JP5245209B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5245209B2
JP5245209B2 JP2006119610A JP2006119610A JP5245209B2 JP 5245209 B2 JP5245209 B2 JP 5245209B2 JP 2006119610 A JP2006119610 A JP 2006119610A JP 2006119610 A JP2006119610 A JP 2006119610A JP 5245209 B2 JP5245209 B2 JP 5245209B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
chip
layer
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006119610A
Other languages
Japanese (ja)
Other versions
JP2007294611A (en
Inventor
修 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006119610A priority Critical patent/JP5245209B2/en
Publication of JP2007294611A publication Critical patent/JP2007294611A/en
Application granted granted Critical
Publication of JP5245209B2 publication Critical patent/JP5245209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect not connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the semiconductor or solid-state body being mounted in a cavity or on a protrusion of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は半導体装置及びその製造方法に関し、特に能動素子や受動素子を内蔵し、整合回路やフィルタなどを取り込んだSiP(システムインパッケージ)形態の半導体装置とその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a SiP (system in package) type semiconductor device incorporating an active element and a passive element and incorporating a matching circuit and a filter, and a manufacturing method thereof.

デジタルビデオカメラ、デジタル携帯電話、あるいはノートパソコンなど、携帯用電子機器の小型化、薄型化、軽量化に対する要求は強くなる一方であり、これに応えるために近年のVLSIなどの半導体装置においては3年で7割の縮小化を実現してきた一方で、このような半導体装置をプリント配線基板上に実装した電子回路装置としても、実装基板(プリント配線基板)上の部品実装密度をいかに向上させるかが重要な課題として研究及び開発がなされてきた。   The demand for downsizing, thinning, and weight reduction of portable electronic devices such as digital video cameras, digital mobile phones, and notebook personal computers is increasing. While an electronic circuit device in which such a semiconductor device is mounted on a printed wiring board has been realized by 70% reduction year by year, how can the component mounting density on the mounting substrate (printed wiring substrate) be improved? Has been studied and developed as an important issue.

例えば、半導体装置のパッケージ形態としては、DIP(Dual Inline Package )などのリード挿入型から表面実装型へと移行し、さらには半導体チップのパッド電極にはんだや金などからなるバンプ(突起電極)を設け、フェースダウンでバンプを介して配線基板に接続するフリップチップ実装法が開発された。   For example, as a package form of a semiconductor device, a transition from a lead insertion type such as DIP (Dual Inline Package) to a surface mounting type is performed, and furthermore, bumps (projection electrodes) made of solder, gold, or the like are provided on a pad electrode of a semiconductor chip. A flip-chip mounting method has been developed in which a face-down connection is made to the wiring board via bumps.

さらに、インダクタンスやキャパシタなどの受動素子を内蔵し、整合回路やフィルタなどを取り込んだSiPと呼ばれる複雑な形態のパッケージへと開発が進んでいる。   Furthermore, development is progressing into a package of a complicated form called SiP that incorporates passive elements such as inductances and capacitors and incorporates a matching circuit and a filter.

例えば、デジタルチップとデジタルチップ、デジタルチップとアナログチップ、アナログチップとアナログチップなど、能動素子を含むチップを2個以上含んで一体化する場合、有機基板の両側にアナログ、デジタルチップをそれぞれ実装する構成が知られている。
しかし、この構造では基板のスルーホールと片側に外部電極の形成が必要で全体の厚さが厚くなり薄型化は行えない。
For example, when integrating two or more chips including active elements such as a digital chip and a digital chip, a digital chip and an analog chip, and an analog chip and an analog chip, the analog and digital chips are respectively mounted on both sides of the organic substrate. The configuration is known.
However, in this structure, it is necessary to form external electrodes on one side and the through hole of the substrate, so that the entire thickness becomes thick and the thickness cannot be reduced.

そこで、上記のようなSiP形態の半導体装置として、上記のような能動素子を含むチップを2個以上含んで一体化した半導体装置が開発されており、例えば2つの半導体チップを同一平面に平置きした構造が取られる。
しかしながら、この構造ではサイズが大きくなり小型化の要求を満足しない。
Therefore, as an SiP type semiconductor device as described above, a semiconductor device in which two or more chips including active elements as described above are integrated has been developed. For example, two semiconductor chips are placed on the same plane. The structure is taken.
However, this structure increases the size and does not satisfy the demand for miniaturization.

そこで、2つの半導体チップをスタックして配置した構造の半導体装置が開発され、例えば、特許文献1に上記のSiP形態の半導体装置の構成が開示されている。   In view of this, a semiconductor device having a structure in which two semiconductor chips are stacked and developed has been developed. For example, Patent Document 1 discloses the configuration of the above-described SiP-type semiconductor device.

図15は上記のような2つの半導体チップをスタックしてパッケージ化したSiP形態の半導体装置である。
シリコン基板100上に、例えば、酸化シリコンからなる下地絶縁膜101が形成され、能動素子が形成された第1半導体チップ102がマウントされている。第1半導体チップ102は、半導体本体部分102aの回路面にパッド102bが形成され、パッド102bを除く領域は酸化シリコンなどの保護層102cで覆われた構成であり、ダイアタッチフィルム102dにより、パッド102bの形成面が基板100と反対側を向くようにしてマウントされている。
FIG. 15 shows an SiP semiconductor device in which two semiconductor chips as described above are stacked and packaged.
On the silicon substrate 100, for example, a base insulating film 101 made of silicon oxide is formed, and a first semiconductor chip 102 on which an active element is formed is mounted. The first semiconductor chip 102 has a configuration in which a pad 102b is formed on the circuit surface of the semiconductor body portion 102a, and an area excluding the pad 102b is covered with a protective layer 102c such as silicon oxide, and the pad 102b is covered with a die attach film 102d. Is mounted so that the formation surface of the substrate faces the side opposite to the substrate 100.

例えば、第1半導体チップ102を被覆してポリイミド樹脂などからなる第1絶縁層103が形成され、第1半導体チップ102のパッド102bに達する開口部103aが形成されており、開口部103a内に埋め込まれて、第1半導体チップ102のパッド102bに接続するプラグ部分と一体になって、第1絶縁層102上にTiCuなどのシード層104及び銅層105からなる第1配線が形成されている。   For example, a first insulating layer 103 made of polyimide resin or the like is formed so as to cover the first semiconductor chip 102, and an opening 103a reaching the pad 102b of the first semiconductor chip 102 is formed and embedded in the opening 103a. Thus, a first wiring made of a seed layer 104 such as TiCu and a copper layer 105 is formed on the first insulating layer 102 so as to be integrated with the plug portion connected to the pad 102 b of the first semiconductor chip 102.

また、例えば、第1配線を被覆してポリイミド樹脂などからなる第2絶縁層106が形成され、第1配線に達する開口部106aが形成されており、開口部106a内に埋め込まれて、第1配線に接続するプラグ部分と一体になって、第2絶縁層106上にTiCuなどのシード層107及び銅層108からなる第2配線が形成され、さらに第2配線上に導電性ポスト109が形成されている。   In addition, for example, a second insulating layer 106 made of polyimide resin or the like is formed so as to cover the first wiring, and an opening 106a reaching the first wiring is formed, embedded in the opening 106a, A second wiring made of a seed layer 107 such as TiCu and a copper layer 108 is formed on the second insulating layer 106 integrally with a plug portion connected to the wiring, and a conductive post 109 is formed on the second wiring. Has been.

また、第1半導体チップ102の上方であって、第2絶縁層106の上層に、能動素子が形成された第2半導体チップ110がマウントされている。第2半導体チップ110は、半導体本体部分110aの回路面にパッド110bが形成され、パッド110bを除く領域は酸化シリコンなどの保護層110cで覆われた構成であり、ダイアタッチフィルム110dにより、パッド110bの形成面が基板100と反対側を向くようにしてマウントされている。   A second semiconductor chip 110 on which an active element is formed is mounted above the first semiconductor chip 102 and above the second insulating layer 106. The second semiconductor chip 110 has a configuration in which a pad 110b is formed on the circuit surface of the semiconductor body 110a, and a region excluding the pad 110b is covered with a protective layer 110c such as silicon oxide. The pad 110b is formed by a die attach film 110d. Is mounted so that the formation surface of the substrate faces the side opposite to the substrate 100.

また、例えば、導電性ポスト109、第2配線及び第2半導体チップ110を被覆して、ポリイミド樹脂などからなる第3絶縁層111が形成され、導電性ポスト109及び第2半導体チップ110のパッド110bに達する開口部111aが形成されており、開口部111a内に埋め込まれて、導電性ポスト109及び第2半導体チップ110のパッド110bに接続するプラグ部分と一体になって、第3絶縁層111上にTiCuなどのシード層112及び銅層113からなる第3配線が形成されている。   Further, for example, a third insulating layer 111 made of polyimide resin is formed so as to cover the conductive post 109, the second wiring, and the second semiconductor chip 110, and the pad 110 b of the conductive post 109 and the second semiconductor chip 110 is formed. Is formed in the opening 111a, and is embedded in the opening 111a so as to be integrated with the plug portion connected to the conductive post 109 and the pad 110b of the second semiconductor chip 110, and on the third insulating layer 111. A third wiring made of a seed layer 112 such as TiCu and a copper layer 113 is formed.

また、第3配線に接続して、銅などからなる導電性ポスト114が形成されており、導電性ポスト114の間隙における第3絶縁層111の上層に、ポリアミドイミド樹脂などからなる絶縁性のバッファ層115が形成され、バッファ層115の表面において導電性ポスト114に接続するようにバンプ(突起電極)116が形成されている。   In addition, a conductive post 114 made of copper or the like is formed in connection with the third wiring, and an insulating buffer made of polyamideimide resin or the like is formed above the third insulating layer 111 in the gap between the conductive posts 114. A layer 115 is formed, and bumps (projection electrodes) 116 are formed on the surface of the buffer layer 115 so as to be connected to the conductive posts 114.

上記の従来例に係る半導体装置において、チップ上とそれ以外部分での段差がチップ1つのみの場合に比べ2倍以上になる。従って、半導体チップ上に再配線層を形成してSiP形態の半導体装置とする場合、再配線層形成の形成工程におけるレジスト膜などのカバレージが悪くなってしまい、段切れを起こして再配線の形成が困難となる場合があり、また、実装基板に実装したときの実装基板との間に生じる応力緩和に寄与する導電性ポストの高さがパッケージ位置で異なってしまうことに起因して応力緩和機能が不十分となるおそれがある。
特開2003−124236号公報
In the semiconductor device according to the above-described conventional example, the step difference between the chip and the other part is more than twice as compared with the case of only one chip. Therefore, when a rewiring layer is formed on a semiconductor chip to form a SiP-type semiconductor device, the coverage of the resist film or the like in the rewiring layer formation forming process is deteriorated, causing disconnection and forming a rewiring. Stress relief function due to differences in the height of the conductive posts that contribute to stress relaxation that occurs between the mounting board and the mounting board when mounted on the mounting board. May become insufficient.
JP 2003-124236 A

解決しようとする問題点は、SiP形態の半導体装置において2個以上の半導体チップをスタック型に一体化する場合に、段切れを抑制し、実装基板に実装したときの実装基板との間に生じる応力を緩和する機能を確保することが困難である点である。   A problem to be solved is that when two or more semiconductor chips are integrated into a stack type in a SiP-type semiconductor device, the disconnection is suppressed and the mounting substrate is mounted on the mounting substrate. It is difficult to ensure a function to relieve stress.

本発明の半導体装置は、半導体を含んでパッケージ化された半導体装置であって、チップ埋め込み用凹部が形成された基板と、能動素子が形成され、前記チップ埋め込み用凹部の底面上にマウントされた第1半導体チップと、能動素子が形成され、前記第1半導体チップの上方に積層してマウントされた第2半導体チップとを有する。   The semiconductor device of the present invention is a semiconductor device packaged including a semiconductor, wherein a substrate on which a chip-embedded recess is formed and an active element are formed and mounted on the bottom surface of the chip-embedded recess. A first semiconductor chip; and a second semiconductor chip on which an active element is formed and stacked and mounted above the first semiconductor chip.

上記の本発明の半導体装置は、半導体を含んでパッケージ化された半導体装置であって、基板に形成されたチップ埋め込み用凹部の底面上に、能動素子が形成された第1半導体チップがマウントされており、また、能動素子が形成された第2半導体チップが第1半導体チップの上方に積層してマウントされている。   The semiconductor device according to the present invention is a semiconductor device packaged including a semiconductor, and a first semiconductor chip having an active element formed thereon is mounted on a bottom surface of a chip embedding recess formed on a substrate. In addition, a second semiconductor chip on which active elements are formed is stacked and mounted above the first semiconductor chip.

本発明の半導体装置の製造方法は、半導体を含んでパッケージ化された半導体装置の製造方法であって、基板にチップ埋め込み用凹部を形成する工程と、前記チップ埋め込み用凹部の底面上に、能動素子が形成された第1半導体チップをマウントする工程と、前記第1半導体チップの上方に積層して、能動素子が形成された第2半導体チップをマウントする工程とを有する。   A method of manufacturing a semiconductor device according to the present invention is a method of manufacturing a semiconductor device packaged including a semiconductor, and includes a step of forming a recess for embedding a chip in a substrate, and an active process on a bottom surface of the recess for embedding a chip. A step of mounting the first semiconductor chip on which the element is formed, and a step of mounting the second semiconductor chip on which the active element is formed by being stacked above the first semiconductor chip.

上記の本発明の半導体装置の製造方法は、半導体を含んでパッケージ化して半導体装置を製造する方法であって、基板にチップ埋め込み用凹部を形成し、チップ埋め込み用凹部の底面上に、能動素子が形成された第1半導体チップをマウントし、さらに、第1半導体チップの上方に積層して、能動素子が形成された第2半導体チップをマウントする。   The method of manufacturing a semiconductor device according to the present invention is a method of manufacturing a semiconductor device by packaging a semiconductor including a semiconductor, wherein a chip embedding recess is formed on a substrate, and an active element is formed on the bottom surface of the chip embedding recess. The first semiconductor chip formed with is mounted, and further stacked on the first semiconductor chip, and the second semiconductor chip formed with the active element is mounted.

本発明の半導体装置は、SiP形態の半導体装置において、基板に形成されたチップ埋め込み用凹部の底面上に第1半導体チップがマウントされ、さらにその上方に積層して第2半導体チップがマウントされているので、絶縁層に生じる段差に対して第1半導体チップの分影響が軽減され、2個以上の半導体チップをスタック型に一体化しても段切れを抑制することができ、また、実装基板に実装したときの実装基板との間に生じる応力緩和に寄与する導電性ポストの高さのばらつきを低減して応力緩和機能を確保することができる。   In the semiconductor device of the present invention, in the SiP type semiconductor device, the first semiconductor chip is mounted on the bottom surface of the chip embedding concave portion formed on the substrate, and the second semiconductor chip is mounted further stacked thereon. As a result, the influence of the first semiconductor chip on the step generated in the insulating layer is reduced, and even if two or more semiconductor chips are integrated into a stack type, step disconnection can be suppressed. It is possible to secure the stress relaxation function by reducing the variation in the height of the conductive posts contributing to the stress relaxation generated between the mounting substrate and the mounting substrate.

本発明の半導体装置の製造方法は、SiP形態の半導体装置において、基板に形成されたチップ埋め込み用凹部の底面上に第1半導体チップをマウントし、さらにその上方に積層して第2半導体チップをマウントするので、絶縁層に生じる段差に対して第1半導体チップの分影響が軽減され、2個以上の半導体チップをスタック型に一体化しても段切れを抑制して、また、実装基板に実装したときの実装基板との間に生じる応力緩和に寄与する導電性ポストの高さのばらつきを低減して応力緩和機能を確保して、半導体装置を製造することができる。   According to a method of manufacturing a semiconductor device of the present invention, in a SiP type semiconductor device, a first semiconductor chip is mounted on a bottom surface of a chip embedding recess formed on a substrate, and further stacked thereon to form a second semiconductor chip. Since it is mounted, the influence of the first semiconductor chip on the step generated in the insulating layer is reduced, and even if two or more semiconductor chips are integrated into a stack type, the step breakage is suppressed, and the step is mounted on the mounting substrate. The semiconductor device can be manufactured by ensuring the stress relaxation function by reducing the variation in the height of the conductive posts contributing to the stress relaxation generated between the mounting substrate and the mounting substrate.

以下に、本発明に係る半導体装置及びその製造方法の実施の形態について、図面を参照して説明する。   Embodiments of a semiconductor device and a manufacturing method thereof according to the present invention will be described below with reference to the drawings.

第1実施形態
図1は本実施形態に係るSiP形態の半導体装置の断面図である。
例えば、シリコン基板10にチップ埋め込み用凹部10aが形成されている。チップ埋め込み用凹部10aの深さは、埋め込む半導体チップの板厚とダイアタッチフィルムの膜厚を合わせた厚みに合わせることが好ましく、例えば数10μm程度とする。また、チップ埋め込み用凹部10aの広さは、半導体チップを埋め込んだときの半導体チップの側面と凹部の内壁面の間隔が30μm程度となるように、半導体チップの広さより若干広く形成されていることが好ましい。
また、チップ埋め込み用凹部10a内壁を含んでシリコン基板上に酸化シリコンからなり、膜厚が300nm程度の下地絶縁膜12が形成されている。
First Embodiment FIG. 1 is a cross-sectional view of a SiP-type semiconductor device according to this embodiment.
For example, a chip embedding recess 10 a is formed in the silicon substrate 10. The depth of the recess 10a for embedding the chip is preferably matched to the thickness of the thickness of the semiconductor chip to be embedded and the thickness of the die attach film, for example, about several tens of μm. Further, the width of the chip embedding recess 10a is slightly larger than the width of the semiconductor chip so that the distance between the side surface of the semiconductor chip and the inner wall surface of the recess when the semiconductor chip is embedded is about 30 μm. Is preferred.
A base insulating film 12 made of silicon oxide and having a thickness of about 300 nm is formed on the silicon substrate including the inner wall of the chip embedding recess 10a.

チップ埋め込み用凹部10aの底面上に、例えば、能動素子が形成された回路面を有する第1半導体チップ14がマウントされている。第1半導体チップ14の板厚は、例えば25〜50μm程度である。第1半導体チップ14は、半導体本体部分14aの回路面にパッド14bが形成され、パッド14bを除く領域は酸化シリコンなどの保護層14cで覆われた構成であり、例えば10μm程度の膜厚のダイアタッチフィルム14dにより、フェースアップで、即ち、パッド14bの形成面が上面を向くようにしてマウントされている。
また、例えば、チップ埋め込み用凹部10aの縁部近傍にTiCu層がパターン形成されており、これは上記の第1半導体チップ14をマウントするためのアライメントマーク13である。
For example, a first semiconductor chip 14 having a circuit surface on which an active element is formed is mounted on the bottom surface of the chip embedding recess 10a. The plate thickness of the first semiconductor chip 14 is, for example, about 25 to 50 μm. The first semiconductor chip 14 has a structure in which a pad 14b is formed on the circuit surface of the semiconductor body portion 14a, and a region excluding the pad 14b is covered with a protective layer 14c such as silicon oxide. For example, the first semiconductor chip 14 has a thickness of about 10 μm. The touch film 14d is mounted face-up, that is, with the formation surface of the pad 14b facing the upper surface.
Further, for example, a TiCu layer is formed in the vicinity of the edge of the chip embedding recess 10a, which is the alignment mark 13 for mounting the first semiconductor chip 14 described above.

例えば、チップ埋め込み用凹部10a内を埋め込み、第1半導体チップ14を被覆して、ポリイミド樹脂、エポキシ樹脂あるいはアクリル樹脂などからなる第1樹脂層15が形成されている。
第1樹脂層15には、第1半導体チップ14のパッド14bに達する開口部15aが形成されている。
上記の開口部15a内に埋め込まれて、第1半導体チップ14のパッド14bに接続するプラグ部分と一体になって、第1樹脂層15上にTiCuなどのシード層16及び銅層18からなる第1配線が形成されている。
For example, the first resin layer 15 made of polyimide resin, epoxy resin, acrylic resin, or the like is formed so as to be embedded in the chip embedding recess 10a and to cover the first semiconductor chip 14.
In the first resin layer 15, an opening 15 a reaching the pad 14 b of the first semiconductor chip 14 is formed.
A first layer made of a seed layer 16 such as TiCu and a copper layer 18 is formed on the first resin layer 15 so as to be integrated with the plug portion embedded in the opening 15 a and connected to the pad 14 b of the first semiconductor chip 14. One wiring is formed.

また、例えば、第1半導体チップ14の上方であって、第1樹脂層15の上層あるいはその上層に形成された第1配線の上層に、能動素子が形成された回路面を有する第2半導体チップ21がマウントされている。第2半導体チップ21の板厚は、例えば25〜50μm程度である。第2半導体チップ21は、半導体本体部分21aの回路面にパッド21bが形成され、パッド21bを除く領域は酸化シリコンなどの保護層21cで覆われている構成であり、ダイアタッチフィルム21dにより、フェースアップで、即ち、パッド21bの形成面が上面を向くようにしてマウントされている。   Further, for example, a second semiconductor chip having a circuit surface on which an active element is formed above the first semiconductor chip 14 and above the first resin layer 15 or above the first wiring formed in the upper layer. 21 is mounted. The plate thickness of the second semiconductor chip 21 is, for example, about 25 to 50 μm. The second semiconductor chip 21 has a structure in which a pad 21b is formed on the circuit surface of the semiconductor body 21a, and a region excluding the pad 21b is covered with a protective layer 21c such as silicon oxide. That is, it is mounted so that the formation surface of the pad 21b faces the upper surface.

また、例えば、第1配線上には導電性ポスト20が形成されている。導電性ポスト20の高さは、例えば第2半導体チップ21の表面の高さと同程度となっていることが好ましい。   Further, for example, a conductive post 20 is formed on the first wiring. The height of the conductive post 20 is preferably approximately the same as the height of the surface of the second semiconductor chip 21, for example.

また、例えば、導電性ポスト20、第2半導体チップ21、第1配線及び第1樹脂層を被覆して、ポリイミド樹脂、エポキシ樹脂あるいはアクリル樹脂などからなる第2樹脂層22が形成されている。
第2樹脂層22には、導電性ポスト20の上面及び第2半導体チップ21のパッド21bに達する開口部22aが形成されている。
上記の開口部22a内に埋め込まれて、導電性ポスト20の上面及び第2半導体チップ21のパッド21bに接続するプラグ部分と一体になって、第2樹脂層22上にTiCuなどのシード層23及び銅層25からなる第2配線が形成されている。
Further, for example, the second resin layer 22 made of polyimide resin, epoxy resin, acrylic resin, or the like is formed by covering the conductive posts 20, the second semiconductor chip 21, the first wiring, and the first resin layer.
In the second resin layer 22, an opening 22 a reaching the upper surface of the conductive post 20 and the pad 21 b of the second semiconductor chip 21 is formed.
A seed layer 23 made of TiCu or the like is formed on the second resin layer 22 by being embedded in the opening 22a and integrated with a plug portion connected to the upper surface of the conductive post 20 and the pad 21b of the second semiconductor chip 21. And the 2nd wiring which consists of a copper layer 25 is formed.

また、第2配線に接続して、銅などからなる導電性ポスト27が形成されている。
導電性ポスト27の間隙における第2樹脂層22の上層に、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂あるいはポリパラフェニレンベンゾビスオキサゾール樹脂などからなる絶縁性のバッファ層28が形成されている。
さらに、バッファ層28の表面において導電性ポスト27に接続するようにバンプ(突起電極)29が形成されている。
In addition, a conductive post 27 made of copper or the like is formed in connection with the second wiring.
An insulating buffer layer 28 made of polyamideimide resin, polyimide resin, epoxy resin, phenol resin, polyparaphenylenebenzobisoxazole resin, or the like is formed on the second resin layer 22 in the gap between the conductive posts 27. .
Further, bumps (projection electrodes) 29 are formed on the surface of the buffer layer 28 so as to be connected to the conductive posts 27.

上記の本実施形態の半導体装置において、第1半導体チップ14は、例えばデジタルチップであり、一方、第2半導体チップ21は、例えばアナログチップである。
基板10に第1樹脂層15及び第2樹脂層22などが積層して絶縁層が形成されており、上記の第1半導体チップ14及び第2半導体チップ21が絶縁層中に埋め込まれている。
In the semiconductor device of the present embodiment, the first semiconductor chip 14 is, for example, a digital chip, while the second semiconductor chip 21 is, for example, an analog chip.
An insulating layer is formed by laminating a first resin layer 15 and a second resin layer 22 on the substrate 10, and the first semiconductor chip 14 and the second semiconductor chip 21 are embedded in the insulating layer.

上記の本実施形態の半導体装置は、SiP形態の半導体装置において、基板上に2個の半導体チップが積層して一体化したスタック型であるが、基板に形成されたチップ埋め込み用凹部の底面上に第1半導体チップ14がマウントされ、さらにその上方に積層して第2半導体チップ21がマウントされているので、絶縁層に生じる段差に対して第1半導体チップ14の分影響が軽減され、2個以上の半導体チップをスタック型に一体化しても段切れを抑制することができ、また、実装基板に実装したときの実装基板との間に生じる応力緩和に寄与する導電性ポストの高さのばらつきを低減して応力緩和機能を確保することができる。   The semiconductor device according to the present embodiment is a stack type in which two semiconductor chips are stacked and integrated on a substrate in the SiP type semiconductor device, but on the bottom surface of the chip embedding recess formed on the substrate. Since the first semiconductor chip 14 is mounted on the first semiconductor chip 14 and the second semiconductor chip 21 is further stacked on the first semiconductor chip 14, the influence of the first semiconductor chip 14 on the step generated in the insulating layer is reduced. Even if two or more semiconductor chips are integrated into a stack type, the step breakage can be suppressed, and the height of the conductive posts contributing to the relief of stress generated between the mounting chips and the mounting board can be reduced. Variations can be reduced to ensure a stress relaxation function.

第1半導体チップ14及び第2半導体チップ21が、上記と上下が逆の組み合わせ、あるいは、両者共にデジタルチップあるいはアナログチップであっても、上記と同様の効果が得られる。   Even when the first semiconductor chip 14 and the second semiconductor chip 21 are a combination of the above and upside down, or both are digital chips or analog chips, the same effects as described above can be obtained.

次に、上記の本実施形態の半導体装置の製造方法について図2〜12を参照して説明する。本実施形態においては、例えば図2〜12に示す全ての工程についてウェハレベルで行うことができる。
まず、図2(a)に示すように、例えば、725μmの厚さのシリコン基板10上に、スピン塗布などによりレジスト膜11を形成し、フォトリソグラフィー工程により露光及び現像などを行って、チップ埋め込み用凹部形成領域を開口する。
Next, a method for manufacturing the semiconductor device according to the present embodiment will be described with reference to FIGS. In the present embodiment, for example, all processes shown in FIGS. 2 to 12 can be performed at the wafer level.
First, as shown in FIG. 2A, for example, a resist film 11 is formed on a silicon substrate 10 having a thickness of 725 μm by spin coating or the like, and exposure and development are performed by a photolithography process to embed a chip. Open the recess forming region.

次に、図2(b)に示すように、例えば、レジスト膜11をマスクとしてドライまたはウェットエッチングを行い、シリコン基板10にチップ埋め込み用凹部10aを形成する。チップ埋め込み用凹部10aの深さは、埋め込む半導体チップの板厚とダイアタッチフィルムの膜厚を合わせた厚みに合わせることが好ましく、例えば数10μm程度とする。また、チップ埋め込み用凹部10aの広さは、半導体チップのサイズより片側30μm大きく形成する。これは後工程で樹脂を埋め込みときのボイドの発生を抑制するためである。   Next, as shown in FIG. 2B, for example, dry or wet etching is performed using the resist film 11 as a mask to form a chip embedding recess 10 a in the silicon substrate 10. The depth of the recess 10a for embedding the chip is preferably matched to the thickness of the thickness of the semiconductor chip to be embedded and the thickness of the die attach film, for example, about several tens of μm. The width of the chip embedding recess 10a is formed to be 30 μm larger on one side than the size of the semiconductor chip. This is to suppress the generation of voids when the resin is embedded in a later process.

次に、図2(c)に示すように、例えば、レジスト膜11を除去した後、図2(d)に示すように、例えば熱酸化法、CVD(化学気相成長)法あるいはスパッタリング法などにより、300nmの膜厚の酸化シリコンからなる下地絶縁膜12を形成する。   Next, as shown in FIG. 2C, for example, after the resist film 11 is removed, as shown in FIG. 2D, for example, a thermal oxidation method, a CVD (chemical vapor deposition) method, a sputtering method, or the like. Thus, the base insulating film 12 made of silicon oxide having a thickness of 300 nm is formed.

次に、図3(a)に示すように、例えば、チップ埋め込み用凹部10a内を被覆して全面に、スパッタリング法によりTiCu層13aを形成する。膜厚は、例えばTiを300nm、Cuを300nmとする。   Next, as shown in FIG. 3A, for example, a TiCu layer 13a is formed on the entire surface by covering the inside of the chip embedding recess 10a by sputtering. The film thickness is, for example, 300 nm for Ti and 300 nm for Cu.

次に、図3(b)に示すように、例えば、スピン塗布などによりレジスト膜13bを形成し、フォトリソグラフィー工程により露光及び現像などを行い、アライメントマークのパターンにパターニングする。例えば、半導体チップの1辺または2辺において形成され、チップ埋め込み用凹部10aの縁部近傍、例えば半導体チップのマウント位置のエッジから50μm離れた場所におけるL字形状のパターンとする。   Next, as shown in FIG. 3B, for example, a resist film 13b is formed by spin coating or the like, and exposure and development are performed by a photolithography process to pattern an alignment mark pattern. For example, an L-shaped pattern is formed on one or two sides of the semiconductor chip and in the vicinity of the edge of the chip embedding recess 10a, for example, 50 μm away from the edge of the mounting position of the semiconductor chip.

次に、図3(c)に示すように、例えば、レジスト膜13bをマスクとしてTiCu層13aをRIEなどのドライエッチングによりパターン加工し、TiCuからなるアライメントマーク13とする。   Next, as shown in FIG. 3C, for example, the TiCu layer 13a is patterned by dry etching such as RIE using the resist film 13b as a mask to form an alignment mark 13 made of TiCu.

次に、図4(a)に示すように、レジスト膜13bを除去した後、図4(b)に示すように、例えば、チップ埋め込み用凹部10aの底面上において、予め別工程で形成された、半導体本体部分14aの能動素子が形成された回路面にパッド14bが形成され、パッド14bを除く領域は酸化シリコンなどの保護層14cで覆われた構成の第1半導体チップ14を、ダイアタッチフィルム14dにより、フェースアップで、即ち、パッド14bの形成面が上面を向くようにしてマウントする。   Next, as shown in FIG. 4A, after the resist film 13b is removed, as shown in FIG. 4B, for example, it was previously formed in a separate step on the bottom surface of the chip embedding recess 10a. The first semiconductor chip 14 having a structure in which the pad 14b is formed on the circuit surface on which the active element of the semiconductor body portion 14a is formed and the region excluding the pad 14b is covered with the protective layer 14c such as silicon oxide is attached to the die attach film. 14d is mounted face up, that is, with the formation surface of the pad 14b facing the upper surface.

第1半導体チップ14の製造方法においては、例えば、研削法などにより25〜50μmまで薄型化し、接着剤であるダイアタッチフィルム14dを裏面にラミネートし、フルカットダイシングすることで個片薄型化を行う。
また、例えば、チップ埋め込み用凹部10aが半導体チップのサイズより片側30μmずつ大きくなるように形成されており、上記のように半導体チップを搭載したときの半導体チップの側面と凹部の内壁面の間隔Wが30μm程度となる。
In the manufacturing method of the first semiconductor chip 14, for example, the thickness is reduced to 25 to 50 μm by a grinding method or the like, the die attach film 14 d as an adhesive is laminated on the back surface, and the individual pieces are thinned by full-cut dicing. .
Further, for example, the chip embedding recess 10a is formed so as to be larger by 30 μm on one side than the size of the semiconductor chip, and the distance W between the side surface of the semiconductor chip and the inner wall surface of the recess when the semiconductor chip is mounted as described above. Is about 30 μm.

上記の第1半導体チップの搭載においては、アライメントマーク13と第1半導体チップ14のパッド14bを同時に認識して高精度に搭載を行う。
搭載条件は、チップサイズが1.5mm□の場合、温度160℃、荷重1.6N、時間2秒とする。チップサイズにより搭載の荷重を調整する。
搭載後、ダイアタッチフィルム14dの硬化のため、170℃、1時間以上で硬化処理を行う。
In mounting the first semiconductor chip, the alignment mark 13 and the pad 14b of the first semiconductor chip 14 are simultaneously recognized and mounted with high accuracy.
The mounting conditions are a temperature of 160 ° C., a load of 1.6 N, and a time of 2 seconds when the chip size is 1.5 mm □. The mounting load is adjusted according to the chip size.
After mounting, a curing process is performed at 170 ° C. for 1 hour or longer in order to cure the die attach film 14d.

次に、図4(c)に示すように、例えば、スピンコート法あるいは印刷法などにより、ポリイミド樹脂、シリコーン変性ポリイミド樹脂、エポキシ樹脂、BCB樹脂、PBO樹脂などの絶縁材料を供給し、チップ埋め込み用凹部内10aを埋め込んで第1半導体チップ14を被覆する第1樹脂層15を形成する。第1樹脂層15は硬化後に50μm程度の膜厚となるようにする。   Next, as shown in FIG. 4C, an insulating material such as a polyimide resin, a silicone-modified polyimide resin, an epoxy resin, a BCB resin, or a PBO resin is supplied by, for example, a spin coating method or a printing method to embed the chip. A first resin layer 15 that covers the first semiconductor chip 14 is formed by filling the recess 10 a for use. The first resin layer 15 has a thickness of about 50 μm after curing.

次に、図5(a)に示すように、例えば、露光量300mJ/cm2でパターン露光及び現像し、第1半導体チップ14のパッド14bに達する開口部15aを第1樹脂層15に形成する。開口部15aのサイズは、例えば直径50μm程度である。
現像後、300℃(60分)のポストキュア処理を行って第1樹脂層15を硬化させる。
Next, as shown in FIG. 5A, for example, pattern exposure and development are performed at an exposure amount of 300 mJ / cm 2 , and an opening 15 a reaching the pad 14 b of the first semiconductor chip 14 is formed in the first resin layer 15. . The size of the opening 15a is, for example, about 50 μm in diameter.
After the development, post-curing treatment at 300 ° C. (60 minutes) is performed to cure the first resin layer 15.

次に、図5(b)に示すように、例えば、デスカム処理を行い、スパッタリングの前処理エッチングを行い、さらにスパッタリングにより第1樹脂層15の開口部15a内を被覆して全面にTiCu膜を成膜してシード層16とする。例えば、膜厚はTiが160nm、Cuが600nmとする。   Next, as shown in FIG. 5B, for example, a descum treatment is performed, a pretreatment etching of sputtering is performed, and the inside of the opening 15a of the first resin layer 15 is further coated by sputtering to form a TiCu film on the entire surface. A seed layer 16 is formed by film formation. For example, the film thickness is 160 nm for Ti and 600 nm for Cu.

次に、図5(c)に示すように、例えば、第1樹脂層15に形成した開口部15aと第1配線の形成領域以外にメッキされるのを防止するために、レジスト塗布及び現像処理を行い、第1樹脂層15の開口部15aと第1配線の形成領域を開口するパターンのレジスト膜17を成膜する。   Next, as shown in FIG. 5C, for example, in order to prevent plating in areas other than the opening 15a formed in the first resin layer 15 and the formation area of the first wiring, resist coating and development processing are performed. Then, a resist film 17 having a pattern opening the opening 15a of the first resin layer 15 and the formation region of the first wiring is formed.

次に、図6(a)に示すように、例えば、レジスト膜17をマスクとし、シード層16を一方の電極とする電解メッキにより銅をメッキして、第1樹脂層15に形成した開口部15aと第1配線の形成領域に銅層18を形成する。   Next, as shown in FIG. 6A, for example, an opening formed in the first resin layer 15 by plating copper by electrolytic plating using the resist film 17 as a mask and the seed layer 16 as one electrode. A copper layer 18 is formed in the formation region of 15a and the first wiring.

次に、図6(b)に示すように、例えば、アッシング処理などによりレジスト膜17を除去する。   Next, as shown in FIG. 6B, the resist film 17 is removed by, for example, an ashing process.

次に、図6(c)に示すように、例えば、レジスト塗布及び現像処理を行い、導電性ポストの形成領域を開口するパターンのレジスト膜19を成膜する。   Next, as shown in FIG. 6C, for example, resist coating and development are performed to form a resist film 19 having a pattern that opens a conductive post formation region.

次に、図7(a)に示すように、例えば、シード層16を一方の電極とした銅の電解メッキにより、導電性ポスト用の開口部内に導電性ポスト20を形成する。導電性ポスト20は、例えば50μm程度の高さとする。   Next, as shown in FIG. 7A, the conductive posts 20 are formed in the openings for the conductive posts by, for example, electrolytic plating of copper using the seed layer 16 as one electrode. The conductive post 20 has a height of about 50 μm, for example.

次に、図7(b)に示すように、例えば、レジスト膜19を除去し、図7(c)に示すように、導電性ポスト20及び銅層18をマスクとしてシード層16をエッチング加工する。これにより、シード層16及び銅層18からなる第1配線が形成され、さらに第1配線上に導電性ポストが形成された構成とする。   Next, as shown in FIG. 7B, for example, the resist film 19 is removed, and as shown in FIG. 7C, the seed layer 16 is etched using the conductive posts 20 and the copper layer 18 as a mask. . Thereby, the first wiring composed of the seed layer 16 and the copper layer 18 is formed, and the conductive post is further formed on the first wiring.

次に、図8(a)に示すように、例えば、予め別工程で形成された、半導体本体部分21aの能動素子が形成された回路面にパッド21bが形成され、パッド21bを除く領域は酸化シリコンなどの保護層21cで覆われた構成の第2半導体チップ21を、第1半導体チップ14の上方であって、第1樹脂層15及び第1配線の上層に、ダイアタッチフィルム21dにより、フェースアップで、即ち、パッド21bの形成面を上面にしてマウントする。
このとき、第1配線を形成するときなどにおいて予め形成したアライメントマークと第2半導体チップのパッドを同時に認識して高精度に搭載を行う。
Next, as shown in FIG. 8A, for example, a pad 21b is formed on the circuit surface on which the active element of the semiconductor body portion 21a is formed in a separate process in advance, and the region excluding the pad 21b is oxidized. The second semiconductor chip 21 having a configuration covered with a protective layer 21c such as silicon is disposed above the first semiconductor chip 14 and above the first resin layer 15 and the first wiring by a die attach film 21d. In other words, the mounting is performed with the formation surface of the pad 21b as the upper surface.
At this time, when forming the first wiring or the like, the alignment mark formed in advance and the pad of the second semiconductor chip are simultaneously recognized and mounted with high accuracy.

第2半導体チップ21の製造方法においては、例えば、研削法などにより25〜50μmまで薄型化し、接着剤であるダイアタッチフィルム21dを裏面にラミネートし、フルカットダイシングすることで個片薄型化を行う。
搭載条件は、チップサイズが1.5mm□の場合、温度160℃、荷重1.6N、時間2秒とする。チップサイズにより搭載の荷重を調整する。
搭載後、ダイアタッチフィルム21dの硬化のため、170℃、1時間以上で硬化処理を行う。
In the manufacturing method of the second semiconductor chip 21, for example, the thickness is reduced to 25 to 50 μm by a grinding method or the like, the die attach film 21 d as an adhesive is laminated on the back surface, and the individual pieces are thinned by full-cut dicing. .
The mounting conditions are a temperature of 160 ° C., a load of 1.6 N, and a time of 2 seconds when the chip size is 1.5 mm □. The mounting load is adjusted according to the chip size.
After mounting, a curing process is performed at 170 ° C. for 1 hour or more for curing the die attach film 21d.

次に、図8(b)に示すように、例えば、スピンコート法あるいは印刷法などにより、BCB樹脂、ポリイミド樹脂、エポキシ樹脂、PBO樹脂などの感光性絶縁材料を供給し、第2樹脂層22を形成する。例えば、硬化後に50μmの膜厚となるように形成する。   Next, as shown in FIG. 8B, a photosensitive insulating material such as BCB resin, polyimide resin, epoxy resin, PBO resin or the like is supplied by, for example, a spin coating method or a printing method, and the second resin layer 22 is supplied. Form. For example, it is formed to have a film thickness of 50 μm after curing.

次に、図8(c)に示すように、例えば、露光量300mJ/cm2でパターン露光及び現像し、導電性ポスト20の上面及び第2半導体チップ21のパッド21bに達する開口部22aを第2樹脂層22に形成する。
現像後、300℃(60分)のポストキュア処理を行って第2樹脂層22を硬化させる。
Next, as shown in FIG. 8C, for example, pattern exposure and development are performed at an exposure amount of 300 mJ / cm 2 , and the opening 22a reaching the top surface of the conductive post 20 and the pad 21b of the second semiconductor chip 21 is formed. Two resin layers 22 are formed.
After development, post-curing treatment at 300 ° C. (60 minutes) is performed to cure the second resin layer 22.

次に、図9(a)に示すように、例えば、デスカム処理を行い、スパッタリングの前処理エッチングを行い、さらにスパッタリングにより第2樹脂層22の開口部22a内を被覆して全面にTiCu膜を成膜してシード層23とする。例えば、膜厚はTiが160nm、Cuが600nmとする。   Next, as shown in FIG. 9A, for example, a descum treatment is performed, a pretreatment etching of sputtering is performed, and the inside of the opening 22a of the second resin layer 22 is further coated by sputtering to form a TiCu film on the entire surface. A seed layer 23 is formed by film formation. For example, the film thickness is 160 nm for Ti and 600 nm for Cu.

次に、図9(b)に示すように、例えば、第2樹脂層22に形成した開口部22aと第2配線の形成領域以外にメッキされるのを防止するために、レジスト塗布及び現像処理を行い、第2樹脂層22の開口部22aと第2配線の形成領域を開口するパターンのレジスト膜24を成膜する。   Next, as shown in FIG. 9B, for example, in order to prevent plating other than the opening 22a formed in the second resin layer 22 and the formation area of the second wiring, resist coating and development processing are performed. Then, a resist film 24 having a pattern that opens the opening 22a of the second resin layer 22 and the formation region of the second wiring is formed.

次に、図9(c)に示すように、例えば、レジスト膜24をマスクとし、シード層23を一方の電極とする電解メッキにより銅をメッキして、第2樹脂層22に形成した開口部22aと第2配線の形成領域に銅層25を形成する。   Next, as shown in FIG. 9C, for example, an opening formed in the second resin layer 22 by plating copper by electrolytic plating using the resist film 24 as a mask and the seed layer 23 as one electrode. A copper layer 25 is formed in the formation region of 22a and the second wiring.

次に、図10(a)に示すように、例えば、アッシング処理などによりレジスト膜24を除去する。   Next, as shown in FIG. 10A, the resist film 24 is removed by, for example, an ashing process.

次に、図10(b)に示すように、例えば、レジスト膜26を成膜あるいは感光性ドライフィルムを貼り合わせ、パターン露光及び現像して導電性ポスト用の開口部を形成する。   Next, as shown in FIG. 10B, for example, a resist film 26 is formed or a photosensitive dry film is bonded, and pattern exposure and development are performed to form openings for conductive posts.

次に、図10(c)に示すように、例えば、シード層23を一方の電極とした銅の電解メッキにより、導電性ポスト用の開口部内に導電性ポスト27を形成する。導電性ポスト27は、例えば直径180〜300μm、高さ80〜180μmとする。   Next, as shown in FIG. 10C, the conductive posts 27 are formed in the openings for the conductive posts by, for example, electrolytic plating of copper using the seed layer 23 as one electrode. The conductive post 27 has a diameter of 180 to 300 μm and a height of 80 to 180 μm, for example.

次に、図11(a)に示すように、例えば、レジスト膜26あるいはドライフィルムを除去し、図11(b)に示すように、導電性ポスト27及び銅層25をマスクとしてシード層23をエッチング加工する。これにより、シード層23及び銅層25からなる第2配線が形成される。   Next, as shown in FIG. 11A, for example, the resist film 26 or the dry film is removed, and as shown in FIG. 11B, the seed layer 23 is formed using the conductive posts 27 and the copper layer 25 as a mask. Etching process. Thereby, the second wiring composed of the seed layer 23 and the copper layer 25 is formed.

次に、図11(c)に示すように、例えば、エポキシ系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、フェノール樹脂あるいはポリパラフェニレンベンゾビスオキサゾール樹脂などの樹脂を、スピンコート、印刷またはモールドなどにより成膜し、導電性ポスト27を完全に覆うような膜厚で絶縁性のバッファ層28を形成する。   Next, as shown in FIG. 11C, for example, a resin such as an epoxy resin, a polyimide resin, a silicone resin, a polyamideimide resin, a polyimide resin, a phenol resin, or a polyparaphenylene benzobisoxazole resin is spun. A film is formed by coating, printing, molding, or the like, and the insulating buffer layer 28 is formed with a film thickness that completely covers the conductive post 27.

次に、図12(a)に示すように、例えば、バッファ層28の樹脂硬化後に、研削により導電性ポスト27の頭出しを行う。このときの条件は、例えば#600のホイールを用い、3500rpm、0.5mm/秒とする。   Next, as shown in FIG. 12A, for example, after the resin hardening of the buffer layer 28, the cue of the conductive post 27 is performed by grinding. The conditions at this time are set to 3500 rpm and 0.5 mm / second using, for example, a # 600 wheel.

次に、図12(b)に示すように、例えば、導電性ポスト27に接続するように、例えばハンダボールの搭載、あるいはハンダペーストの印刷などにより、バンプ(突起電極)29を形成する。   Next, as shown in FIG. 12B, bumps (projection electrodes) 29 are formed by, for example, mounting solder balls or printing solder paste so as to connect to the conductive posts 27, for example.

次に、図12(c)に示すように、例えば、シリコン基板10の裏面側からBGRにより所望の薄さまで薄型化し、さらにブレードBによりシリコン基板10をダイシングして薄型個片化する。   Next, as shown in FIG. 12C, for example, the silicon substrate 10 is thinned to a desired thickness by BGR from the back side of the silicon substrate 10, and the silicon substrate 10 is diced by the blade B to be thinly divided into individual pieces.

上記の本実施形態に係る半導体装置の製造方法によれば、SiP形態の半導体装置において、基板に形成されたチップ埋め込み用凹部の底面上に第1半導体チップをマウントし、さらにその上方に積層して第2半導体チップをマウントするので、絶縁層に生じる段差に対して第1半導体チップの分影響が軽減され、2個以上の半導体チップをスタック型に一体化しても段切れを抑制して、また、実装基板に実装したときの実装基板との間に生じる応力緩和に寄与する導電性ポストの高さのばらつきを低減して応力緩和機能を確保して、半導体装置を製造することができる。   According to the method of manufacturing a semiconductor device according to the present embodiment, in the SiP-type semiconductor device, the first semiconductor chip is mounted on the bottom surface of the chip embedding recess formed on the substrate, and further laminated thereon. Since the second semiconductor chip is mounted, the influence of the first semiconductor chip is reduced with respect to the step generated in the insulating layer, and even if two or more semiconductor chips are integrated into a stack type, the disconnection is suppressed, In addition, it is possible to manufacture a semiconductor device by ensuring the stress relaxation function by reducing the variation in the height of the conductive posts that contribute to stress relaxation generated between the mounting substrate and the mounting substrate.

上記の本実施形態に係る半導体装置に内蔵される半導体チップとしては、デジタル、デジタルチップの組み合わせ、アナログ、アナログチップの組み合わせ、デジタル、アナログチップの組み合わせにおいて相互干渉にないスタック型薄型構造が可能である。
また、1層目と2層目のチップサイズは、再配線構造のため大小関係の制約を受けない。いずれのチップもワイヤーボンディングでの接続がないので、ワイヤのループ高さの分絶縁膜の厚さを厚くする必要がなく、薄型化のスタック構造が実現する。
高熱放散性が必要な半導体チップを1層目に配置し、シリコン基板の高熱放散性を利用させることで低熱抵抗型のSiPを構成することが可能である。
As a semiconductor chip built in the semiconductor device according to the above-described embodiment, a stack type thin structure that is free from mutual interference in a combination of digital and digital chips, a combination of analog and analog chips, and a combination of digital and analog chips is possible. is there.
Further, the chip size of the first layer and the second layer is not restricted by the size relationship because of the rewiring structure. Since none of the chips is connected by wire bonding, it is not necessary to increase the thickness of the insulating film by the wire loop height, and a thin stack structure is realized.
A low thermal resistance type SiP can be configured by arranging a semiconductor chip that requires high heat dissipation in the first layer and utilizing the high heat dissipation of the silicon substrate.

(変形例)
上記の実施形態においては、シリコン基板と第1半導体チップの間にノイズ遮蔽層は形成されていないが、チップ埋め込み用凹部10a内において、シリコン基板10と第1半導体チップ14の間にノイズ遮蔽層となる誘電体層あるいは導電層が形成された構成とすることができる。
例えば、チップ埋め込み用凹部10a内における底面上の所定の領域に、誘電体層あるいは導電層をパターン形成し、導電層の場合にはグラウンドなど一定電位に固定されるように電気的に接続して製造することができる。例えば、アライメントマークを形成するために成膜されたTiCu層を、チップ埋め込み用凹部の底面上において、30μm□のメッシュのパターンにエッチング加工し、これをグラウンド電位に固定することなどによりノイズ遮蔽層とすることができる。
このように、ノイズ遮蔽層となる誘電体層あるいはグランドパターンとなる導電層が設けられていると、チップ間のノイズをさらに抑制できる。
(Modification)
In the above embodiment, the noise shielding layer is not formed between the silicon substrate and the first semiconductor chip. However, the noise shielding layer is interposed between the silicon substrate 10 and the first semiconductor chip 14 in the chip embedding recess 10a. A dielectric layer or a conductive layer to be formed can be formed.
For example, a dielectric layer or a conductive layer is patterned in a predetermined region on the bottom surface in the chip embedding recess 10a, and in the case of the conductive layer, it is electrically connected so as to be fixed at a constant potential such as ground. Can be manufactured. For example, the TiCu layer formed to form the alignment mark is etched into a 30 μm square mesh pattern on the bottom surface of the chip embedding recess, and this is fixed to the ground potential. It can be.
Thus, when a dielectric layer serving as a noise shielding layer or a conductive layer serving as a ground pattern is provided, noise between chips can be further suppressed.

第2実施形態
図13は本実施形態に係るSiP形態の半導体装置の断面図である。
実質的に第1実施形態の半導体装置と同様の構成であるが、シリコン基板10に形成されたチップ埋め込み用凹部10aの底面が露出する程度にまで、シリコン基板10の裏面側から研削された構成である。
第1実施形態の半導体装置よりもさらに薄型化を実現できる。
また、図14は本実施形態に係るSiP形態の半導体装置の変形例の断面図である。
図13の半導体装置よりもさらにシリコン基板10裏面からの研削が進められ、第1半導体チップ14の途中まで研削された構成である。
第1半導体チップ14は回路面が上方を向いてマウントされているので、シリコン基板10側から研削されても問題はなく、図13の半導体装置よりもさらに薄型化を実現できる。
Second Embodiment FIG. 13 is a cross-sectional view of a SiP-type semiconductor device according to this embodiment.
The structure is substantially the same as that of the semiconductor device of the first embodiment, but is ground from the back side of the silicon substrate 10 to such an extent that the bottom surface of the chip embedding recess 10a formed in the silicon substrate 10 is exposed. It is.
Thinning can be realized further than the semiconductor device of the first embodiment.
FIG. 14 is a cross-sectional view of a modification of the SiP-type semiconductor device according to this embodiment.
In this configuration, grinding from the rear surface of the silicon substrate 10 is further advanced than in the semiconductor device of FIG.
Since the first semiconductor chip 14 is mounted with the circuit surface facing upward, there is no problem even if the first semiconductor chip 14 is ground from the silicon substrate 10 side, and the thickness can be further reduced as compared with the semiconductor device of FIG.

本発明は上記の説明に限定されない。
例えば、第1及び第2配線などに、インダクタンスやキャパシタなどの受動素子が形成されていてもよい。
実施形態においては、絶縁層中の配線として2層の配線(第1配線及び第2配線)が形成されているが、これに限らない。樹脂の絶縁層の層数も上記のような層数などに限定されない。
シリコン基板自体にも能動素子などを含む電子回路が形成されていてもよい。
その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
The present invention is not limited to the above description.
For example, passive elements such as inductances and capacitors may be formed on the first and second wirings.
In the embodiment, two layers of wiring (first wiring and second wiring) are formed as the wiring in the insulating layer, but the present invention is not limited to this. The number of resin insulation layers is not limited to the number of layers as described above.
An electronic circuit including active elements may be formed on the silicon substrate itself.
In addition, various modifications can be made without departing from the scope of the present invention.

本発明の半導体装置は、システムインパッケージ形態の半導体装置に適用できる。   The semiconductor device of the present invention can be applied to a semiconductor device in a system in package form.

本発明の半導体装置の製造方法は、システムインパッケージ形態の半導体装置の製造方法に適用できる。   The semiconductor device manufacturing method of the present invention can be applied to a system-in-package semiconductor device manufacturing method.

図1は本発明の第1実施形態に係る半導体装置の断面図である。FIG. 1 is a sectional view of a semiconductor device according to the first embodiment of the present invention. 図2(a)〜(d)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。2A to 2D are cross-sectional views illustrating manufacturing steps of the method for manufacturing a semiconductor device according to the first embodiment of the present invention. 図3(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。3A to 3C are cross-sectional views illustrating manufacturing steps of the method for manufacturing a semiconductor device according to the first embodiment of the present invention. 図4(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。4A to 4C are cross-sectional views illustrating the manufacturing steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention. 図5(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。5A to 5C are cross-sectional views illustrating manufacturing steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention. 図6(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。6A to 6C are cross-sectional views illustrating manufacturing steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention. 図7(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。FIGS. 7A to 7C are cross-sectional views illustrating manufacturing steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention. 図8(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。8A to 8C are cross-sectional views illustrating manufacturing steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention. 図9(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。9A to 9C are cross-sectional views illustrating manufacturing steps of the method for manufacturing a semiconductor device according to the first embodiment of the present invention. 図10(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。10A to 10C are cross-sectional views illustrating manufacturing steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention. 図11(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。11A to 11C are cross-sectional views illustrating manufacturing steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention. 図12(a)〜(c)は本発明の第1実施形態に係る半導体装置の製造方法の製造工程を示す断面図である。12A to 12C are cross-sectional views illustrating manufacturing steps of the method for manufacturing the semiconductor device according to the first embodiment of the present invention. 図13は本発明の第2実施形態に係る半導体装置の断面図である。FIG. 13 is a cross-sectional view of a semiconductor device according to the second embodiment of the present invention. 図14は本発明の第2実施形態に係る半導体装置の変形例の断面図である。FIG. 14 is a cross-sectional view of a modification of the semiconductor device according to the second embodiment of the present invention. 図15は従来例に係る半導体装置の断面図である。FIG. 15 is a cross-sectional view of a conventional semiconductor device.

符号の説明Explanation of symbols

10…シリコン基板、11…レジスト膜、12…下地絶縁膜、13…アライメントマーク、13a…TiCu層、13b…レジスト膜、14…第1半導体チップ、14a…半導体本体部分、14b…パッド、14c…保護層、14d…ダイアタッチフィルム、15…第1樹脂層、15a…開口部、16…シード層、17…レジスト膜、18…銅層、19…レジスト膜、20…導電性ポスト、21…第2半導体チップ、21a…半導体本体部分、21b…パッド、21c…保護層、21d…ダイアタッチフィルム、22…第2樹脂層、22a…開口部、23…シード層、24…レジスト膜、25…銅層、26…レジスト膜、27…導電性ポスト、28…バッファ層、29…バンプ、B…ブレード
DESCRIPTION OF SYMBOLS 10 ... Silicon substrate, 11 ... Resist film, 12 ... Base insulating film, 13 ... Alignment mark, 13a ... TiCu layer, 13b ... Resist film, 14 ... 1st semiconductor chip, 14a ... Semiconductor main-body part, 14b ... Pad, 14c ... Protective layer, 14d ... die attach film, 15 ... first resin layer, 15a ... opening, 16 ... seed layer, 17 ... resist film, 18 ... copper layer, 19 ... resist film, 20 ... conductive post, 21 ... first 2 semiconductor chip, 21a ... semiconductor body portion, 21b ... pad, 21c ... protective layer, 21d ... die attach film, 22 ... second resin layer, 22a ... opening, 23 ... seed layer, 24 ... resist film, 25 ... copper Layer, 26 ... resist film, 27 ... conductive post, 28 ... buffer layer, 29 ... bump, B ... blade

Claims (6)

半導体を含んでパッケージ化されており、
チップ埋め込み用凹部が形成されたシリコン基板と、
能動素子が形成され、前記チップ埋め込み用凹部の底面上にマウントされた第1半導体チップと、
能動素子が形成され、前記第1半導体チップの上方に積層してマウントされた第2半導体チップと
前記チップ埋め込み用凹部内を埋め込んで前記第1半導体チップの上層であって前記第2半導体チップの下層に形成された第1樹脂層と、前記第2半導体チップの上層に前記第2半導体チップを被覆して形成された第2樹脂層とを含む絶縁層と、
前記絶縁層中に埋め込まれて前記第1半導体チップ及び前記第2半導体チップに接続して形成された配線層と
を有し、
前記配線層が前記第1樹脂層と前記第2樹脂層の間において前記第2樹脂層に被覆された導電性ポストを含む
半導体装置。
Packaged with semiconductors,
A silicon substrate having a chip embedding recess formed therein;
A first semiconductor chip on which an active element is formed and mounted on the bottom surface of the chip embedding recess;
A second semiconductor chip on which an active element is formed and stacked and mounted above the first semiconductor chip ;
A first resin layer formed in an upper layer of the first semiconductor chip and in a lower layer of the second semiconductor chip by filling the recess for embedding the chip, and the second semiconductor chip on an upper layer of the second semiconductor chip. An insulating layer including a second resin layer formed by coating;
A wiring layer embedded in the insulating layer and connected to the first semiconductor chip and the second semiconductor chip;
Have
A semiconductor device, wherein the wiring layer includes a conductive post covered with the second resin layer between the first resin layer and the second resin layer .
前記チップ埋め込み用凹部内において前記シリコン基板と前記第1半導体チップの間に誘電体層が形成されている
請求項に記載の半導体装置。
The semiconductor device according to claim 1 , wherein a dielectric layer is formed between the silicon substrate and the first semiconductor chip in the recess for embedding the chip.
前記チップ埋め込み用凹部内において前記シリコン基板と前記第1半導体チップの間に導電層が形成されている
請求項に記載の半導体装置。
The semiconductor device according to claim 1 , wherein a conductive layer is formed between the silicon substrate and the first semiconductor chip in the recess for embedding the chip.
半導体を含んでパッケージ化された半導体装置を製造するために、
シリコン基板にチップ埋め込み用凹部を形成する工程と、
前記チップ埋め込み用凹部の底面上に、能動素子が形成された第1半導体チップをマウントする工程と、
前記第1半導体チップの上方に積層して、能動素子が形成された第2半導体チップをマウントする工程と
前記チップ埋め込み用凹部内を埋め込んで前記第1半導体チップの上層であって前記第2半導体チップの下層に第1樹脂層を形成する工程と、前記第2半導体チップの上層に前記第2半導体チップを被覆して第2樹脂層を形成する工程とを含む絶縁層を形成する工程と、
前記絶縁層中に埋め込まれて前記第1半導体チップ及び前記第2半導体チップに接続して配線層を形成する工程を有し、
前記配線層を形成する工程が前記第1樹脂層と前記第2樹脂層の間に導電性ポストを形成する工程を含み、前記第2樹脂層を形成する工程において前記導電性ポストを被覆して形成する
半導体装置の製造方法。
In order to manufacture a semiconductor device packaged including a semiconductor,
Forming a recess for chip embedding in a silicon substrate;
Mounting a first semiconductor chip on which an active element is formed on the bottom surface of the chip embedding recess;
Mounting a second semiconductor chip on which an active element is formed by stacking above the first semiconductor chip ;
Forming a first resin layer in an upper layer of the first semiconductor chip and in a lower layer of the second semiconductor chip by filling the recess for chip embedding; and the second semiconductor chip in an upper layer of the second semiconductor chip. Forming an insulating layer including a step of forming a second resin layer by covering
Forming a wiring layer embedded in the insulating layer and connected to the first semiconductor chip and the second semiconductor chip;
The step of forming the wiring layer includes a step of forming a conductive post between the first resin layer and the second resin layer, and the conductive post is covered in the step of forming the second resin layer. A method for manufacturing a semiconductor device to be formed .
前記第1半導体チップをマウントする工程の前に前記チップ埋め込み用凹部内において誘電体層を形成する工程をさらに有し、
前記第1半導体チップをマウントする工程において前記誘電体層上にマウントする
請求項に記載の半導体装置の製造方法。
A step of forming a dielectric layer in the recess for embedding the chip before the step of mounting the first semiconductor chip;
The method for manufacturing a semiconductor device according to claim 4 , wherein the first semiconductor chip is mounted on the dielectric layer in the step of mounting.
前記第1半導体チップをマウントする工程の前に前記チップ埋め込み用凹部内において導電層を形成する工程をさらに有し、
前記第1半導体チップをマウントする工程において前記導電層上にマウントする
請求項に記載の半導体装置の製造方法。
A step of forming a conductive layer in the recess for embedding the chip before the step of mounting the first semiconductor chip;
The method for manufacturing a semiconductor device according to claim 4 , wherein the first semiconductor chip is mounted on the conductive layer in the step of mounting the first semiconductor chip.
JP2006119610A 2006-04-24 2006-04-24 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5245209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119610A JP5245209B2 (en) 2006-04-24 2006-04-24 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119610A JP5245209B2 (en) 2006-04-24 2006-04-24 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007294611A JP2007294611A (en) 2007-11-08
JP5245209B2 true JP5245209B2 (en) 2013-07-24

Family

ID=38764946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119610A Expired - Fee Related JP5245209B2 (en) 2006-04-24 2006-04-24 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5245209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028441B2 (en) 2011-09-08 2015-05-12 Corpak Medsystems, Inc. Apparatus and method used with guidance system for feeding and suctioning
US9131956B2 (en) 2005-01-13 2015-09-15 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099648A (en) * 2010-11-02 2012-05-24 Fujitsu Semiconductor Ltd Semiconductor device, and method of manufacturing the same
US9496211B2 (en) * 2012-11-21 2016-11-15 Intel Corporation Logic die and other components embedded in build-up layers
KR102711421B1 (en) * 2019-09-19 2024-09-30 삼성전자주식회사 A semiconductor package
JPWO2022014451A1 (en) * 2020-07-13 2022-01-20
CN118315270B (en) * 2024-06-07 2024-08-23 北京大学 Chip substrate, preparation method thereof and functional chip

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105561A (en) * 1981-12-17 1983-06-23 Sharp Corp Electronic parts mounting structure
JP2002270712A (en) * 2001-03-14 2002-09-20 Sony Corp Semiconductor element integrated multi-layer wiring board, semiconductor element integrated device, and manufacturing method therefor
JP3938759B2 (en) * 2002-05-31 2007-06-27 富士通株式会社 Semiconductor device and manufacturing method of semiconductor device
JP4321758B2 (en) * 2003-11-26 2009-08-26 カシオ計算機株式会社 Semiconductor device
JP2005191157A (en) * 2003-12-25 2005-07-14 Casio Comput Co Ltd Semiconductor device and its manufacturing method
JP4343777B2 (en) * 2004-06-16 2009-10-14 大日本印刷株式会社 Electronic component built-in wafer
JP4835058B2 (en) * 2005-07-26 2011-12-14 パナソニック電工株式会社 Sensor package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9131956B2 (en) 2005-01-13 2015-09-15 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US9579488B2 (en) 2005-01-13 2017-02-28 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US9889277B2 (en) 2005-01-13 2018-02-13 Avent, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US9028441B2 (en) 2011-09-08 2015-05-12 Corpak Medsystems, Inc. Apparatus and method used with guidance system for feeding and suctioning
US9918907B2 (en) 2011-09-08 2018-03-20 Avent, Inc. Method for electromagnetic guidance of feeding and suctioning tube assembly

Also Published As

Publication number Publication date
JP2007294611A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4403407B2 (en) Semiconductor device and manufacturing method thereof
JP4395775B2 (en) Semiconductor device and manufacturing method thereof
JP3953027B2 (en) Semiconductor device and manufacturing method thereof
JP4790297B2 (en) Semiconductor device and manufacturing method thereof
JP2005327984A (en) Electronic component and method of manufacturing electronic-component mounting structure
WO2000077844A1 (en) Semiconductor package, semiconductor device, electronic device, and method of manufacturing semiconductor package
JP5245209B2 (en) Semiconductor device and manufacturing method thereof
JP7140530B2 (en) Electronic component and its manufacturing method
JP2007103716A (en) Semiconductor device and manufacturing method thereof
JP2008047732A (en) Semiconductor device and manufacturing method thereof
JP4380551B2 (en) Semiconductor device and manufacturing method thereof
JP2007318059A (en) Semiconductor device, and manufacturing method thereof
JP2007173749A (en) Semiconductor device and its manufacturing method
JP2003124389A (en) Semiconductor package
JP4591100B2 (en) Semiconductor device and manufacturing method thereof
JP4599834B2 (en) Semiconductor device and manufacturing method thereof
JP4844287B2 (en) Semiconductor device and manufacturing method thereof
JP5082333B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2002280486A (en) Semiconductor package
JP4052237B2 (en) Semiconductor device and manufacturing method thereof
JP5098211B2 (en) Semiconductor device and manufacturing method thereof
JP2007134569A (en) Substrate incorporated in electronic component, and its manufacturing method
JP4894343B2 (en) Manufacturing method of semiconductor device
JP2007294609A (en) Semiconductor device and manufacturing method thereof
JP2007103717A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees