JP4329524B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4329524B2
JP4329524B2 JP2003417098A JP2003417098A JP4329524B2 JP 4329524 B2 JP4329524 B2 JP 4329524B2 JP 2003417098 A JP2003417098 A JP 2003417098A JP 2003417098 A JP2003417098 A JP 2003417098A JP 4329524 B2 JP4329524 B2 JP 4329524B2
Authority
JP
Japan
Prior art keywords
layer
barrier metal
metal layer
semiconductor device
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003417098A
Other languages
Japanese (ja)
Other versions
JP2005175402A (en
Inventor
修 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003417098A priority Critical patent/JP4329524B2/en
Publication of JP2005175402A publication Critical patent/JP2005175402A/en
Application granted granted Critical
Publication of JP4329524B2 publication Critical patent/JP4329524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は半導体装置およびその製造方法に関し、特に、システムインパッケージ(SiP)と呼ばれるパッケージ形態の半導体装置およびその製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a packaged semiconductor device called a system in package (SiP) and a manufacturing method thereof.

デジタルビデオカメラ、デジタル携帯電話、あるいはノートパソコンなど、携帯用電子機器の小型化、薄型化、軽量化に対する要求は強くなる一方であり、これに応えるために近年のVLSIなどの半導体装置においては3年で7割の縮小化を実現してきた一方で、このような半導体装置をプリント配線基板上に実装した電子回路装置としても、実装基板(プリント配線基板)上の部品の実装密度をいかに向上させるかが重要な課題として研究および開発がなされてきた。   The demand for downsizing, thinning, and weight reduction of portable electronic devices such as digital video cameras, digital mobile phones, and notebook personal computers is increasing. While 70% reduction has been achieved year by year, how to improve the mounting density of components on the mounting board (printed wiring board) even in an electronic circuit device in which such a semiconductor device is mounted on the printed wiring board Research and development has been made as an important issue.

例えば、半導体装置のパッケージ形態としては、DIP(Dual Inline Package )などのリード挿入型から表面実装型へと移行し、さらには半導体チップのパッド電極にはんだや金などからなるバンプ(突起電極)を設け、フェースダウンでバンプを介して配線基板に接続するフリップチップ実装法が開発された。   For example, as a package form of a semiconductor device, a transition from a lead insertion type such as DIP (Dual Inline Package) to a surface mounting type is performed, and furthermore, bumps (projection electrodes) made of solder, gold, or the like are provided on a pad electrode of a semiconductor chip. A flip-chip mounting method has been developed in which a face-down connection is made to the wiring board via bumps.

特に、能動素子を有する半導体チップと受動素子を組み合わせて実装して構成されるシステムインパッケージ(SiP)と呼ばれる複雑な形態のパッケージへと開発が進んでいる。
図24は上記のSiP形態の半導体装置の模式断面図である。
エポキシ樹脂などからなる実装基板100上に、Cuなどからなるプリント配線101が形成されており、これに接続するように、受動素子として電気抵抗素子110や静電容量素子111がマウントされている。さらに、ダイアタッチフィルム112などを用いて、能動素子が形成された半導体チップ113がマウントされ、ワイヤボンディングやバンプなどを介してプリント配線101に接続されている。
In particular, development has progressed to a package of a complicated form called a system in package (SiP) configured by combining a semiconductor chip having an active element and a passive element.
FIG. 24 is a schematic cross-sectional view of the above-described SiP semiconductor device.
A printed wiring 101 made of Cu or the like is formed on a mounting substrate 100 made of epoxy resin or the like, and an electric resistance element 110 or a capacitance element 111 is mounted as a passive element so as to be connected thereto. Furthermore, a semiconductor chip 113 on which active elements are formed is mounted using a die attach film 112 or the like, and is connected to the printed wiring 101 via wire bonding or bumps.

しかし、従来の構成のSiPでは、能動素子が形成された半導体チップを組み合わせる受動素子として、各々パッケージ化された電気抵抗素子や静電容量素子などを用いているため、装置の小型化が不十分であり、また、電気抵抗素子や静電容量素子を別の工程で予め製造する必要があり、工程数が多いので製造コストが高くなってしまっていた。   However, the SiP having the conventional configuration uses packaged electric resistance elements, capacitance elements, etc. as passive elements that combine the semiconductor chips on which the active elements are formed, so that the size of the device is insufficient. In addition, it is necessary to manufacture the electric resistance element and the capacitance element in a separate process in advance, and the manufacturing cost is high because of the large number of processes.

解決しようとする問題点は、従来の構成のSiPでは装置の小型化が不十分であり、製造コストが高くなってしまう点である。   The problem to be solved is that the SiP having the conventional configuration is insufficient in miniaturization of the device, resulting in an increase in manufacturing cost.

本発明の半導体装置は、基板と、前記基板上に形成された絶縁層と、電子回路に接続するように前記絶縁層中に埋め込まれて形成された配線層と、前記基板に対して前記絶縁層の一部を介して、前記配線層に接続して形成され、少なくとも電気抵抗素子および静電容量素子を含む受動素子とを有し、前記電気抵抗素子が、バリアメタル層と前記バリアメタル層よりも高抵抗の層との積層体によって構成され、前記静電容量素子の下部電極が、前記電気抵抗素子におけるバリアメタル層と共通の組成のバリアメタル層と、前記バリアメタル層よりも低抵抗の層との積層体によって構成され、能動素子を含む電子回路が設けられた半導体を含んでパッケージ化された。 The semiconductor device according to the present invention includes a substrate, an insulating layer formed on the substrate, a wiring layer embedded in the insulating layer so as to be connected to an electronic circuit, and the insulation with respect to the substrate. And a passive element including at least an electric resistance element and a capacitance element, wherein the electric resistance element includes a barrier metal layer and the barrier metal layer. It is constituted by a laminate of a layer of higher resistance than the lower electrode of the capacitive element, a barrier metal layer of a common composition as the barrier metal layer in the electrical resistance element, lower resistance than the barrier metal layer consists of the laminate of the layer, the electronic circuit including an active element is packaged include semiconductor provided.

上記の本発明の半導体装置は、能動素子を含む電子回路が設けられた半導体を含んでパッケージ化された半導体装置であって、基板上に絶縁膜が形成されており、絶縁層中に埋め込まれて電子回路に接続するように配線層が形成されており、また、基板に対して絶縁層の一部を介し、配線層に接続して、少なくとも電気抵抗素子および静電容量素子を含む受動素子が、電気抵抗素子と静電容量素子の下部電極が互いに異なる組成の層を含んで形成されている。   The above-described semiconductor device of the present invention is a semiconductor device packaged including a semiconductor provided with an electronic circuit including an active element, and an insulating film is formed on a substrate and embedded in the insulating layer. The wiring layer is formed so as to be connected to the electronic circuit, and the passive element including at least an electric resistance element and a capacitance element is connected to the wiring layer through a part of the insulating layer with respect to the substrate. However, the lower electrodes of the electric resistance element and the capacitance element are formed to include layers having different compositions.

また、本発明の半導体装置の製造方法は、基板上に絶縁膜を形成する工程と、前記絶縁膜上に配線層を形成する工程と、前記絶縁膜上に、前記配線層に接続して、少なくとも電気抵抗素子および静電容量素子を含む受動素子を、前記電気抵抗素子として、バリアメタル層と前記バリアメタル層よりも高抵抗の層とを積層させて形成し、前記静電容量素子の下部電極として、前記電気抵抗素子におけるバリアメタル層と共通の組成のバリアメタル層と、前記バリアメタル層よりも低抵抗の層とを積層させて形成する工程とを有し、能動素子を含む電子回路が設けられた半導体を含んでパッケージ化される。 Further, the method for manufacturing a semiconductor device of the present invention includes a step of forming an insulating film on a substrate, a step of forming a wiring layer on the insulating film, a connection to the wiring layer on the insulating film, a passive element comprising at least electrical resistance elements and capacitance elements, and with the electrical resistance element, than the barrier metal layer barrier metal layer is formed by a high-resistance layer is the product layer, the electrostatic and the lower electrodes of the capacitor, perforated barrier metal layer in the electrical resistance element and the barrier metal layer of a common composition, and forming by the product layer and the low resistance layer than the barrier metal layer Then, it is packaged including a semiconductor provided with an electronic circuit including an active element.

上記の本発明の半導体装置の製造方法は、能動素子を含む電子回路が設けられた半導体を含んでパッケージ化される半導体装置の製造方法であって、基板上に絶縁膜を形成し、絶縁膜上に配線層を形成する。また、絶縁膜上に、配線層に接続して、少なくとも電気抵抗素子および静電容量素子を含む受動素子を、電気抵抗素子と前記静電容量素子の下部電極が互いに異なる組成の層を含むように形成する。   The method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device packaged including a semiconductor provided with an electronic circuit including an active element, wherein an insulating film is formed on a substrate, and the insulating film is formed. A wiring layer is formed thereon. Further, a passive element including at least an electric resistance element and a capacitance element is connected to the wiring layer on the insulating film, and the electric resistance element and the lower electrode of the capacitance element include layers having different compositions. To form.

本発明の半導体装置は、SiPにおいて、能動素子を含む電子回路が設けられた半導体と組み合わせる受動素子として、少なくとも電気抵抗素子および静電容量素子を含む受動素子が、電気抵抗素子と静電容量素子の下部電極が互いに異なる組成の層を含んで構成されており、各々パッケージ化された電気抵抗素子や静電容量素子などを用いないので装置の小型化が可能で、さらに電気抵抗素子や静電容量素子のそれぞれに適した材料を用いて少ない工程数で製造可能で、製造コストの低減が可能である。   In the semiconductor device of the present invention, as a passive element combined with a semiconductor provided with an electronic circuit including an active element in a SiP, a passive element including at least an electric resistance element and a capacitance element includes an electric resistance element and a capacitance element. The lower electrode is composed of layers having different compositions, and each packaged electric resistance element or capacitance element is not used, so that the device can be miniaturized. It is possible to manufacture with a small number of processes using a material suitable for each of the capacitor elements, and the manufacturing cost can be reduced.

本発明の半導体装置の製造方法は、SiPを製造する際に、能動素子を含む電子回路が設けられた半導体と組み合わせる受動素子として、少なくとも電気抵抗素子および静電容量素子を含む受動素子が、電気抵抗素子と静電容量素子の下部電極が互いに異なる組成の層を含むように形成するので、各々パッケージ化された電気抵抗素子や静電容量素子などを用いないので装置の小型化が可能で、さらに電気抵抗素子や静電容量素子のそれぞれに適した材料を用いて少ない工程数で製造可能で、製造コストの低減が可能である。   According to the method for manufacturing a semiconductor device of the present invention, when a SiP is manufactured, a passive element including at least an electric resistance element and a capacitance element is used as a passive element combined with a semiconductor provided with an electronic circuit including an active element. Since the resistance element and the lower electrode of the capacitance element are formed so as to include layers having different compositions, the packaged electric resistance element and the capacitance element are not used, so the device can be downsized. Furthermore, it can be manufactured with a small number of processes using materials suitable for each of the electric resistance element and the capacitance element, and the manufacturing cost can be reduced.

以下に、本発明に係る半導体装置およびその製造方法の実施の形態について、図面を参照して説明する。   Embodiments of a semiconductor device and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.

図1は本実施形態に係るSiP形態の半導体装置の断面図である。
例えば、シリコン基板10上に酸化シリコンからなる下地絶縁膜11が形成され、その上層に、例えば銅などの低抵抗の層を含む下部電極12、SiNなどからなる誘電体膜13、銅などの低抵抗の層を含む下部電極の取り出し電極14および上部電極14’が積層され、下部電極12と下部電極の取り出し電極14は誘電体膜13に形成された開口部H1で接続しており、誘電体膜13を介して下部電極12と上部電極14’が対向している部分が静電容量素子(Ca,Cb)となっている。
FIG. 1 is a cross-sectional view of a SiP-type semiconductor device according to this embodiment.
For example, a base insulating film 11 made of silicon oxide is formed on a silicon substrate 10, and a lower electrode 12 including a low resistance layer such as copper, a dielectric film 13 made of SiN, etc. A lower electrode take-out electrode 14 and an upper electrode 14 ′ including a resistance layer are laminated, and the lower electrode 12 and the lower electrode take-out electrode 14 are connected through an opening H 1 formed in the dielectric film 13. The part where the lower electrode 12 and the upper electrode 14 ′ face each other through the body film 13 is a capacitive element (C a , C b ).

静電容量素子を被覆してポリイミド樹脂などからなる第1絶縁層15が形成されている。
第1絶縁層15には、下部電極取り出し電極14および上部電極14’に達する開口部が形成されており、この開口部内に埋め込まれて下部電極取り出し電極14および上部電極14’に接続するプラグ部分と一体になって、第1絶縁層15上にTiCuなどからなるバリアメタル層16aおよび銅層16bからなる第1配線16が形成されている。
第1配線16の一部はらせん状に形成され、インダクタンス(La,Lb)が構成されている。
A first insulating layer 15 made of polyimide resin or the like is formed so as to cover the capacitance element.
The first insulating layer 15 has openings reaching the lower electrode extraction electrode 14 and the upper electrode 14 ', and plug portions buried in the opening and connected to the lower electrode extraction electrode 14 and the upper electrode 14'. A first wiring 16 made of a barrier metal layer 16 a made of TiCu or the like and a copper layer 16 b is formed on the first insulating layer 15.
A part of the first wiring 16 is formed in a spiral shape, and an inductance (L a , L b ) is configured.

また、第1配線16を被覆して第1絶縁層15と同様のポリイミド樹脂などからなる第2絶縁層17が形成され、第1配線16に達する開口部が形成されており、この開口部内に埋め込まれて第1配線16に接続するプラグ部分と一体になって、第2絶縁層17上にバリアメタル層18aおよび銅層18bからなる第2配線18が形成されている。
第2配線18の一部はらせん状に形成され、インダクタンスLcが構成されている。
In addition, a second insulating layer 17 made of the same polyimide resin as the first insulating layer 15 is formed so as to cover the first wiring 16, and an opening reaching the first wiring 16 is formed. A second wiring 18 composed of a barrier metal layer 18 a and a copper layer 18 b is formed on the second insulating layer 17 so as to be integrated with the plug portion embedded and connected to the first wiring 16.
A part of the second wiring 18 is formed in a spiral shape, and an inductance L c is configured.

さらに、第2配線18を被覆して第1絶縁層15と同様のポリイミド樹脂などからなる第3絶縁層19が形成され、第2配線18に達する開口部が形成されている。
上記の開口部内に埋め込まれて第2配線18に接続するプラグ部分と一体になって、第3絶縁層19上にバリアメタル層20aおよび銅層20b1からなる第3配線20が形成されている。
ここで、一部の領域においては、上記のバリアメタル層20aおよび銅層20b1からなる第3配線20ではなく、例えば2つの開口部の内壁およびこれらの開口部の間におけるに第3絶縁層19を被覆して、バリアメタル層20aおよびTiNなどの高抵抗体からなる高抵抗層20rが積層され、2つの開口部間を接続するように電気抵抗素子Raが構成されている。さらにこれらの2つの開口部内を埋め込むプラグ部分と一体になって、銅層20b2からなる第3配線20’が形成されている。
Further, a third insulating layer 19 made of the same polyimide resin as that of the first insulating layer 15 is formed so as to cover the second wiring 18, and an opening reaching the second wiring 18 is formed.
A third wiring 20 made of a barrier metal layer 20a and a copper layer 20b 1 is formed on the third insulating layer 19 so as to be integrated with the plug portion embedded in the opening and connected to the second wiring 18. .
Here, in a part of the region, the third insulating layer is not the third wiring 20 made of the barrier metal layer 20a and the copper layer 20b 1 , for example, between the inner walls of the two openings and the openings. 19, a barrier metal layer 20a and a high resistance layer 20r made of a high resistance material such as TiN are laminated, and an electric resistance element Ra is configured to connect the two openings. Further, a third wiring 20 ′ made of the copper layer 20b 2 is formed integrally with the plug portion embedded in these two openings.

また、第3絶縁層19および第3配線20の上層に、能動素子を含む電子回路が設けられた半導体チップ21がダイアタッチフィルム22により接着されている。半導体チップ21は、半導体本体部分21aにパッド21bが形成され、パッド21bを除く領域は酸化シリコンの保護層21cで覆われた構成であり、フェースアップで、即ち、パッド21b形成面の反対側の面側からマウントされている。   Further, a semiconductor chip 21 provided with an electronic circuit including an active element is bonded to the upper layer of the third insulating layer 19 and the third wiring 20 by a die attach film 22. The semiconductor chip 21 has a structure in which a pad 21b is formed on a semiconductor body portion 21a, and a region excluding the pad 21b is covered with a silicon oxide protective layer 21c, face-up, that is, on the opposite side of the pad 21b forming surface. Mounted from the front side.

第3配線(20,20’)、電気抵抗素子Raおよび半導体チップ21を被覆して第1絶縁層15と同様のポリイミド樹脂などからなる第4絶縁層23が形成されている。
第4絶縁層23には、半導体チップ21のパッド21bおよび第3配線(20,20’)などに達する開口部が形成されている。
上記の開口部内に埋め込まれてパッド21bおよび第3配線(20,20’)に接続するプラグ部分と一体になって、第4絶縁層23上にバリアメタル層24aおよび銅層24bからなる第4配線24が形成されている。
A fourth insulating layer 23 made of the same polyimide resin as the first insulating layer 15 is formed so as to cover the third wiring (20, 20 ′), the electric resistance element Ra, and the semiconductor chip 21.
In the fourth insulating layer 23, an opening reaching the pad 21b of the semiconductor chip 21 and the third wiring (20, 20 ′) is formed.
A fourth portion comprising a barrier metal layer 24a and a copper layer 24b on the fourth insulating layer 23 is integrated with the plug portion embedded in the opening and connected to the pad 21b and the third wiring (20, 20 ′). A wiring 24 is formed.

第4配線24に接続して、銅などからなる導電性ポスト25が形成されており、その間隙における第4絶縁層23の上層に、ポリアミドイミド樹脂などからなる絶縁性のバッファ層26が形成されている。
さらに、バッファ層26の表面において第2導電性ポスト25に接続するようにバンプ(突起電極)27が形成されている。
A conductive post 25 made of copper or the like is connected to the fourth wiring 24, and an insulating buffer layer 26 made of polyamideimide resin or the like is formed on the fourth insulating layer 23 in the gap. ing.
Further, bumps (projection electrodes) 27 are formed on the surface of the buffer layer 26 so as to be connected to the second conductive posts 25.

上記のように、本実施形態の半導体装置においては、シリコン基板10上に第1〜第4絶縁層(15,17,19,23)などからなる絶縁層が形成されており、この絶縁層中に能動素子を含む電子回路が設けられた半導体チップ21が埋め込まれており、この電子回路に接続するように絶縁層中に第1〜第4配線(16,18,20,20’,24)などからなる配線層が形成されている。
また、基板に対して絶縁層の一部を介して、配線層に接続して、電気抵抗素子Ra、静電容量素子(Ca,Cb)およびインダクタンス(La,Lb,Lc)を含む受動素子が設けられている。
ここで、電気抵抗素子Raは高抵抗層20rを含んでおり、一方、静電容量素子(Ca,Cb)の下部電極12は銅などの低抵抗の層を含んでおり、これらが互いに異なる組成の層を含んで構成されている。
As described above, in the semiconductor device of the present embodiment, the insulating layer composed of the first to fourth insulating layers (15, 17, 19, 23) is formed on the silicon substrate 10, and the insulating layer A semiconductor chip 21 provided with an electronic circuit including an active element is embedded in the first to fourth wirings (16, 18, 20, 20 ′, 24) in the insulating layer so as to be connected to the electronic circuit. A wiring layer made of the like is formed.
Further, the substrate is connected to the wiring layer through a part of the insulating layer with respect to the substrate, and the electric resistance element R a , the capacitance element (C a , C b ) and the inductance (L a , L b , L c) ) Is provided.
Here, the electric resistance element Ra includes the high resistance layer 20r, while the lower electrode 12 of the capacitance element (C a , C b ) includes a low resistance layer such as copper. It is configured to include layers having different compositions.

上記の静電容量素子について、詳細に説明する。
図2は本実施形態に係る半導体装置における静電容量素子部分を拡大した要部断面図である。
例えば、シリコン基板10上に酸化シリコンからなる下地絶縁膜11が形成され、その上層に、例えばTiCuあるいはCrCuなどからなるシード層となるバリアメタル層12aが形成されており、その上層に低抵抗層として銅層12bが形成されている。銅の他、銀、アルミニウム、アルミニウム−銅合金などの低抵抗材料を用いることができる。このように、バリアメタル層12aおよび銅層12bからなる下部電極12が構成されている。
下部電極12を被覆して、SiN、Ta25、HfO2、Al23、SiON、TiOあるいはMgF2などからなる誘電体膜13が形成されており、下部電極12の取り出し領域において誘電体膜13に開口部H1が形成されている。
開口部H1内を被覆して、例えばTiCuあるいはCrCuなどからなるシード層となるバリアメタル層14aが形成されており、その上層に低抵抗層として銅層14b1が形成されている。銅の他、銀、アルミニウム、アルミニウム−銅合金などの低抵抗材料を用いることができる。このように、バリアメタル層14aおよび銅層14b1からなる下部電極取り出し電極14が構成されている。
また、誘電体膜13上に、上記と同様にバリアメタル層14aおよび銅層14b2からなる上部電極14’が構成されている。
このように、誘電体膜13を介して下部電極12と上部電極14’が対向している部分が静電容量素子となる。
The capacitance element will be described in detail.
FIG. 2 is an enlarged cross-sectional view of a main part of the capacitance element portion in the semiconductor device according to the present embodiment.
For example, a base insulating film 11 made of silicon oxide is formed on a silicon substrate 10, and a barrier metal layer 12a serving as a seed layer made of, for example, TiCu or CrCu is formed thereon, and a low resistance layer is formed thereon. As a result, a copper layer 12b is formed. In addition to copper, low resistance materials such as silver, aluminum, and aluminum-copper alloys can be used. Thus, the lower electrode 12 composed of the barrier metal layer 12a and the copper layer 12b is configured.
A dielectric film 13 made of SiN, Ta 2 O 5 , HfO 2 , Al 2 O 3 , SiON, TiO, MgF 2 or the like is formed so as to cover the lower electrode 12. An opening H 1 is formed in the body film 13.
Covers the inside of the opening portion H 1, for example, a barrier metal layer 14a serving as a seed layer made of TiCu or CrCu has been formed, a copper layer 14b 1 is formed as a low-resistance layer thereon. In addition to copper, low resistance materials such as silver, aluminum, and aluminum-copper alloys can be used. Thus, the lower electrode extraction electrode 14 composed of the barrier metal layer 14a and the copper layer 14b 1 is configured.
Further, on the dielectric film 13, upper electrode 14 in the same manner as described above the barrier metal layer 14a and copper layer 14b 2 'is constituted.
As described above, the portion where the lower electrode 12 and the upper electrode 14 ′ are opposed to each other through the dielectric film 13 is a capacitance element.

上記の静電容量素子は、ポリイミド樹脂などからなる第1絶縁層15により被覆され、下部電極取り出し電極14および上部電極14’に達する開口部が形成されており、この開口部内に埋め込まれて下部電極取り出し電極14および上部電極14’に接続するプラグ部分と一体になって、第1絶縁層15上にバリアメタル層16aおよび銅層16bからなる第1配線16が形成されている。   The capacitance element is covered with a first insulating layer 15 made of polyimide resin or the like, and an opening reaching the lower electrode take-out electrode 14 and the upper electrode 14 ′ is formed. A first wiring 16 composed of a barrier metal layer 16a and a copper layer 16b is formed on the first insulating layer 15 so as to be integrated with a plug portion connected to the electrode extraction electrode 14 and the upper electrode 14 ′.

上記の図2に示す部分の製造工程について図3〜図9の断面図を参照して説明する。
まず、図3(a)に示すように、例えば、CVD(化学気相成長)法あるいはスパッタリング層などによりシリコン基板10上に酸化シリコンを300nmの膜厚で形成し、下地絶縁膜11とする。
The manufacturing process of the portion shown in FIG. 2 will be described with reference to the cross-sectional views of FIGS.
First, as shown in FIG. 3A, silicon oxide is formed with a film thickness of 300 nm on the silicon substrate 10 by, for example, a CVD (chemical vapor deposition) method or a sputtering layer to form the base insulating film 11.

次に、図3(b)に示すように、例えば、シードスパッタリングによりTiCuあるいはCrCuを成膜し、全面にバリアメタル層12aを形成し、O2アッシャー(300W)で5分処理する。 Next, as shown in FIG. 3B, for example, a TiCu or CrCu film is formed by seed sputtering, a barrier metal layer 12a is formed on the entire surface, and is treated with O 2 asher (300 W) for 5 minutes.

次に、図3(c)に示すように、例えば、下部電極の形成領域以外にメッキされるのを防止するために、レジスト塗布および現像処理を行い、下部電極の形成領域を開口するパターンのレジスト膜R1を成膜する。   Next, as shown in FIG. 3C, for example, in order to prevent plating in areas other than the formation area of the lower electrode, resist coating and development processing are performed to form a pattern that opens the formation area of the lower electrode. A resist film R1 is formed.

次に、図4(a)に示すように、例えば、レジスト膜R1をマスクとし、バリアメタル層12aをシードとする1.5A、90分の電解メッキにより膜厚が5μm程度となるように銅をメッキして、下部電極の形成領域に銅層12bを形成する。銅の他、銀、アルミニウム、アルミニウム−銅合金などの低抵抗材料を用いることができ、この場合には、上記バリアメタル層の組成を適宜変更する。   Next, as shown in FIG. 4A, for example, the resist film R1 is used as a mask, and the copper film is formed so as to have a film thickness of about 5 μm by electroplating at 1.5 A for 90 minutes using the barrier metal layer 12a as a seed. Is plated to form a copper layer 12b in the lower electrode formation region. In addition to copper, a low-resistance material such as silver, aluminum, or an aluminum-copper alloy can be used. In this case, the composition of the barrier metal layer is appropriately changed.

次に、図4(b)に示すように、例えば、アッシング処理などによりレジスト膜R1を除去し、さらに図4(c)に示すように、銅層12bをマスクとしてバリアメタル層12aをエッチング加工する。これにより、下地絶縁膜11上にバリアメタル層12aおよび銅層12bからなる下部電極12を形成する。   Next, as shown in FIG. 4B, for example, the resist film R1 is removed by ashing or the like, and further, as shown in FIG. 4C, the barrier metal layer 12a is etched using the copper layer 12b as a mask. To do. Thus, the lower electrode 12 composed of the barrier metal layer 12a and the copper layer 12b is formed on the base insulating film 11.

次に、図5(a)に示すように、例えばCVD法あるいはスパッタリング法などにより、SiN、Ta25、HfO2、Al23、SiON、TiOあるいはMgF2を堆積させて、誘電体膜13を形成する。 Next, as shown in FIG. 5A, SiN, Ta 2 O 5 , HfO 2 , Al 2 O 3 , SiON, TiO, or MgF 2 is deposited by, eg, CVD or sputtering to form a dielectric material. A film 13 is formed.

次に、図5(b)に示すように、例えば、下部電極取り出し口領域を開口するパターンの不図示のレジスト膜をパターン形成し、これをマスクとしてRIE(反応性イオンエッチング)などのプラズマエッチング処理を行って、誘電体膜13に開口部H1を形成する。この後、レジスト膜を除去する。 Next, as shown in FIG. 5B, for example, a resist film (not shown) having a pattern for opening the lower electrode extraction opening region is formed as a pattern, and plasma etching such as RIE (reactive ion etching) is performed using the resist film as a mask. Processing is performed to form the opening H 1 in the dielectric film 13. Thereafter, the resist film is removed.

次に、図5(c)に示すように、例えば、シードスパッタリングによりTiCuあるいはCrCuを成膜し、開口部H1内および誘電体膜13の上層を被覆して全面にバリアメタル層14aを形成し、O2アッシャー(300W)で5分処理する。 Next, as shown in FIG. 5 (c), for example, by forming a TiCu or CrCu by seed sputtering, on the entire surface to cover the upper opening portion H 1 and in the dielectric film 13, a barrier metal layer 14a formed And treated with O 2 asher (300 W) for 5 minutes.

次に、図6(a)に示すように、例えば、下部電極取り出し電極および上部電極の形成領域以外にメッキされるのを防止するために、レジスト塗布および現像処理を行い、下部電極取り出し電極および上部電極の形成領域を開口するパターンのレジスト膜R2を成膜する。   Next, as shown in FIG. 6 (a), for example, in order to prevent plating outside the formation region of the lower electrode extraction electrode and the upper electrode, resist coating and development are performed, A resist film R2 having a pattern opening the formation region of the upper electrode is formed.

次に、図6(b)に示すように、例えば、レジスト膜R2をマスクとし、バリアメタル層14aをシードとする1.5A、90分の電解メッキにより膜厚が5μm程度となるように銅をメッキして、下部電極取り出し電極および上部電極の形成領域に銅層(14b1,14b2)をそれぞれ形成する。 Next, as shown in FIG. 6B, for example, the resist film R2 is used as a mask, and the copper film is formed so as to have a film thickness of about 5 μm by electroplating at 1.5 A for 90 minutes using the barrier metal layer 14a as a seed. Are plated to form copper layers (14b 1 , 14b 2 ) in the formation region of the lower electrode take-out electrode and the upper electrode, respectively.

次に、図6(c)に示すように、例えば、アッシング処理などによりレジスト膜R2を除去し、さらに図7(a)に示すように、銅層(14b1,14b2)をマスクとしてバリアメタル層14aをエッチング加工する。これにより、開口部H1内を被覆して下部電極12に接続するバリアメタル層14aおよび銅層14b1からなる下部電極取り出し電極14と、誘電体膜13上において下部電極12に対向するバリアメタル層14aおよび銅層14b2からなる上部電極14’を形成する。
上部電極14’についても、これを構成する低抵抗の層として、銅の他、銀、アルミニウム、アルミニウム−銅合金などの低抵抗材料を用いることができる。
Next, as shown in FIG. 6C, for example, the resist film R2 is removed by ashing or the like, and further, as shown in FIG. 7A, a barrier is formed using the copper layers (14b 1 , 14b 2 ) as a mask. The metal layer 14a is etched. Thus, a barrier metal for the lower electrode lead-out electrode 14 of the barrier metal layer 14a and copper layer 14b 1 to cover the inside of the opening portion H 1 is connected to the lower electrode 12, facing the lower electrode 12 on the dielectric film 13 An upper electrode 14 ′ composed of the layer 14a and the copper layer 14b 2 is formed.
Also for the upper electrode 14 ', a low resistance material such as silver, aluminum, or an aluminum-copper alloy can be used as a low resistance layer constituting the upper electrode 14'.

次に、図7(b)に示すように、例えば、スピンコート法などにより、ポリイミド樹脂、エポキシ樹脂あるいはアクリル樹脂などの感光性絶縁材料を供給し、第1絶縁層15を形成する。   Next, as shown in FIG. 7B, a photosensitive insulating material such as a polyimide resin, an epoxy resin, or an acrylic resin is supplied by, for example, a spin coating method to form the first insulating layer 15.

次に、図7(c)に示すように、第1絶縁層15に対してパターン露光および現像し、下部電極の取り出し電極14に達する開口部H2および上部電極14’に達する開口部H3を第1絶縁層15に形成する。 Next, as shown in FIG. 7C, pattern exposure and development are performed on the first insulating layer 15, and an opening H 2 reaching the extraction electrode 14 of the lower electrode and an opening H 3 reaching the upper electrode 14 ′ are obtained. Is formed in the first insulating layer 15.

次に、図8(a)に示すように、例えば、開口部(H2,H3)内に銅層(14b1,14b2)などの低抵抗の層が露出している状態で、全面にArRFスパッタリングを行った後、シードスパッタリングによりTiCuあるいはCrCuを成膜し、第1絶縁層15に形成した上記開口部(H2,H3)の内壁を被覆して、全面にバリアメタル層16aを形成し、O2アッシャー(300W)で5分処理する。 Next, as shown in FIG. 8A, for example, in a state where a low resistance layer such as a copper layer (14b 1 , 14b 2 ) is exposed in the openings (H 2 , H 3 ), the entire surface is exposed. After ArRF sputtering is performed, TiCu or CrCu is formed by seed sputtering, the inner wall of the opening (H 2 , H 3 ) formed in the first insulating layer 15 is covered, and the barrier metal layer 16a is formed on the entire surface. And treated with O 2 asher (300 W) for 5 minutes.

次に、図8(b)に示すように、例えば、第1絶縁層15に形成した上記開口部(H2,H3)と第1配線の形成領域以外にメッキされるのを防止するために、レジスト塗布および現像処理を行い、上記開口部(H2,H3)と第1配線の形成領域を開口するパターンのレジスト膜R3を成膜する。 Next, as shown in FIG. 8B, for example, in order to prevent plating other than the opening (H 2 , H 3 ) formed in the first insulating layer 15 and the first wiring formation region. Then, resist coating and development are performed to form a resist film R3 having a pattern that opens the opening (H 2 , H 3 ) and the first wiring formation region.

次に、図9(a)に示すように、例えば、レジスト膜R3をマスクとし、バリアメタル層16aをシードとする1.5A、90分の電解メッキにより、第1絶縁層15上での膜厚が5μm程度となるように銅をメッキして、第1絶縁層15に形成した上記開口部(H2,H3)と第1配線の形成領域に銅層16bを形成する。 Next, as shown in FIG. 9A, for example, a film on the first insulating layer 15 is obtained by electrolytic plating of 1.5 A for 90 minutes using the resist film R3 as a mask and the barrier metal layer 16a as a seed. Copper is plated to a thickness of about 5 μm, and a copper layer 16b is formed in the opening (H 2 , H 3 ) formed in the first insulating layer 15 and the first wiring formation region.

次に、図9(b)に示すように、例えば、アッシング処理などによりレジスト膜R3を除去する。
さらに、銅層16bをマスクとしてバリアメタル層16aをエッチング加工する。以上で、下部電極取り出し電極14および上部電極14’に接続するプラグ部分と一体にして、第1絶縁層15上にバリアメタル層16aおよび銅層16bからなる第1配線16を形成する。以上で、図2に示す構成とすることができる。
このとき、受動素子の1つであるインダクタンスも第1配線16の一部として同時にパターン形成することも可能である。
Next, as shown in FIG. 9B, the resist film R3 is removed by, for example, an ashing process.
Further, the barrier metal layer 16a is etched using the copper layer 16b as a mask. Thus, the first wiring 16 including the barrier metal layer 16a and the copper layer 16b is formed on the first insulating layer 15 integrally with the plug portion connected to the lower electrode extraction electrode 14 and the upper electrode 14 ′. As described above, the configuration shown in FIG. 2 can be obtained.
At this time, the inductance, which is one of the passive elements, can be simultaneously patterned as a part of the first wiring 16.

上記の静電容量素子において、下部電極12は銅層12bなどの低抵抗の層を含んで構成されており、下部電極12の抵抗率を下げることにより、さらには下部電極12の銅層12b厚さを5μm以上とることで比抵抗ρを下げる効果により、静電容量素子のQ値を高め、高周波特性を向上させることができる。
上記のように銅層を5μm以上の膜厚で成膜する場合にはメッキ処理を用いることが好ましい。1〜2μm程度であれば、サブトラクティブ法を用い、レジストマスクによりスピンエッチャーを用いてパターン形成してもよい。
また、上部電極14’についても、上記のように銅層などの低抵抗の層を含んで構成することで、静電容量素子のQ値を高めることができる。
In the above capacitive element, the lower electrode 12 includes a low resistance layer such as a copper layer 12b. By reducing the resistivity of the lower electrode 12, the thickness of the copper layer 12b of the lower electrode 12 is further reduced. By reducing the specific resistance ρ by setting the thickness to 5 μm or more, the Q value of the capacitive element can be increased and the high frequency characteristics can be improved.
As described above, when the copper layer is formed with a film thickness of 5 μm or more, it is preferable to use a plating treatment. If the thickness is about 1 to 2 μm, a pattern may be formed using a spin etcher with a resist mask using a subtractive method.
Further, the upper electrode 14 'can also be configured to include a low-resistance layer such as a copper layer as described above, whereby the Q value of the capacitance element can be increased.

次に、電気抵抗素子について、詳細に説明する。
図10は本実施形態に係る半導体装置における電気抵抗素子部分を拡大した要部断面図である。ここでは、図1とは異なり、電気抵抗素子は2つの静電容量素子のそれぞれの一電極間を接続するように形成された構成を示している。
例えば、シリコン基板10上形成された下地絶縁膜11の上層に、図2の構成を有する2つの静電容量素子が形成されている。即ち、TiCuなどのバリアメタル層12aおよび銅層12bからなる下部電極12、誘電体膜13、下部電極取り出し電極14および上部電極14’が積層されており、誘電体膜13を介して下部電極12と上部電極14’が対向して静電容量素子(Ca,Cb)が隣接して構成されている。
上記の静電容量素子(Ca,Cb)を被覆してポリイミド樹脂などからなる第1絶縁層15が形成され、下部電極取り出し電極14に達する開口部H2および上部電極14’に達する開口部H3が形成されている。
Next, the electric resistance element will be described in detail.
FIG. 10 is an enlarged cross-sectional view of the main part of the electrical resistance element portion in the semiconductor device according to the present embodiment. Here, unlike FIG. 1, the electric resistance element shows a configuration formed so as to connect one electrode of each of the two capacitance elements.
For example, two electrostatic capacitance elements having the configuration of FIG. 2 are formed on the base insulating film 11 formed on the silicon substrate 10. That is, a lower electrode 12 made of a barrier metal layer 12a such as TiCu and a copper layer 12b, a dielectric film 13, a lower electrode take-out electrode 14 and an upper electrode 14 ′ are laminated, and the lower electrode 12 is interposed via the dielectric film 13. And the upper electrode 14 ′ are opposed to each other, and electrostatic capacitance elements (C a , C b ) are adjacent to each other.
A first insulating layer 15 made of polyimide resin or the like is formed so as to cover the capacitance elements (C a , C b ), and an opening H 2 reaching the lower electrode extraction electrode 14 and an opening reaching the upper electrode 14 ′. Part H 3 is formed.

上記の開口部の内、例えば、それぞれの静電容量素子の内側に配置された電極に達する開口部、即ち、図面上左側の静電容量素子Caの上部電極14’に達する開口部H3と、図面上右側の静電容量素子Cbの下部電極取り出し電極14に達する開口部H2との内壁、および、これらの開口部の間における第1絶縁層15を被覆して、TiCuなどのバリアメタル層16aおよびTiNなどの高抵抗層16rが積層されており、2つの開口部間を接続するように電気抵抗素子Rが構成されている。さらにこれらの2つの開口部内を埋め込むプラグ部分と一体になって、銅層16b2からなる第1配線16’が形成されている。 Among the openings, for example, opening reaching the electrode disposed on the inner side of each of the capacitive element, i.e., opening H 3 reaching the upper electrode 14 'of the capacitance element C a drawing on the left When the inner wall of the opening portion H 2 reaching the lower electrode lead-out electrode 14 of the electrostatic capacitance element C b of the drawing right, and covers the first insulating layer 15 between these openings, such as TiCu A barrier metal layer 16a and a high resistance layer 16r such as TiN are stacked, and the electric resistance element R is configured to connect the two openings. Further, a first wiring 16 ′ made of a copper layer 16 b 2 is formed integrally with the plug portion embedded in these two openings.

一方、上記の開口部の内、例えば、それぞれの静電容量素子の外側に配置された電極に達する開口部、即ち、図面上左側の静電容量素子Caの下部電極取り出し電極14に達する開口部H2と、図面上右側の静電容量素子Cbの上部電極14’に達する開口部H3内に埋め込まれて、下部電極取り出し電極14および上部電極14’に接続するプラグ部分と一体になって、第1絶縁層15上にバリアメタル層16aおよび銅層16b1からなる第1配線16が形成されている。 On the other hand, among the openings, for example, an opening reaching the electrode disposed outside of each of the capacitive element, i.e., an opening reaching the lower electrode lead-out electrode 14 of the electrostatic capacitance element C a drawing on the left The portion H 2 and the plug portion that is embedded in the opening H 3 reaching the upper electrode 14 ′ of the electrostatic capacitance element C b on the right side in the drawing and connected to the lower electrode extraction electrode 14 and the upper electrode 14 ′ are integrated. Thus, the first wiring 16 including the barrier metal layer 16 a and the copper layer 16 b 1 is formed on the first insulating layer 15.

上記の図10に示す部分の製造工程について説明する。
まず、上述の図7(c)までの工程と同様にして、2つの静電容量素子(Ca,Cb)を形成し、さらにこれらを被覆してポリイミド樹脂などからなる第1絶縁層15を形成し、下部電極取り出し電極14に達する開口部H2および上部電極14’に達する開口部H3を形成し、図11(a)に示す構成とする。
次に、図11(b)に示すように、例えば、シードスパッタリングによりTiCuあるいはCrCuを成膜し、第1絶縁層15に形成した上記開口部(H2,H3)の内壁を被覆して、全面にバリアメタル層16aを形成する。さらに、シードスパッタリングの条件を変更して、バリアメタル層16aよりも高抵抗であるTiN、CrNi、Ti、Cr、MoあるいはWなどを連続的に堆積させ、高抵抗層16rを形成する。
A manufacturing process of the portion shown in FIG. 10 will be described.
First, in the same manner as in the above-described steps up to FIG. 7 (c), two capacitance elements (C a , C b ) are formed, and further covered with these, the first insulating layer 15 made of polyimide resin or the like. And an opening H 2 reaching the lower electrode take-out electrode 14 and an opening H 3 reaching the upper electrode 14 ′ are formed, and the structure shown in FIG.
Next, as shown in FIG. 11B, for example, TiCu or CrCu is formed by seed sputtering, and the inner wall of the opening (H 2 , H 3 ) formed in the first insulating layer 15 is covered. A barrier metal layer 16a is formed on the entire surface. Further, the seed sputtering conditions are changed to continuously deposit TiN, CrNi, Ti, Cr, Mo, W, or the like having a higher resistance than the barrier metal layer 16a, thereby forming the high resistance layer 16r.

次に、図12(a)に示すように、例えば、上記の2つの静電容量素子(Ca,Cb)の内側に配置された電極に達する開口部、即ち、図面上左側の静電容量素子Caの上部電極14’に達する開口部H3と、図面上右側の静電容量素子Cbの下部電極取り出し電極14に達する開口部H2と、これらの開口部の間における領域を保護するレジスト膜(不図示)をパターン形成し、これをマスクとしてエッチング行って、高抵抗層16rをパターン加工する。 Next, as shown in FIG. 12A, for example, an opening reaching the electrodes arranged inside the two capacitance elements (C a , C b ), that is, the electrostatic capacitance on the left side in the drawing. An opening H 3 reaching the upper electrode 14 ′ of the capacitive element C a, an opening H 2 reaching the lower electrode take-out electrode 14 of the capacitive element C b on the right side in the drawing, and a region between these openings. A resist film (not shown) to be protected is patterned, and etching is performed using this as a mask to pattern the high resistance layer 16r.

次に、図12(b)に示すように、例えば、第1絶縁層15に形成した上記開口部(H2,H3)と第1配線の形成領域以外にメッキされるのを防止するために、レジスト塗布および現像処理を行い、上記開口部(H2,H3)と第1配線の形成領域を開口するパターンのレジスト膜R4を成膜する。 Next, as shown in FIG. 12B, for example, in order to prevent plating other than the opening (H 2 , H 3 ) formed in the first insulating layer 15 and the first wiring formation region. Then, resist coating and development are performed to form a resist film R4 having a pattern that opens the opening (H 2 , H 3 ) and the first wiring formation region.

次に、図12(a)に示すように、例えば、レジスト膜R4をマスクとし、バリアメタル層16aおよび高抵抗層16rをシードとする1.5A、90分の電解メッキにより、第1絶縁層15上での膜厚が5μm程度となるように銅をメッキして、上記の2つの静電容量素子(Ca,Cb)の外側に配置された電極に達する開口部、即ち、図面上左側の静電容量素子Caの下部電極取り出し電極14に達する開口部H2と、図面上右側の静電容量素子Cbの上部電極14’に達する開口部H3内において、バリアメタル層16aの上層に銅層16b1を形成する。
また、同時に、上記の2つの静電容量素子(Ca,Cb)の内側に配置された電極に達する開口部、即ち、図面上左側の静電容量素子Caの上部電極14’に達する開口部H3と、図面上右側の静電容量素子Cbの下部電極取り出し電極14に達する開口部H2内において、高抵抗層16rの上層に銅層16b2を形成する。
Next, as shown in FIG. 12A, for example, the first insulating layer is formed by electrolytic plating at 1.5 A for 90 minutes using the resist film R4 as a mask and the barrier metal layer 16a and the high resistance layer 16r as seeds. Copper is plated so that the film thickness on the surface 15 is about 5 μm, and an opening reaching the electrodes arranged outside the two capacitance elements (C a , C b ), that is, on the drawing In the opening H 2 reaching the lower electrode take-out electrode 14 of the left capacitive element C a and the opening H 3 reaching the upper electrode 14 ′ of the right capacitive element C b in the drawing, the barrier metal layer 16 a A copper layer 16b 1 is formed on the upper layer.
At the same time, the opening reaches the electrode disposed inside the two capacitance elements (C a , C b ), that is, reaches the upper electrode 14 ′ of the capacitance element C a on the left side in the drawing. an opening H 3, in the opening H 2 reaching the lower electrode lead-out electrode 14 of the electrostatic capacitance element C b of the drawing right, to form a copper layer 16b 2 on the upper layer of the high-resistance layer 16r.

次に、図12(a)に示すように、例えば、アッシング処理などによりレジスト膜R4を除去する。
さらに、銅層(16b1,16b2)および高抵抗層16rをマスクとしてバリアメタル層16aをエッチング加工する。
以上のようにして、図面上左側の静電容量素子Caの下部電極取り出し電極14に達する開口部H2と、図面上右側の静電容量素子Cbの上部電極14’に達する開口部H3内において、下部電極取り出し電極14および上部電極14’に接続するプラグ部分と一体になったバリアメタル層16aおよび銅層16b1からなる第1配線16を形成し、一方、図面上左側の静電容量素子Caの上部電極14’に達する開口部H3と、図面上右側の静電容量素子Cbの下部電極取り出し電極14に達する開口部H2内において、開口部内を埋め込むプラグ部分と一体になった銅層16b2からなる第1配線16’を形成し、さらに、図面上左側の静電容量素子Caの上部電極14’に達する開口部H3と、図面上右側の静電容量素子Cbの下部電極取り出し電極14に達する開口部H2の間を接続する電気抵抗素子Rを形成することができる。
Next, as shown in FIG. 12A, the resist film R4 is removed by, for example, an ashing process.
Further, the barrier metal layer 16a is etched using the copper layers (16b 1 , 16b 2 ) and the high resistance layer 16r as a mask.
As described above, the opening H 2 reaching the lower electrode lead-out electrode 14 of the electrostatic capacitance element C a drawing on the left, the opening H to reach the upper electrode 14 'of the capacitance element C b of the drawings on the right side within 3 to form a first wiring 16 formed of a barrier metal layer 16a and copper layer 16b 1 became plug portion integrally connecting the electrode 14 and the upper electrode 14 is taken out the lower electrodes', whereas, on the drawing left of the electrostatic an opening H 3 reaching the upper electrode 14 'of the capacitor element C a, in the opening H 2 reaching the lower electrode lead-out electrode 14 of the electrostatic capacitance element C b of the drawing right, the plug portion embedding the opening portion 'to form a further upper electrode 14 of the electrostatic capacitance element C a drawing on the left' first wiring 16 made of copper layer 16b 2 which is integral with the opening H 3 reaching the electrostatic drawing on the right electrode 1 is taken out the bottom electrode of the capacitor C b The electrical resistance element R connecting between the openings H 2 reaching 4 can be formed.

上記の図10〜13を参照した電気抵抗素子の説明においては、第1配線を構成するバリアメタル層16a上に高抵抗層16rが形成された場合について示しているが、例えば図1に示す構成の半導体装置を製造する場合には、第3配線20を構成するバリアメタル層20a上に上記と同様にして高抵抗層20rをパターン形成することで、図1に示すような電気抵抗素子Raを形成することができる。 In the description of the electrical resistance element with reference to FIGS. 10 to 13 above, the case where the high resistance layer 16r is formed on the barrier metal layer 16a constituting the first wiring is shown. For example, the configuration shown in FIG. When the semiconductor device is manufactured, the high resistance layer 20r is patterned on the barrier metal layer 20a constituting the third wiring 20 in the same manner as described above, so that the electric resistance element R a as shown in FIG. Can be formed.

上記の本実施形態に係る半導体装置においては、上記の静電容量素子および電気抵抗素子などを組み合わせてフィルタなどを構成した場合の通常帯域でのロス改善、静電容量素子のQ値向上のために、静電容量素子の下部電極に低抵抗の層を含む構成としている。
一方で、電気抵抗素子の形成は、各絶縁層上に形成する配線工程におけるシードスパッタリング工程において行うことを特徴としている。スパッタリングの成膜条件を変更することで、バリアメタル層と高抵抗層を容易に積層させることができ、各絶縁層のいずれの場所においても特に工程を追加することなく容易に電気抵抗素子を形成することが可能である。
In the semiconductor device according to the present embodiment, in order to improve the loss in the normal band and improve the Q value of the capacitive element when a filter or the like is configured by combining the capacitive element and the electrical resistive element. In addition, the lower electrode of the capacitance element includes a low resistance layer.
On the other hand, the electrical resistance element is formed in a seed sputtering process in a wiring process formed on each insulating layer. By changing the sputtering film forming conditions, the barrier metal layer and the high resistance layer can be easily stacked, and an electric resistance element can be easily formed without any additional process at any location of each insulating layer. Is possible.

図1に示す構成の半導体装置の製造方法について説明する。
上記の静電容量素子の形成方法および電気抵抗素子の形成方法を組み合わせて、第1〜3絶縁層(15,17,19)と第1〜第3配線(16、18、20、20’)を積層しながら、静電容量素子(Ca,Cb)および電気抵抗素子Ra、さらにはインダクタンス(La,Lb,Lc)を形成する。
次に、第3絶縁層19および第3配線20の上層に、別工程において予め薄型個片化工程までしておいた能動素子を有する半導体チップ21をフェースアップで、即ち、パッド21b形成面の反対側の面側から、ダイアタッチフィルム22を介して積層させ、70〜90℃の温度で1.3Nの荷重を1〜1.3秒間かけて接着する。半導体チップ21の搭載面に設けられたアライメントマークと半導体チップ21の電極とをツールからオフセットさせることで1台のカメラで認識させることができ、例えば搭載精度±1μmを満たして搭載できる。
次に、スピンコート法などによりポリイミド樹脂などから第4絶縁層23を形成し、パターン露光および現像して半導体チップ21のパッド21bおよび第3配線(20,20’)を開口させ、上記と同様にシードスパッタリングによりTiCuなどのバリアメタル24aを成膜し、レジスト膜のパターン形成後に電解メッキによる銅層24bを形成し、レジスト膜の剥離を行う。
次に、二次接続信頼保証のため、銅からなる導電性ポスト25および応力緩和機能を有するバッファ層26を形成する。これには、上記のバリアメタル層24aの剥離の前に、レジスト膜あるいはドライフィルムを設けて露光現像し、導電性ポスト形成領域を開口するようにパターニングし、バリアメタル層24aをシード層として電解メッキにより銅を成膜して導電性ポスト25を形成し、レジスト膜あるいはドライフィルムを剥離した後、導電性ポスト25を被覆して全面にポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂あるいはポリパラフェニレンベンゾビスオキサゾール樹脂などを印刷して、バッファ層26とする。
さらに、バッファ層26の平坦化と導電性ポスト25の頭出しのために、例えば#600砥石で研削し露出した導電性ポスト25上にバンプ(突起電極)26を形成し、ウェハの薄型個片化処理をする。
以上で図1に示す構成の半導体装置を製造することができる。
A method for manufacturing the semiconductor device having the configuration shown in FIG. 1 will be described.
The first to third insulating layers (15, 17, 19) and the first to third wirings (16, 18, 20, 20 ′) are combined by combining the formation method of the capacitance element and the formation method of the electric resistance element. Are formed, capacitance elements (C a , C b ) and electric resistance elements R a , and further inductances (L a , L b , L c ) are formed.
Next, a semiconductor chip 21 having an active element that has been previously thinned into separate steps in a separate process is face-up on the third insulating layer 19 and the third wiring 20, that is, on the surface on which the pad 21 b is formed. Laminate from the opposite surface side through the die attach film 22, and a 1.3N load is adhered for 1 to 1.3 seconds at a temperature of 70 to 90 ° C. By offsetting the alignment mark provided on the mounting surface of the semiconductor chip 21 and the electrode of the semiconductor chip 21 from the tool, it can be recognized by one camera. For example, it can be mounted with a mounting accuracy of ± 1 μm.
Next, a fourth insulating layer 23 is formed from a polyimide resin or the like by spin coating or the like, pattern exposure and development are performed to open the pads 21b and the third wirings (20, 20 ′) of the semiconductor chip 21, and the same as above. Then, a barrier metal 24a such as TiCu is formed by seed sputtering, and after forming a resist film pattern, a copper layer 24b is formed by electrolytic plating, and the resist film is peeled off.
Next, a conductive post 25 made of copper and a buffer layer 26 having a stress relaxation function are formed for ensuring secondary connection reliability. For this purpose, before the barrier metal layer 24a is peeled off, a resist film or a dry film is provided, developed by exposure, patterned so as to open the conductive post formation region, and electrolyzed using the barrier metal layer 24a as a seed layer. Copper is formed by plating to form a conductive post 25, the resist film or dry film is peeled off, and then the conductive post 25 is coated to cover the entire surface with polyamideimide resin, polyimide resin, epoxy resin, phenol resin, or poly Paraphenylene benzobisoxazole resin or the like is printed to form the buffer layer 26.
Further, in order to flatten the buffer layer 26 and cue the conductive post 25, for example, bumps (projection electrodes) 26 are formed on the exposed conductive post 25 by grinding with a # 600 grindstone, and a thin piece of wafer is formed. Process.
Thus, the semiconductor device having the structure shown in FIG. 1 can be manufactured.

上記の図1に示す半導体装置においては、半導体チップ21にトランジスタなどの半導体素子を含む電子回路が形成された構成について説明しているが、これに限らず、例えば半導体チップ21を含まず、シリコン基板10にトランジスタなどの半導体素子を含む電子回路が形成された構成として、第1〜第4配線(16,18,20,20’,24)などからなる配線層に電気的に接続している構成としてもよい。あるいは、半導体チップ21およびシリコン基板10の両者に電子回路が形成されていてもよい。   In the semiconductor device shown in FIG. 1 described above, a configuration in which an electronic circuit including a semiconductor element such as a transistor is formed on a semiconductor chip 21 is described. However, the present invention is not limited thereto. As a configuration in which an electronic circuit including a semiconductor element such as a transistor is formed on the substrate 10, it is electrically connected to a wiring layer made up of first to fourth wirings (16, 18, 20, 20 ', 24) and the like. It is good also as a structure. Alternatively, electronic circuits may be formed on both the semiconductor chip 21 and the silicon substrate 10.

本実施形態の半導体装置は、SiPにおいて、能動素子を含む電子回路が設けられた半導体と組み合わせる受動素子として、少なくとも電気抵抗素子および静電容量素子を含む受動素子が、電気抵抗素子と静電容量素子の下部電極が互いに異なる組成の層を含んで構成されており、各々パッケージ化された電気抵抗素子や静電容量素子などを用いないので装置の小型化が可能で、さらに電気抵抗素子や静電容量素子のそれぞれに適した材料を用いて少ない工程数で製造可能で、製造コストの低減が可能である。   In the semiconductor device according to the present embodiment, in the SiP, as a passive element combined with a semiconductor provided with an electronic circuit including an active element, a passive element including at least an electric resistance element and a capacitance element includes an electric resistance element and a capacitance. The lower electrode of the element is configured to include layers having different compositions, and since the packaged electric resistance element or capacitance element is not used, the device can be reduced in size. Manufacturing is possible with a small number of steps using a material suitable for each of the capacitance elements, and manufacturing cost can be reduced.

特に、上記の実施形態の半導体装置においては、工程を複雑にすることなく、任意の場所に電気抵抗素子を形成することが可能となる。
電気抵抗素子は、バリアメタルと兼ねることにより、劣化の少ない抵抗素子を形成することが可能となる。
また、静電容量素子の電極と電気抵抗素子の電極とを必要特性に応じて使い分けることが可能となる。
In particular, in the semiconductor device of the above embodiment, it is possible to form the electric resistance element at an arbitrary place without complicating the process.
When the electrical resistance element also serves as a barrier metal, a resistance element with little deterioration can be formed.
In addition, it is possible to selectively use the electrodes of the capacitance element and the electrode of the electric resistance element according to the required characteristics.

本発明は上記の説明に限定されない。
例えば、半導体基板上の絶縁膜上に形成される受動素子としては、少なくとも静電容量素子と電気抵抗素子の両者が形成されていればよいが、これらが同一の絶縁層上などに配置されている必要ななく、基板上に設けられた絶縁層中のいずれかの場所に形成されていればよい。さらにインダクタンスは必要に応じて形成することができる。
その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
The present invention is not limited to the above description.
For example, as a passive element formed on an insulating film on a semiconductor substrate, at least both a capacitance element and an electric resistance element may be formed, but these are arranged on the same insulating layer or the like. It does not need to be present, and may be formed at any location in the insulating layer provided on the substrate. Furthermore, the inductance can be formed as needed.
In addition, various modifications can be made without departing from the scope of the present invention.

本発明の半導体装置は、システムインパッケージ形態の半導体装置に適用できる。   The semiconductor device of the present invention can be applied to a semiconductor device in a system in package form.

また、本発明の半導体装置の製造方法は、システムインパッケージ形態の半導体装置を製造するのに適用することができる。   The semiconductor device manufacturing method of the present invention can be applied to manufacture a semiconductor device in a system-in-package form.

図1は本発明の実施形態に半導体装置の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention. 図2は本発明の実施形態に係る半導体装置における静電容量素子部分を拡大した要部断面図である。FIG. 2 is an enlarged cross-sectional view of the main part of the capacitance element portion in the semiconductor device according to the embodiment of the present invention. 図3(a)〜(c)は図2に示す部分の製造工程を示す断面図である。3A to 3C are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図4(a)〜(c)は図2に示す部分の製造工程を示す断面図である。4A to 4C are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図5(a)〜(c)は図2に示す部分の製造工程を示す断面図である。5A to 5C are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図6(a)〜(c)は図2に示す部分の製造工程を示す断面図である。6A to 6C are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図7(a)〜(c)は図2に示す部分の製造工程を示す断面図である。7A to 7C are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図8(a)および図8(b)は図2に示す部分の製造工程を示す断面図である。8 (a) and 8 (b) are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図9(a)および図9(b)は図2に示す部分の製造工程を示す断面図である。FIG. 9A and FIG. 9B are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図10は本発明の実施形態に係る半導体装置における電気抵抗素子部分を拡大した要部断面図である。FIG. 10 is an enlarged cross-sectional view of the main part of the electric resistance element portion in the semiconductor device according to the embodiment of the present invention. 図11(a)および図11(b)は図10に示す部分の製造工程を示す断面図である。FIG. 11A and FIG. 11B are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図12(a)および図12(b)は図10に示す部分の製造工程を示す断面図である。12 (a) and 12 (b) are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図13(a)および図13(b)は図10に示す部分の製造工程を示す断面図である。13A and 13B are cross-sectional views showing the manufacturing process of the portion shown in FIG. 図14は従来例に係る半導体装置の模式断面図である。FIG. 14 is a schematic cross-sectional view of a conventional semiconductor device.

符号の説明Explanation of symbols

10…シリコン基板、11…下地絶縁膜、12…下部電極、12a,14a,16a,18a,20a,24a…バリアメタル層、12b,14b1,14b2,16b,16b1,16b2,18b,20b,20b,20b1,24b2…銅層、13…誘電体膜、14…下部電極取り出し電極、14’…上部電極、15…第1絶縁層、16,16’…第1配線、16r,20r…高抵抗層、17…第2絶縁層、18…第2配線、19…第3絶縁層、20,20’…第3配線、21…半導体チップ、21a…半導体本体部分、21b…パッド、21c…保護層、22…ダイアタッチフィルム、23…第4絶縁層、24…第4配線、25…導電性ポスト、26…バッファ層、27…バンプ、Ca,Cb…静電容量素子、R,Ra…電気抵抗素子、La,Lb,Lc…インダクタンス、H1,H2,H3…開口部、R1〜R4…レジスト膜、100…実装基板、101…プリント配線、110…電気抵抗素子、111…静電容量素子、112…ダイアタッチフィルム、113…半導体チップ。
10 ... silicon substrate, 11 ... base insulating film, 12 ... lower electrode, 12a, 14a, 16a, 18a , 20a, 24a ... barrier metal layer, 12b, 14b 1, 14b 2 , 16b, 16b 1, 16b 2, 18b, 20b, 20b, 20b 1, 24b 2 ... copper layer, 13 ... dielectric film 14 ... lower electrode extraction electrodes, 14 '... upper electrode, 15 ... first insulating layer, 16, 16' ... first wiring, 16r, 20r ... high resistance layer, 17 ... second insulating layer, 18 ... second wiring, 19 ... third insulating layer, 20, 20 '... third wiring, 21 ... semiconductor chip, 21a ... semiconductor body portion, 21b ... pad, 21c ... protective layer, 22 ... die attach film, 23 ... fourth insulating layer, 24 ... fourth wire, 25 ... conductive posts, 26 ... buffer layer, 27 ... bumps, C a, C b ... capacitance device, R, R a ... electric resistance element, a, L b, L c ... inductance, H 1, H 2, H 3 ... opening, R1 to R4 ... resist film, 100 ... mounting board, 101 ... printed circuit, 110 ... electric resistance element, 111 ... capacitance Element 112 ... Die attach film 113 ... Semiconductor chip.

Claims (10)

基板と、
前記基板上に形成された絶縁層と、
電子回路に接続するように前記絶縁層中に埋め込まれて形成された配線層と、
前記基板に対して前記絶縁層の一部を介して、前記配線層に接続して形成され、少なくとも電気抵抗素子および静電容量素子を含む受動素子と
を有し、
前記電気抵抗素子が、バリアメタル層と前記バリアメタル層よりも高抵抗の層との積層体によって構成され
前記静電容量素子の下部電極が、前記電気抵抗素子におけるバリアメタル層と共通の組成のバリアメタル層と、前記バリアメタル層よりも低抵抗の層との積層体によって構成され
能動素子を含む電子回路が設けられた半導体を含んでパッケージ化された
半導体装置。
A substrate,
An insulating layer formed on the substrate;
A wiring layer embedded in the insulating layer to be connected to an electronic circuit;
A passive element including at least an electric resistance element and a capacitance element, formed to be connected to the wiring layer via a part of the insulating layer with respect to the substrate;
The electric resistance element is constituted by a laminate of a barrier metal layer and a layer having a higher resistance than the barrier metal layer,
The lower electrode of the capacitance element is constituted by a laminate of a barrier metal layer having a composition common to the barrier metal layer in the electric resistance element, and a layer having a lower resistance than the barrier metal layer,
A semiconductor device packaged including a semiconductor provided with an electronic circuit including an active element.
前記配線層が、前記バリアメタル層と前記バリアメタル層よりも低抵抗の層との積層体によって構成される
請求項1に記載の半導体装置。
The wiring layer, the semiconductor device according to configured claim 1 by a laminate of a layer of lower resistance than the barrier metal layer and the barrier metal layer.
前記基板が半導体基板であり、前記配線層に接続するように前記電子回路が設けられている
請求項1に記載の半導体装置。
The semiconductor device according to claim 1, wherein the substrate is a semiconductor substrate, and the electronic circuit is provided so as to be connected to the wiring layer.
前記絶縁層中に前記配線層に接続するように前記電子回路が設けられた半導体チップが埋め込まれている
請求項1に記載の半導体装置。
The semiconductor device according to claim 1, wherein a semiconductor chip provided with the electronic circuit is embedded in the insulating layer so as to be connected to the wiring layer.
前記受動素子としてインダクタンスをさらに有する
請求項1に記載の半導体装置。
The semiconductor device according to claim 1, further comprising an inductance as the passive element.
基板上に絶縁膜を形成する工程と、
前記絶縁膜上に配線層を形成する工程と、
前記絶縁膜上に、前記配線層に接続して、少なくとも電気抵抗素子および静電容量素子を含む受動素子を、前記電気抵抗素子として、バリアメタル層と前記バリアメタル層よりも高抵抗の層とを積層させて形成し、前記静電容量素子の下部電極として、前記電気抵抗素子におけるバリアメタル層と共通の組成のバリアメタル層と、前記バリアメタル層よりも低抵抗の層とを積層させて形成する工程とを有し、
能動素子を含む電子回路が設けられた半導体を含んでパッケージ化される
半導体装置の製造方法。
Forming an insulating film on the substrate;
Forming a wiring layer on the insulating film;
Wherein on the insulating film, and connected to the wiring layer, a passive element comprising at least electrical resistance elements and capacitance elements, and with the electrical resistance element, a resistance higher than the barrier metal layer barrier metal layer and a layer formed by the product layer, and the lower electrodes of the capacitive element, a barrier metal layer of a common composition as the barrier metal layer in the electrical resistance element, lower resistance than the barrier metal layer of a layer and a step of forming by product layer,
A method for manufacturing a semiconductor device, comprising a semiconductor provided with an electronic circuit including an active element.
前記配線層を形成する工程において、前記配線層として、前記バリアメタル層と前記バリアメタル層よりも低抵抗の層とを積層させて形成する
請求項6に記載の半導体装置の製造方法。
In the step of forming the wiring layer, and the wiring layer, a method of manufacturing a semiconductor device according to claim 6, formed by laminating a low resistance layer than the barrier metal layer and the barrier metal layer.
前記基板として、前記電子回路が設けられている半導体基板を用いる
請求項6に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 6, wherein a semiconductor substrate provided with the electronic circuit is used as the substrate.
前記絶縁層上に前記電子回路が設けられた半導体チップをマウントする工程をさらに有し、
前記配線層を形成する工程において前記半導体チップに接続するように形成する
請求項6に記載の半導体装置の製造方法。
Further comprising mounting a semiconductor chip provided with the electronic circuit on the insulating layer;
The method of manufacturing a semiconductor device according to claim 6, wherein the wiring layer is formed so as to be connected to the semiconductor chip in the step of forming the wiring layer.
前記受動素子としてインダクタンスを形成する工程をさらに有する
請求項6に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 6, further comprising forming an inductance as the passive element.
JP2003417098A 2003-12-15 2003-12-15 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4329524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417098A JP4329524B2 (en) 2003-12-15 2003-12-15 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417098A JP4329524B2 (en) 2003-12-15 2003-12-15 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005175402A JP2005175402A (en) 2005-06-30
JP4329524B2 true JP4329524B2 (en) 2009-09-09

Family

ID=34736110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417098A Expired - Fee Related JP4329524B2 (en) 2003-12-15 2003-12-15 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4329524B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419926B2 (en) 2005-07-14 2010-02-24 セイコーエプソン株式会社 Semiconductor device
JP2007103715A (en) * 2005-10-05 2007-04-19 Sony Corp Semiconductor device and manufacturing method thereof
JP4395775B2 (en) 2005-10-05 2010-01-13 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP2007103716A (en) * 2005-10-05 2007-04-19 Sony Corp Semiconductor device and manufacturing method thereof
KR100783276B1 (en) 2006-08-29 2007-12-06 동부일렉트로닉스 주식회사 Semiconductor device and fabricating method thereof
CN117276246A (en) * 2023-09-22 2023-12-22 昆山国显光电有限公司 Chip packaging structure and packaging method

Also Published As

Publication number Publication date
JP2005175402A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US9111902B2 (en) Dielectric trenches, nickel/tantalum oxide structures, and chemical mechanical polishing techniques
US6624501B2 (en) Capacitor and semiconductor device
US7414309B2 (en) Encapsulated electronic part packaging structure
JP7052824B2 (en) Thin-film LC component and its mounting structure
WO2010050091A1 (en) Semiconductor device
US8410577B2 (en) Semiconductor device
JP5245209B2 (en) Semiconductor device and manufacturing method thereof
JP2002299496A (en) Semiconductor device and its fabricating method
JP4329524B2 (en) Semiconductor device and manufacturing method thereof
JP4380551B2 (en) Semiconductor device and manufacturing method thereof
JP4367070B2 (en) Semiconductor device and manufacturing method thereof
JP2002057291A (en) Semiconductor device and manufacturing method thereof
US20050179120A1 (en) Process for producing semiconductor device, semiconductor device, circuit board and electronic equipment
JP4644482B2 (en) Resistor chip and mounting method thereof
JP2007173749A (en) Semiconductor device and its manufacturing method
JP4599834B2 (en) Semiconductor device and manufacturing method thereof
JP4591100B2 (en) Semiconductor device and manufacturing method thereof
JP4052237B2 (en) Semiconductor device and manufacturing method thereof
JP2009038203A (en) Semiconductor device
JP2008300560A (en) Semiconductor device, and manufacturing method thereof
JP5098211B2 (en) Semiconductor device and manufacturing method thereof
JP2005123378A (en) Semiconductor device and its manufacturing method
TW202320283A (en) Wiring substrate and semiconductor device
JP2021090035A (en) Manufacturing method of semiconductor device, semiconductor device, and intermediate body of semiconductor device
JP2019083353A (en) Semiconductor device and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees