JP2007103716A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2007103716A
JP2007103716A JP2005292419A JP2005292419A JP2007103716A JP 2007103716 A JP2007103716 A JP 2007103716A JP 2005292419 A JP2005292419 A JP 2005292419A JP 2005292419 A JP2005292419 A JP 2005292419A JP 2007103716 A JP2007103716 A JP 2007103716A
Authority
JP
Japan
Prior art keywords
semiconductor
insulating layer
layer
semiconductor device
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005292419A
Other languages
Japanese (ja)
Inventor
Osamu Yamagata
修 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005292419A priority Critical patent/JP2007103716A/en
Publication of JP2007103716A publication Critical patent/JP2007103716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/83132Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed outside the semiconductor or solid-state body, i.e. "off-chip"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of realizing microfabrication of re-wiring connected to a semiconductor chip in the semiconductor device of a SiP mode in which the semiconductor chip is buried in an insulated film, and to provide a manufacturing method thereof. <P>SOLUTION: The semiconductor device is packaged so as to include a semiconductor provided with an electronic circuit. In this device, semiconductor chips (1a, 1b) having semiconductor bodies (10a, 10b) each having an electronic circuit formed thereon, and having pad electrodes (11a, 11b) formed on the semiconductor bodies are mounted on a substrate 20 from the rear surface side of the forming surface of the projection electrodes. The semiconductor chip is buried to form a first insulation layer 22. First wirings (seed layer 23, copper layer 25) are formed on an upper layer of a first insulated layer so as to be connected to the pad electrode piercing the first insulated layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体装置及びその製造方法に関し、特に、ウェハレベルでパッケージ化されたシステムインパッケージ(SiP)と呼ばれる形態の半導体装置及びその製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device in a form called a system in package (SiP) packaged at a wafer level and a manufacturing method thereof.

デジタルビデオカメラ、デジタル携帯電話、あるいはノートパソコンなど、携帯用電子機器の小型化、薄型化、軽量化に対する要求は強くなる一方であり、これに応えるために近年のVLSIなどの半導体装置においては3年で7割の縮小化を実現してきた一方で、このような半導体装置をプリント配線基板上に実装した電子回路装置としても、実装基板(プリント配線基板)上の部品の実装密度をいかに向上させるかが重要な課題として研究及び開発がなされてきた。   The demand for downsizing, thinning, and weight reduction of portable electronic devices such as digital video cameras, digital mobile phones, and notebook personal computers has been increasing. While 70% reduction has been achieved year by year, how to improve the mounting density of components on the mounting board (printed wiring board) even in an electronic circuit device in which such a semiconductor device is mounted on the printed wiring board Research and development has been made as an important issue.

例えば、半導体装置のパッケージ形態としては、DIP(Dual Inline Package)などのリード挿入型から表面実装型へと移行し、さらには半導体チップのパッド電極にはんだや金などからなるバンプ(突起電極)を設け、フェースダウンでバンプを介して配線基板に接続するフリップチップ実装法が開発された。   For example, the package form of a semiconductor device has shifted from a lead insertion type such as DIP (Dual Inline Package) to a surface mount type, and furthermore, bumps (projection electrodes) made of solder, gold, etc. are applied to pad electrodes of a semiconductor chip. A flip-chip mounting method has been developed in which a face-down connection is made to the wiring board through bumps.

さらに、半導体基板(チップ)上に形成される配線(再配線とも称する)を絶縁する絶縁層の層間に、能動素子を含む電子回路などが形成された半導体チップや、静電容量素子及びコイルなどの受動素子が埋め込まれ、ウェハレベルでパッケージ化されたシステムインパッケージ(SiP)と呼ばれる複雑な形態のパッケージへと開発が進んでいる。
上記のSiPの構成や製造方法は、例えば特許文献1〜3に開示されている。
Further, a semiconductor chip in which an electronic circuit including an active element is formed between layers of an insulating layer that insulates wiring (also referred to as rewiring) formed on a semiconductor substrate (chip), a capacitive element, a coil, and the like Development of a package having a complicated form called a system-in-package (SiP) packaged at the wafer level and embedded with the passive elements is progressing.
The configuration and manufacturing method of the above SiP are disclosed in, for example, Patent Documents 1 to 3.

上記の能動素子を有する半導体チップが絶縁層中に埋め込まれているタイプのウェハレベルSiPの製造方法としては、例えば、基板上に半導体チップを搭載し、スピンコートもしくは印刷などで感光性の樹脂で半導体チップを埋め込んで絶縁層を形成し、得られた絶縁層を露光及び現像によりパターニングして半導体チップのパッド電極を開口し、メッキ処理などで開口部内に導電層を埋め込んで再配線層を形成する。   As a method for manufacturing a wafer level SiP of a type in which a semiconductor chip having the active element is embedded in an insulating layer, for example, a semiconductor chip is mounted on a substrate, and a photosensitive resin is used by spin coating or printing. An insulating layer is formed by embedding a semiconductor chip, the resulting insulating layer is patterned by exposure and development to open pad electrodes of the semiconductor chip, and a conductive layer is embedded in the opening by plating or the like to form a rewiring layer To do.

上記のSiPの製造方法では、半導体チップを埋め込んでいる樹脂からなる絶縁層を形成する工程において、50μm以上の厚さで絶縁層の形成を行うには高粘度の樹脂が必要でスピンコートの1回の塗布での膜厚は最大100μmが限界であり、例えば数100μmの半導体チップの板厚に合わせて絶縁層を厚く形成する場合には、1回塗布するごとに仮乾燥を行い、1度目の層が2度目の塗布工程で溶解するのを防止して膜厚を確保する必要がある。   In the above SiP manufacturing method, in the step of forming an insulating layer made of a resin in which a semiconductor chip is embedded, a high-viscosity resin is required to form an insulating layer with a thickness of 50 μm or more. The maximum film thickness is 100 μm for each application. For example, when the insulating layer is formed thick in accordance with the thickness of a semiconductor chip of several hundreds μm, temporary drying is performed for each application. It is necessary to prevent the layer from being dissolved in the second coating step and to secure the film thickness.

上記のようにして厚い半導体チップを樹脂の絶縁層で埋め込んだ工程の後、半導体チップのパッド電極を開口するようにパターニングするための露光工程において、露光量は露光すべき樹脂絶縁膜の膜厚に応じて大きくしなければならない。この結果、露光量を大きくすることに起因してパターン潰れが発生してしまい、安定したパターニングを行うことが困難となる。   After the process of embedding a thick semiconductor chip with a resin insulating layer as described above, in the exposure process for patterning to open the pad electrode of the semiconductor chip, the exposure amount is the film thickness of the resin insulating film to be exposed It must be enlarged according to. As a result, pattern collapse occurs due to an increase in exposure amount, and it becomes difficult to perform stable patterning.

上記の理由により、安定したパターニングを行うためには樹脂層の膜厚は制限され、これを実現するために埋め込む半導体チップの板厚を50μm程度にまで薄型化する必要がある。   For the above reasons, the thickness of the resin layer is limited in order to perform stable patterning, and in order to realize this, it is necessary to reduce the thickness of the embedded semiconductor chip to about 50 μm.

上記の構成において、樹脂絶縁膜中に半導体チップを埋め込んだ領域と埋め込んでいない領域とでは樹脂絶縁膜表面の段差は、樹脂絶縁膜が70μm程度の膜厚の場合、15〜20μm程度となる。このため、後工程で形成する再配線の段切れを防止するにはメッキ用レジストの膜厚は10〜20ミクロン塗布する必要があり、従ってレジストの解像度は30μmが限界となってしまう。
従って、更なる微細な再配線形成のため、再配線形成時のメッキ用レジストの薄膜化を実現することが必要となっている。
特開2005−175402号公報 特開2005−175320号公報 特開2005−175319号公報
In the above configuration, the step on the surface of the resin insulating film between the region where the semiconductor chip is embedded in the resin insulating film and the region where the semiconductor chip is not embedded is about 15 to 20 μm when the resin insulating film has a thickness of about 70 μm. For this reason, in order to prevent rewiring from being disconnected in a subsequent process, it is necessary to apply a plating resist with a thickness of 10 to 20 microns. Therefore, the resist resolution is limited to 30 μm.
Therefore, in order to form a finer rewiring, it is necessary to reduce the thickness of the plating resist when forming the rewiring.
JP 2005-175402 A JP 2005-175320 A JP 2005-175319 A

本発明の目的は、半導体チップが絶縁膜中に埋め込まれているSiP形態の半導体装置において、半導体チップに接続されている再配線の微細化が実現できる半導体装置及びその製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device in which a semiconductor chip is embedded in an insulating film and in which a rewiring connected to the semiconductor chip can be miniaturized and a method for manufacturing the same. is there.

上記の課題を解決するため、本発明の半導体装置は、電子回路が設けられた半導体を含んでパッケージ化された半導体装置であって、基板と、前記電子回路が形成された半導体本体と、前記半導体本体上に形成されたパッド電極とを有し、前記パッド電極の形成面の裏面側から前記基板にマウントされた半導体チップと、前記半導体チップを埋め込んで形成され、表面が平坦化された第1絶縁層と、前記第1絶縁層を貫通して前記パッド電極に接続し、前記第1絶縁層の上層に形成された第1配線とを有する。   In order to solve the above problems, a semiconductor device of the present invention is a packaged semiconductor device including a semiconductor provided with an electronic circuit, and includes a substrate, a semiconductor body on which the electronic circuit is formed, A semiconductor chip mounted on the substrate from the back side of the pad electrode forming surface, and a semiconductor chip embedded in the semiconductor chip, and the surface is planarized. A first insulating layer; and a first wiring that penetrates the first insulating layer and is connected to the pad electrode and is formed in an upper layer of the first insulating layer.

上記の本発明の半導体装置は、電子回路が設けられた半導体を含んでパッケージ化された半導体装置であって、電子回路が形成された半導体本体と半導体本体上に形成されたパッド電極とを有する半導体チップが、パッド電極の形成面の裏面側から基板にマウントされており、半導体チップを埋め込んで表面が平坦化された第1絶縁層が形成されており、第1絶縁層を貫通してパッド電極に接続するように第1絶縁層の上層に第1配線が形成されている。   The semiconductor device according to the present invention is a semiconductor device packaged including a semiconductor provided with an electronic circuit, and includes a semiconductor body in which the electronic circuit is formed and a pad electrode formed on the semiconductor body. A semiconductor chip is mounted on a substrate from the back side of the pad electrode forming surface, a first insulating layer having a flattened surface is formed by embedding the semiconductor chip, and a pad is formed through the first insulating layer. First wiring is formed in the upper layer of the first insulating layer so as to be connected to the electrode.

また、上記の課題を解決するため、本発明の半導体装置の製造方法は、電子回路が設けられた半導体を含んでパッケージ化された半導体装置の製造方法であって、基板に、前記電子回路が形成された半導体本体と、前記半導体本体上に形成されたパッド電極とを有する半導体チップを、前記パッド電極の形成面の裏面側からマウントする工程と、前記半導体チップを埋め込んで第1絶縁層を形成する工程と、前記第1絶縁層の表面を平坦化する工程と、前記パッド電極に達する開口部を前記第1絶縁層に形成する工程と、前記開口部を埋め込んで前記第1絶縁層の上層に第1配線を形成する工程とを有する。   In order to solve the above problems, a method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device packaged including a semiconductor provided with an electronic circuit, and the electronic circuit is mounted on a substrate. Mounting a semiconductor chip having a formed semiconductor body and a pad electrode formed on the semiconductor body from the back side of the pad electrode forming surface; and embedding the semiconductor chip to form a first insulating layer. A step of flattening the surface of the first insulating layer, a step of forming an opening reaching the pad electrode in the first insulating layer, and filling the opening to fill the opening of the first insulating layer. Forming a first wiring on the upper layer.

上記の本発明の半導体装置の製造方法は、基板に、電子回路が形成された半導体本体と、半導体本体上に形成されたパッド電極とを有する半導体チップを、パッド電極の形成面の裏面側からマウントする。
次に、半導体チップを埋め込んで第1絶縁層を形成し、次に、第1絶縁層の表面を平坦化する。
次に、パッド電極に達する開口部を第1絶縁層に形成し、開口部を埋め込んで第1絶縁層の上層に第1配線を形成する。
In the method of manufacturing a semiconductor device according to the present invention, a semiconductor chip having a semiconductor body on which an electronic circuit is formed and a pad electrode formed on the semiconductor body is formed on a substrate from the back side of the surface on which the pad electrode is formed. Mount.
Next, a semiconductor chip is embedded to form a first insulating layer, and then the surface of the first insulating layer is planarized.
Next, an opening reaching the pad electrode is formed in the first insulating layer, and the first wiring is formed in the upper layer of the first insulating layer by filling the opening.

本発明の半導体装置は、半導体チップを絶縁膜中に埋め込んでなるSiP形態の半導体装置において、半導体チップを埋め込む絶縁層が平坦化されているので、その上層に形成される再配線形成時のメッキ用レジストの薄膜化を可能にし、これによって半導体チップに接続される再配線の微細化が実現できる。   In the semiconductor device of the present invention, in an SiP-type semiconductor device in which a semiconductor chip is embedded in an insulating film, the insulating layer in which the semiconductor chip is embedded is flattened, so that plating at the time of rewiring formation formed on the upper layer is performed. This makes it possible to reduce the thickness of the resist for use in the semiconductor device, thereby realizing miniaturization of the rewiring connected to the semiconductor chip.

本発明の半導体装置の製造方法は、半導体チップを絶縁膜中に埋め込んでなるSiP形態の半導体装置の製造方法において、半導体チップを埋め込む絶縁層を平坦化する工程を有しており、その上層に形成する再配線形成時のメッキ用レジストの薄膜化を可能にし、これによって半導体チップに接続される再配線の微細化が実現できる。   The method of manufacturing a semiconductor device according to the present invention includes a step of planarizing an insulating layer in which a semiconductor chip is embedded, in a method of manufacturing a semiconductor device in the form of SiP in which a semiconductor chip is embedded in an insulating film. It is possible to reduce the thickness of the resist for plating at the time of forming the rewiring to be formed, thereby realizing miniaturization of the rewiring connected to the semiconductor chip.

以下に、本発明の半導体装置及びその製造方法の実施の形態について、図面を参照して説明する。   Embodiments of a semiconductor device and a manufacturing method thereof according to the present invention will be described below with reference to the drawings.

図1は、本実施形態に係る半導体装置の模式断面図である。
例えば、シリコンからなる半導体基板20上に、酸化シリコンなどの絶縁膜21が形成されており、その上層に、例えばトランジスタなどの能動素子を含む電子回路が形成されたシリコンからなる、例えば2個の半導体チップ(1a,1b)がダイアタッチフィルム13によりマウントされている。
FIG. 1 is a schematic cross-sectional view of a semiconductor device according to the present embodiment.
For example, an insulating film 21 such as silicon oxide is formed on a semiconductor substrate 20 made of silicon, and an upper layer of the insulating film 21 is made of silicon on which an electronic circuit including an active element such as a transistor is formed. Semiconductor chips (1a, 1b) are mounted by a die attach film 13.

半導体チップ(1a,1b)は、それぞれ、例えば、電子回路が形成された半導体本体(10a,10b)の表面にパッド電極(11a,11b)が形成されており、パッド電極(11a,11b)を開口するように保護絶縁膜(12a,12b)が形成されている構成である。
例えば、上記の2個の半導体チップ(1a,1b)の半導体本体(10a,10b)の板厚は、それぞれ50μm程度となっている。
In the semiconductor chip (1a, 1b), for example, pad electrodes (11a, 11b) are formed on the surface of a semiconductor body (10a, 10b) on which an electronic circuit is formed, and the pad electrodes (11a, 11b) are formed. In this configuration, protective insulating films (12a, 12b) are formed so as to open.
For example, the thickness of the semiconductor body (10a, 10b) of the two semiconductor chips (1a, 1b) is about 50 μm.

上記の半導体チップ(1a,1b)を被覆して、感光性樹脂からなる第1絶縁層22が形成されており、第1絶縁層22は、例えば上面から研削あるいは切削されることなどにより、表面が平坦化されている。   A first insulating layer 22 made of a photosensitive resin is formed so as to cover the semiconductor chip (1a, 1b), and the first insulating layer 22 is ground by cutting or cutting from the upper surface, for example. Is flattened.

第1絶縁層22には、半導体チップ(1a,1b)のパッド電極(11a,11b)を露出する開口部が形成されている。
上記の第1絶縁層22の開口部内及び第1絶縁層22の上層に、パッド電極(11a,11b)に接続して、シード層23及び銅層25からなる第1配線が形成されている。
The first insulating layer 22 is formed with openings that expose the pad electrodes (11a, 11b) of the semiconductor chip (1a, 1b).
A first wiring composed of a seed layer 23 and a copper layer 25 is formed in the opening of the first insulating layer 22 and in the upper layer of the first insulating layer 22 so as to be connected to the pad electrodes (11a, 11b).

第1配線を被覆して、第1絶縁層22の上層に第2絶縁層26が形成されており、第2絶縁層26には第1配線に達する開口部が形成されている。
第2樹脂層26の開口部内及び第2絶縁層26上に、第1配線に接続して、シード層27及び銅層28からなる第2配線が形成されている。
A second insulating layer 26 is formed on the first insulating layer 22 so as to cover the first wiring, and an opening reaching the first wiring is formed in the second insulating layer 26.
A second wiring made of a seed layer 27 and a copper layer 28 is formed in the opening of the second resin layer 26 and on the second insulating layer 26 so as to be connected to the first wiring.

第1絶縁層22と第2絶縁層26が積層した絶縁層上において、第2配線に接続して導電性ポスト29が形成されている。
また、導電性ポスト29の外周部において、第1絶縁層22と第2絶縁層26が積層した絶縁層上に形成され、半導体装置が実装基板に実装されたときに発生する応力を緩和する絶縁性のバッファ層30が形成されている。
さらにバッファ層30の表面から突出するように導電性ポスト29に接続してバンプ(突起電極)31が形成されている。
On the insulating layer in which the first insulating layer 22 and the second insulating layer 26 are stacked, a conductive post 29 is formed in connection with the second wiring.
In addition, in the outer peripheral portion of the conductive post 29, the insulating layer is formed on the insulating layer in which the first insulating layer 22 and the second insulating layer 26 are stacked, and relieves stress generated when the semiconductor device is mounted on the mounting substrate. A buffer layer 30 is formed.
Further, bumps (projection electrodes) 31 are formed so as to be connected to the conductive posts 29 so as to protrude from the surface of the buffer layer 30.

上記のようにして、第1配線の上層に第2樹脂層26及びバッファ層30が積層して上層絶縁層が形成されており、半導体チップ(1a,1b)のパッド電極(11a,11b)に接続している第1配線に接続し、上層絶縁層中に埋め込まれて第2配線及び導電性ポスト29などの上層配線が形成されている。   As described above, the second resin layer 26 and the buffer layer 30 are laminated on the upper layer of the first wiring to form the upper insulating layer, and are formed on the pad electrodes (11a, 11b) of the semiconductor chip (1a, 1b). The upper wiring such as the second wiring and the conductive post 29 is formed so as to be connected to the connected first wiring and embedded in the upper insulating layer.

上記の本実施形態の半導体装置は、半導体チップを絶縁膜中に埋め込んでなるSiP形態の半導体装置において、半導体チップを埋め込む第1絶縁層を研削あるいは切削などにより平坦化した構成となっており、その上層に形成される再配線形成時のメッキ用レジストの薄膜化を可能にし、これによって半導体チップに接続される再配線の微細化が実現できる。   The semiconductor device of the present embodiment has a configuration in which the first insulating layer in which the semiconductor chip is embedded is planarized by grinding or cutting in the SiP type semiconductor device in which the semiconductor chip is embedded in the insulating film, It is possible to reduce the thickness of the plating resist when forming the rewiring formed on the upper layer, thereby realizing miniaturization of the rewiring connected to the semiconductor chip.

上記の第1、第2配線あるいはさらに積層させた配線の一部は、静電容量素子やインダクタンスなどの受動素子を構成していることができる。例えばこれらの受動素子を組み合わせることで、例えばLPF(Low Pass Filter)、BPF(Band Pass Filter)あるいはHPF(High Pass Filter)などを構成することができ、また、これらと電子回路に設けられた能動素子との組み合わせで、いわゆるSiP形態の半導体装置を構成することができる。   Part of the first and second wirings or further stacked wirings may constitute a passive element such as a capacitance element or an inductance. For example, by combining these passive elements, for example, an LPF (Low Pass Filter), a BPF (Band Pass Filter), or an HPF (High Pass Filter) can be configured. A combination of the element and the so-called SiP semiconductor device can be formed.

次に、上記の本実施形態に係る半導体装置の製造方法について説明する。
まず、図2(a)に示すように、例えば、φ200mm、0.725mm厚の半導体ウェハ10wにトランジスタなどの能動素子を含む電子回路を形成し、電子回路に接続するパッド電極11と、パッド電極11を開口し、電子回路を被覆するように保護絶縁膜12を形成する。
Next, a method for manufacturing the semiconductor device according to the above-described embodiment will be described.
First, as shown in FIG. 2A, for example, an electronic circuit including active elements such as transistors is formed on a semiconductor wafer 10w having a diameter of 200 mm and a thickness of 0.725 mm, and a pad electrode 11 connected to the electronic circuit, and a pad electrode 11 is opened, and a protective insulating film 12 is formed so as to cover the electronic circuit.

次に、図2(b)に示すように、例えば、半導体ウェハ10wの裏面を#2000のホイールで研削して薄型化し、例えば50μm程度の板厚とする。   Next, as shown in FIG. 2B, for example, the back surface of the semiconductor wafer 10w is ground with a # 2000 wheel to reduce the thickness, for example, to a thickness of about 50 μm.

次に、図2(c)に示すように、例えば、半導体ウェハ10wの裏面にダイアタッチフィルム13をラミネートして張り合わせる。ラミネート条件は、例えばスピード1m/分、圧力10N/cm、温度65℃とする。   Next, as shown in FIG. 2C, for example, the die attach film 13 is laminated and bonded to the back surface of the semiconductor wafer 10w. Lamination conditions are, for example, a speed of 1 m / min, a pressure of 10 N / cm, and a temperature of 65 ° C.

次に、図2(d)に示すように、半導体ウェハ10wをダイシングして所定形状の半導体チップ1とする。ダイシングの条件は、例えば、スピンドル回転数4000rpm、送りスピード10mm/秒とする。
以上のようにして、本実施形態の半導体装置に内蔵する、半導体本体10の表面にパッド電極11が形成されており、パッド電極11を開口するように保護絶縁膜12が形成されている構成の半導体チップ1を形成する。得られる半導体チップの板厚は、上記のように数10μm程度となっている。
Next, as shown in FIG. 2D, the semiconductor wafer 10w is diced into semiconductor chips 1 having a predetermined shape. The dicing conditions are, for example, a spindle rotation speed of 4000 rpm and a feed speed of 10 mm / second.
As described above, the pad electrode 11 is formed on the surface of the semiconductor body 10 incorporated in the semiconductor device of the present embodiment, and the protective insulating film 12 is formed so as to open the pad electrode 11. A semiconductor chip 1 is formed. The thickness of the obtained semiconductor chip is about several tens of μm as described above.

次に、図3(a)に示すように、表面に酸化シリコンなどの絶縁膜21が形成されたウェハ状態の基板20上に、基板20に予め形成されているアライメントマークを認識して、上記のようにして形成した2個の半導体チップ(1a,1b)をフェイスアップでダイアタッチフィルム13の熱圧着によりマウントする。熱圧着条件は、例えば、荷重1.6N、温度160℃、時間2秒とする。   Next, as shown in FIG. 3A, an alignment mark formed in advance on the substrate 20 is recognized on the wafer-like substrate 20 on the surface of which the insulating film 21 such as silicon oxide is formed. The two semiconductor chips (1a, 1b) formed as described above are mounted face-up by thermocompression bonding of the die attach film 13. The thermocompression bonding conditions are, for example, a load of 1.6 N, a temperature of 160 ° C., and a time of 2 seconds.

上記の2個の半導体チップ(1a,1b)は、それぞれ、半導体本体(10a,10b)の表面にパッド電極(11a,11b)が形成されており、パッド電極(11a,11b)を開口するように保護絶縁膜(12a,12b)が形成された構成である。
半導体チップ(1a,1b)の半導体本体(10a,10b)の板厚は、例えば50μmとする。
In the two semiconductor chips (1a, 1b), pad electrodes (11a, 11b) are formed on the surfaces of the semiconductor bodies (10a, 10b), respectively, so that the pad electrodes (11a, 11b) are opened. The protective insulating film (12a, 12b) is formed on the surface.
The plate thickness of the semiconductor body (10a, 10b) of the semiconductor chip (1a, 1b) is, for example, 50 μm.

次に、図3(b)に示すように、例えば、ポリイミド系、フェノール系、エポキシ系の感光性樹脂の粘度を上げて、スピンコート法などで10μm程度の膜厚で半導体チップ(1a,1b)が全面が被覆されるように塗布して、第1絶縁膜22を形成する。この状態で、半導体チップの有無に起因して生じる最も薄い層が半導体チップの厚さより15μm以上厚い状態となる。
例えば、感光性ポリイミドをスピンコート法で形成する場合、(1000rpm,30秒)+(2000rpm,40秒)+(1000rpm,10秒)+(1500rpm,10秒)の塗布条件で行い、プリベークとして(90℃,120秒)+(100℃,120秒)の熱処理を行う。
Next, as shown in FIG. 3B, for example, the viscosity of a polyimide-based, phenol-based, or epoxy-based photosensitive resin is increased, and the semiconductor chip (1a, 1b) is formed to a thickness of about 10 μm by spin coating or the like. The first insulating film 22 is formed by coating so that the entire surface is covered. In this state, the thinnest layer generated due to the presence or absence of the semiconductor chip is in a state of being 15 μm or more thicker than the thickness of the semiconductor chip.
For example, when a photosensitive polyimide is formed by a spin coating method, it is performed under a coating condition of (1000 rpm, 30 seconds) + (2000 rpm, 40 seconds) + (1000 rpm, 10 seconds) + (1500 rpm, 10 seconds) as pre-baking ( 90 ° C., 120 seconds) + (100 ° C., 120 seconds).

次に、図3(c)に示すように、例えば、プリベーク後この状態で、半導体チップの有無に起因する段差を平坦化するために第1絶縁層22の上面から15μm程度研削あるいは切削して、第1絶縁膜22を平坦化する。
研削する場合の条件は、例えば、#600のホイールでスピンドル回転数3500rpmとして行う。
Next, as shown in FIG. 3C, for example, in this state after pre-baking, the surface of the first insulating layer 22 is ground or cut by about 15 μm in order to flatten the step caused by the presence or absence of the semiconductor chip. Then, the first insulating film 22 is planarized.
The conditions for grinding are, for example, set at a spindle rotation speed of 3500 rpm with a # 600 wheel.

次に、図4(a)に示すように、例えば、露光及び現像を行って、第1絶縁層22に、半導体チップ(1a,1b)のパッド電極(11a,11b)を開口する開口部を開口する。この露光は、例えば露光量125mJ/cmで行う。
上記の第1絶縁層22のパターニングの後、第1絶縁層22の硬化処理を行う。
Next, as shown in FIG. 4A, for example, exposure and development are performed to form openings in the first insulating layer 22 for opening the pad electrodes (11a, 11b) of the semiconductor chips (1a, 1b). Open. This exposure is performed, for example, with an exposure dose of 125 mJ / cm 2 .
After the patterning of the first insulating layer 22, the first insulating layer 22 is cured.

次に、図4(b)に示すように、例えば、スパッタリング法により、第1絶縁層22に形成された開口部の内壁面を被覆して、例えばTiを600nm、続いてCuを600nmの膜厚でそれぞれ堆積させ、次工程における電解メッキ処理のシード層23を形成する。   Next, as shown in FIG. 4B, the inner wall surface of the opening formed in the first insulating layer 22 is covered by, for example, a sputtering method to form, for example, a Ti film of 600 nm and then a Cu film of 600 nm. Each of the layers is deposited with a thickness to form a seed layer 23 for electrolytic plating in the next step.

次に、図4(c)に示すように、例えば、フォトリソグラフィー工程により、第1絶縁層22に形成された開口部及び第1配線形成領域を開口するパターンのレジスト膜24を形成する。
上記のレジスト膜24の膜厚は、第1絶縁膜22の平坦化処理の効果により、10μm以下で形成することが可能となり、解像度は例えばL/S=10/10μm程度である。
Next, as shown in FIG. 4C, a resist film 24 having a pattern that opens the opening formed in the first insulating layer 22 and the first wiring formation region is formed by, for example, a photolithography process.
The film thickness of the resist film 24 can be formed to be 10 μm or less due to the effect of the planarization process of the first insulating film 22, and the resolution is, for example, about L / S = 10/10 μm.

次に、図5(a)に示すように、例えば、シード層23を一方の電極とする電解メッキ処理により、レジスト膜24の形成領域を除く領域に銅を成膜し、所定の配線回路パターンの銅層25を形成する。銅のメッキは、例えば1.5ASD(1.5A/dm)の条件とする。 Next, as shown in FIG. 5A, for example, copper is formed in a region excluding the formation region of the resist film 24 by an electrolytic plating process using the seed layer 23 as one electrode, and a predetermined wiring circuit pattern is formed. The copper layer 25 is formed. Copper plating is performed under conditions of 1.5 ASD (1.5 A / dm 2 ), for example.

次に、図5(b)に示すように、例えば、溶剤処理などによりレジスト膜24を剥離する。さらに、図5(c)に示すように、銅層25をマスクとしてウェットエッチングなどを行い、各銅層25間におけるシード層23を除去する。
これにより、シード層23及び銅層25からなる第1配線が形成される。
Next, as shown in FIG. 5B, the resist film 24 is removed by, for example, a solvent treatment. Further, as shown in FIG. 5C, wet etching or the like is performed using the copper layer 25 as a mask, and the seed layer 23 between the copper layers 25 is removed.
Thereby, the first wiring composed of the seed layer 23 and the copper layer 25 is formed.

次に、上記と同様の工程を繰り返して、図6(a)に示すように、第2絶縁層26と、シード層27及び銅層28からなる第2配線を積層させる。
第2絶縁層26の形成は、例えば、スピンコート法、CVD法あるいは印刷法などで行い、感光性ポリイミドをスピンコート法により形成する場合、例えば、(7000rpm,25秒)+(1000rpm,125秒)+(1000rpm,10秒)+(1500rpm,10秒)の塗布条件で行い、プリベークとしては、(60℃,240秒)+(90℃,240秒)+(110℃,120秒)の熱処理を行って、78μmの膜厚の第2絶縁層とする。
上記のように形成した第2絶縁層26を露光量300mJ/cmの露光条件でパターン露光及び現像を行う。さらにスパッタリング法などで160nmのTiと600nmのCuを積層してシード層27を形成し、不図示のレジスト膜を形成して、シード層27を一方の電極とする電解メッキ処理により所定の配線回路パターンの銅層28を形成する。電解メッキ処理の電流密度は1.5ASD(1.5A/dm)で400mA/50分とする。
上記のレジスト膜の膜厚は、第1絶縁膜の平坦化処理の効果により、10μm以下で形成することが可能となり、解像度は例えばL/S=10/10μm程度である。
さらに、溶剤処理などによりレジスト膜を剥離する。シード層27は、次工程で導電性ポストを形成する電解メッキ処理工程においても用いるので、エッチングせずにおく。
Next, the same process as described above is repeated, and as shown in FIG. 6A, the second insulating layer 26 and the second wiring made of the seed layer 27 and the copper layer 28 are laminated.
The second insulating layer 26 is formed by, for example, a spin coating method, a CVD method, or a printing method. When the photosensitive polyimide is formed by a spin coating method, for example, (7000 rpm, 25 seconds) + (1000 rpm, 125 seconds) ) + (1000 rpm, 10 seconds) + (1500 rpm, 10 seconds), and pre-baking is (60 ° C., 240 seconds) + (90 ° C., 240 seconds) + (110 ° C., 120 seconds) heat treatment To obtain a second insulating layer having a thickness of 78 μm.
The second insulating layer 26 formed as described above is subjected to pattern exposure and development under exposure conditions of an exposure amount of 300 mJ / cm 2 . Further, a seed layer 27 is formed by laminating 160 nm Ti and 600 nm Cu by sputtering or the like, a resist film (not shown) is formed, and a predetermined wiring circuit is formed by electrolytic plating using the seed layer 27 as one electrode. A patterned copper layer 28 is formed. The current density of the electrolytic plating process is 1.5 ASD (1.5 A / dm 2 ) and 400 mA / 50 minutes.
The film thickness of the resist film can be formed at 10 μm or less due to the effect of the planarization treatment of the first insulating film, and the resolution is, for example, about L / S = 10/10 μm.
Further, the resist film is removed by solvent treatment or the like. Since the seed layer 27 is also used in an electroplating process in which a conductive post is formed in the next process, it is not etched.

次に、図6(b)に示すように、例えば、フォトリソグラフィー工程により導電性ポストの形成領域を開口するパターンでレジスト膜をパターン形成し、さらにシード層27を一方の電極とする電解メッキ処理により、第2配線に接続するように、銅からなる導電性ポスト29を形成する。銅からなる導電性ポストの径は250μm、高さは80μmとする。
この後、レジスト膜を除去し、さらに導電性ポスト29及び銅層28をマスクとしてウェットエッチングなどを行い、各銅層28間におけるシード層27を除去する。
Next, as shown in FIG. 6B, for example, a resist film is formed in a pattern that opens the formation region of the conductive post by a photolithography process, and the electroplating process using the seed layer 27 as one electrode. Thus, a conductive post 29 made of copper is formed so as to be connected to the second wiring. The diameter of the conductive post made of copper is 250 μm and the height is 80 μm.
Thereafter, the resist film is removed, and further, wet etching or the like is performed using the conductive posts 29 and the copper layer 28 as a mask, and the seed layer 27 between the copper layers 28 is removed.

以上のようにして、また、以上のような工程を繰り返すことにより、第1絶縁層及び第2絶縁層さらにはそれ以上の樹脂層が積層した絶縁層が形成でき、また、絶縁層中に埋め込まれて、第1配線及び第2配線さらにはそれ以上の配線を積層することができる。   As described above, by repeating the above-described steps, an insulating layer in which the first insulating layer, the second insulating layer, and further the resin layer are laminated can be formed and embedded in the insulating layer. Thus, the first wiring, the second wiring, and further wiring can be stacked.

次に、図7(a)に示すように、例えば、印刷法あるいはモールド法により、導電性ポスト29の外周部において第2絶縁層26の上層に、エポキシ系、ポリイミド系、シリコーン系などの樹脂からなり、半導体装置が実装基板に実装されたときに発生する応力を緩和する絶縁性のバッファ層30を形成する。
ポリイミド系樹脂の場合には、印刷法によりNV値27.5のペーストを使用し、スキージで印刷を行うことで形成する。硬化は(100℃,10分)+(150℃,10分)+(200℃,10分)+(250℃,60分)の熱処理で行う。
Next, as shown in FIG. 7A, an epoxy-based, polyimide-based, or silicone-based resin is formed on the second insulating layer 26 on the outer periphery of the conductive post 29 by, for example, a printing method or a molding method. The insulating buffer layer 30 is formed to relieve stress generated when the semiconductor device is mounted on the mounting substrate.
In the case of a polyimide resin, it is formed by using a paste having an NV value of 27.5 by printing and printing with a squeegee. Curing is performed by a heat treatment of (100 ° C., 10 minutes) + (150 ° C., 10 minutes) + (200 ° C., 10 minutes) + (250 ° C., 60 minutes).

次に、図7(b)に示すように、例えば、バッファ層30を上面から研削し、導電性ポスト29の頂部を露出させる。条件は、例えば#600のホイールを用いて3500rpm,0.5mm/秒とする。   Next, as shown in FIG. 7B, for example, the buffer layer 30 is ground from the upper surface to expose the tops of the conductive posts 29. The conditions are, for example, 3500 rpm and 0.5 mm / second using a # 600 wheel.

次に、図8(a)に示すように、例えば、露出した導電性ポスト上にはんだボールまたははんだペーストにてバンプ(突起電極)31を形成する。   Next, as shown in FIG. 8A, for example, bumps (projection electrodes) 31 are formed on the exposed conductive posts with solder balls or solder paste.

次に、図8(b)に示すように、基板20の裏面側から研削して薄型化した後、ダイシングラインにおいてダイシングを行うことで、図1に示すような構成の半導体装置を製造することができる。   Next, as shown in FIG. 8B, after thinning by grinding from the back side of the substrate 20, the semiconductor device having the structure shown in FIG. 1 is manufactured by dicing in a dicing line. Can do.

上記の半導体装置において、内蔵する半導体チップを薄型化した場合、基板をも薄く加工すると半導体装置全体の総厚を725μmまで薄くすることができる。これ以上の薄型化をおこなう場合は、搭載した半導体チップをさらに研削する。   In the above semiconductor device, when the built-in semiconductor chip is thinned, the total thickness of the entire semiconductor device can be reduced to 725 μm by thinning the substrate. When the thickness is further reduced, the mounted semiconductor chip is further ground.

本実施形態に係る半導体装置の製造方法によれば、半導体チップを絶縁膜中に埋め込んで形成するSiP形態の半導体装置の製造方法において、半導体チップを埋め込む絶縁層を平坦化する工程を有しており、その上層に形成する再配線形成時のメッキ用レジストの薄膜化を可能にし、これによって半導体チップに接続される再配線の微細化が実現できる。   According to the method for manufacturing a semiconductor device according to the present embodiment, in the method for manufacturing a semiconductor device of the SiP type in which the semiconductor chip is formed by embedding the semiconductor chip in the insulating film, the step of planarizing the insulating layer in which the semiconductor chip is embedded is provided. Therefore, it is possible to reduce the thickness of the resist for plating at the time of forming the rewiring formed on the upper layer, thereby realizing miniaturization of the rewiring connected to the semiconductor chip.

本実施形態の半導体装置及びその製造方法によれば、以下の利点を享受できる。
(1)半導体チップに接続して再配線を形成する工程のレジスト膜の解像度がL/S=10/10μmにまで微細化できる。
(2)半導体チップ搭載領域と非搭載領域との間における配線の傾斜がなくなり、内蔵素子を半導体チップ近傍に配置することも可能となり、半導体装置全体の面積の小型化が図れる。
According to the semiconductor device and the manufacturing method thereof of the present embodiment, the following advantages can be obtained.
(1) The resolution of the resist film in the process of forming a rewiring by connecting to a semiconductor chip can be miniaturized to L / S = 10/10 μm.
(2) The inclination of the wiring between the semiconductor chip mounting region and the non-mounting region is eliminated, and the built-in element can be arranged in the vicinity of the semiconductor chip, so that the area of the entire semiconductor device can be reduced.

本発明は上記の説明に限定されない。
例えば、基板にも電子回路が形成されていてもよい。この場合には絶縁層に埋め込まれる配線が基板に接続するように形成される。
その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
The present invention is not limited to the above description.
For example, an electronic circuit may be formed on the substrate. In this case, the wiring embedded in the insulating layer is formed so as to be connected to the substrate.
In addition, various modifications can be made without departing from the scope of the present invention.

本発明の半導体装置は、システムインパッケージ形態の半導体装置に適用できる。
また、本発明の半導体装置の製造方法は、システムインパッケージ形態の半導体装置を製造する方法に適用できる。
The semiconductor device of the present invention can be applied to a semiconductor device in a system in package form.
The semiconductor device manufacturing method of the present invention can be applied to a method of manufacturing a system-in-package semiconductor device.

図1は、本発明の施形態に係る半導体装置の模式断面図である。FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention. 図2(a)〜(d)は、本発明の施形態に係る半導体装置の製造方法の製造工程を示す断面図である。2A to 2D are cross-sectional views illustrating manufacturing steps of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 図3(a)〜(c)は、本発明の実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。3A to 3C are cross-sectional views illustrating manufacturing steps of the method for manufacturing a semiconductor device according to the embodiment of the present invention. 図4(a)〜(c)は、本発明の実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。4A to 4C are cross-sectional views illustrating manufacturing steps of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 図5(a)〜(c)は、本発明の実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。5A to 5C are cross-sectional views illustrating the manufacturing process of the method for manufacturing a semiconductor device according to the embodiment of the present invention. 図6(a)及び図6(b)は、本発明の実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。FIG. 6A and FIG. 6B are cross-sectional views showing manufacturing steps of the method for manufacturing a semiconductor device according to the embodiment of the present invention. 図7(a)及び図7(b)は、本発明の実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。FIG. 7A and FIG. 7B are cross-sectional views illustrating manufacturing steps of the method for manufacturing a semiconductor device according to the embodiment of the present invention. 図8(a)及び図8(b)は、本発明の実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。FIG. 8A and FIG. 8B are cross-sectional views illustrating manufacturing steps of the method for manufacturing a semiconductor device according to the embodiment of the present invention.

符号の説明Explanation of symbols

1,1a,1b…半導体チップ、10,10a,10b…半導体本体、10w…半導体ウェハ、11,11a,11b…パッド電極、12,12a,12b…保護絶縁膜、13ダイアタッチフィルム、20…基板、21…絶縁膜、22…第1絶縁層、23…シード層、24…レジスト膜、25…銅層、26…第2絶縁層、27…シード層、28…銅層、29…導電性ポスト、30…バッファ層、31…バンプ   DESCRIPTION OF SYMBOLS 1,1a, 1b ... Semiconductor chip, 10, 10a, 10b ... Semiconductor main body, 10w ... Semiconductor wafer, 11, 11a, 11b ... Pad electrode, 12, 12a, 12b ... Protective insulating film, 13 die attach film, 20 ... Substrate , 21 ... insulating film, 22 ... first insulating layer, 23 ... seed layer, 24 ... resist film, 25 ... copper layer, 26 ... second insulating layer, 27 ... seed layer, 28 ... copper layer, 29 ... conductive post 30 ... Buffer layer, 31 ... Bump

Claims (7)

電子回路が設けられた半導体を含んでパッケージ化された半導体装置であって、
基板と、
前記電子回路が形成された半導体本体と、前記半導体本体上に形成されたパッド電極とを有し、前記パッド電極の形成面の裏面側から前記基板にマウントされた半導体チップと、
前記半導体チップを埋め込んで形成され、表面が平坦化された第1絶縁層と、
前記第1絶縁層を貫通して前記パッド電極に接続し、前記第1絶縁層の上層に形成された第1配線と
を有する半導体装置。
A semiconductor device packaged including a semiconductor provided with an electronic circuit,
A substrate,
A semiconductor body having a semiconductor body on which the electronic circuit is formed; a pad electrode formed on the semiconductor body; and a semiconductor chip mounted on the substrate from the back side of the pad electrode forming surface;
A first insulating layer formed by embedding the semiconductor chip and having a planarized surface;
A semiconductor device comprising: a first wiring penetrating through the first insulating layer and connected to the pad electrode, and formed in an upper layer of the first insulating layer.
前記第1絶縁層の上層に、前記第1配線に接続する上層配線と、前記上層配線を埋め込む上層絶縁層が形成されている
請求項1に記載の半導体装置。
The semiconductor device according to claim 1, wherein an upper-layer wiring connected to the first wiring and an upper-layer insulating layer that embeds the upper-layer wiring are formed in an upper layer of the first insulating layer.
前記半導体チップとして複数の半導体チップが前記第1絶縁層中に埋め込まれている
請求項1に記載の半導体装置。
The semiconductor device according to claim 1, wherein a plurality of semiconductor chips are embedded in the first insulating layer as the semiconductor chips.
電子回路が設けられた半導体を含んでパッケージ化された半導体装置の製造方法であって、
基板に、前記電子回路が形成された半導体本体と、前記半導体本体上に形成されたパッド電極とを有する半導体チップを、前記パッド電極の形成面の裏面側からマウントする工程と、
前記半導体チップを埋め込んで第1絶縁層を形成する工程と、
前記第1絶縁層の表面を平坦化する工程と、
前記パッド電極に達する開口部を前記第1絶縁層に形成する工程と、
前記開口部を埋め込んで前記第1絶縁層の上層に第1配線を形成する工程と
を有する半導体装置の製造方法。
A method of manufacturing a semiconductor device packaged including a semiconductor provided with an electronic circuit,
Mounting a semiconductor chip having a semiconductor body on which the electronic circuit is formed and a pad electrode formed on the semiconductor body from the back side of the pad electrode forming surface;
Forming a first insulating layer by embedding the semiconductor chip;
Planarizing the surface of the first insulating layer;
Forming an opening reaching the pad electrode in the first insulating layer;
And a step of filling the opening and forming a first wiring in an upper layer of the first insulating layer.
前記第1絶縁膜を平坦化する工程は、前記第1絶縁膜を上面から研削あるいは切削する工程を含む
請求項4に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 4, wherein the step of planarizing the first insulating film includes a step of grinding or cutting the first insulating film from an upper surface.
前記第1配線を形成する工程の後に、前記第1絶縁層の上層に前記第1配線に接続する上層配線と前記上層配線を埋め込む上層絶縁層とを形成する工程をさらに有する
請求項4に記載の半導体装置の製造方法。
5. The method according to claim 4, further comprising a step of forming, after the step of forming the first wiring, an upper layer wiring connected to the first wiring and an upper layer insulating layer for embedding the upper layer wiring in an upper layer of the first insulating layer. Semiconductor device manufacturing method.
前記半導体チップをマウントする工程において複数の半導体チップをマウントし、前記第1絶縁層を形成する工程において前記複数の半導体チップを埋め込む
請求項4に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 4, wherein a plurality of semiconductor chips are mounted in the step of mounting the semiconductor chips, and the plurality of semiconductor chips are embedded in the step of forming the first insulating layer.
JP2005292419A 2005-10-05 2005-10-05 Semiconductor device and manufacturing method thereof Pending JP2007103716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292419A JP2007103716A (en) 2005-10-05 2005-10-05 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292419A JP2007103716A (en) 2005-10-05 2005-10-05 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007103716A true JP2007103716A (en) 2007-04-19

Family

ID=38030350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292419A Pending JP2007103716A (en) 2005-10-05 2005-10-05 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007103716A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073082A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Expanded semiconductor chip and semiconductor device
US8704367B2 (en) 2010-09-03 2014-04-22 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of semiconductor device
JP2014086598A (en) * 2012-10-24 2014-05-12 Hitachi Chemical Co Ltd Method of manufacturing semiconductor device, semiconductor device, and photosensitive resin composition
US8835227B2 (en) 2011-05-30 2014-09-16 Lapis Semiconductor Co., Ltd. Semiconductor device fabrication method and semiconductor device
TWI470708B (en) * 2009-12-16 2015-01-21 Xintec Inc Electronic device package and fabrication method thereof
JP2016213371A (en) * 2015-05-12 2016-12-15 日立化成株式会社 Semiconductor device and method of manufacturing the same
KR101736087B1 (en) * 2015-08-10 2017-05-17 주식회사 에스에프에이반도체 Method for manufacturing voice coil
CN109494202A (en) * 2017-09-12 2019-03-19 Pep创新私人有限公司 A kind of semiconductor chip packaging method and encapsulating structure
CN109962064A (en) * 2017-11-02 2019-07-02 三星电子株式会社 Semiconductor device and its manufacturing method and semiconductor package part including it
JP2020107801A (en) * 2018-12-28 2020-07-09 住友ベークライト株式会社 Method for manufacturing semiconductor device
JP2022179747A (en) * 2017-04-24 2022-12-02 ローム株式会社 Semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340696A (en) * 1999-05-31 2000-12-08 Matsushita Electric Works Ltd Manufacture of semiconductor package
JP2001217337A (en) * 2000-01-31 2001-08-10 Shinko Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2001274315A (en) * 2000-03-24 2001-10-05 Sony Corp Semiconductor device and its manufacturing method
JP2004241660A (en) * 2003-02-06 2004-08-26 Nec Electronics Corp Semiconductor device, and manufacturing method thereof
JP2004320059A (en) * 2004-08-16 2004-11-11 Oki Electric Ind Co Ltd Method for manufacturing semiconductor device
JP2005019938A (en) * 2003-06-03 2005-01-20 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2005123567A (en) * 2003-09-24 2005-05-12 Sumitomo Bakelite Co Ltd Semiconductor device and its manufacturing method
JP2005175402A (en) * 2003-12-15 2005-06-30 Sony Corp Semiconductor device and its manufacturing method
JP2005203614A (en) * 2004-01-16 2005-07-28 Sony Corp Semiconductor device, manufacturing method thereof, electronic component, semiconductor chip, and package substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340696A (en) * 1999-05-31 2000-12-08 Matsushita Electric Works Ltd Manufacture of semiconductor package
JP2001217337A (en) * 2000-01-31 2001-08-10 Shinko Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2001274315A (en) * 2000-03-24 2001-10-05 Sony Corp Semiconductor device and its manufacturing method
JP2004241660A (en) * 2003-02-06 2004-08-26 Nec Electronics Corp Semiconductor device, and manufacturing method thereof
JP2005019938A (en) * 2003-06-03 2005-01-20 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP2005123567A (en) * 2003-09-24 2005-05-12 Sumitomo Bakelite Co Ltd Semiconductor device and its manufacturing method
JP2005175402A (en) * 2003-12-15 2005-06-30 Sony Corp Semiconductor device and its manufacturing method
JP2005203614A (en) * 2004-01-16 2005-07-28 Sony Corp Semiconductor device, manufacturing method thereof, electronic component, semiconductor chip, and package substrate
JP2004320059A (en) * 2004-08-16 2004-11-11 Oki Electric Ind Co Ltd Method for manufacturing semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470708B (en) * 2009-12-16 2015-01-21 Xintec Inc Electronic device package and fabrication method thereof
US8704367B2 (en) 2010-09-03 2014-04-22 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of semiconductor device
US8835227B2 (en) 2011-05-30 2014-09-16 Lapis Semiconductor Co., Ltd. Semiconductor device fabrication method and semiconductor device
WO2013073082A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Expanded semiconductor chip and semiconductor device
CN103650135A (en) * 2011-11-16 2014-03-19 松下电器产业株式会社 Expanded semiconductor chip and semiconductor device
JPWO2013073082A1 (en) * 2011-11-16 2015-04-02 パナソニック株式会社 Expandable semiconductor chip and semiconductor device
US9136219B2 (en) 2011-11-16 2015-09-15 Panasonic Corporation Expanded semiconductor chip and semiconductor device
JP2014086598A (en) * 2012-10-24 2014-05-12 Hitachi Chemical Co Ltd Method of manufacturing semiconductor device, semiconductor device, and photosensitive resin composition
JP2016213371A (en) * 2015-05-12 2016-12-15 日立化成株式会社 Semiconductor device and method of manufacturing the same
KR101736087B1 (en) * 2015-08-10 2017-05-17 주식회사 에스에프에이반도체 Method for manufacturing voice coil
US10050499B2 (en) 2015-08-10 2018-08-14 Samsung Electronics Co., Ltd. Method of manufacturing voice coil
JP2022179747A (en) * 2017-04-24 2022-12-02 ローム株式会社 Semiconductor device
CN109494202A (en) * 2017-09-12 2019-03-19 Pep创新私人有限公司 A kind of semiconductor chip packaging method and encapsulating structure
CN109494202B (en) * 2017-09-12 2023-01-31 Pep创新私人有限公司 Semiconductor chip packaging method and packaging structure
CN109962064A (en) * 2017-11-02 2019-07-02 三星电子株式会社 Semiconductor device and its manufacturing method and semiconductor package part including it
CN109962064B (en) * 2017-11-02 2024-02-09 三星电子株式会社 Semiconductor device, method of manufacturing the same, and semiconductor package including the same
JP2020107801A (en) * 2018-12-28 2020-07-09 住友ベークライト株式会社 Method for manufacturing semiconductor device
JP7218575B2 (en) 2018-12-28 2023-02-07 住友ベークライト株式会社 Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JP4395775B2 (en) Semiconductor device and manufacturing method thereof
US20220067334A1 (en) Fingerprint sensor device and method
JP2007103716A (en) Semiconductor device and manufacturing method thereof
JP3953027B2 (en) Semiconductor device and manufacturing method thereof
JP4403407B2 (en) Semiconductor device and manufacturing method thereof
JP4380551B2 (en) Semiconductor device and manufacturing method thereof
JP2008047732A (en) Semiconductor device and manufacturing method thereof
JP5245209B2 (en) Semiconductor device and manufacturing method thereof
JP4591100B2 (en) Semiconductor device and manufacturing method thereof
JP4599834B2 (en) Semiconductor device and manufacturing method thereof
JP2007318059A (en) Semiconductor device, and manufacturing method thereof
JP4052237B2 (en) Semiconductor device and manufacturing method thereof
JP4844287B2 (en) Semiconductor device and manufacturing method thereof
JP2007103715A (en) Semiconductor device and manufacturing method thereof
JP2007134569A (en) Substrate incorporated in electronic component, and its manufacturing method
JP5098211B2 (en) Semiconductor device and manufacturing method thereof
JP4894343B2 (en) Manufacturing method of semiconductor device
JP2007103717A (en) Semiconductor device and manufacturing method thereof
JP4325478B2 (en) Semiconductor device and manufacturing method thereof
CN113097184A (en) Semiconductor structure and forming method thereof
JP2007294609A (en) Semiconductor device and manufacturing method thereof
JP2006216769A (en) Semiconductor device and its fabrication process
JP2005332893A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124