JP4374774B2 - 偏光変換光学系および偏光変換素子 - Google Patents
偏光変換光学系および偏光変換素子 Download PDFInfo
- Publication number
- JP4374774B2 JP4374774B2 JP2000370952A JP2000370952A JP4374774B2 JP 4374774 B2 JP4374774 B2 JP 4374774B2 JP 2000370952 A JP2000370952 A JP 2000370952A JP 2000370952 A JP2000370952 A JP 2000370952A JP 4374774 B2 JP4374774 B2 JP 4374774B2
- Authority
- JP
- Japan
- Prior art keywords
- polarization
- polarization conversion
- multilayer film
- incident angle
- dielectric multilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Projection Apparatus (AREA)
Description
【発明の属する技術分野】
本発明は、偏光面が不揃いの光を偏光面の揃った光に変換する偏光変換光学系、および偏光変換光学系を単一の素子とした偏光変換素子に関する。
【0002】
【従来の技術】
偏光面が一定の直線偏光を利用する光学装置では、光の利用効率を高めるために、偏光面が不揃いの光を偏光面の揃った光に変換することが行われている。例えば、液晶表示器により照明光を変調する映像表示装置では、光源であるランプが発する無偏光(偏光面が無秩序な光)を偏光面の揃った光に変換し、変換後の光を照明光として液晶表示器に導くことで、明るい映像を提供するようにしている。
【0003】
偏光面が不揃いの光を偏光面の揃った光に変換する偏光変換光学系の代表的な構成を図10に示す。この偏光変換光学系50は、偏光ビーム分離(PBS)プリズム51、1/2波長板52、およびミラー53より成る。PBSプリズム51は、偏光分離膜51aを2つの三角プリズムで挟んで作製されている。偏光分離膜51aはp偏光を透過させてs偏光を反射するように設定された誘電体多層膜であり、偏光面が互いに直交する2つの偏光成分であるp偏光とs偏光を分離する。
【0004】
1/2波長板52は分離されたp偏光の直線偏光とs偏光の直線偏光のいずれかの光路上に配置され、入射する直線偏光の偏光面を90゜回転させて他方の直線偏光の偏光面に一致させる。図10は、偏光分離膜51aに対してp偏光であった偏光成分をs偏光の偏光成分とする場合を示している。
【0005】
偏光分離膜を設けたPBSプリズムに代えて、複屈折結晶を貼り合わせたPBSプリズムを用いることにより偏光分離を行い、分離した一方の直線偏光の偏光面を1/2波長板で回転させるようにした偏光変換光学系もある。
【0006】
近年では、複屈折回折格子によって偏光分離を行い、1/2波長板で偏光面を揃えるようにした偏光変換光学系が提案されている(例えば、特開平10−197827号公報、特開2000−137194号公報)。複屈折回折格子は、偏光面が互いに直交する2つの偏光成分に対する回折格子の回折効率の差を利用して、偏光分離を行うものである。
【0007】
複屈折回折格子の構成を図11に示す。複屈折回折格子61は、複屈折性を有する液晶等の複屈折材料62を、回折格子63aが形成された板状の部材63と平板状の部材64で挟んで作製されている。常光oに対する複屈折材料62と部材63の屈折率は等しく設定されており、異常光eに対する複屈折材料62と部材63の屈折率は相違する。したがって、異常光eは回折格子63aによって回折されて偏向し、常光oは回折されることなく直進する。これにより両偏光が分離される。
【0008】
上記のいずれの偏光変換光学系も、変換対象とする光がどのような偏光状態であっても、そのほとんど全てを偏光面の揃った直線偏光とすることができる。したがって、これらの偏光変換光学系を備える光学装置は、光源からの光をきわめて効率よく利用することが可能である。
【0009】
【発明が解決しようとする課題】
ところが、いずれの偏光変換光学系にも小型化が難しいという問題がある。図10に示した偏光変換光学系50では、正四角柱状のPBSプリズム51によって偏光分離を行うため、変換前の光ビームに沿う方向の大きさがビーム径以上となる。また、分離直後の2つの直線偏光が互いに垂直な方向に進むため、一方の光路を折り曲げるためのミラー53が必要になって、光ビームに垂直な方向の大きさがビーム径の2倍以上になる。
【0010】
複屈折結晶を貼り合わせたPBSプリズムを用いる偏光変換光学系や、図11の複屈折回折格子を用いる偏光変換光学系では、変換前の光ビームに沿う方向の大きさが偏光変換光学系50よりもさらに大きくなる。偏光分離を行うための素子そのものは薄型であるものの、素子を透過した2つの偏光成分の光ビームの進行方向に大きな角度差がなく、両者が完全に分離するまでに長い光路が必要となるからである。変換前の光ビームに垂直な方向の大きさも、やはりビーム径の2倍以上になる。
【0011】
複屈折を利用するこれらの偏光変換光学系は、マイクロレンズアレイと組み合わせれば、ある程度小型化することができる。一例として、図11の複屈折回折格子61にマイクロレンズアレイ65を組み合わせた偏光変換光学系60の構成を図12に示す。複屈折回折格子61の出射側の面にマイクロレンズアレイ65が貼り合わされており、複屈折回折格子61を透過した光はマイクロレンズ65aによって個別に収束ビームとされる。進行方向に差のある2つの偏光成分は異なる位置に収束し、収束ビームとなっているため早期に分離する。1/2波長板66はマイクロレンズ65aと同数に分割されて、一方の偏光成分のビームの収束位置近傍に配置される。
【0012】
偏光変換光学系60では、変換前の光ビームに対して垂直な方向の大きさがビーム径の2倍未満となり、変換前の光ビームに沿う方向の大きさも小さくなる。しかし、それでも1/2波長板66をマイクロレンズアレイ65からビーム径程度離れた位置に配置する必要があり、光学系全体の小型化には限界がある。しかも、マイクロレンズアレイ65と1/2波長板66の相対位置を精度よく設定する必要があるから、組立工程も複雑になる。
【0013】
複屈折結晶を貼り合わせたPBSプリズムを用いる偏光変換光学系では、さらに、複屈折結晶が高価であり、また、複屈折結晶の貼り合わせ工程も複雑であるため、量産性に欠けるという問題もある。
【0014】
本発明は、このような問題点に鑑みてなされたもので、小型で作製も容易な偏光変換光学系および偏光変換素子を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明では、偏光面が不揃いの光を偏光面の揃った光に変換する偏光変換光学系を、偏光面が互いに直交する第1の偏光成分と第2の偏光成分に対して異なる入射角依存性を有し、第1の入射角においては第1の偏光成分を透過させて第2の偏光成分を反射し、第2の入射角においては第2の偏光成分を透過させる誘電体多層膜と、誘電体多層膜に第1の入射角で入射して誘電体多層膜を透過した光を、誘電体多層膜に第2の入射角で入射するように反射する反射素子と、誘電体多層膜と反射素子の間に位置する1/4波長板とで構成する。
【0016】
この偏光変換光学系は、偏光変換の対象とする光を誘電体多層膜側から入射させて誘電体多層膜側に出射させる。誘電体多層膜に第1の入射角で入射する光のうち、第2の偏光成分は誘電体多層膜によって反射され、第1の偏光成分はこれを透過して1/4波長板に入射する。第1の偏光成分は、1/4波長板への入射時には直線偏光となっているが、1/4波長板を透過することにより円偏光となる。この円偏光は反射素子に達して反射される。反射された円偏光は再び1/4波長板を透過することにより、偏光面が90゜回転した直線偏光、すなわち第2の偏光成分となって、誘電体多層膜に再入射する。
【0017】
反射素子は誘電体多層膜への入射角が第2の入射角となるように光を反射するから、誘電体多層膜に再入射した第2の偏光成分はこれを透過する。したがって、最初に誘電体多層膜を透過した第1の偏光成分は、最初に誘電体多層膜で反射された成分と同じ第2の偏光成分として誘電体多層膜から出射することになり、偏光面が不揃いであった光は偏光面の揃った光に変換される。
【0018】
誘電体多層膜や反射素子が1/4波長板から離間しているか否かは、上記の作用には影響しない。つまり、誘電体多層膜と反射素子が1/4波長板に接する構成とすることが可能であり、これにより、小型の偏光変換光学系とすることができる。
【0019】
ここで、反射素子を反射型の回折素子とするとよい。反射型の回折素子は、正反射をするミラー等の通常の反射素子とは異なり、反射角が入射角と異なる設定とすることが可能である。したがって、第1の入射角で入射して誘電体多層膜を透過した光を第2の入射角で誘電体多層膜に再入射させるために、回折素子を誘電体多層膜に対して傾斜させる必要はなく、平行に配置することができる。回折素子を誘電体多層膜に対して平行に配置すると、偏光変換の対象とする光のビーム径がいくら大きくても厚さは増大せず、確実に小型の光学系とすることができる。
【0020】
誘電体多層膜の第1の入射角における第1の偏光成分の透過率を99%以上とし、第1の入射角における第2の偏光成分の反射率を99%以上とし、第2の入射角における第2の偏光成分の透過率を95%以上とするとよい。このようにすると、偏光状態がどのような光であっても、損失をごく僅かに抑え、かつ、偏光面の異なる偏光成分の混入がほとんどない光とすることができる。
【0021】
また、第1の入射角と第2の入射角の差を30゜以下とするとよい。偏光変換光学系から出射する第2の偏光成分には、第1の入射角と第2の入射角の差だけ進行方向の異なるものが存在することになる。この角度差を30゜以下にすることで、偏光変換後の光を利用する他の光学素子や光学系での取扱いが容易になる。
【0022】
前記目的を達成するために、本発明では、反射素子を反射型の回折素子とした構成の偏光変換光学系を、その誘電体多層膜と1/4波長板と回折素子を一体化して、偏光変換素子とする。回折素子は誘電体多層膜に平行にすることができるから、薄い板状の素子となる。また、単一の素子とすることで誘電体多層膜と回折素子が相互に固定され、後に両者の相対角度を調節する必要がなくなる。
【0023】
ここで、誘電体多層膜と1/4波長板の間または1/4波長板と回折素子の間に基板を備えるとよい。基板は偏光変換の機能には関与しないが、これによって他の構成要素の固定や偏光変換素子の形状維持を容易にすることができる。
【0024】
回折素子としては回折格子を用いるのが簡便である。この場合、表面に回折格子の形成された板状の部材を回折素子とすることができるし、1/4波長板の表面に回折格子を形成して、1/4波長板の表面部分が回折素子を兼ねる構成とすることもできる。
【0025】
【発明の実施の形態】
以下、本発明の偏光変換光学系を単一の素子すなわち偏光変換素子とした実施形態について、図面を参照しながら説明する。第1の実施形態の偏光変換素子1の構成を図1に模式的に示す。偏光変換素子1は誘電体多層膜11、回折格子12、1/4波長板13、および基板14を備えている。
【0026】
誘電体多層膜11は、基板14の表面に設けられており、屈折率の異なる複数の誘電体を多重に積層することにより作製されている。誘電体多層膜11は、光に対する透過率と反射率が入射角によって変化する入射角依存性を有し、かつ、p偏光に対する入射角依存性とs偏光に対する入射角依存性が相違するように設定されている。
【0027】
回折格子12は板状の部材12aの表面に形成されている。回折格子12は部材12a側から入射する光を部材12a側に反射しつつ、反射光に回折を生じさせるように設定されており、回折格子12を有する部材12aは反射型の回折素子となる。
【0028】
1/4波長板13は基板14に貼り付けられており、部材12aは1/4波長板13に貼り付けられている。部材12a、1/4波長板13および基板14はいずれも平板状であり、互いに平行である。なお、ここでは貼り合わせによって構成要素を一体化しているが、周辺部を誘電体多層膜11側からと部材12a側から挟みつけることによって構成要素を一体化することもできる。
【0029】
偏光変換素子1は、偏光変換の対象とする光を誘電体多層膜11側から入射させて、偏光変換した光を誘電体多層膜11側に出射させる。具体的には、変換対象光を誘電体多層膜11によって、透過するp偏光と反射されるs偏光とに分離し、透過したp偏光を1/4波長板13によって円偏光とし、この円偏光を回折格子12によって反射し、反射した円偏光を1/4波長板13によって偏光面が90゜回転したs偏光とする。そして、このs偏光を誘電体多層膜11に再入射させて透過させ、最初に反射したs偏光と共に出射させる。
【0030】
誘電体多層膜11による偏光分離と、変換後の偏光成分の出射の原理を図2を参照して説明する。図2は、誘電体多層膜11への入射角とp偏光およびs偏光に対する誘電体多層膜11の反射率の関係の典型例を示したものである。透過率と反射率は、透過率+反射率=1の関係にある。誘電体多層膜11は、入射角が小さいときにはp偏光とs偏光の双方に対する透過率が高く、入射角が大きいときにはp偏光とs偏光の双方に対する反射率が高く、入射角が中程度のときにはp偏光に対する透過率が高くs偏光に対する反射率が高くなるように設定されている。
【0031】
偏光変換の対象とする光は誘電体多層膜11に所定の第1の入射角Aで入射させる。この入射角Aは、p偏光に対する透過率が高く、s偏光に対する反射率が高い範囲内とする。また、1/4波長板13から誘電体多層膜11へは所定の第2の入射角Bで入射させる。この入射角Bは、s偏光に対する透過率が高い範囲内とする。これにより、誘電体多層膜11によるp偏光とs偏光の分離と、p偏光から変換されたs偏光の誘電体多層膜11の透過の両立が可能になる。
【0032】
回折格子12は、入射角Aで誘電体多層膜11に入射してこれを透過した光を、正反射するのではなく、入射角Bで誘電体多層膜11に再入射するように、回折条件を設定されている。このような回折条件は、入射角A、Bに加えて、基板14、1/4波長板13および部材12aの屈折率および厚さを考慮して、容易に定めることができる。
【0033】
誘電体多層膜11の具体的構成の一例を図3に示す。この例は、屈折率1.47のガラス製の基板12上に、SiO2から成る屈折率1.46の誘電体層11aと、TiO2およびLa2O3から成る屈折率2.1の誘電体層11bを交互に、計32層設けたものである。誘電体層11a、11bの厚さは、屈折率をnで表すと、偏光変換の対象とする光の波長の1/4nである。
【0034】
図3の構成の誘電体多層膜11における入射角とp偏光およびs偏光に対する反射率の関係を図4に示す。この場合、変換対象光の誘電体多層膜11への入射角Aを56.5゜、変換後の光の誘電体多層膜11への再入射の入射角Bを27.5゜または、38.0゜とする。なお、入射角56.5゜においては、p偏光の透過率は99.5%以上であり、s偏光の反射率も99.5%である。また、入射角27.5゜におけるs偏光の透過率は95.3%であり、入射角38.0゜におけるs偏光の透過率は97.6%である。
【0035】
偏光変換効率(変換前の光の強度に対する変換後の光に含まれるs偏光の強度の比)を高めるためには、入射角Aにおけるp偏光の透過率を99%以上、入射角Aにおけるs偏光の反射率を99%以上、入射角Bにおけるs偏光の透過率を95%以上とすることが望ましい。この設定で無偏光の光を対象として偏光変換すると、偏光変換効率は96.5%以上となる。
【0036】
誘電体多層膜11の特性を図4に示したものとし、入射角AおよびBをそれぞれ56.5゜および27.5゜とすると、無偏光の光を対象とするときの偏光変換効率は97.1%以上となる。また、入射角AおよびBをそれぞれ56.5゜および38.0゜とすると、無偏光の光を対象とするときの偏光変換効率は98.3%以上となる。実際には、回折格子12による回折効率も影響するから、偏光変換効率はこれらの計算値よりもやや低くなるが、偏光変換素子1は効率よく偏光変換を行うことができる。
【0037】
誘電体多層膜11への再入射の入射角Bにおいてp偏光の透過率が高いことは、変換後の光の純度に影響する可能性があるが、入射角Aにおけるs偏光の反射率が高ければほとんど問題とならない。例えば、入射角Aにおけるs偏光の反射率が99%であれば、変換によって生じるp偏光は1%にすぎない。入射角Bを、p偏光の透過率が4.7%の27.5゜だけでなく、p偏光の透過率が約33%の38.0゜とし得るのはこの理由による。
【0038】
偏光変換素子1から出射するs偏光には変換前からs偏光であったものと、変換によりs偏光となったものが含まれるが、前者と後者の光路には入射角Aと入射角Bの差に等しい角度差が生じる。この角度差が大きいと変換後の光の他の光学系や光学素子での取扱いが難しくなるから、入射角Aと入射角Bの差はできるだけ小さくするのが望ましい。上記の設定では、入射角Aと入射角Bの差は29゜または18.5゜であり、後の取扱いも容易である。このように、入射角A、Bの差は30゜以下とするのがよい。
【0039】
偏光変換素子1の変形例である第2〜第5の実施形態の偏光変換素子2〜5の構成を図5〜図8に模式的に示す。図5に示した第2の実施形態の偏光変換素子2は、1/4波長板13と基板14の位置を逆にしたものであり、図6に示した第3の実施形態の偏光変換素子3は、基板14を省略したものである。いずれの偏光変換素子2、3においても、誘電体多層膜11は1/4波長板13の表面に設けられている。
【0040】
図7に示した第4の実施形態の偏光変換素子4は、回折格子12を1/4波長板13の表面に直接形成して、部材12aを省略したものである。図8に示した第5の実施形態の偏光変換素子5は、誘電体多層膜11を1/4波長板13の表面に設けるとともに、回折格子12を1/4波長板13の表面に形成して、基板14と部材12aを省略したものである。
【0041】
上記の偏光変換素子1〜5では、誘電体多層膜11を透過した光を回折格子12によって反射するようにしているが、ホログラムを利用した反射型の回折素子や、回折素子ではない単なるミラーを用いることも可能である。誘電体多層膜11を透過した光をミラーによって反射するようにした第6の実施形態の偏光変換素子6の構成を図9に模式的に示す。
【0042】
この偏光変換素子6は、偏光変換素子1の回折格子12が形成された部材12aに代えて、平面状のミラー15を備えている。ただし、ミラー15は正反射をするため、誘電体多層膜11と平行に配置すると、前述の入射角Aと入射角Bを相違させることができない。そこで、1/4波長板13とミラー15の間の周辺部に厚さの異なる2つのスペーサ16a、16bを介装して、ミラー15を誘電体多層膜11に対して傾斜させている。傾斜の角度はスペーサ16a、16bの厚さで調節することができるし、スペーサ16a、16bの間隔で微調整することもできる。
【0043】
きわめて簡素なミラーを使用する偏光変換素子6は、回折格子を使用する偏光変換素子1〜5よりも低コストで実現することが可能である。ただし、厚さが一定ではなく、偏光変換の対象とする光のビーム径が大きくなるほど厚さが増すことになるから、小型化の観点からは、回折素子を使用する方が有利であるといえる。
【0044】
なお、上記の各実施形態では偏光変換素子とした例を示したが、本発明の偏光変換光学系は必ずしも単一の素子とする必要はなく、各構成要素を独立の部材としてもかまわない。構成要素を独立の部材とすると、反射素子である回折格子やミラーの誘電体多層膜に対する角度の調節が必要になるが、あらかじめ構成要素を一体化して単一の素子としておけば、そのような調節は不要であり、容易に利用することができる。
【0045】
【発明の効果】
本発明の偏光変換光学系は、変換対象の光ビームに沿う方向の大きさと光ビームに垂直な方向の大きさの双方をビーム径程度にすることが可能であり、小型の光学系となる。しかも、構成要素が少ないため、作製も容易である。さらに、高価な光学要素を必要としないから、低コストで実現できる。
【0046】
反射素子として回折素子を用いると、反射素子を誘電体多層膜に対して平行に配置することが可能になり、両者の位置関係の設定がきわめて容易になる。
【0047】
第1の入射角での第1の偏光成分の透過率と第2の偏光成分の反射率が共に99%以上で、第2の入射角での第2の偏光成分の透過率が95%以上となるように誘電体多層膜を設定すると、偏光状態がどのような光であっても、損失をごく僅かに抑えつつ、偏光面の異なる偏光成分の混入がほとんどない光とすることができる。第1の入射角と第2の入射角の差を30゜以下にすると、偏光変換後の光の他の光学素子や光学系での取扱いが容易になる。
【0048】
また、本発明の偏光変換素子は、薄型の素子となり、変換対象の光のビーム径がいくら大きくても厚さを増す必要がない。しかも、誘電体多層膜と回折素子が固定されており、両者の角度を調節をする必要がないから、きわめて利用し易い。
【図面の簡単な説明】
【図1】 第1の実施形態の偏光変換素子の構成と偏光変換の原理を模式的に示す断面図。
【図2】 各実施形態の偏光変換素子の誘電体多層膜への入射角とp偏光およびs偏光に対する誘電体多層膜の反射率の典型的な関係を示す図。
【図3】 各実施形態の偏光変換素子の誘電体多層膜の具体的構成例を模式的に示す断面図。
【図4】 図3の構成の誘電体多層膜への入射角とp偏光およびs偏光に対する誘電体多層膜の反射率の関係を示す図。
【図5】 第2の実施形態の偏光変換素子の構成と偏光変換の原理を模式的に示す断面図。
【図6】 第3の実施形態の偏光変換素子の構成と偏光変換の原理を模式的に示す断面図。
【図7】 第4の実施形態の偏光変換素子の構成と偏光変換の原理を模式的に示す断面図。
【図8】 第5の実施形態の偏光変換素子の構成と偏光変換の原理を模式的に示す断面図。
【図9】 第6の実施形態の偏光変換素子の構成と偏光変換の原理を模式的に示す断面図。
【図10】 従来の偏光変換光学系の構成と偏光変換の原理を模式的に示す断面図。
【図11】 従来の偏光分離素子の構成と偏光分離の原理を模式的に示す断面図。
【図12】 図11の偏光分離素子を備える従来の偏光変換光学系の構成と偏光変換の原理を模式的に示す断面図。
【符号の説明】
1、2、3、4、5、6 偏光変換素子
11 誘電体多層膜
11a、11b 誘電体層
12 回折格子
12a 板状部材
13 1/4波長板
14 基板
15 ミラー
16a、16b スペーサ
Claims (7)
- 偏光面が不揃いの光を偏光面の揃った光に変換する偏光変換光学系であって、
偏光面が互いに直交する第1の偏光成分と第2の偏光成分に対して異なる入射角依存性を有し、第1の入射角においては第1の偏光成分を透過させて第2の偏光成分を反射し、第2の入射角においては第2の偏光成分を透過させる誘電体多層膜と、
誘電体多層膜に第1の入射角で入射して誘電体多層膜を透過した光を、誘電体多層膜に第2の入射角で入射するように反射する反射素子と、
誘電体多層膜と反射素子の間に位置する1/4波長板と
を備えることを特徴とする偏光変換光学系。 - 反射素子が反射型の回折素子であること特徴とする請求項1に記載の偏光変換光学系。
- 誘電体多層膜の第1の入射角における第1の偏光成分の透過率が99%以上であり、第1の入射角における第2の偏光成分の反射率が99%以上であり、第2の入射角における第2の偏光成分の透過率が95%以上であることを特徴とする請求項1に記載の偏光変換光学系。
- 第1の入射角と第2の入射角の差が30゜以下であることを特徴とする請求項1に記載の偏光変換光学系。
- 請求項2に記載の偏光変換光学系を含み、誘電体多層膜と1/4波長板と回折素子が一体となっていることを特徴とする偏光変換素子。
- 誘電体多層膜と1/4波長板の間または1/4波長板と回折素子の間に基板を備えることを特徴とする請求項5に記載の偏光変換素子。
- 1/4波長板の表面に回折格子が形成されており、1/4波長板の表面部分が回折素子を兼ねることを特徴とする請求項5に記載の偏光変換素子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000370952A JP4374774B2 (ja) | 2000-12-06 | 2000-12-06 | 偏光変換光学系および偏光変換素子 |
US10/003,216 US7038852B2 (en) | 2000-12-06 | 2001-12-06 | Polarization conversion optical system and polarization conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000370952A JP4374774B2 (ja) | 2000-12-06 | 2000-12-06 | 偏光変換光学系および偏光変換素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002174723A JP2002174723A (ja) | 2002-06-21 |
JP4374774B2 true JP4374774B2 (ja) | 2009-12-02 |
Family
ID=18840754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000370952A Expired - Lifetime JP4374774B2 (ja) | 2000-12-06 | 2000-12-06 | 偏光変換光学系および偏光変換素子 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7038852B2 (ja) |
JP (1) | JP4374774B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100474918B1 (ko) * | 2002-08-30 | 2005-03-10 | 엘지전자 주식회사 | 편광 변환 장치 |
JP3812527B2 (ja) * | 2002-09-26 | 2006-08-23 | コニカミノルタオプト株式会社 | 偏光ビームスプリッタ |
EP1431824A1 (en) * | 2002-12-18 | 2004-06-23 | ASML Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
JP2005107317A (ja) * | 2003-09-30 | 2005-04-21 | Minolta Co Ltd | 偏光分離膜および偏光分離プリズム |
WO2006089681A2 (de) * | 2005-02-22 | 2006-08-31 | Gesellschaft für Schwerionenforschung mbH | Verfahren zur erhöhung der laserzerstörschwelle von beugungsgittern |
KR20100122895A (ko) * | 2007-11-08 | 2010-11-23 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 콘텐트를 관리하기 위한 방법 및 전자 디바이스 |
JP5201323B2 (ja) * | 2007-12-07 | 2013-06-05 | 大日本印刷株式会社 | 偏光分離・合成素子 |
JP2010210824A (ja) * | 2009-03-09 | 2010-09-24 | Seiko Epson Corp | 光学素子及び照明装置 |
CN104914496A (zh) * | 2015-06-19 | 2015-09-16 | 安徽大学 | 一种宽带偏振旋转器 |
US12117641B2 (en) | 2019-03-26 | 2024-10-15 | Toray Industries, Inc. | Laminated body and manufacturing method thereof, light guide plate unit, light source unit, display device, projection image display member, projection image display device, and display screen filter |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE471109C (de) * | 1929-01-26 | Reinhold Kaiser | Spreizduebel mit einem verlorenen Keil mit breiter Kopfplatte | |
US4515441A (en) * | 1982-10-13 | 1985-05-07 | Westinghouse Electric Corp. | Dielectric polarizer for high average and high peak power operation |
JPH0690366B2 (ja) * | 1986-02-28 | 1994-11-14 | 富士通株式会社 | 回折格子型光分波器 |
JPH0473603A (ja) * | 1990-07-13 | 1992-03-09 | Fujitsu Ltd | 偏光装置 |
JPH0694902A (ja) * | 1992-09-11 | 1994-04-08 | Canon Inc | 光学素子,光源,液晶光学素子,偏光照明装置,照明光学装置,偏光分離素子,偏光素子,画像投影装置および立体像表示方法 |
JP3521666B2 (ja) | 1997-01-10 | 2004-04-19 | 松下電器産業株式会社 | 偏光分離素子およびこれを用いた投写型表示装置 |
US6108131A (en) * | 1998-05-14 | 2000-08-22 | Moxtek | Polarizer apparatus for producing a generally polarized beam of light |
JP3744233B2 (ja) | 1998-10-30 | 2006-02-08 | コニカミノルタオプト株式会社 | 偏光分離器および投射型画像表示装置 |
US6278552B1 (en) | 1999-05-12 | 2001-08-21 | Minolta Co., Ltd. | Polarization separation device and projection-type display apparatus |
US6341038B1 (en) * | 2000-02-22 | 2002-01-22 | International Business Machines Corporation | Apparatus for polarization conversion |
-
2000
- 2000-12-06 JP JP2000370952A patent/JP4374774B2/ja not_active Expired - Lifetime
-
2001
- 2001-12-06 US US10/003,216 patent/US7038852B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002174723A (ja) | 2002-06-21 |
US20020067546A1 (en) | 2002-06-06 |
US7038852B2 (en) | 2006-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100951213B1 (ko) | 화상 표시 장치 | |
US7369186B2 (en) | Polarizing beam splitter featuring stacked grating layers and display including the same | |
KR0152982B1 (ko) | Lcd디스플레이 시스템용 조명 시스템 | |
US7653268B1 (en) | Substrate guided relay with polarization rotating apparatus | |
WO2001055778A1 (fr) | Polariseur de reflexion optique et projecteur comprenant ce polariseur | |
JPH10232314A (ja) | 光学的偏光装置 | |
JP2010230856A (ja) | 偏光変換素子及び偏光照明光学素子並びに液晶プロジェクタ | |
JPH03126910A (ja) | 偏光光源装置及び偏光ビームスプリッター | |
WO2013122214A1 (ja) | 光学フィルム | |
JP4374774B2 (ja) | 偏光変換光学系および偏光変換素子 | |
TW201137395A (en) | Compact optical integrator | |
US9001279B2 (en) | Polarization conversion device, polarization conversion unit, and projection type video apparatus | |
CN114114812A (zh) | 照明装置和投影仪 | |
US20080002257A1 (en) | Polarization Recovery Plate | |
JP5051830B2 (ja) | 偏光照明装置および投射型画像表示装置 | |
JP2000292745A (ja) | 照明装置および投射型表示装置 | |
WO1997022834A1 (en) | Illumination assembly for providing a polarized light source | |
JP2007093964A (ja) | 偏光変換素子 | |
KR100474918B1 (ko) | 편광 변환 장치 | |
US6859315B2 (en) | Polarization beam splitter and method of producing the same | |
US20040190149A1 (en) | Image projection system and polarizing beam splitter | |
JPH03157621A (ja) | 偏光光源装置 | |
US8422132B2 (en) | Integrated planar polarizing device | |
JP4597848B2 (ja) | 偏光変換素子 | |
WO2022190643A1 (ja) | 偏光変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050613 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061025 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20061107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090831 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |