及び(b)を含んでなることを特徴とする積層構造のシリカナノ粒子の製造方法。
[(a)機能性分子結合オルガノアルコキシシラン化合物をテトラアルコキシシランとともにアンモニア水含有溶媒中で加水分解した後、加水分解物を縮重合させ、機能性分子を含有するシリカ粒子を調製する工程。]
[(b)前記工程(a)により前記機能性分子含有シリカ粒子を調製した後に、前記機能性分子結合オルガノアルコキシシラン化合物が残存する前記アンモニア水含有溶媒にテトラアルコキシシランをさらに含有させ、加水分解と縮重合とにより前記機能性分子を含有するシリカの層を前記シリカ粒子の表面上に形成し、調製されるシリカ粒子1個当たりの前記機能性分子の含有量を増大する工程。]
[前記機能性分子は、蛍光色素分子、吸光色素分子、磁性分子、放射線標識分子、及びpH感受性色素分子から選らばれる。]
- 前記機能性分子結合オルガノアルコキシシラン化合物が、3−アミノプロピルトリエトキシシランのアミノ基と機能性分子のカルボキシル基とをペプチド結合により連結させた化合物であることを特徴とする、請求項1に記載の積層構造のシリカナノ粒子の製造方法。
- 請求項1又は2に記載の製造方法によって得られた積層構造のシリカナノ粒子であって、蛍光色素分子、吸光色素分子、磁性分子、放射線標識分子、及びpH感受性色素分子から選らばれる前記機能性分子を含有するシリカ粒子の表面上に、該機能性分子を含有するシリカの層を有することを特徴とするシリカナノ粒子。
- 平均粒径が20〜100nmであり、かつ変動係数が15%以下であることを特徴とする請求項3に記載の積層構造のシリカナノ粒子。
- 平均粒径が100〜500nmであり、かつ変動係数が10%以下であることを特徴とする請求項3に記載の積層構造のシリカナノ粒子。
- 請求項3〜5のいずれか1項に記載の積層構造のシリカナノ粒子を用いて調製される標識試薬。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008068594A JP4391567B2 (ja) | 2008-03-17 | 2008-03-17 | 積層構造のシリカナノ粒子の製造方法、積層構造のシリカナノ粒子、及びそれを用いた標識試薬 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008068594A JP4391567B2 (ja) | 2008-03-17 | 2008-03-17 | 積層構造のシリカナノ粒子の製造方法、積層構造のシリカナノ粒子、及びそれを用いた標識試薬 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009071023A Division JP4444363B2 (ja) | 2009-03-23 | 2009-03-23 | 積層構造のシリカナノ粒子の製造方法、積層構造のシリカナノ粒子、及びそれを用いた標識試薬 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009221059A JP2009221059A (ja) | 2009-10-01 |
JP4391567B2 true JP4391567B2 (ja) | 2009-12-24 |
Family
ID=41238254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008068594A Active JP4391567B2 (ja) | 2008-03-17 | 2008-03-17 | 積層構造のシリカナノ粒子の製造方法、積層構造のシリカナノ粒子、及びそれを用いた標識試薬 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4391567B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5479986B2 (ja) * | 2010-04-15 | 2014-04-23 | 古河電気工業株式会社 | 表層制御積層シリカナノ粒子及びその製造方法 |
KR101243279B1 (ko) | 2011-02-22 | 2013-03-13 | 배재대학교 산학협력단 | 형광물질의 광열화성 억제방법 |
EP2781555A4 (en) | 2011-11-18 | 2015-10-07 | Adeka Corp | NEW COMPOUND AND SUPPORT SUPPORTING THIS NEW COMPOUND |
JP2017155069A (ja) * | 2016-02-29 | 2017-09-07 | 古河電気工業株式会社 | シリカナノ粒子、シリカナノ粒子の製造方法、及びシリカナノ粒子の分散液 |
WO2021132728A1 (ja) * | 2019-12-27 | 2021-07-01 | 花王株式会社 | マイクロカプセルの製造方法 |
WO2021157475A1 (ja) * | 2020-02-03 | 2021-08-12 | コニカミノルタ株式会社 | 蛍光シリカナノ粒子、および蛍光シリカナノ粒子の製造方法 |
-
2008
- 2008-03-17 JP JP2008068594A patent/JP4391567B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009221059A (ja) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5224330B2 (ja) | コア‐シェル構造のシリカナノ粒子の製造方法、コア‐シェル構造のシリカナノ粒子、及びそれを用いた標識試薬 | |
JP5356204B2 (ja) | 蛍光色素化合物含有コロイドシリカ粒子の製造方法およびこれを用いた定量方法 | |
Generalova et al. | Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays | |
JP5448369B2 (ja) | 粒子表面にアミノ基を有するシリカ粒子の製造方法、粒子表面にアミノ基を有するシリカ粒子、及びそれを用いた複合粒子 | |
JP4391567B2 (ja) | 積層構造のシリカナノ粒子の製造方法、積層構造のシリカナノ粒子、及びそれを用いた標識試薬 | |
JP5479986B2 (ja) | 表層制御積層シリカナノ粒子及びその製造方法 | |
Tan et al. | A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins | |
JP5367915B2 (ja) | 生体分子を結合させた機能性分子含有シリカナノ粒子の製造方法 | |
JP4982687B2 (ja) | 標識分子含有シリカ球の調製方法 | |
Xiao et al. | Fluorescent nanomaterials combined with molecular imprinting polymer: synthesis, analytical applications, and challenges | |
WO2011077838A1 (ja) | 蛍光物質内包シリカナノ粒子及び生体物質標識剤 | |
JP6598681B2 (ja) | 表面に反応性官能基を有するシリカ粒子及びその製造方法 | |
TWI595009B (zh) | Identification of antibody manufacturing methods and labeling antibodies | |
JP4444363B2 (ja) | 積層構造のシリカナノ粒子の製造方法、積層構造のシリカナノ粒子、及びそれを用いた標識試薬 | |
JP2018040797A (ja) | フェリチン検出用の検査キット及びフェリチンの検出方法 | |
JP4330025B2 (ja) | 多糖を表面に有する複合粒子、複合粒子コロイド、それを用いた分析試薬、及び複合粒子の製造方法 | |
KR20160092406A (ko) | 친수성 고분자로 코팅된 형광 실리카 나노입자 및 이의 제조방법 | |
KR101368076B1 (ko) | 수용액에서 우수한 분산성을 가지는 표면 개질된 형광 실리카 나노입자 및 그 제조방법 | |
JP5224359B2 (ja) | カルボキシル基を有する有機色素分子を含有するシリカナノ粒子の製造方法、前記製造方法により得られたシリカナノ粒子、それを用いた標識試薬 | |
JP5754309B2 (ja) | 表面プラズモン励起増強蛍光分光法を利用して蛍光量を測定する定量分析方法ならびにそれに用いられる定量分析用キットおよびアナライト解離抑制剤 | |
JP2011158422A (ja) | シリカナノ粒子の製造方法、シリカナノ粒子および標識試薬 | |
WO2024177578A1 (en) | A method of producing biomolecule-crosslinked compound and a compound derived thereof | |
JP5192752B2 (ja) | 逆ミセル分散系を用いてなるシリカナノ粒子の製造方法、該方法により得られたシリカナノ粒子、及びそれを用いた標識試薬 | |
Apriyani et al. | Preliminary Study of Modified Fluorescent Silica Nanoparticles for the Detection of IgY Antibody | |
Sadhu et al. | Lanthenide-Doped Nanophosphor Labels for Protein Microarrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090626 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090908 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091007 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4391567 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131016 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |