JP4380463B2 - 光導波路、光導波路用フェルール、及び光コネクタ - Google Patents

光導波路、光導波路用フェルール、及び光コネクタ Download PDF

Info

Publication number
JP4380463B2
JP4380463B2 JP2004233721A JP2004233721A JP4380463B2 JP 4380463 B2 JP4380463 B2 JP 4380463B2 JP 2004233721 A JP2004233721 A JP 2004233721A JP 2004233721 A JP2004233721 A JP 2004233721A JP 4380463 B2 JP4380463 B2 JP 4380463B2
Authority
JP
Japan
Prior art keywords
optical waveguide
core
optical
ferrule
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004233721A
Other languages
English (en)
Other versions
JP2006053260A (ja
Inventor
和敏 谷田
敬司 清水
茂実 大津
英一 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2004233721A priority Critical patent/JP4380463B2/ja
Publication of JP2006053260A publication Critical patent/JP2006053260A/ja
Application granted granted Critical
Publication of JP4380463B2 publication Critical patent/JP4380463B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光通信や光情報処理の分野で用いられる光導波路、該光導波路を嵌合する光導波路用フェルール、光導波路が光導波路用フェルールに嵌合してなる光コネクタに関する。
近年、インターネットをはじめとする情報伝達手段の普及・発展により、大容量かつ高速なデータ伝送の要求が高まっている。大容量のデータを高速に伝送するには、膨大な情報をより遠くまで少ない伝送損失で送ることができる光ファイバが知られており、この光ファイバを複数一括して接続する多芯光コネクタが用いられている。
この多芯光コネクタを多芯光ファイバコネクタに接続する。このとき、多芯光コネクタの光導波路の光軸と、多芯光ファイバコネクタの導波路の光軸とを調芯して同芯とする必要がある。この調芯方法として、例えば、多芯光ファイバコネクタの導波路を発光させた状態で、多芯光コネクタの光導波路に最も強い光が入射するように、多芯コネクタに対して光導波路を移動させて位置調整するアクティブアライメントがある。
しかし、このアクティブアライメントでの調芯作業は手作業で行われるため、コストが高くついてしまう。コストを下げるためには、調芯作業を簡略化するか、もしくは無調芯で製造できることが求められている。
そこで、図7に示すように、基板102の上に光導波路コア104と光導波路コア104を取り囲むクラッド部106とが形成された光導波路108の両端に、位置決め用の溝110(又は、段差)を光導波路コア104の延伸方向と平行に形成し、この位置決め用溝110を、光導波路122を接続するコネクタ112に形成した凸部114に係合させることで、光導波路コア104をコネクタ112に対して位置決めする構成が開示されている(例えば、特許文献1〜3参照。)。
しかし、溝110を光導波路108の両端に形成することで、その分光導波路108の幅方向の寸法が大きくなる。これに伴って、コネクタ112の光導波路108を接続する開口部116の寸法も大きくなり、コネクタ112のサイズが大きくなってしまう。また、開口部116の寸法が大きくなることによって、コネクタ112の機械強度が低下するので、ばねクランプ118で圧接したときに撓みが生じ、光導波路108も撓みの影響を受けて光接続損失が増大する恐れがある。
さらに、溝110は光導波路コア104の延伸方向と平行に形成されているので、光導波路108をコネクタ112に接続するとき、光導波路コア104の延伸方向と直交する方向(光導波路の幅方向)の位置は規制されるが、光導波路コア104の延伸方向の位置が規制されない。このため、コネクタ112に光導波路108を接続し、このコネクタ112を、光ファイバーコネクタ120に接続するとき、光導波路コア104の端面を光ファイバーコネクタ120の光導波路122の端面に突き当て、位置合わせしなければならない。このため、光導波路コア104の端面に傷がついてしまい、光接続損失が増大してしまう。
これらの問題を解決する方法として、光導波路とコネクタにテーパ面を形成し、位置決めを行うものが開示されている(例えば、特許文献4参照。)。簡単に説明すると、光導波路の幅方向の側面を位置決め面とし、一方の側面に光導波路コアと平行な面に対しテーパ面を形成する。また、このテーパ面に対峙するコネクタの面にもテーパ面を形成する。そして、光導波路をコネクタの嵌合部へ挿入すると、コネクタに形成したテーパ面から反作用を受けて光導波路は嵌合部に位置決めされる。
しかし、この構成では、光導波路がシリコン基板やガラス基板等の上に形成されている場合、また、十分な機械強度が無い高分子化合物で形成される場合、光導波路をコネクタの嵌合部へ挿入したとき、テーパで位置合わせがされる際に生ずる反作用の力で、光導波路に撓みが生じて光接続損失が増大してしまうことが考えられる。
特開平8−248269号公報(第3−4項、第1図) 特開平9−105838号公報(第4項、第1図) 特開2001−324631号公報(第4項、第3図) 特開2002−020498号公報(第4項、第1図)
本発明は、上記事実を考慮し、以下の目的を達成することを課題とする。即ち、
本発明の目的は、サイズが小さく、十分な強度を有する光導波路用フェルール、これに嵌合する光導波路、及びこれらを一体化した光コネクタを提供することにある。
<1> 光信号を伝達する光導波路コアと、該光導波路コアを取り囲む板状のクラッド部と、を有する光導波路であって、前記クラッド部の少なくともいずれか一方の表面に、前記光導波路コアの延伸方向から0.1〜15°傾いた方向に伸びる直線状凹部を有することを特徴とする光導波路である。
前記<1>に記載の発明によれば、光導波路コアは板状のクラッド部に取り囲まれており、クラッド部の少なくともいずれか一方の表面には光導波路コアの延伸方向から0.1〜15°傾いた方向に伸びる直線状凹部が設けられている。この直線状凹部が、光導波路用フェルール(後述)に設けられた直線状凸部に係合し、光導波路を光導波路用フェルールの開口部へ挿入するに従い、凹凸の係合が傾斜を持つため、光導波路が光導波路用フェルールの開口部側壁に当接して、光導波路側面と光導波路用フェルールの開口部側壁の間隙がなくなり、光導波路の光導波路用フェルールに対する挿入量が規制されるので、光導波路コアが光導波路用フェルールに対して位置決めされる。
これにより、光コネクタ(後述)を光ファイバコネクタに接続するだけで、光導波路コアの光軸と光ファイバコネクタのコネクタ光導波路コアの光軸が一致するため、調芯作業が不要となる。このため、接続作業が複雑にならず、コストを低く抑えることができる。
また、光導波路用フェルールの直線状凸部に係合して位置決めを行う直線状凹部を、クラッド部の側面と直交する表面に形成することで、凹部を形成するスペースを別途必要としないので、光導波路の幅方向の寸法が大きくなることがない。従って、光導波路コアの数が増えても、幅方向の寸法は光導波路コアを並列させただけの大きさで抑えることができ、光軸ズレ等の光接続損失の増大を抑えることができ、シリコン基板やガラス基板等の十分な機械強度を持たない材料で光導波路を形成しても、撓みが発生しにくくなる。さらに、光ファイバコネクタと光コネクタを接続するとき、光導波路コアの端面を光ファイバコネクタのコネクタ光導波路コアの端面に突き当てて位置合わせをする必要がないので、光導波路コアの端面に傷がついて光接続損失が増大する心配がない。
また、光導波路コアがクラッド部の幅方向に沿って複数形成された光導波路では、クラッド部の上下面の少なくともどちらか一方の面に凹部を形成することで、クラッド部の面積の広い面で光導波路用フェルールと係合されることになる。従って、光導波路コアを光導波路コネクタに安定した状態で係合できる。
<2> 前記直線状凹部の断面形状が矩形状であることを特徴とする前記<1>に記載の光導波路である。
前記<2>に記載の発明によれば、直線状凹部の断面の形状を矩形状とすることで、直線状凹部を形成する金型の加工が容易となる。これにより、製造コストの削減に繋がる。
<3> 前記直線状凹部の断面形状が略V字状であることを特徴とする前記<1>に記載の光導波路である。
前記<3>に記載の発明によれば、直線状凹部の断面形状を略V字状とすることで、光導波路の直線状凹部を光導波路コネクタのV字状の直線状凸部に係合させるとき、直線状凹部は直線状凸部に2面で支持されることになるので、位置合わせの精度が出し易い。
また、矩形状の直線状凹部に比べて略V字状の直線状凹部の場合、直線状凹部を形成する金型に抜きテーパをつける必要がない。これにより、型構造が簡単になり、また、離形不良などの成形不良の発生率を低くすることができるので、製造コストの削減に繋がる。
<4> 前記光導波路コアと前記クラッド部との少なくとも一方が、高分子化合物で形成されたことを特徴とする前記<1>から<3>のいずれかに記載の光導波路である。
前記<4>に記載の発明によれば、光導波路コアとクラッド部の少なくともいずれか一方を、シリコン基板やガラス基板等で形成せずに高分子化合物で形成することで、材料費を低く抑えることができ、製造コスト削減に繋がる。また、高分子化合物、例えばプラスチック材を用いることで、光導波路コア及びクラッド部を成形するにあたって、任意の形状を得ることが容易となる。
<1>から<4>のいずれか1項に記載の光導波路を嵌め込む開口部を有し、前記光導波路が前記開口部に挿入された際に、前記光導波路の直線状凹部に嵌合する直線状凸部を有することを特徴とする光導波路用フェルールである。
前記<>に記載の発明によれば、光導波路と凹凸の関係をなす形状の開口部を有することで、前記光導波路が当該光導波路用フェルールと係合し、光導波路の光導波路用フェルールに対する位置決めを容易に行うことができる。
> 前記<1>から<4>のいずれかに記載の光導波路の直線状凹部と<5>に記載の光導波路用フェルールの直線状凸部が係合して、前記光導波路が前記光導波路用フェルールの開口部に嵌合してなることを特徴とする光コネクタである。
前記<>に記載の発明によると、光導波路用フェルールの直線状凸部に係合して位置決めを行う直線状凹部を光導波路に形成することで、光導波路と光導波路用フェルールとの間に接着剤を侵入させ硬化固定し硬化収縮が生じても、変位しないよう固定された箇所がないので、硬化収縮で光導波路と光導波路用フェルールを近づける力が均等に働き、撓みが発生しにくくなる。これにより、光軸ズレ等の光接続損失の増大を抑えることができる。
> 前記光導波路を前記光導波路用フェルールに嵌合させたとき、前記光導波路の先端面と前記光導波路用フェルールの先端面とが面一となることを特徴とする前記<>に記載の光コネクタである。
前記<>に記載の発明によれば、光導波路用フェルールには開口部が形成されており、この開口部には光導波路に設けられた直線状凹部と係合して光導波路用フェルールに光導波路コアを位置決めするための直線状凸部が形成されている。これにより、光導波路コネクタを光ファイバコネクタに接続するだけで、光導波路コアの光軸と光ファイバコネクタのコネクタ光導波路コアの光軸が一致するため、調芯作業が不要となる。このため、接続作業が複雑にならず、コストを低く抑えることができる。
本発明によれば、サイズが小さく、十分な強度を有する光導波路用フェルール、これに嵌合する光導波路、及びこれらを一体化した光コネクタを提供することができる。
最初に、図1を用いて本発明の光導波路の製造工程について、工程順に説明する。
1)鋳型形成用硬化性樹脂の硬化樹脂層から形成され、コア凸部に対応する凹部を有する鋳型を準備する工程
鋳型の作製は、光導波路コア(以下「コア」とする)に対応する凸部を形成した原盤を用いて行うのが好ましいが、これに限定されるものではない。以下では、原盤を用いる方法について説明する。
<原盤の作製>
コアに対応する凸部12を形成した原盤10(図1(A)に示す)の作製には、従来の方法、たとえばフォトリソグラフィー法やRIE法を特に制限なく用いることができる。また、本出願人が先に出願した電着法又は光電着法により光導波路を作製する方法(特開2002−333538号)も、原盤10を作製するのに適用することができる。
原盤10に形成されるコアに対応する凸部12の大きさは、一般的に5〜500μm角程度、好ましくは40〜200μm角程度であり、光導波路の用途等に応じて適宜決められる。例えばシングルモード用の光導波路の場合には、10μm角程度のコアを、マルチモード用の光導波路の場合には、50〜100μm角程度のコアが一般的に用いられるが、用途によっては数百μm角程度と更に大きなコアを持つ光導波路も利用される。
<鋳型の作製>
次に、鋳型20の作製の工程について説明する。
上記のようにして作製した原盤10のコアに対応する凸部12が形成された面に、図1(B)に示すように、鋳型形成用硬化性樹脂を塗布又は注型して硬化性樹脂層20aを形成し、必要に応じ乾燥処理をして硬化性樹脂層20aを硬化させる。そして、この硬化した硬化性樹脂層20aを原盤10から剥離することで、凸部12に対応する凹部22が形成された鋳型20が作製される。
次に、図1(C)に示すように、鋳型20に、凹部22にコア形成用硬化性樹脂を充填するための進入口26、及び凹部22から樹脂を排出させるための排出口28を、打ち抜きによって形成する。
なお、進入口26及び排出口28は、鋳型20に打ち抜きによって予め設ける構成以外にも、種々の方法を用いることができる。その他の方法として、例えば、原盤に鋳型形成用硬化性樹脂の硬化樹脂層を形成した後、硬化性樹脂層を原盤から剥離して鋳型を作製し、その後、鋳型の両端を凹部が露出するように切断することにより進入口及び排出口を形成する方法が挙げられる。このように、進入口26及び排出口28の形成方法は特に制限されない。
鋳型20の凹部22に連通する進入口26及び排出口28を、凹部22の両端に設けることによって、進入口26は液(樹脂)溜まりとして利用でき、排出口28は減圧吸引管をその中に挿入して凹部22内部を減圧吸引装置に接続することができる。また、進入口26をコア形成用硬化性樹脂の注入管に連結して、進入口26から樹脂を凹部22に加圧注入することも可能である。排出口28は、凹部22が複数ある場合には、各凹部22に対応してそれぞれ設けてもよく、また、各凹部22に共通に連通する1つの孔を設けてもよい。
硬化樹脂層の厚さは、鋳型20の取り扱い性を考慮して適宜決められるが、一般的に0.1〜50mm程度が適切である。また、原盤10にはあらかじめ離型剤塗布などの離型処理を行うことで、硬化性樹脂層22aが原盤10から剥離しやすくなり、原盤10と鋳型20の剥離が促進される。
鋳型形成用硬化性樹脂としては、その硬化物が原盤10から容易に剥離できること、鋳型20(繰り返し用いる)として一定以上の機械的強度・寸法安定性を有すること、凹部の22形状を維持する硬さ(硬度)を有すること、後述するクラッド用基材30との密着性が良好であることが好ましい。鋳型形成用硬化性樹脂には、必要に応じて各種添加剤を加えることができる。
鋳型形成用硬化性樹脂は、原盤10の表面に塗布や注型等することが可能で、また、原盤10に形成された個々のコアに対応する凸部12を正確に転写しなければならない。従って、ある限度以下の粘度、たとえば、500〜7000mPa・s程度を有することが好ましい。(なお、本発明において用いる「鋳型形成用硬化性樹脂」の中には、硬化後、弾性を有するゴム状体となるものも含まれる。)また、粘度調節のために溶剤を、溶剤の悪影響が出ない程度に鋳型形成用硬化性樹脂に加えることができる。
鋳型形成用硬化性樹脂としては、剥離性、機械強度・寸法安定性、硬度、クラッド用基材(クラッド部)との密着性の点から、硬化後、シリコーンゴム(シリコーンエラストマー)又はシリコーン樹脂となる硬化性オルガノポリシロキサンが好ましく用いられる。硬化性オルガノポリシロキサンは、分子中にメチルシロキサン基、エチルシロキサン基、フェニルシロキサン基を含むものが好ましい。また、硬化性オルガノポリシロキサンは、一液型のものでも硬化剤と組み合わせて用いる二液型のものでもよく、また、熱硬化型のものでも室温硬化型(例えば空気中の水分で硬化するもの)のものでもよく、更に他の硬化(紫外線硬化等)を利用するものであってもよい。
硬化性オルガノポリシロキサンとしては、硬化後シリコーンゴムとなるものが好ましい。硬化後シリコーンゴムとなるものには、通常液状シリコーンゴム(「液状」の中にはペースト状のように粘度の高いものも含まれる)と称されているものが用いられている。液状シリコーンゴムは、硬化剤と組み合わせて用いる二液型のものが好ましい。中でも付加型の液状シリコーンゴムは、表面と内部が均一にかつ短時間に硬化し、またその際、副生成物が無く、あるいは少なく、かつ離型性に優れ収縮率も小さいので好ましく用いられる。
液状シリコーンゴムの中でも特に液状ジメチルシロキサンゴムが密着性、剥離性、強度及び硬度の制御性の点から好ましい。また、液状ジメチルシロキサンゴムの硬化物は、一般に屈折率が1.43程度と低いため、これを用いて形成された鋳型は、クラッド用基材から剥離させずに、そのままクラッド基材として利用することができる。この場合には、鋳型と、充填したコア形成用樹脂及びクラッド用基材とが剥がれないような工夫が必要になる。
液状シリコーンゴムの粘度は、コアに対応する凸部12を正確に転写し、かつ気泡の混入を少なくして脱泡し易くする観点と、数ミリの厚さの鋳型を形成する点から、500〜7000mPa・s程度のものが好ましく、さらには、2000〜5000mPa・s程度のものがより好ましい。
さらに、鋳型20の表面エネルギーは、10dyn/cm〜30dyn/cm、特に、15dyn/cm〜24dyn/cmの範囲にあることが、基材フィルムとの密着性とコア形成用硬化性樹脂の浸透速度の点からみて好ましい。
鋳型20のシェア(Share)ゴム硬度は、15〜80であればよく、特に20〜60であることが、型取り性能、凹部形状の維持、剥離性の点からみて好ましい。
鋳型20の表面粗さ(二乗平均粗さ(RMS))は、0.5μm以下、好ましくは0.1μm以下、より好ましくは0.05μm以下にすることで、形成されたコアの光導波特性において光損失を大幅に低減できる。表面粗さは、使用する光の波長の2分の1以下が好ましく、10分の1以下になるとその光のコア表面粗さによる導波損失は殆ど無視できるレベルになる。
また、鋳型20は、紫外領域及び/又は可視領域において光透過性であることが好ましい。鋳型20が可視領域において光透過性であることによって、後述する2)の工程において鋳型20をクラッド用基材30(図1(D)参照)に密着させる際、位置決めが容易に行える。また、後述する3)の工程においてコア形成用硬化性樹脂が鋳型20の凹部22に充填される様子が観察でき、充填完了等が容易に確認することができる。
さらに、鋳型20が紫外領域において光透過性であることが好ましいのは、コア形成用硬化性樹脂として紫外線硬化性樹脂を用いる場合に、鋳型20を透して紫外線硬化を行うためである。従って、鋳型20の、紫外領域(300nm〜400nm)における透過率が80%以上であることが好ましい。
硬化性オルガノポリシロキサン、中でも硬化後シリコーンゴムとなる液状シリコーンゴムは、クラッド用基材30との密着性と剥離性という相反した特性に優れ、ナノ構造を転写する能力を持ち、シリコーンゴムとクラッド用基材30とを密着させたとき、液体の進入さえ防ぐことができる。このようなシリコーンゴムを用いた鋳型20は高精度に原盤10の形状を転写し、クラッド用基材30にしっかりと密着する。このため、鋳型20とクラッド用基材30の間の凹部22のみに、コア形成用樹脂を効率良く充填することが可能となる。また、クラッド用基材30と鋳型20の剥離も容易である。従って、この鋳型20からは高精度に形状を維持した光導波路を、極めて簡便に作製することができる。
さらに、硬化樹脂層、とりわけ硬化樹脂層がゴム弾性を有する場合、硬化樹脂層の一部すなわち原盤10の凸部12を転写する部分以外の部分を他の剛性材料に置き換えることができ、この場合、鋳型20のハンドリング性が向上する。
2)鋳型20にクラッド用基材30を密着させる工程
鋳型20にクラッド用基材30を密着させる。クラッド用基材30としては、ガラス基材、セラミック基材、プラスチック基材等のものが制限なく用いられる。クラッド用基材30にプラスチック基材等の高分子化合物を用いることで、クラッド部を成形するにあたって、任意の形状を得ることが容易となる。
また、屈折率制御のためにこれらの基材に樹脂コートしたものも用いられる。クラッド用基材30の屈折率は、1.55より小さく、1.50より小さいものがより好ましい。特に、コア32(図1(F)参照)の屈折率より0.01以上小さい必要がある。また、クラッド用基材30としては、平坦で、鋳型20との密着性に優れ、両者を密着させた場合、鋳型20の凹部22以外に空隙が生じないものが好ましい。
プラスチック基材の中でも、フレキシブルなフィルム基材を用いた光導波路は、カプラー、ボード間の光配線や光分波器等としても使用できる。フィルム基材は、作製される光導波路の用途に応じて、その屈折率、光透過性等の光学的特性、機械的強度、耐熱性、鋳型との密着性、フレキシビリティー(可撓性)等を考慮して選択される。
フィルム基材の材料としては、アクリル系樹脂(ポリメチルメタクリレート等)、脂環式アクリル樹脂、スチレン系樹脂(ポリスチレン、アクリロニトリル・スチレン共重合体等)、オレフィン系樹脂(ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等)、脂環式オレフィン樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、ビニルアルコール系樹脂、ビニルブチラール系樹脂、アリレート系樹脂、含フッ素樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリカーボネート系樹脂、二又は三酢酸セルロース、アミド系樹脂(脂肪族、芳香族ポリアミド等)、イミド系樹脂、スルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリフェニレンスルフィド系樹脂、ポリオキシメチレン系樹脂、または樹脂の混合物等が挙げられる。
フィルム基材が、鋳型20やコア32との密着性があまり良好でない場合には、オゾン雰囲気による処理、波長300nm以下の紫外線照射処理を行い、鋳型20及びコア32との密着を改善することが望ましい。
また、脂環式オレフィン樹脂としては、主鎖にノルボルネン構造を有するもの、及び主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基(アルキル基としては炭素数1から6のものやシクロアルキル基)等の極性基をもつものが挙げられる。中でも主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基等の極性基をもつ脂環式オレフィン樹脂は、低屈折率(屈折率が1.50近辺であり、コア32、クラッド用基材30の屈折率の差を確保できる)及び高い光透過性等の優れた光学的特性を有し、鋳型20との密着性に優れ、さらに耐熱性に優れている。
フィルム基材の屈折率は、コア32との屈折率差を確保するため、1.55より小さいことが好ましく、1.53より小さいことがより好ましい。
また、フィルム基材の厚さはフレキシビリティーと剛性や取り扱いの容易さ等を考慮して適切に選ばれ、一般的には0.1mm〜0.5mm程度が好ましい。
3)クラッド用基材30を密着させた鋳型20の凹部22にコア形成用硬化性樹脂を充填する工程
図1(D)に示すように、凹部22の一端に形成された進入口26にコア形成用硬化性樹脂を注入し、凹部22の他端に形成された排出口28から減圧吸引して、凹部22にコア形成用硬化性樹脂を充填する。
なお、凹部22にコア形成用硬化性樹脂を充填する方法は、上記方法に限定されない。例えば、進入口26にコア形成用硬化性樹脂を少量垂らし毛細管現象を利用して充填したり、進入口26から凹部22にコア形成用硬化性樹脂を加圧充填したり、排出口28から凹部22内を減圧吸引したり、あるいは加圧充填と減圧吸引の両方を行うなどにより、凹部22にコア形成用硬化性樹脂を充填する方法がある。加圧充填と減圧吸引を併用する場合はこれらを同期して行うことが好ましい。これにより、鋳型20が安定して固定された状態で、加圧充填において圧力を段階的に増加させ、減圧吸引において圧力を段階的に減少させることで、コア形成用硬化性樹脂をより高速に注入する相反則を両立させることができる。また、毛細管現象を利用して、凹部22にコア形成用硬化性樹脂を充填する場合には、充填を促進するために凹部22内を0.1〜100kPa程度に減圧することが好ましい。さらに、充填を促進するために、凹部22内の減圧に加えて、鋳型20の進入口26から充填するコア形成用硬化性樹脂を加熱することで、より低粘度化することも有効な手段である。
コア形成用硬化性樹脂としては、紫外線硬化性、放射線硬化性、電子線硬化性、熱硬化性等の樹脂を用いることができ、中でも紫外線硬化性樹脂及び熱硬化性樹脂が好ましく用いられる。コア形成用の紫外線硬化性樹脂又は熱硬化性樹脂としては、紫外線硬化性又は熱硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物が好ましく用いられる。また、紫外線硬化性樹脂としてエポキシ系、ポリイミド系、アクリル系紫外線硬化性樹脂が好ましく用いられる。このように、コアをシリコン基板やガラス基板等で形成せずに高分子化合物で形成することで、材料費を低く抑えることができ、製造コスト削減に繋がる。また、コアを紫外線硬化性、放射線硬化性、電子線硬化性、熱硬化性等の樹脂などの高分子化合物で成形することで、任意の形状を得ることが容易となる。
コア形成用硬化性樹脂は、鋳型20とクラッド用基材30との間に形成された空隙(凹部22)に充填させるため、低粘度であることが必要である。硬化性樹脂の粘度は、10〜2000mPa・s好ましくは100〜1000mPa・s、更に好ましくは300〜700mPa・sにすることで、充填速度が速くなり、精度の良い形状のコアが得られ、光損失を少なくすることができる。
このほかに、原盤10に形成されたコアに対応する凸部12が有する元の形状を高精度に再現するため、硬化性樹脂の硬化前後の体積変化が小さいことが必要である。例えば、体積が減少すると導波損失の原因になる。従って、硬化性樹脂は、体積変化ができるだけ小さいものが望ましく、体積変化が10%以下のものが用いられる。好ましくは体積変化が0.01〜4%の範囲にあるものが用いられる。溶剤を用いて硬化性樹脂を低粘度化することは、硬化前後の体積変化が大きいのでできれば避ける方が好ましい。体積収縮が0.01%以下の材料や体積膨張する材料では、鋳型20からの剥離効率が下がり、鋳型20からの剥離時に表面の破断等の表面劣化が生じるため、形成されるコア32の表面の平滑性が低下して光導波損失が上昇するので好ましくない。
コア形成用硬化性樹脂の硬化後の体積変化(収縮)を小さくするため、樹脂にポリマーを添加することができる。ポリマーはコア形成用硬化性樹脂との相溶性を有し、かつ樹脂の屈折率、弾性率、透過特性に悪影響を及ぼさないものが好ましい。またポリマーを添加することにより体積変化を小さくする他、粘度や硬化樹脂のガラス転移点を高度に制御できる。ポリマーとしては例えばアクリル系、メタクリル酸系、エポキシ系のものが用いられるが、これらに限定されるものではない。
コア形成用硬化性樹脂の硬化物の屈折率は1.2から1.6の範囲、より好ましくは1.4から1.6の範囲であり、硬化物の屈折率が範囲内に入る2種類以上の屈折率の異なる樹脂が用いられる。
コア形成用硬化性樹脂の硬化物の屈折率は、クラッド用基材30となるフィルム基材(以下の5)の工程におけるクラッド層を含む)より大きいことが必要である。コアとクラッド(クラッド用基材及びクラッド層)との屈折率の差は、0.01以上、好ましくは0.05以上である。
4)充填したコア形成用硬化性樹脂を硬化させる工程
前記3)の工程において、凹部22に充填したコア形成用硬化性樹脂を、硬化させる。紫外線硬化性樹脂を硬化させるには、紫外線ランプ、紫外線LED、UV照射装置等が用いられる。また、熱硬化性樹脂を硬化させるには、オーブン中での加熱等が用いられる。
5)鋳型20をクラッド用基材30から剥離する工程
前記4)の工程の後、鋳型20をクラッド用基材30から剥離する。図1(E)に示すように、剥離したクラッド用基材30の上には、コア32と進入口26及び排出口28内において硬化した樹脂部分が形成される。そして、図1(F)に示すように、進入口26及び排出口28内において硬化した樹脂部分を、研削等によって除去する。これにより、コア32(光導波路コア)とする。なお、コア32の端面は、鏡面平滑性を有している。
また、前記1)〜4)の工程で用いる鋳型20は、屈折率等の条件を満たせばそのままクラッド層に用いることも可能で、この場合は、鋳型を剥離する必要はなくそのままクラッド層として利用する。この場合、鋳型とコア材料の接着性を向上させるために鋳型をオゾン処理することが好ましい。
6)コア32が形成されたクラッド用基材30の上にクラッド層を形成する工程
図1(G)に示すように、コア32が形成されたクラッド用基材30の上にクラッド層34を形成する。クラッド層34としては、フィルム(たとえば前記2)の工程で用いたようなクラッド用基材が同様に用いられる)や、クラッド用硬化性樹脂を塗布して硬化させた層、高分子材料の溶剤溶液を塗布して乾燥して得られる高分子膜等が挙げられる。クラッド用硬化性樹脂としては紫外線硬化性樹脂や熱硬化性樹脂が好ましく用いられ、例えば、紫外線硬化性又は熱硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物が用いられる。
クラッド形成用硬化性樹脂の硬化後の体積変化(収縮)を小さくするために、樹脂と相溶性を有し、また樹脂の屈折率、弾性率、透過特性に悪影響を及ぼさないポリマー(例えばメタクリル酸系、エポキシ系)を、クラッド用硬化性樹脂(紫外線硬化性樹脂や熱硬化性樹脂)に添加することができる。
クラッド層34としてフィルムを用いる場合は、接着剤を用いて貼り合わされるが、その際、接着剤の屈折率がフィルムの屈折率と近いことが望ましい。用いる接着剤は紫外線硬化性樹脂又は熱硬化性樹脂が好ましく用いられ、例えば、紫外線硬化性又は熱硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物が用いられる。また、このフィルムにも、紫外線硬化性樹脂又は熱硬化性樹脂の硬化後の体積変化(収縮)を小さくするために、クラッド層34に添加するポリマーと同様のポリマーを添加することができる。
クラッド用基材30とクラッド層34との屈折率の差は小さい方が好ましく、その差は光の閉じ込めの点から、0.1以内、好ましくは0.05以内、更に好ましくは0.001以内、最も好ましくは差をなくするのがよい。
7)クラッド層34を硬化させる工程
前記6)の工程のクラッド層34である、クラッド用硬化性樹脂を塗布して硬化させた層と高分子材料の溶剤溶液を塗布して乾燥して得られる高分子膜を、クラッド用基材フィルムを貼り合わせる接着剤等(紫外線硬化性樹脂又は熱硬化性樹脂)を用いて貼り合わせ、硬化させる。紫外線硬化性樹脂を硬化させるには、紫外線ランプ、紫外線LED、UV照射装置等が用いられる。また、熱硬化性樹脂を硬化させるには、オーブン中での加熱等が行われる。
以上の工程によって、光導波路38が形成される。
8)光導波路38に直線状凹部36を形成する工程
図1(H)に示すように、上記工程によって形成された光導波路38のクラッド用基材30に、直線状凹部36を研磨等の機械加工によって形成する。
なお、直線状凹部36の形成方法は、機械加工に限定されない。例えば、クラッド用基材30の成形時に凹形状を形成しておいてもよい。この場合、クラッド用基材30に直線状凹部36を形成する方法として、前記1)工程等と同様に、凸形状を設けた鋳型を形成し、その上面にクラッド用基材の材料をスピンコート法により塗布し、その後硬化させ剥離して得る方法がある。また、圧延ロールに凸形状を設けて、クラッド用基材を圧延ロールで押圧して凸形状を形成する方法もある。
以上の直線状凹部36は、図2に示すように、光導波路66の延伸方向から0.1〜15°傾いた方向(図2における角度θ)に伸びるように設定されている。この直線状凹部は、光導波路用フェルール(後述)に設けられた直線状凸部に係合し、光導波路を光導波路用フェルールの開口部へ挿入するに従い、凹凸の係合が傾斜を持つため、光導波路が光導波路用フェルールの開口部側壁に当接して、光導波路側面と光導波路用フェルールの開口部側壁の間隙がなくなり、光導波路の光導波路用フェルールに対する挿入量が規制されるので、光導波路コアが光導波路用フェルールに対して位置決めされる。
直線状凹部の光導波路の延伸方向からの傾きが0.1°未満では、光導波路が光導波路用フェルールの開口部側壁に当接した際に、光導波路又は光導波路用フェルールの弾性等により光導波路の光導波路用フェルールに対する挿入量規制にズレが生じやすく位置決めがなされない。15°以上では、光導波路用フェルールの開口部が幅方向に長くなるように作製する必要が生じるため、光導波路用フェルールを薄肉とすると強度が低下し、強度を確保するには、フェルールを大きく作製する必要が生じる。直線状凹部の光導波路の延伸方向からの傾きは0.5〜10°が好ましく、1〜5°がより好ましい。
図1、図2における直線状凹部の断面形状は、矩形状であるが、本発明にその形状に限定されず、図3に示すように略V字状としてもよい。いずれの場合であっても、後述する光導波路用フェルールの直線状凸部の断面形状と凹凸の関係をなすように設定する。
<光導波路用フェルール及び光コネクタ>
本発明の光導波路用フェルールは、前記本発明の光導波路と凹凸の関係をなし、該光導波路が嵌合する開口部を有することを特徴としている。
また、本発明の光コネクタは、前記光導波路に、該光導波路と凹凸の関係をなし、該光導波路が嵌合する開口部を有する光導波路用フェルールが嵌合してなることを特徴としている。
図4に示すように、光導波路用フェルール70は、光導波路38が接続されるための開口部44が形成されている。開口部44には、光導波路38に形成された直線状凹部36が係合する精度の高い直線状凸部46が形成されている。そして、光導波路用フェルール70の開口部44に光導波路38を挿入して嵌合させた状態において、光導波路38の直線状凹部36と光導波路用フェルール70の直線状凸部46は、光導波路38の先端面と光導波路用フェルール70の先端面とが面一となるように設定されている。
光導波路用フェルール70に使用される材料は、エポキシ樹脂、ポリフェニレンサルファイド等が用いられる。また、石英等の無機ガラス粉末等をこれらの材料に添加すると、機械強度や形状精度が高められる。そして、これらの材料を使用し、射出成形、トランスファ成形、インジェクション成形などによって形成される。
図5は、図4とは異なり、光導波路38の直線状凹部36及び光導波路用フェルール70の直線状凸部46それぞれの断面形状を矩形状とした場合の部分断面斜視図である。図5に示すように、光導波路用フェルール70の開口部44には、光導波路38に形成された直線状凹部36と係合する直線状凸部46が形成されていて、光導波路38を光導波路用フェルール70の開口部44に挿入すると、図5(B)に示すように、光導波路38の直線状凹部36と光導波路用フェルール70の直線状凸部46とが当接した状態で、かつ光導波路38の先端面と光導波路用フェルール70の先端面とが面一となるように嵌合する。このように、光導波路38と光導波路用フェルール70とが嵌合し、本発明の光コネクタ50をなす。
光導波路用フェルール70の開口部へ光導波路38を挿入するに際し、光導波路用フェルール70の直線状凸部46と、光導波路38の直線状凹部36とが係合し、さらに光導波路38の側面が光導波路用フェルール70の開口部44の側面に当接し、挿入が規制される。そして、光導波路用フェルール70と光導波路38の間に接着剤を流し込み、光導波路38を光導波路用フェルール70に固定する。接着剤は、体積変化(収縮)により光導波路38と光導波路用フェルール70の相対位置を変化させようとする撓みや歪みといった力が加わらないようなものを使用することが好ましく、クラッド用基材30(図1(G)参照)の貼り合わせに用いられた接着剤が好適に用いられる。
また、光導波路用フェルール70の接続面にはピン孔42が形成されており、このピン孔42にピン45の一端を挿入し、接続する光ファイバコネクタ41のピン孔43にピン45の他端を挿入する。これにより、光導波路用フェルール70は光ファイバコネクタ41に位置決めされて接続され、光導波路用フェルール70のコア66の光軸が、光ファイバコネクタ41の光導波路38の光軸と一致する。
そして、光導波路用フェルール70と光ファイバコネクタ41を図示しないばねクランプを用いて固定する。
以下に実施例を示し本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
<原盤の作製>
シリコン基板52に厚膜レジスト(マイクロケミカル(株)製、SU−8)をスピンコート法で塗布した後、80℃でプリベークし、フォトマスクを通して露光し、現像した。これにより、図6(A)に示すように、断面が正方形の8本のコア用の凸部54(幅:50μm、高さ:50μm、長さ:150mm、近接幅250μm)が形成された。これを120℃でポストベークして、コア作製用の原盤56を作製した。
<鋳型の作製>
次に、原盤56に離形材を塗布した後、図6(B)に示すように、鋳型の材料として熱硬化性液状ジメチルシロキサンゴム(ダウコーニングアジア社製:SYLGARD184、粘度5000mPa・s)及びその硬化剤を混合したもの(鋳型材58)を流し込み、120℃で30分間加熱して硬化させる。そして、原盤56から鋳型材58を剥離して、図6(C)に示すように、コア用の凹部62が形成された鋳型60(型の厚さ3mm)を作製する。次に、コア用の凹部62の両端が露出するように、紫外線硬化性樹脂を充填するための進入口(図1(C)参照)及び、この樹脂(紫外線硬化性樹脂)を排出させるための排出口を形成した。
鋳型60は、表面エネルギーが22dyn/cm、シェアゴム硬度が60、表面粗さが10nm以下、紫外線透過率が80%以上で、透明で下のものが良く観察できた。
<クラッド用基材及び光導波路コアの作製>
図6(D)に示すように、鋳型60より一回り大きい厚膜188μmのクラッド用基材64(JSR(株)社製、アートンフィルム、屈折率1.510)を、鋳型60に密着させた。
次に、鋳型60の一端にある進入口に、粘度1300mPa・sの紫外線硬化樹脂(JSR(株)社製、PJ3001)を数滴垂らし、毛細管現象により、図6(E)に示すように、凹部62に紫外線硬化製樹脂を充填した。そして、50mW/cm2のUV光を鋳型60を通して5分間照射し、紫外線硬化性樹脂を硬化させ、鋳型60をクラッド用基材64から剥離した。
これにより、図6(F)に示すように、クラッド用基材64上に原盤56の凸部54と同じ形状のコア66が形成された。なお、本実施例において、コア66の屈折率は1.591であった。
<クラッド層の作成>
次に、図6(G)に示すように、クラッド用基材64のコア66が形成された面に、クラッド層68を貼り合わせた。クラッド層68は、硬化後の屈折率がクラッド用基材64と同じ1.510となる紫外線硬化性接着剤(JSR(株)社製)が用いられる。そして、50mW/cm2のUV光を、鋳型60を通して5分間照射して、クラッド用基材64にクラッド層68を接着した。このようにして、光導波路38が形成された。
<直線状凹部の形成>
次に、ダイシングソー((株)ディスコ社製、DAD321、ブレード幅0.10mm)を用いて、図6(H)に示すように、最外郭のコア66からそれぞれ100μmの位置で、光導波路38をコア66の延伸方向と平行に研削し、コア66の延伸方向と直交する方向(幅方向)の寸法を2mmにする。また、コア66の延伸方向の寸法は100mmとなるように研削した。
そして、図2に示すように、光導波路38の一つの面に、光コネクタとして組立てた場合で光ファイバと光接続する面の幅方向の中心、すなわち、端部から1mmの位置より、幅0.1mm、深さ0.1mmの矩形状の直線状凹部36を、コア66の延伸方向に対し、1°の傾きで形成した。この直線状凹部36は、後述する光導波路用フェルール70に形成された直線状凸部46に係合して、光導波路用フェルール70と光導波路38の位置決めをするものである。
<光導波路用フェルールの作製>
光導波路用フェルール70は、石英ガラス粉末を添加したエポキシ樹脂をトランスファ成形法で形成した。光導波路用フェルール70には開口部44が形成されており、一方向から見て略矩形状になっている。図4に示すように、開口部44には光導波路38が嵌合されるようになっており、光ファイバコネクタと光接続される側の開口部44の底面44Aに光導波路38のコア66の延伸方向に対し、1°の傾きで、幅0.1mm、高さ0.1mmの直線状凸部46が形成されている。また、光導波路38の直線状凹部36と光導波路用フェルール70の直線状凸部46を係合して挿入するに従い、光導波路38が傾斜に沿って押付けられる開口部44の側面と、光ファイバコネクタと光接続される側の直線状凸部46の幅中心が1mmとなるように、直線状凸部46が形成されている。そのようにして光導波路38と光導波路コネクタ70を係合させ、開口部77の側面と光導波路38の側面との間に紫外線硬化性接着剤(JSR(株)社製)を垂らし、50mW/cm2のUV光を5分間照射して紫外線硬化性接着剤を硬化させ、光導波路38を光導波路コネクタ70に固定した。
また、光導波路用フェルール70の接続面にはピン孔42が形成されており、このピン孔42にピン45の一端を挿入し、接続する光ファイバコネクタ41のピン孔43にピン45の他端を挿入する。これにより、光導波路コネクタ70は光ファイバコネクタ41に位置決めされて接続され、光導波路用フェルール70のコア66の光軸が、光ファイバコネクタ41の光導波路38の光軸と一致する。
そして、光導波路コネクタ70と光ファイバコネクタ41を図示しないばねクランプを用いて固定した。
この製造方法によって作製された光導波路38及び光導波路フェルール70において、直線状凹部36及び直線状凸部46を、コア66の延伸方向と傾きをもって形成することで、光導波路用フェルール70に光導波路38を組立てる際、光導波路38の直線状凹部36を光導波路用フェルールの直線状凸部46に係合させ、開口部44に挿入すれば、光導波路38は、光導波路用フェルール70の直線状凸部46から反作用を受けて、開口部44の側面に光導波路38を押付け、コア66の延伸方向、及びコア66の延伸方向と直交する方向に位置決めがされる。これにより、光導波路38を光導波路用フェルール70に接続するだけで、光導波路38のコア66の光軸と、光導波路用フェルール70に接続する光ファイバコネクタ41の光導波路67の光軸が一致するので、調芯作業が不要となる。このため、接続作業が複雑にならず、コストを低く抑えることができる。
また、光導波路用フェルール70と光ファイバコネクタ41を接続するとき、コア66の端面を光ファイバコネクタ41の光導波路67の端面に突き当てて位置合わせする必要がないので、コア66の端面に傷がついて光接続損失が増大する心配がない。
さらに、直線状凹部36を光導波路38の下面のコア66の投影領域にかかる位置に形成することで、光導波路38には凹部72を形成するスペースを別途必要としないので、光導波路38の幅方向の寸法が大きくなることがない。従って、コア66の数が増えても、幅方向の寸法はコア66を並列させただけの大きさで抑えることができるので、シリコン基板やガラス基板等の十分な機械強度を持たない材料で光導波路38を形成しても、撓みが発生しにくくなる。これにより、光軸ズレ等の光接続損失の増大を抑えることができる。
[実施例2]
まず、実施例1と同様に、光導波路38を作製した。
<直線状凹部の形成>
実施例1と同様に、ダイシングソー((株)ディスコ社製、DAD321、ブレード幅0.10mm)を用いて、最外郭のコア66からそれぞれ100μmの位置で、光導波路38をコア66の延伸方向と平行に研削し、コア66の延伸方向と直交する方向(幅方向)の寸法を2mmにする。また、コア66の延伸方法の寸法が100mmとなるように研削した。
そして、図7に示すように、光導波路38の1つの面に、光コネクタとして組立てた場合で光ファイバと光接続する面の幅方向の中心、すなわち、端部から1mmの位置より、先端形状がV字状(先端角度90°)のブレードを用いて、幅0.1mm、深さ0.1mm先端角90°の断面形状が略V字状の直線状凹部36を、コア66の延伸方向に対し、1°の傾きで形成した。このV字状の直線状凹部36は、後述する光導波路用フェルール70と光導波路38の位置決めをするものである。なお、図7において、図4と同じ構成要素には同じ符号を付して説明を省略する。
<光導波路用フェルールの作製>
図7に示すように、光導波路用フェルール70には、材料にポリフェニレンサルファイドを用いて射出成形法により、一方向から見て略矩形状となるように開口部44を形成した。図7に示すように、開口部44は光導波路38が嵌合されるように設定されており、光ファイバコネクタと光接続される側の開口部44の底面44Aに光導波路38のコア66の延伸方向に対し、1°の傾きで、幅0.1mm、高さ0.1mm、先端角90°のV字状の直線状凸部46が形成されている。開口部44の大きさは、上下方向の寸法は光導波路78の厚さよりも数μm大きい寸法とし、幅方向の寸法は、2.18mmで形成した。また、光導波路38のV字状の直線状凹部36と光導波路用フェルール70の直線状凸部46とを係合して挿入するに従い、光導波路38が傾斜に沿って押付けられる開口部44の幅方向側面と、光ファイバコネクタと光接続される側の直線状凸部46の幅中心が1mmとなるように、V字状の直線状凸部46が形成されている。そのようにして、光導波路38と光導波路用フェルール70とを係合させ、開口部44の側面と光導波路38の側面との間に紫外線硬化性接着剤(JSR(株)社製)を垂らし、50mW/cm2のUV光を5分間照射して紫外線硬化性接着剤を硬化させ、光導波路38を光導波路用フェルール70に固定した。
また、光導波路用フェルール70の接続面にはピン孔42が形成されており、このピン孔42にピン45の一端を挿入し、接続する光ファイバコネクタ41のピン孔43にピン45の他端を挿入した。これにより、光導波路用フェルール70は光ファイバコネクタ41に位置決めされて接続され、光導波路用フェルール70のコア66の光軸が、光ファイバコネクタ41の光導波路38の光軸と一致した。
そして、光導波路用フェルール70と光ファイバコネクタ41を図示しないばねクランプを用いて固定した。
この製造方法によって作製された光導波路38及び光導波路用フェルール70において、直線状凹部36及び直線状凸部70とを、コア66の延伸方向と傾きをもって形成することで、光導波路用フェルール70と光導波路38とで光コネクタを組立てる際、光導波路38の直線状凹部36を光導波路用フェルールの直線状凸部46に係合させ、開口部44に挿入すれば、光導波路38の直線状凹部36は、光導波路用フェルール70の直線状凸部46から反作用を受けて、開口部44の側面及び直線状凸部46が形成された対面に光導波路38を押付け、コア66の延伸方向、及びコア66の延伸方向と直交する方向に位置決めがされる。これにより、光導波路38を光導波路用フェルール70に接続するだけで、光導波路38のコア66の光軸と、光導波路用フェルール70に接続する光ファイバコネクタ41の光導波路38の光軸が一致するので、調芯作業が不要となる。このため、接続作業が複雑にならず、コストを低く抑えることができる。
また、位置決め用の係合凹凸の断面形状を略V字状とすることで、光導波路78を光導波路用フェルール70に対して幅方向のみでなく、直線状凸部が形成された面の対面にも押付けることができるので、さらに光軸位置精度を高めることができる。
なお、本実施形態では、断面形状がV字状の直線状凹部36及び直線状凸部46の先端角を90°としたが、この角度は90°に限らず、90°より大きくてもよく、また、90°よりも小さくてもよい。
本発明の一実施形態に係る光導波路の製造工程を示す斜視図である。 本発明の一実施形態に係る光導波路を示す斜視図である。 本発明の別の実施形態に係る光導波路を示す斜視図である。 本発明の一実施形態に係る光コネクタの製造工程を示す斜視図である。 本発明の一実施形態に係る光導波路を示す斜視図(A)、光コネクタを示す斜視図(B)である。 本発明の実施例に係る光導波路の製造工程を示す斜視図である。 本発明の実施例に係る光コネクタの製造工程を示す図4に対応する斜視図である。 従来の光導波路及び光導波路用フェルールを示す斜視図である。
符号の説明
30 クラッド用基材(クラッド部)
36 直線状凹部
38 光導波路
41 光ファイバコネクタ
44 開口部
46 直線状凸部
50 光コネクタ
66 コア(光導波路コア)
67 光導波路(コネクタ光導波路コア)
70 光導波路用フェルール

Claims (7)

  1. 光信号を伝達する光導波路コアと、該光導波路コアを取り囲む板状のクラッド部と、を有する光導波路であって、
    前記クラッド部の少なくともいずれか一方の表面に、前記光導波路コアの延伸方向から0.1〜15°傾いた方向に伸びる直線状凹部を有することを特徴とする光導波路。
  2. 前記直線状凹部の断面形状が矩形状であることを特徴とする請求項1に記載の光導波路。
  3. 前記直線状凹部の断面形状が略V字状であることを特徴とする請求項1に記載の光導波路。
  4. 前記光導波路コアと前記クラッド部との少なくとも一方が、高分子化合物で形成されたことを特徴とする請求項1から3のいずれか1項に記載の光導波路。
  5. 請求項1から4のいずれか1項に記載の光導波路を嵌め込む開口部を有し、前記光導波路が前記開口部に挿入された際に、前記光導波路の直線状凹部に嵌合する直線状凸部を有することを特徴とする光導波路用フェルール。
  6. 請求項1から4のいずれか1項に記載の光導波路の直線状凹部と請求項5に記載の光導波路用フェルールの直線状凸部が係合して、前記光導波路が前記光導波路用フェルールの開口部に嵌合してなることを特徴とする光コネクタ。
  7. 前記光導波路を前記光導波路用フェルールに嵌合させたとき、前記光導波路の先端面と前記光導波路用フェルールの先端面とが面一となることを特徴とする請求項に記載の光コネクタ。
JP2004233721A 2004-08-10 2004-08-10 光導波路、光導波路用フェルール、及び光コネクタ Expired - Fee Related JP4380463B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233721A JP4380463B2 (ja) 2004-08-10 2004-08-10 光導波路、光導波路用フェルール、及び光コネクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233721A JP4380463B2 (ja) 2004-08-10 2004-08-10 光導波路、光導波路用フェルール、及び光コネクタ

Publications (2)

Publication Number Publication Date
JP2006053260A JP2006053260A (ja) 2006-02-23
JP4380463B2 true JP4380463B2 (ja) 2009-12-09

Family

ID=36030793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233721A Expired - Fee Related JP4380463B2 (ja) 2004-08-10 2004-08-10 光導波路、光導波路用フェルール、及び光コネクタ

Country Status (1)

Country Link
JP (1) JP4380463B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699262B2 (ja) * 2006-03-31 2011-06-08 京セラ株式会社 光導波路コネクタ及びそれを用いた光接続構造、並びに光導波路コネクタの製造方法
WO2012057798A1 (en) 2010-10-29 2012-05-03 Hewlett-Packard Development Company, L.P. Optical connector

Also Published As

Publication number Publication date
JP2006053260A (ja) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4678155B2 (ja) 光導波路、光導波路用フェルール、及び光コネクタ
JP2006017885A (ja) 導波路フィルム型光モジュール、光導波路フィルム及びその製造方法
JP4144468B2 (ja) 積層型高分子光導波路およびその製造方法
JP2006126568A (ja) 高分子光導波路デバイスの製造方法
JP2007027398A (ja) 光学部品実装用サブマウント、及び光送受信モジュール
JP2006023385A (ja) 積層型光導波路フィルム及びその製造方法、並びに導波路型光モジュール
JP2005202229A (ja) 光モジュール
JP2005181662A (ja) 高分子光導波路の製造方法
JP2007279515A (ja) レンズ内蔵光導波路及びその製造方法
JP4265293B2 (ja) 鋳型及びコネクタ一体型高分子光導波路の製造方法
JP2005202228A (ja) 光導波路、光導波路コネクタ及び光接続構造
JP4581328B2 (ja) 高分子光導波路及び光学素子の製造方法
JP2009075288A (ja) 高分子光回路の製造方法
JP2005321560A (ja) 受発光素子付き高分子光導波路モジュール
JP4380463B2 (ja) 光導波路、光導波路用フェルール、及び光コネクタ
JP4747526B2 (ja) 光コネクタ
JP4214862B2 (ja) ピッチ変換導波路アレイ
JP2007233303A (ja) 高分子光導波路モジュールの製造方法
JP4544083B2 (ja) フレキシブル光導波路
JP2007086330A (ja) 高分子光導波路デバイスの製造方法
JP4225207B2 (ja) 高分子光導波路の製造方法
JP4140475B2 (ja) 高分子光導波路作製用原盤及び高分子光導波路の製造方法
JP2007033831A (ja) フレキシブル光導波路
JP2005043652A (ja) 高分子光導波路の製造方法及びその製造装置
JP4517704B2 (ja) 高分子光導波路の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370