JP4376689B2 - 直交変調システム - Google Patents

直交変調システム Download PDF

Info

Publication number
JP4376689B2
JP4376689B2 JP2004125849A JP2004125849A JP4376689B2 JP 4376689 B2 JP4376689 B2 JP 4376689B2 JP 2004125849 A JP2004125849 A JP 2004125849A JP 2004125849 A JP2004125849 A JP 2004125849A JP 4376689 B2 JP4376689 B2 JP 4376689B2
Authority
JP
Japan
Prior art keywords
quadrature
signal component
signal
phase
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004125849A
Other languages
English (en)
Other versions
JP2005311710A (ja
Inventor
広吉 石川
和男 長谷
伸和 札場
一 濱田
徳郎 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004125849A priority Critical patent/JP4376689B2/ja
Priority to EP04255686.0A priority patent/EP1589713A3/en
Priority to EP12171361A priority patent/EP2501091A3/en
Priority to US10/945,316 priority patent/US7388926B2/en
Priority to CNB2004100831336A priority patent/CN100571246C/zh
Priority to CN2009102052423A priority patent/CN101677307B/zh
Priority to CN2009102052419A priority patent/CN101674271B/zh
Publication of JP2005311710A publication Critical patent/JP2005311710A/ja
Application granted granted Critical
Publication of JP4376689B2 publication Critical patent/JP4376689B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C2200/00Indexing scheme relating to details of modulators or modulation methods covered by H03C
    • H03C2200/0037Functional aspects of modulators
    • H03C2200/0058Quadrature arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C2200/00Indexing scheme relating to details of modulators or modulation methods covered by H03C
    • H03C2200/0037Functional aspects of modulators
    • H03C2200/0079Measures to linearise modulation or reduce distortion of modulation characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0016Stabilisation of local oscillators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0018Arrangements at the transmitter end

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Amplitude Modulation (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Description

本発明は、ディジタル無線通信の技術分野に属し、特に直交変調システム及び直交変調システムを備えた送信機に関する。
IMT2000のような無線通信システムでは、広帯域の無線信号が送信され、特に次世代移動通信システムでは更なる広帯域化が検討されている。このような信号を送信するには、複素ベースバンド信号を一旦中間周波数(IF)帯の信号に変換し、その後に無線周波数(RF)帯の信号に変換するのが一般的である。しかしながら、そのような周波数変換に起因して生じる高周波成分を充分に抑制するには、急峻であって信号帯域全般にわたって平坦な特性を有するバンドパスフィルタその他の素子を必要とする。今後の信号帯域の広帯域化が進むにつれて、更に高性能な素子を用意する必要性が生じるが、これは装置規模や製品コスト等の観点からは好ましくない。このため、ベースバンド信号を直接RF帯域の信号に変換する直接RF変調方式が注目されている。そのような従来の変調方式については、例えば、特許文献1乃至10に記載されている。
特開平6−350658号公報 特開平7−123123号公報 特開平7−177188号公報 特開平8−116343号公報 特開2000−270037号公報 特開2001−339452号公報 特開2002−27007号公報 特開平5−207080号公報 特開2002−77285号公報 特開平8−97873号公報
しかしながら、直接RF変調方式を採用すると、アナログ素子の個体差や経年変化等に起因して、直交変調器に入力される同相信号成分及び直交信号成分に誤差が生じ、変調後のアナログ送信信号に、イメージ成分(不要波)として出力してしまう虞がある(図1参照)。このようなリークにより、送信される信号の品質が劣化してしまうことが懸念される。
本願の課題は、直交変調方式で変調されるアナログ送信信号に混入するイメージ成分(不要波成分)を従来よりも減少させることの可能な直交変調システム及びそのような直交変調システムを備えた送信機を提供することである。
本発明の一態様による直交変調システムは、
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力し、
前記同相信号成分、及び前記送信信号から得られるフィードバック信号の同相信号成分から算出される演算結果の第1の累計値を求め、前記直交信号成分、及び前記フィードバック信号の直交信号成分から算出される演算結果の第2の累計値を求め、前記第1及び第2の累計値に基づいて、同相信号成分及び直交信号成分の間の時間差を求める時間差算出手段と、
前記時間差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する遅延調整手段と
を備えることを特徴とする。
本発明によれば、直交変調方式で変調されるアナログ送信信号に混入するイメージ成分を従来よりも減少させることが可能になる。
以下、本発明を実施するための形態が、実施例1乃至実施例4にて説明される。概して、実施例1は、同相信号成分及び直交信号成分の時間的なタイミングを調整することで、アナログ送信信号に混入するイメージ成分を抑制しようとするものである。実施例2は、同相信号成分及び直交信号成分の振幅を調整することで、実施例3は実軸及び虚軸の直交関係のずれ(角度偏差)を調整することで、イメージ成分を抑制しようとするものである。実施例4は、同相信号成分及び直交信号成分に関する、タイミング、振幅及び角度偏差を一括して調整しようとするものである。
図2は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、送信内容を表すディジタル信号の同相信号成分Tx(Iチャネル)と、直交信号成分Tx(Qチャネル)を直交変調し、アナログ高周波信号である送信信号Sを出力する。直交変調システムは、「調整回路」である補正回路202と、ディジタルアナログ変換器204,206と、フィルタ208,210と、直交変調器212とを有する。直交変調システムは、そのフィードバック経路において、局部発振器214に接続された乗算部216と、アナログディジタル変換器218と、直交復調器220と、位相検出回路236とを有する。直交変調システムは、加算器224,226(図示の例では機能的には、減算器)と、積分器228,230と、時間差検出回路232と、遅延回路234とを有し、これらは「時間差検出手段」を形成する。補正回路202は、同相信号成分用の補正部237と、直交信号成分用の補正部238とを有する。
ディジタルアナログ変換器204,206は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。
フィルタ208,210は、アナログ信号の帯域制限を行なう。
直交変調器212は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。理想的な送信信号Sは、例えば、次のように表現することが可能である:
S=y(n)cos(ωt)−y(n)sin(ωt)。
ここで、y(n)は、直交変調器212に入力される同相信号成分であり、ディジタル形式の同相信号成分Tx(n)をアナログ信号に変換した量を示す。y(n)は、直交変調器212に入力される直交信号成分であり、ディジタル形式の直交信号成分Tx(n)をアナログ信号に変換した量を示す。nはサンプルを指定するパラメータを示す。ωはキャリア角周波数を示す。
乗算部216は、送信信号Sと局部発振器214からの信号とを乗算することで、高周波数から低周波数に周波数変換(ダウンコンバージョン)を行なう。
アナログディジタル変換器218は、アナログ信号をディジタル信号に変換する。
直交復調器220は、アナログディジタル変換器218の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
加算器224は、直交変調される前の同相信号成分Txと、フィードバック信号の同相信号成分Fbとの差分を求める。その差分は、積分器228で累計され、第1の累積値が算出される。
加算器226は、直交変調される前の直交信号成分Txと、フィードバック信号の直交信号成分Fbとの差分を求める。その差分は、積分器230で累計され、第2の累積値が算出される。
時間差検出回路232は、第1及び第2の累積値に基づいて、同相信号成分及び直交信号成分の時間的なズレを求める。時間的なズレはアナログ信号処理の過程で主に導入される。この時間的なズレは、更に、ディジタルアナログ変換器204,206と直交変調器212の間で主に導入される。直交変調器212から直交復調器220の間のアナログ信号処理に起因して、フィードバック信号に遅延時間が導入されることも考えられるが、そのような遅延時間は、同相信号成分及び直交信号成分に等しく導入され、遅延時間の差には寄与しないからである。
遅延回路234は、加算器224,226にて加算(減算)される信号のタイミングを調整することに加えて、ディジタル送信信号Tx,Txの間に適宜時間差を設定することが可能である。時間差の設定は、例えば、有限インパルス応答(FIR)フィルタのタップ係数を調整することによって行なうことが可能であるが、本発明はそのような態様に限定されない。
補正回路202内の補正部237,238は、時間差検出回路で算出された時間的なズレが補償されるように、各信号成分の遅延量を設定する。
位相検出回路236は、加算器224,226に入力されるディジタル送信信号Tx,Tx及びフィードバック信号Fb,Fbを比較することで、ディジタル送信信号及びフィードバック信号の間の位相回転角φを求める。位相回転角φに関する情報は、直交復調器220に与えられ、直交変調前後の信号間の位相回転が補償される。
以下、図2,図3を参照しながら本発明の実施例における動作を説明する。
図3は、遅延量を調整するためのフローチャートを示す。フローは、ステップ302から始まり、ステップ304に進む。ステップ304では、遅延回路234にて、同相信号成分及び直交信号成分Tx,Txの間の時間差tが初期値(例えば、t=0)に設定される。また、位相検出回路236にて位相回転角φも求められ、位相回転角φは、直交復調器220で補償される。
ステップ306では、遅延量tが更新される(例えば、t=t+Δt)。
ステップ308では、「第1の累計値」になる実部誤差平均ErrIch(t)と、「第2の累計値」になる虚部誤差平均ErrQch(t)とが、次式(1)に従って算出される:
Figure 0004376689
ここで、nは、ディジタル信号のサンプルを示すパラメータであり、Nは積分器228,230で反復的に累計する回数を示す。この演算は、実部誤差平均については加算器224及び積分器228により、虚部誤差平均については加算器226及び積分器230により行なわれる。
ステップ310では、総ての遅延量tについて、第1及び第2の累計値が求められたか否かが判別される。より具体的には、例えば、遅延量tが0からΔtずつ変化し、最大値Tmaxに到達したか否かが判別される。最大値Tmaxに達していなければ、フローはステップ306に戻り、遅延量tをΔtだけ増やし、同様な処理が行なわれる。遅延量tの更新は、遅延回路234で設定される遅延量を変更することによって行なわれる。
一方、遅延量tが最大値Tmaxに達したならば、フローはステップ312に進む。ステップ306,308,310を反復することで、遅延量t及び第1の累計値(同相信号成分に関する平均誤差値)並びに遅延量t及び第2の累計値(直交信号成分に関する平均誤差値)に関し、図4に示されるような関係が得られる。仮に同相信号成分と直交信号成分との間に何らの時間差もなかったならば、2つのグラフは一致する。ステップ312では、実部誤差平均が最小となる遅延量Δt及び虚部誤差平均が最小となる遅延量Δtが検出される。これらの遅延量の検出は、時間差検出回路232で行なわれる。
ステップ314では、ステップ312で検出された遅延量、即ち同相信号成分及び直交信号成分の時間差が補償されるように、適切な遅延が補正回路202にて設定される。設定される遅延量は、同相及び直交信号成分の遅延量の一方をゼロにして他方を時間的に前後させてもよいし、双方を時間的に前後させてもよい。相対的にタイミングが揃えばよいからである。一例としては、同相信号成分用の補正部237に、(Δt−Δt)/2の遅延量を設定し、直交信号成分用の補正部238に、(Δt−Δt)/2の遅延量を設定することが可能である。このように双方を補正することは、制御動作の安定化等の観点から望ましい。
そして、フローはステップ316に進み、終了する。
上記の例では、加算器224,226による演算結果(減算値)を累計することで、第1及び第2の累計値が求められていたが、本発明はそのような形態に限定されない。例えば、図5に示されるように、ディジタル信号Tx,Txとフィードバック信号Fb,Fbとの積を乗算部524,526でそれぞれ求め、その積(電力)を積分器228,230で累計することで、時間差を検出することも可能である。
図6は、そのような態様におけるフローチャートを示す。フローは、ステップ602から始まり、ステップ604に進む。ステップ604では、同相信号成分及び直交信号成分Tx,Txの間の時間差tが初期値(例えば、t=0)に設定される。また、位相検出回路236にて位相回転角φも求められ、位相回転角φは、直交復調器220で補償される。
ステップ606では、遅延量tが更新される(例えば、t=t+Δt)。
ステップ608では、「第1の累計値」になる実部乗算平均PowIch(t)と、「第2の累計値」になる虚部乗算平均PowQch(t)とが、次式(2)に従って算出される:
Figure 0004376689

ここで、nは、ディジタル信号のサンプルを示すパラメータであり、Nは積分器228,230で反復的に累計する回数を示す。この演算は、実部乗算平均については乗算部524及び積分器228により、虚部乗算平均については乗算部526及び積分器230により行なわれる。
ステップ610では、総ての遅延量tについて、第1及び第2の累計値が求められたか否かが判別され、最大値Tmaxに達していなければ、フローはステップ606に戻って同様な処理が行なわれる。
一方、遅延量tが最大値Tmaxに達したならば、フローはステップ612に進む。ステップ606,608,610を反復することで、遅延量t及び第1の累計値(同相信号成分に関する平均乗算値)並びに遅延量t及び第2の累計値(直交信号成分に関する平均乗算値)に関し、図7に示されるような関係が得られる。仮に同相信号成分と直交信号成分との間に何らの時間差もなかったならば、2つのグラフは一致する。ステップ612では、実部乗算平均が最大となる遅延量Δt及び虚部乗算平均が最大となる遅延量Δtが検出される。これらの遅延量の検出は、時間差検出回路232で行なわれる。
ステップ614では、ステップ612で検出された遅延量、即ち同相信号成分及び直交信号成分の時間差が補償されるように、適切な遅延が補正回路202にて設定される。以後、フローはステップ616に進み、終了する。
ところで、補正回路202にて同相信号成分及び直交信号成分のタイミングを時間的に前後させる補正部237,238は、例えば、有限インパルス応答フィルタ(FIRフィルタ)から構成することが可能である。FIRフィルタのタップ係数を適切に設定することによって、入力信号を所望の時間だけ遅延させて出力することができる。例えば、図8のFIRフィルタのインパルス応答特性における8つの点で示されるようなポイントの値をタップ係数に採用することで、1/8シンボルだけ入力信号を遅延させることが可能になる。また、図9に示されるような8つのポイントの値をタップ係数に採用することで、5/8シンボルだけ入力信号を遅延させることが可能になる。
また、補正回路202の変形例として、ディジタルアナログ変換器204,206のクロックタイミングを前後させて遅延量を調整することも可能である。図10はそのような態様における補正回路の変形例を示す図である。この補正回路は、クロック発生源1002と、遅延素子1004と、セレクタ1006,1008とを有する。クロック発生源1002は、ディジタルアナログ変換器204(DA1),206(DA2)を駆動するのに使用されるクロック信号を発生させる。遅延素子1004は、クロック発生源1002から得られるクロック信号に対して、様々な遅延時間τを有するクロック信号を出力する。図示の例では、クロック信号に対して、5種類の遅延時間τ〜τを有するクロック信号が出力される。セレクタ1006,1008は、時間差検出回路232からの遅延情報に応じて、適切な遅延時間τを有するクロック信号を選択し、ディジタルアナログ変換器204,206にそれらを与える。
以下、同相信号成分及び直交信号成分の振幅を調整することで、イメージ成分を抑制しようとする実施例が説明される。先ず、同相信号成分及び直交信号成分の振幅のバランスについて概説する。
図11は、同相信号成分及び直交信号成分の振幅及び/又は位相回転角の関係を示す図であり、信号点配置(コンステレーション)図上において、微小な単位角内に存在する信号点の平均値を、0〜360度の範囲で求めた際に描かれる軌跡である。同相信号成分及び直交信号成分が適切に出力されている場合は、図11(A)に示されるように、信号点配置図上で円形の軌跡が示される。これに対して、同相信号成分及び直交信号成分の振幅が適切に出力されていなかった場合は、図11(B)に示されるように、信号点配置図上で楕円形の軌跡が示される。このような場合には、楕円形の軌跡が円形の軌跡になるように、即ち実軸及び虚軸方向の振幅比が1になるように又は振幅差がゼロになるように、同相信号成分及び/又は直交信号成分の振幅が調整される。
ところで、同相信号成分及び直交信号成分の振幅がアンバランスになることに加えて、送信信号から得られるフィードバック信号が、ある角度(位相回転角)φだけ回転している場合がある(図11(C))。位相回転角を生じさせる原因としては、例えば、フィードバック経路におけるアナログ信号処理の影響等が挙げられる。有意の位相回転角φが存在する場合でも、同相信号成分及び直交信号成分に関する相違が小さくなるように振幅を調整することで、振幅のバランスをとることが多くの場合に可能である。しかしながら、図11(D)に示されるように、位相回転角φが45度(π/4ラジアン)程度になると、実軸(I)及び虚軸(Q)における振幅は、信号点の軌跡が円であっても楕円であっても等しくなってしまう。従って、このままでは、位相回転角φが45度程度の場合に、振幅のアンバランスを補償することは困難になってしまう。
本実施例では、図11(C)に示されるような実軸及び虚軸における平均振幅A0,B0が測定されることに加えて、図11(E)に示されるように、フィードバック信号を45度(より正確には、−45度)回転させた場合に測定される平均振幅A45,B45が求められる。即ち、図11(F)に示されるように、同相信号成分及び直交信号成分のペアが2組求められ、1つはフィードバック信号を回転せずに測定した平均振幅値A0,B0であり、もう1つはフィードバック信号を45度回転させた場合に測定される平均振幅値A45,B45である。本実施例では、振幅のアンバランスを評価するこれら2つの基準に基づいて、振幅のバランスを確保しようとするものである。
図12は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、補正回路1202と、ディジタルアナログ変換器1204,1206と、局部発振器1211に接続された直交変調器1212とを有する。直交変調システムは、そのフィードバック経路において、局部発振器1214に接続された乗算部1216と、アナログディジタル変換器1218と、直交復調器1220とを有する。直交変調システムは、振幅バランス調査部1222と、平均化部(Ave)1224と、複素乗算部1225と、振幅バランス補正値演算部1226と、スイッチ1228,1230とを有し、これらの要素は、振幅差算出部1240を形成する。補正回路1202は、乗算部1232,1234を有する。振幅バランス調査部1222も同様に乗算部1236,1238を有する。
ディジタルアナログ変換器1204,1206は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器1212は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。乗算部1216は、送信信号Sと局部発振器1214からの信号とを乗算することで、ダウンコンバージョンを行なう。アナログディジタル変換器1218は、アナログ信号をディジタル信号に変換する。直交復調器1220は、アナログディジタル変換器1218の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
振幅バランス調査部1222は、乗算部1236,1238により暫定的に振幅の調整されたフィードバック信号を出力する。
複素乗算部1225は、そこに入力された信号に45度の位相回転を与えて出力する。
平均化部1224は、そこに入力された信号の平均値を算出する。この例では、フィードバック信号を回転せずに測定した振幅の平均値A0,B0と、フィードバック信号を45度回転させた場合に測定される振幅の平均値A45,B45とが求められる。
振幅バランス補正値演算部1226は、平均化部1224からの平均値に基づいて、振幅バランス補正値Ci,Cqを求める。振幅バランス補正値Ci,Cqは、最終的には、ディジタル送信信号Tx,Txにそれぞれ乗算される係数を定める。
スイッチ1228,1230は、振幅バランス補正値演算部1226からの出力を、振幅バランス補正値Ci,Cqが収束するまでは、「1」で示される側の端子に接続し、それらが適切な値に収束すると、「0」で示される側の端子に接続する。
図13は、振幅バランスを調整するためのフローチャートを示す。フローはステップ1302から始まり、ステップ1304に進む。ステップ1304では、各種のパラメータが初期値に設定される。図示の例では、同相信号成分及び直交信号成分に関する振幅バランス補正値Ci,Cqは共に1に設定される。前回の誤差値PreErrには非常に大きな値が設定される。補正方向dは、+1に設定される。本実施例では、補正方向dは+1又は−1の値をとり、その値に応じて、Ciを増やしながらCqを減らす又はCiを減らしながらCqを増やすことができる。
ステップ1306では、意図的には位相回転せずに、フィードバック信号の同相信号成分の平均振幅A0及び直交信号成分の平均振幅B0が測定され、両者の間の差分の絶対値
Err0=Abs(A0−B0)
が求められる。また、フィードバック信号を45度だけ位相回転した場合の同相信号成分の平均振幅A45及び直交信号成分の平均振幅B45が測定され、両者の間の差分の絶対値
Err45=Abs(A45−B45)
が求められる。
ステップ1308では、差分の絶対値Err0,Err45の大小関係が判別され、何れか大きいものが、以後の演算の評価対象である誤差Errとなる(ステップ1310,1312)。
ステップ1314では、その誤差Errが所定の閾値Err_thより大きいか否かが判別され、大きい場合(YESの場合)は、ステップ1316に進む。
ステップ1316では、今回の誤差Errが前回の誤差PreErrより大きいか否かが判別され、大きい場合(YESの場合)は、ステップ1318に進んで補正方向dの値が変更され、そうでなければステップ1320に進む。
ステップ1320では、振幅バランス補正値Ci,Cqが更新される。本実施例では、振幅バランス補正値Ci,Cqは、相対的にμ×Errだけ変化するように更新される。パラメータμは、補正値の更新時のステップサイズを定める。但し、一方を固定して他方を変化させるのではなく、両者を逆方向に同じ大きさだけ変化させることによって、更新が行なわれる。このような更新操作を行なうことで、制御動作の安定化を図ることが可能になる。
ステップ1322では、更新された振幅バランス補正値Ci,Cqを振幅バランス調査部1222に設定する。
ステップ1324では、前回の誤差Errを今回の誤差に更新する。以後ステップ1306に戻って同様の動作が行なわれる。
ステップ1314で、誤差が所定の閾値Err_thより小さかったならば、フローはステップ1326に進む。
ステップ1326では、振幅バランス補正値演算部1226の出力が補正回路1202に与えられるように、スイッチ1228,1230は「0」側の端子に接続される。これにより、目下の最適な振幅バランス補正値Ci,Cqの値が、補正回路1202の乗算部1232,1234に与えられる。そして、フローはステップ1328に進み、終了する。このようにして、振幅バランスが調整される。
図14は、別の実施例を説明するための概念図である。図14は、同相信号成分及び直交信号成分の直交性と象限毎の平均振幅ベクトルとの関係を示す。本実施例では、QPSKのような変調方式が想定されているが、他の変調方式を採用することも当然に可能である。本実施例では、4つの象限の各々について、平均振幅ベクトルr1,r2,r3,r4が算出される。同相信号成分及び直交信号成分が適切に出力されている場合は、図14(A)に示されるように、微小な単位角内に存在する信号点の平均値をとった振幅ベクトルが信号点配置(コンステレーション)図上で円形の軌跡を描く。この場合に、4つの平均振幅ベクトルr1,r2,r3,r4の大きさは総て等しく、且つr1とr2又はr1とr4は互いに直交しており、r3とr2又はr3とr4も互いに直交している。
これに対して、同相信号成分及び直交信号成分の振幅がアンバランスな場合には、次のような態様が考えられる。例えば、図14(B)に示されるように、平均振幅ベクトル同士の長さが異なり、且つ平均振幅ベクトル同士が直交していない場合がある。また、図14(C)に示されるように、平均振幅ベクトルは互いに直交しているが、それらの大きさが一致していない場合もある。更に、図14(D)に示されるように、平均振幅ベクトル各々は長さが等しいが、それらが直交していない場合もある。本実施例では、このような平均振幅ベクトルの関係を利用して、振幅のアンバランスを補償しようとするものである。
図15は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、補正回路1502と、ディジタルアナログ変換器1504,1506と、局部発振器1511に接続された直交変調器1512とを有する。直交変調システムは、そのフィードバック経路において、局部発振器1514に接続された乗算部1516と、アナログディジタル変換器1518と、直交復調器1520とを有する。直交変調システムは、振幅バランス調査部1522と、象限別平均部1524と、振幅バランス補正値演算部1526と、スイッチ1528,1530とを有し、これらの要素は、振幅差算出部1540を形成する。
ディジタルアナログ変換器1504,1506は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器1512は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。乗算部1516は、送信信号Sと局部発振器1514からの信号とを乗算することで、ダウンコンバージョンを行なう。アナログディジタル変換器1518は、アナログ信号をディジタル信号に変換する。直交復調器1520は、アナログディジタル変換器1518の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
振幅バランス調査部1522は、暫定的に振幅の調整されたフィードバック信号を出力する。
象限別平均部1524は、信号点配置図の4つの象限の各々について、振幅ベクトルの平均化を行なう。更に、象限別平均部1524は、平均振幅ベクトルr1,r2,r3,r4の内の所定の組合せに基づいて合成された第1及び第2ベクトルR1,R2を出力する。ここで、R1,R2はそれぞれ次式のように表現される。
R1=(r1−r3)/2
R2=(r2−r4)/2
R1は楕円の一方の主軸方向の平均ベクトルに相当し、R2は楕円の他方の主軸方向の平均ベクトルに相当する。振幅のバランスが良好であるならば、|R1|=|R2|であり、且つR1とR2が直交する。
振幅バランス補正値演算部1526は、象限別平均部1524からの平均値に基づいて、振幅バランス補正値Ci,Cqを求める。振幅バランス補正値Ci,Cqは、最終的には、ディジタル送信信号Tx,Txにそれぞれ乗算される係数を定める。
スイッチ1528,1530は、振幅バランス補正値演算部1526からの出力を、振幅バランス補正値Ci,Cqが収束するまでは、「1」で示される側の端子に接続し、それらが適切な値に収束すると、「0」で示される側の端子に接続する。
図16は、振幅バランスを調整するためのフローチャートを示す。フローはステップ1602から始まり、ステップ1604に進む。ステップ1604では、各種のパラメータが初期値に設定される。図示の例では、同相信号成分及び直交信号成分に関する振幅バランス補正値Ci,Cqは共に1に設定される。前回の振幅誤差値PreErrAmp及び前回の角度誤差値PreErrPhには非常に大きな値が設定される。補正方向dは、+1に設定される。本実施例では、補正方向dは+1又は−1の値をとり、その値に応じて、Ciを増やしながらCqを減らし又はCiを減らしながらCqを増やすことができる。
ステップ1606では、象限別平均部1524により、平均振幅ベクトルr1,r2,r3,r4が算出される。更に、次式に従って、合成された第1及び第2ベクトルR1,R2が算出される。
R1=(r1−r3)/2
R2=(r2−r4)/2。
ステップ1608では、振幅バランス補正値演算部1526にて、振幅誤差の絶対値ErrAmp=Abs(R1−R2)が算出される。
ステップ1614では、その振幅誤差ErrAmpが所定の閾値ErrAmp_thより大きいか否かが判別され、大きい場合(YESの場合)は、ステップ1616に進む。
ステップ1616では、今回の振幅誤差ErrAmpが前回の誤差PreErrAmpより大きいか否かが判別され、大きい場合(YESの場合)は、ステップ1618に進んで補正方向dの値が変更され、そうでなければステップ1620に進む。
ステップ1620では、振幅バランス補正値Ci,Cqが更新される。本実施例では、振幅バランス補正値Ci,Cqは、相対的にμ×ErrAmpだけ変化するように更新される。
ステップ1622では、更新された振幅バランス補正値Ci,Cqを振幅バランス調査部1522に設定する。
ステップ1624では、前回の振幅誤差を今回の振幅誤差に更新する。以後ステップ1606に戻って同様の動作が行なわれる。
ステップ1614にて、振幅誤差ErrAmpが所定の閾値ErrAmp_thより大きくなかったならば、フローはステップ1632に進む。
ステップ1632では、振幅バランス補正値演算部1526にて、角度誤差の絶対値ErrPh=Abs(R1−R1)が算出される。このステップに至る場合としては、例えば、図14(D)に示されるような状態が挙げられる。このステップでは、楕円の一方の主軸に沿うベクトルの同相成分R1及び直交成分R1の差分の絶対値が求められる。
ステップ1634では、その角度誤差ErrPhが所定の閾値ErrPh_thより大きいか否かが判別され、大きい場合(YESの場合)は、ステップ1636に進む。
ステップ1636では、今回の角度誤差ErrPhが前回の誤差PreErrPhより大きいか否かが判別され、大きい場合(YESの場合)は、ステップ1318に進んで補正方向dの値が変更され、そうでなければステップ1640に進む。
ステップ1640では、振幅バランス補正値Ci,Cqが更新される。本実施例では、振幅バランス補正値Ci,Cqは、相対的にμ×ErrPhだけ変化するように更新される。
ステップ1642では、更新された振幅バランス補正値Ci,Cqが振幅バランス調査部1522に設定される。
ステップ1644では、前回の角度誤差が今回の角度誤差に更新される。以後ステップ1606に戻って同様の動作が行なわれる。
ステップ1634で、角度誤差ErrPhが所定の閾値ErrPh_thより小さかったならば、フローはステップ1646に進む。
ステップ1646では、振幅バランス補正値演算部1526の出力が補正回路1502に与えられるように、スイッチ1528,1530は「0」側の端子に接続される。そして、フローはステップ1648に進み、振幅バランスを調整するフローが終了する。
本実施例では、|R1|と|R2|を実質的に等しくした後(等長化の後)に、R1とR2の直交化を図るようにしているが、このことは本発明に必須ではなく、振幅ベクトルの等長化と直交化の順序を逆にしてもよい。
図17は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、補正回路1702と、ディジタルアナログ変換器1704,1706と、局部発振器1711に接続された直交変調器1712とを有する。直交変調システムは、そのフィードバック経路において、局部発振器1714に接続された乗算部1716と、アナログディジタル変換器1718と、直交復調器1720とを有する。直交変調システムは、振幅バランス調査部1722と、振幅バランス補正値演算部1726と、スイッチ1728,1730とを有し、これらの要素は、振幅差算出部1740を形成する。更に、直交変調システムは、位相検出回路1732を有する。
ディジタルアナログ変換器1704,1706は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器1712は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。乗算部1716は、送信信号Sと局部発振器1714からの信号とを乗算することで、ダウンコンバージョンを行なう。アナログディジタル変換器1718は、アナログ信号をディジタル信号に変換する。直交復調器1720は、アナログディジタル変換器1718の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
振幅バランス調査部1722は、暫定的に振幅の調整されたフィードバック信号Fb,Fbを出力する。
振幅バランス補正値演算部1726は、振幅バランス調査部1722からの出力に基づいて、振幅バランス補正値Ci,Cqを求める。
スイッチ1728,1730は、振幅バランス補正値演算部1726からの出力を、振幅バランス補正値Ci,Cqが収束するまでは、「1」で示される側の端子に接続し、それらが適切な値に収束すると、「0」で示される側の端子に接続する。
位相検出回路1732は、ディジタル送信信号Tx,Tx及びフィードバック信号Fb,Fbを比較することで、ディジタル送信信号及びフィードバック信号の間の位相回転角φを求める。位相回転角φに関する情報は、直交復調器1720に与えられ、両信号間の位相回転が補償される。
図18は、振幅バランスを調整するためのフローチャートを示す。フローはステップ1802から始まり、ステップ1804に進む。ステップ1804では、各種のパラメータが初期値に設定される。図示の例では、同相信号成分及び直交信号成分に関する振幅バランス補正値Ci,Cqは共に1に設定される。
ステップ1806では、直交変調前の同相信号成分Tx及び直交信号成分Txの平均振幅が、Aref,Brefとしてそれぞれ測定される。
ステップ1808では、フィードバック信号の同相信号成分Fb及び直交信号成分Fbの平均振幅が、Afb,Bfbとしてそれぞれ測定される。
ステップ1810では、同相信号成分に関する平均振幅誤差ErrA=Aref−Afbが算出される。また、直交信号成分に関する平均振幅誤差ErrB=Bref−Bfbも算出される。
ステップ1812では、平均振幅誤差が、直交変調前の振幅値に基づいてそれぞれ規格化される。
ステップ1814では、同相信号成分に関して、規格化された振幅誤差ErrA_normの絶対値が所定の閾値Err_thより大きいか否かが判別される。また、直交信号成分に関して、規格化された振幅誤差ErrB_normの絶対値が所定の閾値Err_thより大きいか否かも判別される。これらの内、少なくとも一方の振幅誤差が閾値より大きい場合(YESの場合)は、ステップ1816に進む。
ステップ1816では、振幅バランス補正値Ci,Cqが更新される。本実施例では、同相信号成分に関する振幅バランス補正値Ciは、μ×ErrA_normだけ変化するように更新される。直交信号成分に関する振幅バランス補正値Cqは、μ×ErrB_normだけ変化するように更新される。但し、他の方法で振幅バランス補正値を更新することも可能である。
ステップ1818では、更新された振幅バランス補正値Ci,Cqを振幅バランス調査部1722に設定する。以後ステップ1806に戻って同様の動作が行なわれる。
ステップ1814で、正規化された振幅誤差が所定の閾値Err_thより小さかったならば、フローはステップ1820に進む。
ステップ1820では、振幅バランス補正値演算部1726の出力が補正回路1702に与えられるように、スイッチ1728,1730は「0」側の端子に接続される。そして、フローはステップ1822に進み、終了する。このようにして、振幅バランスが調整される。
図19は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、補正回路1902と、ディジタルアナログ変換器1904,1906と、局部発振器1911に接続された直交変調器1912とを有する。直交変調システムは、局部発振器1914に接続された乗算部1916と、アナログディジタル変換器1918と、直交復調器1920とを有する。直交変調システムは、振幅バランス調査部1922と、振幅バランス補正値演算部1926と、スイッチ1928,1930と、乗算部1932,1934と、平均化部(Ave)1936,1938とを有し、これらの要素は、振幅差算出部1940を形成する。
ディジタルアナログ変換器1904,1906は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器1912は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。乗算部1916は、送信信号Sと局部発振器1914からの信号とを乗算することで、ダウンコンバージョンを行なう。アナログディジタル変換器1918は、アナログ信号をディジタル信号に変換する。直交復調器1920は、アナログディジタル変換器1918の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
振幅バランス調査部1922は、暫定的に振幅の調整されたフィードバック信号を出力する。
振幅バランス補正値演算部1926は、振幅バランス調査部1922からの出力に基づいて、振幅バランス補正値Ci,Cqを求める。
スイッチ1928,1930は、振幅バランス補正値演算部1926からの出力を、振幅バランス補正値Ci,Cqが収束するまでは、「1」で示される側の端子に接続し、それらが適切な値に収束すると、「0」で示される側の端子に接続する。
乗算部1932は、直交変調前の同相信号成分Txを参照信号Refとして入力し、それとフィードバック信号の直交信号成分Fbとの積を算出する。その積は、平均化部1936で平均化され、第1の平均値Ave1として出力される。
乗算部1934は、直交変調前の直交信号成分Txを参照信号Refとして入力し、それとフィードバック信号の同相信号成分Fbとの積を算出する。その積は、平均化部1938で平均化され、第2の平均値Ave2として出力される。
次に、本実施例の動作原理を説明する。フィードバック信号から導出されるベースバンド帯域での復調信号Fbは、フィードバック信号に導入された位相回転をφとすると、次式のように表現される。
Fb=A・Ref・cosφ+B・Ref・sinφ
Fb=A・Ref・sinφ−B・Ref・cosφ
ここで、A,Bは同相信号成分及び直交信号成分に関する振幅の測定値を表現する。同相及び直交信号成分が互いに無相関であるとする近似が成立するとすれば、フィードバック信号の直交信号成分Fbと直交変調前の同相信号成分Refとの積による第1の平均値Ave1=E{Fb・Ref}は、次式のように表現される。
Ave1=E{Fb・Ref
=A・E{Ref }・sinφ−B・E{Ref・Ref}・cosφ
≒A・Pref_i・sinφ
となる。同様に、フィードバック信号の同相信号成分Fbと直交変調前の直交信号成分Refとの積による第2の平均値Ave2=E{Fb・Ref}は、次式のように表現される。
Ave2=E{Fb・Ref
=A・E{Ref・Ref}・cosφ+B・E{Ref }・sinφ
≒B・Pref_q・sinφ
となる。但し、Pref_i,Pref_qは、直交変調前の同相及び直交信号成分の平均電力をそれぞれ示す。そこで、(Ave1・Pref_q)/(Ave2・Pref_i)の比率を考察すると、この比率は、
Figure 0004376689

のように表現される。すなわち、この比率は振幅バランスの尺度を示し、これが1に近づくほど振幅バランスが良好であり、逆に1から逸脱するほど振幅がアンバランスである。本実施例では、このような比率を算出し、この比率が1に近づくように(又は、この比率から1を減じたものがゼロに近づくように)、同相信号成分及び直交信号成分の振幅が調整される。
図20は、振幅バランスを調整するためのフローチャートを示す。フローはステップ2002から始まり、ステップ2004に進む。ステップ2004では、各種のパラメータが初期値に設定される。図示の例では、同相信号成分及び直交信号成分に関する振幅バランス補正値Ci,Cqは共に1に設定される。前回の誤差値PreErrには非常に大きな値が設定される。±1の値をとり得る補正方向dは、+1に設定される。
ステップ2006では、上記の第1の平均値Ave1及び第2の平均値Ave2が算出される。
ステップ2008では、直交変調前の同相及び直交信号成分の平均電力Pref_i,Pref_qが求められる。
ステップ2010では、次式に従って、誤差Errが算出される:
Err=Abs((Ave1・Pref_q)/(Ave2・Pref_i)−1)。
2014では、誤差Errが所定の閾値Err_thより大きいか否かが判別され、大きい場合(YESの場合)は、ステップ2016に進む。
ステップ2016では、今回の誤差Errが前回の誤差PreErrより大きいか否かが判別され、大きい場合(YESの場合)は、ステップ2018に進んで補正方向dの値が変更され、そうでなければステップ2020に進む。
ステップ2020では、振幅バランス補正値Ci,Cqが更新される。本実施例では、振幅バランス補正値Ci,Cqは、相対的にμ×Errだけ変化するように更新される。
ステップ2022では、更新された振幅バランス補正値Ci,Cqを振幅バランス調査部1922に設定する。
ステップ2024では、前回の誤差を今回の誤差に更新する。以後ステップ2006に戻って同様の動作が行なわれる。
ステップ2014で、誤差が所定の閾値Err_thより小さかったならば、フローはステップ2026に進む。
ステップ2026では、振幅バランス補正値演算部1926の出力が補正回路1902に与えられるように、スイッチ1928,1930は「0」側の端子に接続される。そして、フローはステップ2028に進み、終了する。このようにして、振幅バランスが調整される。
尚、振幅バランス補正値Ci,Cqを同相信号成分及び直交信号成分に導入する場所は、図12等のようにディジタル領域でもよいし、図21のようにアナログ領域でもよい。
以下、実軸及び虚軸の直交関係のずれ(角度偏差又は直交偏差)を調整することで、イメージ成分を抑制しようとする実施例が説明される。先ず、直交偏差について概説する。
図22(A)は、同相信号成分及び直交信号成分が良好に出力されている場合の、微小な単位角内に存在する信号点の平均値を0〜360度の範囲で求めた際に描かれる軌跡を示す。この場合には、実軸及び虚軸は90度(π/2ラジアン)の角度をなしている。図22(B)に示される場合は、実軸及び虚軸が90度よりもθだけ異なる角度で交わる様子を示す。この場合に、同相信号成分I及び直交信号成分Qは、次式で表現されるように歪む。
I’=I−Qsinθ
Q’=Qcosθ
このため、信号点配置図上での信号点の軌跡は、楕円を描き、送信信号に歪が導入されてしまう。尚、上記の図2,図5,図11,図14,図17で考察した位相回転角φは、実軸及び虚軸が90度に保たれたまま、フィードバック信号の位相が原点の回りに回転することを想定していることに留意を要する。
図23は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、直交偏差補正回路2302と、ディジタルアナログ変換器2304,2306と、局部発振器2311に接続された直交変調器2312とを有する。直交変調システムは、局部発振器2314に接続された乗算部2316と、アナログディジタル変換器2318と、直交復調器2320とを有する。直交変調システムは、直交偏差調査部2322と、絶対値累積部2324,2326と、相違量判定部2328とを有し、これらの要素は、角度偏差算出部2336を形成する。
ディジタルアナログ変換器2304,2306は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器2312は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。乗算部2316は、送信信号Sと局部発振器2314からの信号とを乗算することで、ダウンコンバージョンを行なう。アナログディジタル変換器2318は、アナログ信号をディジタル信号に変換する。直交復調器2320は、アナログディジタル変換器2318の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
直交偏差調査部2322は、暫定的に角度偏差の調整されたフィードバック信号を出力する。
絶対値累積部2324は、フィードバック信号の同相信号成分Fbの絶対値をとって累計し、第1の累計値として出力する。また、絶対値累積部2326は、フィードバック信号の直交信号成分Fbの絶対値をとって累計し、第2の累計値として出力する。
相違量判定部2328は、絶対値累積部2324,2326からの第1及び第2の累計値に基づいて、直交偏差θfbを求める。直交偏差θfbは、最終的には、直交偏差補正回路2302に与えられる直交偏差θになる。
図24は、直交偏差補正回路2302の一例を示すブロック図である。直交偏差補正回路は、加算器2402と、乗算部2404,2406と、係数乗算部2408,2410とを有する。加算器2402は、同相信号成分Txと乗算部2404の出力との和を出力する。乗算部2404は、直交信号成分Txと係数乗算部2408の出力との積を出力する。乗算部2406は、直交信号成分Txと係数乗算部2410の出力との積を出力する。係数乗算部2408は、相違量判別部2328からの出力である角度偏差θに基づいて、tanθを出力する。係数乗算部2410は、相違量判別部2328からの出力である角度偏差θに基づいて、1/cosθを出力する。
加算器2402の出力は、Tx+Tx×tanθとなり、これがディジタルアナログ変換器2304に入力される。乗算部2406の出力はTx/cosθとなり、これがディジタルアナログ変換器に入力される。これらの信号は、図22で説明したような歪を受ける。歪を受けた後の同相信号成分は、
(Tx+Tx×tanθ)−(Tx/cosθ)×sinθ=Tx
となり、直交偏差による歪が除去される。同様に、歪を受けた後の直交信号成分は、
(Tx/cosθ)×cosθ=Tx
となり、直交偏差による歪が除去される。
尚、図22の説明では、実軸を揃えて虚軸の傾き(ズレ)を直交偏差θとしていたが、本発明はそのような態様に限定されず、実軸の傾きを考察することも同様に可能である。
図25は、実軸及び虚軸間の角度偏差を調整するためのフローチャートを示す。フローはステップ2502から始まり、ステップ2504に進む。ステップ2504では、各種のパラメータが初期値に設定される。直交偏差調査部2322における補正角θfbも直交偏差補正回路2302における補正角θもゼロに設定される。収束性を判定するためのパラメータNはゼロに設定される。また、補正角を更新する際の変化量Δθも適切な値に設定される。
ステップ2506では、フィードバック信号の実部Fbの絶対値の累計値が、第1の累積値として求められる。
ステップ2508では、フィードバック信号の虚部Fbの絶対値の累計値が、第2の累積値として求められる。
ステップ2510では、第1の累計値と第2の累計値の差分の絶対値が誤差DiffAcm1として求められる。
ステップ2512では、今回の誤差であるDiffAcm1が、前回の誤差であるDiffAcm2より小さいか否かが判別され、小さい場合にはステップ2518に進み、小さくない場合はステップ2514に進む。
ステップ2514では、直交偏差調査部2322における補正角θfbを変化させる方向を反転させる。
ステップ2516では、パラメータNの値を1つインクリメントする。
ステップ2518では、補正角θfbを更新する。
ステップ2520では、前回の誤差DiffAcm2を今回の誤差DiffAcm1で置換することによって、前回の誤差を更新する。
ステップ2522では、パラメータNが所定値より大きいか否かが判別され、大きくない場合は、フローはステップ2506,2508に戻って、同様な処理を反復する。パラメータNが所定値より大きい場合は、フローはステップ2524に進む。
ステップ2524では、直交偏差補正回路2302における補正角θが、直交偏差調査部2322における補正角θfbに設定される。この補正角を用いて、直交偏差補正回路2302にて、直交偏差が補償される。そして、フローはステップ2526に進み、終了する。
図26は、誤差DiffAcm1の絶対値と補正値の更新回数Nとの関係を模式的に示す図である。誤差の絶対値がある値に収束してくると、誤差の前回の値と今回の値との大小関係が頻繁に変わるようになる。パラメータNの値を監視することで、誤差の絶対値が適切な値に収束していることを推定することが可能になる。
図27は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、直交偏差補正回路2702と、ディジタルアナログ変換器2704,2706と、局部発振器2711に接続された直交変調器2712とを有する。直交変調システムは、局部発振器2714に接続された乗算部2716と、アナログディジタル変換器2718と、直交復調器2720とを有する。直交変調システムは、直交偏差調査部2722と、乗算部2724と、累積部2726と、符号判定部2728とを有し、これらの要素は、角度偏差算出部2736を形成する。
ディジタルアナログ変換器2704,2706は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器2712は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。乗算部2716は、送信信号Sと局部発振器2714からの信号とを乗算することで、ダウンコンバージョンを行なう。アナログディジタル変換器2718は、アナログ信号をディジタル信号に変換する。直交復調器2720は、アナログディジタル変換器2718の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
直交偏差調査部2722は、暫定的に角度偏差の調整されたフィードバック信号を出力する。
乗算部2724は、フィードバック信号の同相信号成分Fb及び直交信号成分Fbの積を算出する。
累積部2726は、乗算部2724からの出力(積)を累計する。
符号判定部2728は、同相信号成分Fb及び直交信号成分Fbの積の累計値に基づいて、直交偏差θfbを求める。直交偏差θfbは、最終的には、直交偏差補正回路2702に与えられる直交偏差θになる。
以下、本実施例における動作原理が説明される。フィードバック信号から導出されるベースバンド帯域での復調信号Fbは、次式のように表現される。
Fb=Tx・cosφ+Tx・sin(θ−φ)
Fb=Tx・sinφ−Tx・cos(θ−φ)
ここで、θは実軸及び虚軸間の直交偏差を表し、φはフィードバック信号に導入された位相回転角を示す。フィードバック信号の同相信号成分Fb及び直交信号成分Fbの積は、次式のように表現される。
Fb×Fb=Tx・Tx・cos(2φ−θ)
+(1/2)Tx ・sin2φ
+(1/2)Tx ・sin(2θ−2φ)。
同相信号成分Tx及び直交信号成分Txが無相関であるとすると、右辺第1項のTx・Tx・cos(2φ−θ)は、累積部2726の累計により、ゼロになる。第2項の(1/2)Tx ・sin2φは、直交偏差θに依存しない量である。従って、第3項の(1/2)Tx ・sin(2θ−2φ)のみが、直交偏差θに依存して変化することになる。更に、同相信号成分Tx及び直交信号成分Txが無相関であれば、フィードバック信号の同相及び直交信号成分の積の累計値又は平均値E[Fb×Fb]もゼロになる。このため、フィードバック信号Fbの同相信号成分及び直交信号成分の積の累計値IqAcmは、図28(A)に示されるようなグラフを描く。従って、補正角θを変化させながら積の累計値IqAcmを監視し、それがゼロになる補正角を検出することで、最適な補正角を検出することが可能になる。
図29は、実軸及び虚軸間の角度偏差を調整するためのフローチャートを示す。フローはステップ2902から始まり、ステップ2904に進む。ステップ2904では、各種のパラメータが初期値に設定される。
ステップ2906では、現在の累計値IqAcm1が0にリセットされる。
ステップ2908では、フィードバック信号の実部Fb及び虚部Fbの累計値IqAcm1が求められる。
ステップ2910では、累計値が絶対値に変換される。このステップは必須ではないが、このステップを設けると、次のような点で有利である。図28(A)では累計値の大きさがゼロになる、という1つの基準で直交偏差を求める必要がある。これに対して、図28(B)に示されるように累計値の絶対値を用意すると、累計値がゼロになるという基準に加えて、累計値の変化率が変わるという別の基準を用いて直交偏差を求めることが可能になる。検出されるべき直交偏差θの前後で変化率が変わる(勾配の符号が変わる)からである。このため、後者の方法によれば、適切な直交偏差の検出精度を向上させることが可能になる。
ステップ2912では、今回の誤差であるIqAcm1が、前回の誤差であるIqAcm2より小さいか否かが判別され、小さい場合にはステップ2918に進み、小さくない場合はステップ2914に進む。
ステップ2914では、直交偏差調査部2722における補正角θfbを変化させる方向を反転させる。
ステップ2916では、パラメータNの値を1つインクリメントする。
ステップ2918では、補正角θfbを更新する。
ステップ2920では、前回の累計値IqAcm2を今回の累計値IqAcm1で置換することによって、前回の累計値を更新する。
ステップ2922では、パラメータNが所定値より大きいか否かが判別され、大きくない場合は、フローはステップ2906に戻って、同様な処理を反復する。パラメータNが所定値より大きい場合は、フローはステップ2924に進む。
ステップ2924では、直交偏差補正回路2902における補正角θが、直交偏差調査部2922における補正角θfbに設定される。この補正角を用いて、直交偏差補正回路2702にて、直交偏差が補償される。そして、フローはステップ2926に進み、終了する。
図30は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、直交偏差補正回路3002と、ディジタルアナログ変換器3004,3006と、局部発振器3011に接続された直交変調器3012とを有する。直交変調システムは、局部発振器3014に接続された乗算部3016と、アナログディジタル変換器3018と、直交復調器3020とを有する。直交変調システムは、直交偏差調査部3022と、高速フーリエ変換(FFT)処理部3024と、電力解析部3026と、直交偏差補正値算出部3028と、スイッチ3030とを有し、これらの要素は、角度偏差算出部3036を形成する。
ディジタルアナログ変換器3004,3006は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器3012は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。乗算部3016は、送信信号Sと局部発振器3014からの信号とを乗算することで、ダウンコンバージョンを行なう。アナログディジタル変換器3018は、アナログ信号をディジタル信号に変換する。直交復調器3020は、アナログディジタル変換器3018の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
直交偏差調査部3022は、暫定的に角度偏差の調整されたフィードバック信号を出力する。
FFT処理部3024は、フィードバック信号に含まれる周波数成分を表す信号を出力する。
電力解析部3026は、周波数成分を表す信号を分析することで、不要波(イメージ周波数)を監視し、その結果を出力する。
直交偏差補正値算出部3028は、電力分析部3026からの監視結果に基づいて、直交偏差を補正するための補正値θを求めてそれを出力する。
スイッチ3030は、補正値θが収束するまでは「1」で示される側の端子を選択し、その補正値をフィードバック信号θfbとして直交偏差調査部3022に与える。補正値が適切な値に収束すると、スイッチ3030は「0」で示される端子を選択し、補正値を直交偏差補正回路3002に与える。
本実施例では、直交偏差θfbを徐々に変化させながら、不要波を監視し、不要波を最小にするような直交偏差θfbが、最終的に直交偏差補正回路3002に与えられる。
なお、本実施例では、不要波を最小にする直交偏差を求めたが、本手法を用いてIQタイミングや振幅バランスを補正してもよい。IQタイミングを補正する場合は、図36に示されるように、フィードバック信号の同相信号成分Fb及び直交信号成分Fbに基づいて、同相及び直交信号成分間の時間差に関する信号がタイミング調査部で求められる。この時間差に関する信号はFFT処理部で周波数領域の信号に変換され、その周波数成分が電力解析部にて監視される。監視結果はタイミング補正値算出部に与えられ、時間差を補償するための補正値Ci,Cqが算出され、これらの値は収束するまではタイミング調査部に与えられ、収束するとタイミング補正回路に与えられ、時間差が補正される。同様に、振幅バランスを補正する場合は、図37に示されるように、フィードバック信号の同相信号成分Fb及び直交信号成分Fbに基づいて、同相及び直交信号成分間の振幅バランスに関する信号が振幅バランス調査部で求められる。この信号はFFT処理部で周波数領域の信号に変換され、その周波数成分が電力解析部にて監視される。監視結果は振幅バランス補正値算出部に与えられ、振幅バランスを補償するための補正値Ci,Cqが算出され、これらの値は収束するまでは振幅バランス調査部に与えられ、収束すると振幅バランス補正回路に与えられ、振幅バランスが補正される。
図31は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、直交偏差補正回路3102と、ディジタルアナログ変換器3104,3106と、局部発振器3111に接続された直交変調器3112とを有する。直交変調システムは、局部発振器3114に接続された乗算部3116と、アナログディジタル変換器3118と、直交復調器3120とを有する。直交変調システムは、直交偏差調査部3122と、減算部3124,3126と、絶対値累積部3128,3130と、補正値演算部3132とを有し、これらの要素は、角度偏差算出部3136を形成する。また、直交変調システムは、位相検出回路3134をも有する。
ディジタルアナログ変換器3104,3106は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器3112は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。乗算部3116は、送信信号Sと局部発振器3114からの信号とを乗算することで、ダウンコンバージョンを行なう。アナログディジタル変換器3118は、アナログ信号をディジタル信号に変換する。直交復調器3120は、アナログディジタル変換器3118の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
直交偏差調査部3122は、暫定的に角度偏差の調整されたフィードバック信号を出力する。
減算器3124は、直交変調前の同相信号成分Txとフィードバック信号の同相信号成分Fbとの差分を出力する。この差分は絶対値累計部3128で累計され、第1の累計値として出力される。
減算器3126は、直交変調前の直交信号成分Txとフィードバック信号の同相信号成分Fbとの差分を出力する。この差分は絶対値累計部3130で累計され、第2の累計値として出力される。
補正値演算部3132は、第1及び第2の累計値が最小になるような直交偏差θfbを求める。
位相検出回路3134は、直交変調前のディジタル信号とフィードバック信号とを比較することで、フィードバック信号の位相回転角φが求められ、直交復調器3120にてその位相回転角φが補償される。
本実施例では、直交偏差θfbを徐々に変化させながら、第1及び第2の累計値を監視し、それらを最小にするような直交偏差θfbが、最終的に直交偏差補正回路3102に与えられる。
図32は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、直交偏差補正回路3202と、ディジタルアナログ変換器3204,3206と、局部発振器3211に接続された直交変調器3212とを有する。直交変調システムは、局部発振器3214に接続された乗算部3216と、アナログディジタル変換器3218と、直交復調器3220と、角度偏差算出部3222とを有する。
ディジタルアナログ変換器3204,3206は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器3212は、入力された同相信号成分及び直交信号成分を合成し、送信信号Sを出力する。乗算部3216は、送信信号Sと局部発振器3214からの信号とを乗算することで、ダウンコンバージョンを行なう。アナログディジタル変換器3218は、アナログ信号をディジタル信号に変換する。直交復調器3220は、アナログディジタル変換器3218の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
角度偏差算出部3222は、直交変調前のディジタル信号とフィードバック信号に基づいて直交偏差θを算出する。この直交偏差θは直交偏差補正回路3202に与えられる。角度偏差算出部3222は、直交変調前のディジタル信号の大きさの二乗(Powref=Tx +Tx )を求めるための乗算部3230,3232と加算器3234を有する。角度偏差算出部3222は、フィードバック信号の大きさの二乗(Powback=Fb +Fb )を求めるための乗算部3224,3226と加算器3228を有する。角度偏差算出部3222は、ディジタル信号及びフィードバック信号の大きさの二乗の差分(Powback−Powref)を出力する加算器3236を有する。角度偏差算出部3222は、直交変調前の同相信号成分及び直交信号成分の積の2倍(2TxTx)を求めるための乗算部3238,3240と、乗算部3240の出力と加算器3236の出力との比率を求める除算器3242を有する。更に、角度偏差算出部3222は、除算器3242の出力に基づいて直交偏差θを求める補正値更新部3244を有する。
直交変調前のディジタル信号の電力(大きさの二乗)Powrefは、
Powref=Tx +Tx
と表現される。フィードバック信号Fbの電力Powbackは、
Powback=Fb +Fb
=(Tx・cosφ+Tx・sin(θ−φ))
(Tx・sinφ−Tx・cos(θ−φ))
=Tx +Tx +2Tx・Tx・sinθ
と表現される。従って、直交偏差θは、次式により求められる。
Figure 0004376689
直交偏差θの算出法は、このような手法に限定されず、別の手法を採用することも可能である(必要に応じて、角度偏差算出部3222内の構成も演算アルゴリズムに応じて変更される。)。例えば、ある時点の信号と、別の時点の信号とを利用して、直交偏差を求めることが可能である。
図33(A)は、直交変調前のある時点のディジタル信号Tx(t)(=Tx(t)+jTx(t))と、次の時点のディジタル信号Tx(t+1)(=Tx(t+1)+jTx(t+1))とを示す。図33(B)は、そのディジタル信号Tx(t)及びディジタル信号Tx(t+1)に対応して得られるフィードバック信号を示す。フィードバック信号には、直交偏差θによる影響と、位相回転φによる影響とが反映される。この場合において、ディジタル信号Tx(t)とTx(t+1)の内積の虚部は、
Im[(Tx(t)+jTx(t))×(Tx(t+1)+jTx(t+1))
=Tx(t)Tx(t+1)−Tx(t)Tx(t+1)
と表現される。但し、「*」は複素共役を意味する。Im[]は引数の虚部を意味する。一方、ディジタル信号Tx(t)とTx(t+1)に対応するフィードバック信号の内積の虚部は、
Im[{(Tx(t)+Tx(t)sinθ+jTx(t)cosθ)exp(jφ)}×{(Tx(t+1)+Tx(t+1)sinθ+jTx(t+1)cosθ)exp(jφ)}
=cosθ(Tx(t)Tx(t+1)−Tx(t)Tx(t+1))
と表現される。従って、直交偏差θは、次式により求められる。
θ=cos−1(Im(フィードバック信号の内積)/Im(直交変調前の信号の内積))。
以下、同相信号成分及び直交信号成分に関する、タイミング、振幅及び角度偏差を一括して調整する実施例が説明される。
図34は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、補正回路3402と、ディジタルアナログ変換器3404,3406と、直交変調器3412とを有する。直交変調システムは、アナログディジタル変換器3418と、直交復調器3420と、不整合量算出部3422とを有する。
ディジタルアナログ変換器3404,3406は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器3412は、入力された同相信号成分及び直交信号成分を合成し、送信信号を出力する。アナログディジタル変換器3418は、アナログ信号をディジタル信号に変換する。直交復調器3420は、アナログディジタル変換器3418の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
不整合量算出部3422は、直交変調前のディジタル信号Tx及びフィードバック信号Fbに基づいて、同相信号成分及び直交信号成分に関する不整合量(時間的なズレ、振幅の相違量及び直交偏差)を算出する。これらの不整合量は補正回路3402に与えられ、不整合量が補償される。不整合量算出部3422は、遅延回路3424と、乗算部3426,3428,3430,3432と、積分器3434,3436,3438,3440と、補正値算出回路3442とを有する。
積分器3434は、出力PとしてE[Tx(t)×Fb(t)]を出力する。E[]は平均化を意味し、積分器で累計された値を適切な因子で除算することによって導出される。同相及び直交信号成分は互いに無相関であるとする近似が成立するとすれば、出力Pは次のように表現される。
P=E[Tx(t)×Fb(t)]
=E[Tx(t)×(ATx(t)cosφ+BTx(t+Δt)sin(φ−θ))]
≒AcosφE[Tx (t)]
但し、Δtは同相及び直交信号成分の時間差を示し、φは位相回転角を示し、θは実軸及び虚軸の直交偏差を示す。
同様に、積分器3436は出力QとしてE[Tx(t)×Fb(t)]を出力し、積分器3438は出力RとしてE[Tx(t)×Fb(t)]を出力し、積分器3440は出力SとしてE[Tx(t)×Fb(t)]を出力し、それらは次のように表現される。
Q=E[Tx(t)×Fb(t)]
=E[Tx(t)×(ATx(t)sinφ−BTx(t+Δt)cos(φ−θ))]
≒AsinφE[Tx (t)]
R=E[Tx(t)×Fb(t)]
=E[Tx(t)×(ATx(t)cosφ+BTx(t+Δt)sin(φ−θ))]
≒Bsin(φ−θ)×E[Tx(t)Tx(t+Δt)]
≒Bsin(φ−θ)×E[Tx(t)](Δt=0)
S=E[Tx(t)×Fb(t)]
=E[Tx(t)×(ATx(t)sinφ−BTx(t+Δt)cos(φ−θ))]
≒−Bcos(φ−θ)×E[Tx(t)Tx(t+Δt)]
≒−Bcos(φ−θ)×E[Tx(t)](Δt=0)
次に、補正値算出回路3442にて、P+Q及びR+Sを算出すると、
+Q=E[Tx(t)×Fb(t)]+E[Tx(t)×Fb(t)]
=AE[Tx (t)]
+S=E[Tx(t)×Fb(t)]+E[Tx(t)×Fb(t)]
=BE[Tx (t)]
となる。P+Q及びR+Sは、位相回転角φや直交偏差θに依存していない。従って、遅延回路3424で徐々に遅延量を変更しながら、これらの値を比較又は監視することで、最適な遅延量を求めることが可能になる。
次に、E[Tx (t)]/(P+Q1/2=1/A、及び
E[Tx (t)]/(R+S1/2=1/B
であるので、これらの関係から振幅の相違を示す量を検出することが可能になる。振幅の相違を示す量としては、例えば、振幅の差(|A−B|)や、振幅比(A/B又はB/A)等を採用することが可能であるがこれらに限定されない。
更に、Q/P=tanφ,−R/S=tan(φ−θ) であるので、これらの関係から位相回転角φ及び直交偏差θを求めることが可能になる。
補正値算出回路3422で求められた時間差、振幅誤差及び直交偏差は、補正回路3422にて適切に補正される。
図35は、本発明の一実施例による直交変調システムのブロック図を示す。直交変調システムは、補正回路3502と、ディジタルアナログ変換器3504,3506と、直交変調器3512とを有する。直交変調システムは、アナログディジタル変換器3518と、直交復調器3520と、不整合量算出部3522と、位相検出回路3544とを有する。
ディジタルアナログ変換器3504,3506は、ディジタル形式の同相信号成分及び直交信号成分をアナログ形式の信号に変換する。直交変調器3512は、入力された同相信号成分及び直交信号成分を合成し、送信信号を出力する。アナログディジタル変換器3518は、アナログ信号をディジタル信号に変換する。直交復調器3520は、アナログディジタル変換器3518の出力を直交復調し、フィードバック信号の同相信号成分Fb及び直交信号成分Fbを出力する。
不整合量算出部3522は、直交変調前のディジタル信号Tx及びフィードバック信号Fbに基づいて、同相信号成分及び直交信号成分に関する不整合量(時間的なズレ、振幅の相違量及び直交偏差)を算出する。これらの不整合量は補正回路3502に与えられ、不整合量が補償される。不整合量算出部3522は、遅延回路3524と、乗算部3526,3528,3530,3532と、積分器3534,3536,3538,3540と、補正値算出回路3542とを有する。更に、不整合量算出部3522は、減算器3546,3550,3554,3558と、ウエイトα,α,α,αを導入する乗算部3548,3552,3556,3560とを有する。
図34に示される例では、位相回転角φが非常に小さな値のときには、出力Qや出力Rは非常に小さな値になり、演算精度の劣化が懸念される。図35に示される例では、位相回転角φの値を意図的に設定し、座標軸を例えば45度回転して出力P,Q,R,Sを測定し、そのような精度劣化を抑制しようとするものである。このため、ウエイトα,α,α,αを導入する乗算部3548,3552,3556,3560と、位相検出回路3544とが設けられている。より具体的には、図34に示される例における
P=E[Tx(t)×Fb(t)]
Q=E[Tx(t)×Fb(t)]
R=E[Tx(t)×Fb(t)]
S=E[Tx(t)×Fb(t)]
を、
P=E[Tx(t)×{Fb(t)−αTx}]
Q=E[Tx(t)×{Fb(t)−αTx}]
R=E[Tx(t)×{Fb(t)−αTx}]
S=E[Tx(t)×{Fb(t)−αTx}]
とすることで、適切な座標変換が行なわれる。ウエイトは、例えば45度の回転を想定するならば、
α=α=α=α=(1/2)1/2
とすることが可能であるが、他の任意の角度に合わせてウエイトを設定することも可能である。
以下、本発明により教示される手段を例示的に列挙する。
(付記1)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
前記同相信号成分、及び前記送信信号から得られるフィードバック信号の同相信号成分から算出される演算結果の第1の累計値を求め、前記直交信号成分、及び前記フィードバック信号の直交信号成分から算出される演算結果の第2の累計値を求め、前記第1及び第2の累計値に基づいて、同相信号成分及び直交信号成分の間の時間差を求める時間差算出手段と、
前記時間差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する遅延調整手段と
を備えることを特徴とする直交変調システム。
(付記2)
前記所定の演算結果は、前記直交変調器に入力される同相信号成分又は直交信号成分と、前記フィードバック信号の同相信号成分又は直交信号成分との差分又は積をとることによって求められる
ことを特徴とする付記1記載の直交変調システム。
(付記3)
更に、前記直交変調器に入力される同相信号成分及び直交信号成分と前記フィードバック信号の同相信号成分及び直交信号成分とを比較し、信号点配置の実軸及び虚軸の回転角を求める手段
を備えることを特徴とする付記1記載の直交変調システム。
(付記4)
前記遅延調整手段が、有限インパルス応答フィルタより成り、該有限インパルス応答フィルタのタップ係数は、前記時間差に応じて変化させられる
ことを特徴とする付記1記載の直交変調システム。
(付記5)
前記遅延調整手段は、前記直交変調器に入力されるディジタル信号をアナログ信号に変換するディジタルアナログ変換器の一方又は双方に与えるクロックを、前記時間差に応じて進める又は遅らせる
ことを特徴とする付記1記載の直交変調システム。
(付記6)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
前記送信信号から導出されるフィードバック信号の同相信号成分及び直交信号成分の平均振幅の相違を示す第1誤差を求め、信号点配置の実軸及び虚軸を所定の角度だけ回転した場合に得られる、前記フィードバック信号の同相信号成分及び直交信号成分の平均振幅の相違を示す第2誤差を求め、前記第1又は第2誤差に基づいて、同相信号成分及び直交信号成分の振幅の相違量を求める振幅差算出手段と、
前記振幅の相違量が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する振幅調整手段と
を備えることを特徴とする直交変調システム。
(付記7)
更に、前記第1誤差及び前記第2誤差の大小比較を行なう手段を備える
ことを特徴とする付記6記載の直交変調システム。
(付記8)
前記所定の角度が、実質的に45度に等しい
ことを特徴とする付記6記載の直交変調システム。
(付記9)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
同相信号成分及び直交信号成分の平均振幅ベクトルを、信号点配置の象限毎に求める手段と、
前記象限毎に求めた平均振幅ベクトルが互いに等しく且つ直交するように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する振幅調整手段と
を備えることを特徴とする直交変調システム。
(付記10)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
前記同相信号成分の平均振幅と、前記送信信号から導出されるフィードバック信号の同相信号成分の平均振幅との相違を示す第1誤差を求め、前記直交信号成分の平均振幅と、前記フィードバック信号の直交信号成分の平均振幅との相違を示す第2誤差を求め、前記第1及び第2誤差に基づいて、同相信号成分及び直交信号成分の振幅の相違量を求める振幅差算出手段と、
前記振幅の相違量が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する振幅調整手段と
を備えることを特徴とする直交変調システム。
(付記11)
更に、同相信号成分及び直交信号成分に関する、前記ディジタル信号と前記フィードバック信号とを比較し、信号点配置の実軸及び虚軸の回転角を求める手段
を備えることを特徴とする付記10記載の直交変調システム。
(付記12)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
前記直交変調器に入力される同相信号成分、及び前記送信信号から導出されるフィードバック信号の直交信号成分の積の平均を表す第1平均値と、前記直交変調器に入力される直交信号成分、及び前記フィードバック信号の同相信号成分の積の平均を表す第2平均値との比率に比例する量を求める振幅差算出手段と、
前記比率に比例する量が所望の値に近づくように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する振幅調整手段と
を備えることを特徴とする直交変調システム。
(付記13)
前記振幅調整手段が、前記直交変調器に入力されるディジタル信号又はアナログ信号の同相信号成分及び直交信号成分を調整する
ことを特徴とする付記6,9,10又は12の何れか1項に記載の直交変調システム。
(付記14)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
前記送信信号から導出されるフィードバック信号の同相信号成分の累計値と、前記フィードバック信号の直交信号成分の累計値との相違を示す量を求め、前記相違を示す量に基づいて、信号点配置における実軸及び虚軸間の角度偏差を求める角度偏差算出手段と、
前記角度偏差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
を備えることを特徴とする直交変調システム。
(付記15)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
前記送信信号から導出されるフィードバック信号の同相信号成分及び直交信号成分の積の累計値に基づいて、信号点配置における実軸及び虚軸間の角度偏差を求める角度偏差算出手段と、
前記角度偏差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
を備えることを特徴とする直交変調システム。
(付記16)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
前記直交変調器に入力される同相信号成分と、前記送信信号から導出されるフィードバック信号の同相信号成分との相違を示す量を累計して第1累計値を求め、前記直交変調器に入力される直交信号成分と、前記フィードバック信号の直交信号成分との相違を示す量を累計して第2累計値を求め、前記第1及び第2累計値に基づいて、信号点配置における実軸及び虚軸間の角度偏差を求める角度偏差算出手段と、
前記角度偏差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
を備えることを特徴とする直交変調システム。
(付記17)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
前記直交変調器に入力される信号の電力と、前記送信信号から導出されるフィードバック信号の電力との電力差を求め、前記直交変調器に入力される信号の同相信号成分及び直交信号成分の積を示す信号積を求め、前記電力差及び前記信号積の比率に基づいて、信号点配置における実軸及び虚軸間の角度偏差を求める角度偏差算出手段と、
前記角度偏差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
を備えることを特徴とする直交変調システム。
(付記18)
前記角度偏差算出手段が、アークサイン関数の引数に、前記電力差及び前記信号積の比率を与えることで前記角度偏差を求める
ことを特徴とする付記18記載の直交変調システム。
(付記19)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力し、前記送信信号からフィードバック信号が導出される直交変調システムにおいて、
前記直交変調器に入力されるある時点の信号と別の時点の信号との内積の虚部を表す第1の量を求め、前記ある時点の信号と別の時点の信号に対応するフィードバック信号の内積の虚部を表す第2の量を求め、前記第1の量及び前記第2の量の比率に基づいて、信号点配置における実軸及び虚軸間の角度偏差を求める角度偏差算出手段と、
前記角度偏差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
を備えることを特徴とする直交変調システム。
(付記20)
前記角度偏差算出手段が、アークコサイン関数の引数に、前記第1の量及び前記第2の量の比率を与えることで前記角度偏差を求める
ことを特徴とする付記20記載の直交変調システム。
(付記21)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
前記送信信号から導出されるフィードバック信号をフーリエ変換し、前記フィードバック信号に含まれる不要波成分を検出し、前記不要波成分に基づいて、同相信号成分及び直交信号成分間の時間差、振幅の相違量並びに信号点配置における実軸及び虚軸間の角度偏差の少なくとも1つの不整合量を求める不整合量算出手段と、
前記不整合量が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
を備えることを特徴とする直交変調システム。
(付記22)
同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力し、前記送信信号からフィードバック信号が導出される直交変調システムにおいて、
前記直交変調器に入力される同相信号成分と、前記フィードバック信号の同相信号成分との積の平均を示す第1平均値を求める手段と、
前記直交変調器に入力される同相信号成分と、前記フィードバック信号の直交信号成分との積の平均を示す第2平均値を求める手段と、
前記直交変調器に入力される直交信号成分と、前記フィードバック信号の同相信号成分との積の平均を示す第3平均値を求める手段と、
前記直交変調器に入力される直交信号成分と、前記フィードバック信号の直交信号成分との積の平均を示す第4平均値を求める手段と、
前記第1平均値、前記第2平均値、前記第3平均値及び前記第4平均値に基づいて、同相信号成分及び直交信号成分間の時間差、振幅の相違量並びに信号点配置における実軸及び虚軸間の角度偏差の少なくとも1つの不整合量を求める不整合量算出手段と、
前記不整合量が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
を備えることを特徴とする直交変調システム。
(付記23)
前記不整合量算出手段が、
前記第1平均値の二乗及び前記第2平均値の二乗の和と、前記第3平均値の二乗及び前記第4平均値の二乗の和との比較に基づいて、同相信号成分及び直交信号成分の間の時間差を求める時間差算出手段と、
前記直交変調器に入力される同相信号成分の二乗平均値と、前記第1平均値の二乗及び前記第2平均値の二乗の和の平方根との第1の比率を求め、前記直交変調器に入力される直交信号成分の二乗平均値と、前記第3平均値の二乗及び前記第4平均値の二乗の和の平方根との第2の比率を求め、前記第1及び第2の比率に基づいて、同相信号成分及び直交信号成分の振幅の相違量を求める振幅差算出手段と、
前記第1平均値及び前記第2平均値の比率と、前記第3平均値及び前記第4平均値の比率に基づいて、信号点配置における実軸及び虚軸間の角度偏差を求める角度偏差算出手段と、
を備えることを特徴とする直交変調システム。
(付記24)
前記第1乃至第4平均値を算出する際のフィードバック信号が、信号点配置の実軸及び虚軸を所定の角度だけ回転した場合に得られるフィードバック信号である
ことを特徴とする付記22記載の直交変調システム。
(付記25)
付記1乃至付記24の何れか1項に記載の直交変調システムを備えることを特徴とする送信機。
変調波と不要波の関係を模式的に示す図である。 本発明の一実施例による直交変調システムのブロック図である。 遅延量を調整するためのフローチャートを示す。 遅延量と平均誤差値との関係を示す図である。 直交変調システムの変形例を示す図である。 遅延量を調整するためのフローチャートの変形例を示す図である。 遅延量と平均乗算値との関係を示す図である。 1/8シンボルだけ遅延させる場合のタップ係数を示す図である。 5/8シンボルだけ遅延させる場合のタップ係数を示す図である。 補正回路の変形例を示す図である。 同相信号成分及び直交信号成分の振幅及び/又は位相回転角の関係を示す図である。 本発明の一実施例による直交変調システムのブロック図である。 振幅バランスを調整するためのフローチャートを示す。 同相信号成分及び直交信号成分の直交性と象限毎の平均振幅ベクトルとの関係を示す図である。 本発明の一実施例による直交変調システムのブロック図を示す。 振幅バランスを調整するためのフローチャートを示す。 本発明の一実施例による直交変調システムのブロック図を示す。 振幅バランスを調整するためのフローチャートを示す。 本発明の一実施例による直交変調システムのブロック図を示す。 振幅バランスを調整するためのフローチャートを示す。 補正回路の変形例を示す図である。 信号点配置図における同相信号成分及び直交信号成分の関係を示す図である。 本発明の一実施例による直交変調システムのブロック図を示す。 直交偏差補正回路の一例を示すブロック図である。 直交偏差を調整するためのフローチャートを示す。 誤差|DiffAcm1|と補正値の更新回数Nとの関係を模式的に示す図である。 本発明の一実施例による直交変調システムのブロック図を示す。 同相及び直交信号成分の積の累計値と直交偏差との関係を示す図である。 直交偏差を調整するためのフローチャートを示す。 本発明の一実施例による直交変調システムのブロック図を示す。 本発明の一実施例による直交変調システムのブロック図を示す。 本発明の一実施例による直交変調システムのブロック図を示す。 異なる時点における送信信号及びフィードバック信号を示す図である。 本発明の一実施例による直交変調システムのブロック図を示す。 本発明の一実施例による直交変調システムのブロック図を示す。 本発明の一実施例による直交変調システムのブロック図を示す。 本発明の一実施例による直交変調システムのブロック図を示す。
符号の説明
202 補正回路
204,206 ディジタルアナログ変換器
208 フィルタ
212 直交変調器
214 局部発振器
216 乗算部
218 アナログディジタル変換器
220 直交復調器
224,226 減算器
228,230 積分器
232 時間差検出回路
234 遅延回路
236 位相検出回路
237,238 補正部
524,526 乗算部
1002 クロック発生源
1004 遅延素子
1006,1008 セレクタ
1202 補正回路
1204,1206 ディジタルアナログ変換器
1211 局部発振器
1212 直交変調器
1214 局部発振器
1216 乗算部
1218 アナログディジタル変換器
1220 直交復調器
1222 振幅バランス調査部
1224 平均化部
1225 複素乗算部
1226 振幅バランス補正値演算部
1228,1230 スイッチ
1232,1234,1236,1238 乗算部
1240 振幅差算出部
1502 補正回路
1504,1506 ディジタルアナログ変換器
1511 局部発振器
1512 直交変調器
1514 局部発振器
1516 乗算部
1518 アナログディジタル変換器
1520 直交復調器
1522 振幅バランス調査部
1524 象限別平均部
1526 振幅バランス補正値演算部
1528,1530 スイッチ
1540 振幅差算出部
1702 補正回路
1704,1706 ディジタルアナログ変換器
1711 局部発振器
1712 直交変調器
1714 局部発振器
1716 乗算部
1718 アナログディジタル変換器
1720 直交復調器
1722 振幅バランス調査部
1726 振幅バランス補正値演算部
1728,1730 スイッチ
1732 位相検出回路
1740 振幅差算出部
1902 補正回路
1904,1906 ディジタルアナログ変換器
1911 局部発振器
1912 直交変調器
1914 局部発振器
1916 乗算部
1918 アナログディジタル変換器
1920 直交復調器
1922 振幅バランス調査部
1926 振幅バランス補正値演算部
1928,1930 スイッチ
1932,1934 乗算部
1936,1938 平均化部
1940 振幅差算出部
2302 補正回路
2304,2306 ディジタルアナログ変換器
2311 局部発振器
2312 直交変調器
2314 局部発振器
2316 乗算部
2318 アナログディジタル変換器
2320 直交復調器
2322 直交偏差調査部
2324,2326 絶対値累積部
2328 相違量判定部
2336 角度偏差算出部
2402 加算器
2404,2406 乗算部
2408,2410 係数乗算部
2702 直交偏差補正回路
2704,2706 ディジタルアナログ変換器
2711 局部発振器
2712 直交変調器
2714 局部発振器
2716 乗算部
2718 アナログディジタル変換器
2720 直交復調器
2722 直交偏差調査部
2724 乗算部
2726 累積部
2728 符号判定部
2736 角度偏差算出部
3002 直交偏差補正回路
3004,3006 ディジタルアナログ変換器
3011 局部発振器
3012 直交変調器
3014 局部発振器
3016 乗算部
3018 アナログディジタル変換器
3020 直交復調器
3022 直交偏差調査部
3024 FFT処理部
3026 電力解析部
3028 直交偏差補正部
3030 スイッチ
3036 角度偏差算出部
3102 直交偏差補正回路
3104,3106 ディジタルアナログ変換器
3111 局部発振器
3112 直交変調器
3114 局部発振器
3116 乗算部
3118 アナログディジタル変換器
3120 直交復調器
3122 直交偏差調査部
3124,3126 減算器
3128,3130 絶対値累積部
3132 補正値演算部
3134 位相検出回路
3136 角度偏差算出部
3202 直交偏差補正回路
3204,3206 ディジタルアナログ変換器
3211 局部発振器
3212 直交変調器
3214 局部発振器
3216 乗算部
3218 アナログディジタル変換器
3220 直交復調器
3222 直交偏差算出部
3224,3226,3230,3232,3238,3240 乗算部
3238,3234,3236 加算器
3242 除算器
3244 補正値更新部
3402 補正回路
3404,3406 ディジタルアナログ変換器
3412 直交変調器
3418 アナログディジタル変換器
3420 直交復調器
3422 不整合量算出部
3424 遅延回路
3426,3428,3430,3432 乗算部
3434,3436,3438,3440 積分器
3442 補正値算出回路
3502 補正回路
3504,3506 ディジタルアナログ変換器
3512 直交変調器
3518 アナログディジタル変換器
3520 直交復調器
3522 不整合量算出部
3524 遅延回路
3526,3528,3530,3532 乗算部
3534,3536,3538,3540 積分器
3542 補正値算出回路
3544 位相検出回路
3546,3550,3554,3558 減算器
3548,3552,3556,3560 乗算部

Claims (10)

  1. 同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
    前記同相信号成分、及び前記送信信号から得られるフィードバック信号の同相信号成分から算出される演算結果の第1の累計値を求め、前記直交信号成分、及び前記フィードバック信号の直交信号成分から算出される演算結果の第2の累計値を求め、前記第1及び第2の累計値に基づいて、同相信号成分及び直交信号成分の間の時間差を求める時間差算出手段と、
    前記時間差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する遅延調整手段と
    を備えることを特徴とする直交変調システム。
  2. 前記遅延調整手段が、有限インパルス応答フィルタより成り、該有限インパルス応答フィルタのタップ係数は、前記時間差に応じて変化させられる
    ことを特徴とする請求項1記載の直交変調システム。
  3. 同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
    前記送信信号から導出されるフィードバック信号の同相信号成分及び直交信号成分の平均振幅の相違を示す第1誤差を求め、信号点配置の実軸及び虚軸を所定の角度だけ回転した場合に得られる、前記フィードバック信号の同相信号成分及び直交信号成分の平均振幅の相違を示す第2誤差を求め、前記第1又は第2誤差に基づいて、同相信号成分及び直交信号成分の振幅の相違量を求める振幅差算出手段と、
    前記振幅の相違量が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する振幅調整手段と
    を備えることを特徴とする直交変調システム。
  4. 同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
    前記同相信号成分の平均振幅と、前記送信信号から導出されるフィードバック信号の同相信号成分の平均振幅との相違を示す第1誤差を求め、前記直交信号成分の平均振幅と、前記フィードバック信号の直交信号成分の平均振幅との相違を示す第2誤差を求め、前記第1及び第2誤差に基づいて、同相信号成分及び直交信号成分の振幅の相違量を求める振幅差算出手段と、
    前記振幅の相違量が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する振幅調整手段と
    を備えることを特徴とする直交変調システム。
  5. 同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
    前記直交変調器に入力される同相信号成分、及び前記送信信号から導出されるフィードバック信号の直交信号成分の積の平均を表す第1平均値と、前記直交変調器に入力される直交信号成分、及び前記フィードバック信号の同相信号成分の積の平均を表す第2平均値との比率に比例する量を求める振幅差算出手段と、
    前記比率に比例する量が所望の値に近づくように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する振幅調整手段と
    を備えることを特徴とする直交変調システム。
  6. 同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
    前記送信信号から導出されるフィードバック信号の同相信号成分及び直交信号成分の積の累計値に基づいて、信号点配置における実軸及び虚軸間の角度偏差を求める角度偏差算出手段と、
    前記角度偏差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
    を備えることを特徴とする直交変調システム。
  7. 同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
    前記直交変調器に入力される信号の電力と、前記送信信号から導出されるフィードバック信号の電力との電力差を求め、前記直交変調器に入力される信号の同相信号成分及び直交信号成分の積を示す信号積を求め、前記電力差及び前記信号積の比率に基づいて、信号点配置における実軸及び虚軸間の角度偏差を求める角度偏差算出手段と、
    前記角度偏差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
    を備えることを特徴とする直交変調システム。
  8. 同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力し、前記送信信号からフィードバック信号が導出される直交変調システムにおいて、
    前記直交変調器に入力されるある時点の信号と別の時点の信号との内積の虚部を表す第1の量を求め、前記ある時点の信号と別の時点の信号に対応するフィードバック信号の内積の虚部を表す第2の量を求め、前記第1の量及び前記第2の量の比率に基づいて、信号点配置における実軸及び虚軸間の角度偏差を求める角度偏差算出手段と、
    前記角度偏差が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
    を備えることを特徴とする直交変調システム。
  9. 同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力する直交変調システムにおいて、
    前記送信信号から導出されるフィードバック信号をフーリエ変換し、前記フィードバック信号に含まれる不要波成分を検出し、前記不要波成分に基づいて、同相信号成分及び直交信号成分間の時間差、振幅の相違量並びに信号点配置における実軸及び虚軸間の角度偏差の少なくとも1つの不整合量を求める不整合量算出手段と、
    前記不整合量が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
    を備えることを特徴とする直交変調システム。
  10. 同相信号成分及び直交信号成分を入力し、直交変調された送信信号を直交変調器から出力し、前記送信信号からフィードバック信号が導出される直交変調システムにおいて、
    前記直交変調器に入力される同相信号成分と、前記フィードバック信号の同相信号成分との積の平均を示す第1平均値を求める手段と、
    前記直交変調器に入力される同相信号成分と、前記フィードバック信号の直交信号成分との積の平均を示す第2平均値を求める手段と、
    前記直交変調器に入力される直交信号成分と、前記フィードバック信号の同相信号成分との積の平均を示す第3平均値を求める手段と、
    前記直交変調器に入力される直交信号成分と、前記フィードバック信号の直交信号成分との積の平均を示す第4平均値を求める手段と、
    前記第1平均値、前記第2平均値、前記第3平均値及び前記第4平均値に基づいて、同相信号成分及び直交信号成分間の時間差、振幅の相違量並びに信号点配置における実軸及び虚軸間の角度偏差の少なくとも1つの不整合量を求める不整合量算出手段と、
    前記不整合量が補償されるように、前記直交変調器に入力される同相信号成分及び直交信号成分を調整する調整手段と
    を備えることを特徴とする直交変調システム。
JP2004125849A 2004-04-21 2004-04-21 直交変調システム Expired - Fee Related JP4376689B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004125849A JP4376689B2 (ja) 2004-04-21 2004-04-21 直交変調システム
EP04255686.0A EP1589713A3 (en) 2004-04-21 2004-09-17 Quadrature modulator with compensation of I/Q mismatch
EP12171361A EP2501091A3 (en) 2004-04-21 2004-09-17 A quadrature modulation system
US10/945,316 US7388926B2 (en) 2004-04-21 2004-09-20 Quadrature modulation system
CNB2004100831336A CN100571246C (zh) 2004-04-21 2004-09-30 正交调制系统
CN2009102052423A CN101677307B (zh) 2004-04-21 2004-09-30 正交调制系统
CN2009102052419A CN101674271B (zh) 2004-04-21 2004-09-30 正交调制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125849A JP4376689B2 (ja) 2004-04-21 2004-04-21 直交変調システム

Publications (2)

Publication Number Publication Date
JP2005311710A JP2005311710A (ja) 2005-11-04
JP4376689B2 true JP4376689B2 (ja) 2009-12-02

Family

ID=34930666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125849A Expired - Fee Related JP4376689B2 (ja) 2004-04-21 2004-04-21 直交変調システム

Country Status (4)

Country Link
US (1) US7388926B2 (ja)
EP (2) EP1589713A3 (ja)
JP (1) JP4376689B2 (ja)
CN (3) CN101677307B (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299819B2 (ja) * 2005-08-17 2009-07-22 富士通株式会社 歪補償装置及び歪補償方法
US8345801B2 (en) * 2005-11-10 2013-01-01 Weon-Ki Yoon Apparatus and method for signal mismatch compensation in a wireless receiver
JP4659621B2 (ja) * 2006-01-06 2011-03-30 株式会社日立国際電気 無線送信機
CN101043269B (zh) * 2006-03-22 2011-01-05 富士通株式会社 I-q正交调制发射机及其i-q路间相位偏置的监测装置和方法
US8693525B2 (en) 2006-07-14 2014-04-08 Qualcomm Incorporated Multi-carrier transmitter for wireless communication
US7974596B2 (en) * 2006-09-22 2011-07-05 Silicon Laboratories Inc. Power control scheme for a power amplifier
JP4803379B2 (ja) * 2006-11-09 2011-10-26 日本電気株式会社 直交変調器を備えた無線送信装置
KR100809206B1 (ko) * 2006-11-30 2008-02-29 삼성전기주식회사 직교 주파수 분할 다중 수신기의 시간영역 iq 부정합검출 장치
US7742545B2 (en) 2007-05-30 2010-06-22 Motorola, Inc. Method and apparatus for generating corrected quadrature phase signal pairs in a communication device
CN101873446B (zh) * 2009-04-22 2012-05-16 承景科技股份有限公司 数字接收器及其相关方法
US20110013724A1 (en) * 2009-04-24 2011-01-20 Qualcomm Incorporated I/q imbalance estimation and compensation for a transmitter and a receiver
JP5158034B2 (ja) 2009-08-12 2013-03-06 富士通株式会社 無線装置及び信号処理方法
WO2011054156A1 (zh) * 2009-11-09 2011-05-12 华为技术有限公司 一种微波信号的校正方法、装置和系统
JP5091979B2 (ja) * 2010-04-30 2012-12-05 株式会社エヌ・ティ・ティ・ドコモ 無線通信システムにおけるユーザ装置及び方法
WO2011161877A1 (ja) * 2010-06-24 2011-12-29 日本電気株式会社 変復調装置及び振幅調整方法
JP5516378B2 (ja) 2010-12-13 2014-06-11 富士通株式会社 歪補償装置、歪補償方法、及び無線装置
US9077571B2 (en) 2011-09-09 2015-07-07 Nxp B.V. Adaptive equalizer and/or antenna tuning
US8913693B2 (en) 2011-11-02 2014-12-16 Raytheon Company Quadrature modulator balancing system
TWI448090B (zh) * 2012-02-17 2014-08-01 Inst Information Industry 具有同相-正交不平衡補償之接收機及其同相-正交不平衡補償方法
RU2546304C1 (ru) * 2014-01-24 2015-04-10 Закрытое акционерное общество "Проектно-конструкторское бюро "РИО" Устройство формирования сигналов квадратурной амплитудной манипуляции
RU2547626C1 (ru) * 2014-02-10 2015-04-10 Закрытое акционерное общество "Проектно-конструкторское бюро "РИО" Устройство формирования сигналов квадратурной амплитудной манипуляции
US9491029B2 (en) * 2014-12-15 2016-11-08 Apple Inc. Devices and methods for reducing signal distortion in I/Q modulation transceivers
CN107925648B (zh) * 2015-09-25 2021-03-02 苹果公司 用于生成射频信号的装置和方法
US10516563B2 (en) 2015-09-25 2019-12-24 Intel IP Corporation Apparatus and a method for generating a radio frequency signal

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717894A (en) * 1986-10-23 1988-01-05 Hewlett-Packard Company Calibration of vector modulators using a scalar detector
US5293406A (en) * 1991-03-11 1994-03-08 Nippon Telegraph And Telephone Corporation Quadrature amplitude modulator with distortion compensation
JP3259100B2 (ja) 1992-01-24 2002-02-18 日本電気エンジニアリング株式会社 変調器
JP3037025B2 (ja) 1993-06-10 2000-04-24 松下電器産業株式会社 直交変調器
JP3552254B2 (ja) 1993-10-25 2004-08-11 ソニー株式会社 4相位相変調回路
JPH07177188A (ja) 1993-12-17 1995-07-14 Nippon Motorola Ltd 変調精度補償機能を有する直交変復調システム
JPH0897873A (ja) 1994-09-28 1996-04-12 Nec Corp 直交変調器
JPH08116343A (ja) 1994-10-17 1996-05-07 Mitsubishi Electric Corp 直交変調装置
JPH09186729A (ja) * 1996-01-08 1997-07-15 Hitachi Denshi Ltd 直交変調器および直交復調器の振幅誤差制御方法
EP0795982B1 (de) * 1996-03-11 2005-01-12 Micronas GmbH Übertragunssystem mit Quadraturmodulation
FI117494B (fi) * 1996-11-29 2006-10-31 Nokia Corp Menetelmä digitaalisessa kvadratuurimodulaattorissa ja kvadratuuridemodulaattorissa, digitaalinen kvadratuurimodulaattori ja kvadratuuridemodulaattori
US6286994B1 (en) * 1998-04-29 2001-09-11 Qualcomm Incorporated System, method and computer program product for controlling a transmit signal using an expected power level
US6054896A (en) * 1998-12-17 2000-04-25 Datum Telegraphic Inc. Controller and associated methods for a linc linear power amplifier
JP2000270037A (ja) 1999-03-19 2000-09-29 Hitachi Denshi Ltd 直交変調器
FI107100B (fi) * 1999-03-26 2001-05-31 Nokia Networks Oy I/Q-modulaattorin vaihe- ja amplitudiepäbalanssin korjaus
JP4097430B2 (ja) * 1999-07-28 2008-06-11 富士通株式会社 歪補償機能を備えた無線装置
JP2001339452A (ja) 2000-05-26 2001-12-07 Hitachi Kokusai Electric Inc 直交変調装置及び直交変調誤差検出方法
JP2002027007A (ja) 2000-07-12 2002-01-25 Matsushita Electric Ind Co Ltd 誤差補償方式
US6934341B2 (en) * 2000-08-29 2005-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for plurality signal generation
JP2002077285A (ja) 2000-08-31 2002-03-15 Hitachi Kokusai Electric Inc 送信機
US7054375B2 (en) * 2000-12-22 2006-05-30 Nokia Corporation Method and apparatus for error reduction in an orthogonal modulation system
US7061994B2 (en) * 2001-06-21 2006-06-13 Flarion Technologies, Inc. Methods and apparatus for I/Q imbalance compensation
EP1361655A1 (en) * 2002-05-07 2003-11-12 Semiconductor Ideas to The Market (ItoM) BV Mirror suppression circuit in a quadrature demodulator
AU2002321694A1 (en) * 2002-08-02 2004-02-25 Nokia Corporation Quadrature demodulator using a fft-processor

Also Published As

Publication number Publication date
CN1691660A (zh) 2005-11-02
EP2501091A3 (en) 2013-03-13
CN100571246C (zh) 2009-12-16
CN101677307B (zh) 2012-11-07
JP2005311710A (ja) 2005-11-04
CN101674271A (zh) 2010-03-17
US20050238114A1 (en) 2005-10-27
CN101674271B (zh) 2012-07-18
EP1589713A2 (en) 2005-10-26
CN101677307A (zh) 2010-03-24
US7388926B2 (en) 2008-06-17
EP2501091A2 (en) 2012-09-19
EP1589713A3 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP4376689B2 (ja) 直交変調システム
US7456683B2 (en) Amplitude error compensating device and quadrature skew error compensating device
JP3611862B2 (ja) デジタル直角変調及び復調方法、並びにデジタル直角変調器及び復調器
US6771709B2 (en) System and method for direct transmitter self-calibration
EP1860770B1 (en) Distortion compensating apparatus and method
US7639755B2 (en) Distortion compensating apparatus
US8867596B2 (en) Methods and apparatuses of calibrating I/Q mismatch in communication circuit
EP1835626B1 (en) Dc offset compensation method and device
US20070081614A1 (en) Apparatus and method for adaptively correcting I/Q imbalance
JPH11136302A (ja) 歪補償回路
JPH0983587A (ja) 歪補償方式
EP2547059B1 (en) Transmitter including calibration of an in-phase/Quadrature (I/Q) modulator and associated methods
US20040066857A1 (en) Reducing I/Q imbalance through image rejection
WO2019208434A1 (ja) 追尾受信機、アンテナ装置および追尾方法
JP3301287B2 (ja) 線形補償回路
US11268997B1 (en) Method and apparatus for characterizing homodyne transmitters and receivers
KR20030035448A (ko) 디지탈 선형화기
JP2003087344A (ja) ダイレクトコンバージョン受信機
JP2008199200A (ja) ループバック遅延推定装置及びループバック遅延推定方法
JP2015032841A (ja) 送信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees