JP4295526B2 - Optical semiconductor element storage package and optical semiconductor device - Google Patents

Optical semiconductor element storage package and optical semiconductor device Download PDF

Info

Publication number
JP4295526B2
JP4295526B2 JP2003049434A JP2003049434A JP4295526B2 JP 4295526 B2 JP4295526 B2 JP 4295526B2 JP 2003049434 A JP2003049434 A JP 2003049434A JP 2003049434 A JP2003049434 A JP 2003049434A JP 4295526 B2 JP4295526 B2 JP 4295526B2
Authority
JP
Japan
Prior art keywords
conductor
optical semiconductor
semiconductor element
dielectric substrate
line conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003049434A
Other languages
Japanese (ja)
Other versions
JP2004259973A (en
Inventor
隆行 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003049434A priority Critical patent/JP4295526B2/en
Publication of JP2004259973A publication Critical patent/JP2004259973A/en
Application granted granted Critical
Publication of JP4295526B2 publication Critical patent/JP4295526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光半導体装置に使用する光半導体素子収納用パッケージ、特に10Gbps以上の光信号を使用する光送受信モジュール等のような光半導体装置に使用される光半導体素子収納用パッケージ、およびこれを用いた光半導体装置に関する。
【0002】
【従来の技術】
従来、光通信分野で用いられているLD(レーザーダイオード)やPD(フォトダイオ−ド)等の光半導体素子を収納するための光半導体素子収納用パッケージを用いた光半導体装置の例を、図3(a)〜(c)に示す。図3(a)は光半導体装置の断面図、図3(b)は蓋体を外した状態で(a)の右側から見た様子を示す右側面図、図3(c)は(a)の左側から見た様子を示す左側面図である。
【0003】
この従来の光半導体装置は、上面の中央部に光半導体素子Sの搭載部を有するとともにこの搭載部の近傍に一主面から他主面にかけて形成された直径0.5〜2mmの貫通孔101bを有する、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や鉄(Fe)−ニッケル(Ni)合金等の金属から成る円板状の金属基板101と、貫通孔101bに挿通され、少なくとも他主面側の端部が貫通孔101bから突出するように封止材102を介して固定された、一主面側の端部が光半導体素子Sの電極と電気的に接続される、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や鉄(Fe)−ニッケル(Ni)合金等の金属から成る金属製端子103と、搭載部に搭載されてその電極が金属製端子103の一主面側の端部と電気的に接続された光半導体素子Sとを具備しており、上面にその一辺から対向する辺にかけて形成された直線状の配線導体104を有する外部回路基板105に、金属基板101の他主面側に突出した金属製端子103を配線導体104に平行に接合するようにして取着される。
【0004】
なお、金属基板101の貫通孔101bへの金属製端子103の固定は、鉛を主成分とする絶縁ガラスから成る封止材102を介して行なわれ、この封止材102によって金属基板101と金属製端子103とが電気的に絶縁されている。
【0005】
また、光半導体素子Sは、金属基板101に200〜400℃の融点を有する金(Au)−錫(Sn)等の低融点ロウ材によりロウ付け固定され、光半導体素子Sの電極がボンディングワイヤ106を介して金属製端子103の一主面側の端部に電気的に接続される。
【0006】
また、金属基板101の一主面には、外周端から幅1mm以内の外周部に、光半導体素子Sの保護を目的として、Fe−Ni−Co合金等から成る第1の蓋体107aがYAGレーザ溶接,シーム溶接またはロウ付け等により固定され、そして、この第1の蓋体107aにかぶせるようにして、さらに光半導体素子Sに対向する部位に光学的に結合するように光ファイバ108が固定される、Fe−Ni−Co合金等から成る第2の蓋体107bを接合することにより蓋体107が取着されて、製品としての光半導体装置となる。
【0007】
この光半導体装置は、例えば外部電気回路(図示せず)から供給される駆動信号によって光半導体素子Sを光励起させ、励起した光を戻り光防止用の光アイソレータ(図示せず)を介して光ファイバ108に授受させるとともに光ファイバ108内を伝達させることによって、大容量の光通信等に使用される。そして、その適応範囲は40km以下の伝送距離で、かつ2.5Gbps(Giga bit per second:ギガビット毎秒)以下の伝送容量の範囲で多用されている。
【0008】
近年、40km以下の伝送距離での高速通信に対する需要が急激に増加しており、高速大容量伝送に関する研究開発が進められている。とりわけ、光通信装置において光信号を発信する光発信装置等の光半導体装置が注目されており、高周波信号の高速化が伝送容量を向上させるための課題となっている。また、従来の光半導体装置に用いられていた高周波信号は2.5Gbps以下であったが、近年は10Gbps以上といった高速化が要求されてきている。
【0009】
【特許文献1】
特開平8−130266号公報
【0010】
【発明が解決しようとする課題】
しかしながら、従来の光半導体素子収納用パッケージに10Gbps程度の高周波信号で駆動される光半導体素子を搭載した光半導体装置を構成しようとすると、金属製端子内で高周波信号の伝搬モードが変化し、またそれに伴い金属製端子の特性インピーダンスも変化するために、光半導体素子が正常に作動し難くなり、特に10Gbps以上の高周波信号の伝送特性が大きく劣化することとなるという問題点があった。
【0011】
これは、金属製端子の金属基板の貫通孔から他主面側に突出した部位がいわゆる同軸構造となっておらず、そのため、この金属製端子により伝送される高周波信号の周波数が高くなると、同軸構造になっていない部分の伝搬モードに大きなずれが生じ、またそれに伴い特性インピーダンスも大きく変化することによるものであり、その結果、高周波信号の入出力時における反射損失が大きくなり、光半導体素子の作動性が劣化してしまうことによるものである。
【0012】
すなわち、従来の光半導体素子収納用パッケージにおける構成では、金属基板,金属製端子の貫通孔の内部に位置する部位,および外部回路基板に形成された配線導体における高周波信号の伝播モードはTEM(Transverse Electro Magnetic)モードであり、それに対して、金属製端子の金属基板の貫通孔から突出した部位であって、外部回路基板の配線導体との接合部以外の部位の伝播モードはTE(Transverse Electric)モードである。このため、高周波信号は伝送されるにつれてTEMモード−TEモード−TEMモードと伝播モードが変化することとなる。また、特性インピーダンスについては、金属製端子の金属基板の貫通孔から突出した部位であって、外部回路基板の配線導体との接合部以外の部位では、誘導成分が支配的となり、特性インピーダンスが急激に高くなる。これらにより、高周波信号の反射損失が大きくなってしまうことによるものである。
【0013】
本発明は、上記のような従来の技術における問題点に鑑みてなされたものであり、その目的は、光半導体素子収納用パッケージと外部回路基板との接合部近傍における高周波信号の伝搬モードおよび特性インピーダンスを整合させることができ、その結果、10Gbps以上の高周波信号についても良好な伝送特性が得られ、光半導体素子を正常に作動させることができる光半導体素子パッケージおよびそれを用いた光半導体装置を提供することにある。
【0014】
本発明の光半導体素子収納用パッケージは、 外部回路基板に接合される光半導体収納用パッケージであって、誘電体基板と、該誘電体基板の内部において前記誘電体基板の前記一端面から他端面側に向けて形成され、前記一端面側の端部が光半導体素子に電気的に接続される第1の線路導体と、前記誘電体基板の下面に前記他端面側から前記一端面側に向けて前記第1の線路導体と平行に形成されるとともに、前記一端面側の端部が貫通導体を介して前記第1の線路導体の前記他端面側の端部と電気的に接続され、前記貫通導体に接続される前記端部から前記他端面側に延在する領域が、前記外部回路基板の上面に形成された配線導体に接合される第2の線路導体と、前記誘電体基板の前記下面の前記第2の線路導体の両側にそれぞれ形成された同一面接地導体層と、前記誘電体基板の内部において前記第1の線路導体に対向するように形成され、前記第1の線路導体に関して前記第2の線路導体と反対側に形成される接地導体層と、前記同一面接地導体層と前記接地導体層とをそれぞれ電気的に接続する複数の接地用貫通導体とを具備している。前記同一面接地導体層が、前記接続部よりも前記誘電体基板の前記一端面側であって、前記第1の線路導体に対向する領域に存在している
本発明の接合体は、表面に直線状の配線導体と該配線導体の両側に設けられた接地導体とを有する外部回路基板と、前記外部回路基板に接合される光半導体素子収納用パッケージとを有する。前記光半導体素子収納用パッケージは、誘電体基板と、該誘電体基板の内部において前記誘電体基板の一端面から他端面側に向けて形成され、前記一端面側の端部が光半導体素子に電気的に接続される第1の線路導体と、前記誘電体基板の下面に前記他端面側から前記一端面側に向けて前記第1の線路導体と平行に形成されるとともに、前記一端面側の端部が貫通導体を介して前記第1の線路導体の前記他端面側の端部と電気的に接続された、前記外部回路基板の前記配線導体に平行に接合される第2の線路導体と、前記誘電体基板の前記下面の前記第2の線路導体の両側にそれぞれ形成された、前記外部回路基板の前記接地導体と接合される同一面接地導体層と、前記誘電体基板の内部において前記第1の線路導体に対向するように形成された、前記第1の線路導体に関して前記第2の線路導体と反対側に形成される接地導体層と、前記同一面接地導体層と前記接地導体層とをそれぞれ電気的に接続する複数の接地用貫通導体とを具備している。前記第2の線路導体と前記貫通導体との接続部が前記外部回路基板の上に位置し、かつ前記同一面接地導体層が、前記接続部よりも前記誘電体基板の一端面側であって、前記第1の線路導体と前記外部回路基板との間に存在している
【0015】
本発明の光半導体素子収納用パッケージによれば、上記のような構成により、同一面接地導体層および接地導体層ならびにこれらを接続する複数の接地用貫通導体が、光半導体素子と外部回路基板の配線導体とを接続する第1の線路導体および第2の線路導体ならびにこれらを接続する貫通導体を取り囲んで覆うように設けられていることから、第1の線路導体から外部回路基板の配線導体にかけての高周波信号の伝播モードが全てTEMモードとなって伝播モードの変化を抑えることができる。また、誘電体層,同一面接地導体層,接地導体層および複数の接地用貫通導体によって第1および第2の線路導体ならびに貫通導体に容量成分が付加されることにより、これら線路導体における特性インピーダンスの急激な変化を抑えることができ、高周波信号の反射損失を極めて小さくすることができる。その結果、本発明の光半導体素子収納用パッケージによれば、10Gbps以上の高周波信号についても良好な伝送特性が実現でき、搭載収容される光半導体素子を正常に作動させることができる。
【0016】
また、本発明の光半導体装置は、上記構成の前記誘電体基板の前記一端面に光半導体素子を搭載するとともに該光半導体素子の電極を前記第1の線路導体の前記一端面側の端部に電気的に接続し、前記光半導体素子を覆うとともに前記光ファイバを前記光半導体素子に光学的に結合させるように前記一端面に蓋体が取着されて成る。
また、本発明の光学半導体装置の実装構造体は、上記接合体における前記誘電体基板の前記一端面に光半導体素子を搭載するとともに該光半導体素子の電極を前記第1の線路導体の前記一端面側の端部に電気的に接続し、前記光半導体素子を覆うとともに前記光ファイバを前記光半導体素子に光学的に結合させるように前記一端面に蓋体が取着されて成る。
【0017】
本発明の光半導体装置によれば、以上のような構成により、10Gbps以上の高周波信号であっても外部回路基板の配線導体を伝送する電気信号と光ファイバを伝送する光信号との間で光半導体素子によって光−電気変換を良好に行なうことができ、10Gbps以上の高周波信号を良好に伝送し処理することが可能な光半導体装置とすることができる。
【0018】
【発明の実施の形態】
次に、本発明の光半導体素子収納用パッケージおよびこれを用いた本発明の光半導体装置を添付の図面に基づいて詳細に説明する。
【0019】
図1(a)は、本発明の光半導体素子収納用パッケージに光半導体素子を搭載して成る光半導体装置の実施の形態の一例を示した断面図であり、図1(b)および(c)は、図1(a)に示す光半導体装置の蓋体を外した状態での、それぞれ図1(a)における右側から見た様子を示す側面図および図1(a)における左側から内部を透視して見た様子を示す側面透視図である。
【0020】
これらの図において、1は誘電体基板、1aは誘電体層、2は第1の線路導体、3は第2の線路導体、4は貫通導体、5は同一面接地導体層、6は接地導体層、7は接地用貫通導体、8は外部回路基板、9は配線導体、10は接地導体、12は蓋体であり、主にこれらで本発明の光半導体素子収納用パッケージが構成され、また、この光半導体素子収納用パッケージと光半導体素子Sとで本発明の光半導体装置が構成される。
【0021】
誘電体基板1は、複数の誘電体層1aを積層して成り、その一端面には光半導体素子Sの搭載部を有している。このような誘電体基板1は、光半導体素子Sを搭載するとともに、光半導体素子Sと外部回路基板8の配線導体9とを電気的に接続する線路導体を支持する機能を有する。
【0022】
誘電体基板1を構成する誘電体層1aは、アルミナ(Al)セラミックス,ムライト(3Al・2SiO)セラミックス等のセラミック材料やガラスセラミックス等の無機系材料から、あるいは四フッ化エチレン樹脂(ポリテトラフルオロエチレン;PTFE),四フッ化エチレン−エチレン共重合樹脂(テトラフルオロエチレン−エチレン共重合樹脂;ETFE),四フッ化エチレン−パーフルオロアルコキシエチレン共重合樹脂(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂;PFA)等のフッ素樹脂,ガラスエポキシ樹脂,ポリフェニレンエーテル樹脂,液晶ポリエステル,ポリイミド等の樹脂系材料から成り、その形状および寸法(厚み,幅,長さ等)は、使用される高周波信号の周波数や特性インピーダンス等に応じて適宜設定される。
【0023】
また、誘電体層1aの一主面には誘電体基板1の一端面から他端面側に向けて、および誘電体基板1の下面となる誘電体層1aの主面には誘電体基板1の他端面側から一端面側に向けて、それぞれ第1の線路導体2および第2の線路導体3が互いに平行に被着形成されている。第1の線路導体2および第2の線路導体3は、誘電体基板1の一端面の搭載部に搭載される光半導体素子Sの電極と、後述する外部回路基板8の配線導体9とを電気的に接続するものである。
【0024】
このような第1の線路導体2および第2の線路導体3は、高周波信号伝送用として適した金属材料の導体層、例えばCu層,Mo−Mn層,W層,Mo−Mnメタライズ層上にNiめっき層およびAuめっき層を被着させたもの,Wメタライズ層上にNiめっき層およびAuめっき層を被着させたもの,Cr−Cu合金層,Cr−Cu合金層上にNiめっき層およびAuめっき層を被着させたもの,TaN層上にNi−Cr合金層およびAuめっき層を被着させたもの,Ti層上にPt層およびAuめっき層を被着させたもの,またはNi−Cr合金層上にPt層およびAuめっき層を被着させたものから成り、厚膜印刷法あるいは各種の薄膜形成法やめっき処理法等により形成され、その厚みや幅は伝送される高周波信号の周波数や特性インピーダンス等に応じて設定される。
【0025】
さらに、誘電体基板1の下面の第2の線路導体3の両側には同一面接地導体層5が、また、他の誘電体層1aの一主面には、第1の線路導体2と外部回路基板8の反対側で対向する接地導体層6が、第1の線路導体2および第2の線路導体3と同様の材料および同様の方法により形成されている。
【0026】
なお、第1の線路導体2および第2の線路導体3と同一面接地導体層5および接地導体層6との間隔は、伝送される高周波信号の周波数や特性インピーダンス等に応じて設定される。
【0027】
また、誘電体基板1の内部には、第1の線路導体2の誘電体基板1の他端面側の端部とこれに対向する第2の線路導体3の一端面側の端部とを電気的に接続する貫通導体4、および同一面接地導体層5と接地導体層6とを電気的に接続する接地用貫通導体7が形成されている。このような貫通導体4および接地用貫通導体7は、例えば誘電体層1aにスルーホール導体やビアホール導体を形成することにより、あるいは金属板,金属棒または金属パイプ等を埋設することにより設けられる。
【0028】
このような本発明の光半導体素子収納用パッケージにおける誘電体基板1は、次に述べるような方法により製作される。
【0029】
例えば誘電体層1aがアルミナセラミックスから成る場合であれば、まず誘電体層1aとなるアルミナセラミックスのグリーンシートを準備し、これにパンチング法等を用いて所定の打ち抜き加工を施して貫通孔を穿孔する。次に、第1の線路導体2,第2の線路導体3,貫通導体4,同一面接地導体層5,接地導体層6および接地用貫通導体7がWメタライズから成る場合であれば、複数枚の誘電体層1aの所定の表面にWペーストをスクリーン印刷法等により印刷塗布して第1の線路導体2,第2の線路導体3,同一面接地導体層5および接地導体層6を形成するとともに、貫通孔の内部にWペーストを充填して貫通導体4および接地用貫通導体7を形成する。次に、所定の位置に第1の線路導体2,第2の線路導体3,貫通導体4,同一面接地導体層5,接地導体層6および接地用貫通導体7を形成した誘電体層1aを、順番に複数枚積層して加圧して、誘電体基板1となる積層体を得る。
【0030】
なお、この積層体の一端面は光半導体素子Sを搭載する搭載部となり、第2の線路導体3は外部回路基板8の配線導体9と平行に接合されるよう誘電体基板1の下面に露出するように形成されている。
【0031】
この場合、この積層体の誘電体基板1の搭載部となる一端面に、第1の線路導体2の端部が露出するように形成しておく。また、積層体の搭載部となる一端面に、第1の線路導体2の露出した端部と電気的に接続するように、Wペーストを印刷塗布して、搭載される光半導体素子Sと電気的に接続する端面電極を印刷塗布してもよい。そして、これらを約1600℃の温度で焼成し、最後に、表面に露出する各Wメタライズ表面にNiめっきおよびAuめっきを施すことによって製作される。
【0032】
誘電体基板1の下面に形成された第2の線路導体3は、外部回路基板8の表面に形成された直線状の配線導体9に平行に接合されて電気的に接続されている。外部回路基板8は、配線導体9を支持する支持基盤であり、上述の誘電体層1aと同様な材料および同様な方法により形成される。また、配線導体9は、第2の線路導体3と外部電気回路基板(図示せず)の配線導体とを電気的に接続するためのものであり、上述した第1の線路導体2および第2の線路導体3と同様な材料および同様な方法により外部回路基板8の上面に直線状の線路導体として形成される。さらに、外部回路基板8の上面の配線導体9の両側には、それぞれ接地導体10が配線導体9と同様な材料および同様な方法により形成されている。なお、接地導体10は配線導体9を伝送する高周波信号をシールドする機能も有している。そして、これら誘電体基板1および外部回路基板8は、第2の線路導体3と配線導体9とを、および同一面接地導体層5と接地導体10とをそれぞれロウ材等により平行に接合することにより接合されている。
【0033】
そして、本発明の光半導体素子収納用パッケージは、上述のように複数の誘電体層1aを積層して成り、一端面に光半導体素子Sの搭載部を有する誘電体基板1と、誘電体基板1内の誘電体層1aの一主面に一端面から他端面側に向けて形成された、一端面側の端部が光半導体素子Sの電極と電気的に接続される第1の線路導体2と、誘電体基板1の下面に他端面側から1端面側に向けて形成されるとともにその端部が貫通導体4を介して第1の線路導体2の他端面側の端部と電気的に接続された、外部回路基板8の上面に形成された直線状の配線導体9に平行に接合される第2の線路導体3と、誘電体基板1の下面の第2の線路導体3の両側にそれぞれ形成された、外部回路基板8の配線導体9の両側にそれぞれ形成された接地導体10と接合される同一面接地導体層5と、他の誘電体層1aの一主面に形成された、第1の線路導体2と外部回路基板8の反対側で対向する接地導体層6と、同一面接地導体層5と接地導体層6とをそれぞれ電気的に接続する複数の接地用貫通導体7と、光ファイバ13を保持し、搭載部に搭載される光半導体素子Sを覆うとともに光ファイバ13を光半導体素子Sに光学的に結合させるように誘電体基板1の一端面に取着される蓋体12とを具備する光半導体素子収納用パッケージにおいて、第2の線路導体3と貫通導体4の接続部が外部回路基板8の周縁より手前にあって外部回路基板8の上に位置しており、かつ外部回路基板8の端部の上において、第1の線路導体2と外部回路基板8とが対向する領域に同一面接地導体層5が延設されており、このことが重要である。
【0034】
本発明の半導体素子収納用パッケージによれば、以上のような構成により、同一面接地導体層5および接地導体層6ならびにこれらを接続する複数の接地用貫通導体7が、光半導体素子Sと外部回路基板8の配線導体9とを接続する第1の線路導体2および第2の線路導体3ならびにこれらを接続する貫通導体4を取り囲んで覆うように設けられていることから、第1の線路導体2から外部回路基板8の配線導体9にかけての高周波信号の伝播モードが全てTEMモードとなって伝播モードの変化を抑えることができる。また、誘電体層1a,同一面接地導体層5,接地導体層6および複数の接地用貫通導7によって、第1の線路導体2および第2の線路導体3ならびに貫通導体4に容量成分が付加されることにより、これら線路導体における特性インピーダンスの急激な変化を抑えることができ、高周波信号の反射損失を極めて小さくすることができる。その結果、本発明の光半導体素子収納用パッケージによれば、10Gbps以上の高周波信号についても良好な伝送特性が実現でき、搭載収容される光半導体素子Sを正常に作動させることができる。
【0035】
そして、誘電体基板1の一端面の搭載部に光半導体素子Sを搭載するとともに、光半導体素子Sの電極と第1の線路導体2の端部とをボンディングワイヤ等の接続部材14で電気的に接続し、次に、一端面の外周部に搭載部を取り囲んで、Fe−Ni−Co合金等から成るリング状の金属板11をロウ付け等により固定し、さらに、金属板11の外周端から1mm以内の外周部に、光半導体素子Sの保護を目的として、Fe−Ni−Co合金等から成る第1の蓋体12aをYAGレーザ溶接やシーム溶接あるいはロウ付け等により固定し、次に、第1の蓋体12aの外周部に、光ファイバ13と戻り光防止用の光アイソレータ(図示せず)とが樹脂接着剤等で接着された第2の蓋体12bをYAGレーザ溶接等で接合することによって、搭載部に搭載された光半導体素子Sを覆うとともに光ファイバ13を光半導体素子Sに光学的に結合させるように誘電体基板1の一端面に蓋体12を取着し、製品としての本発明の光半導体装置となる。
【0036】
そして、このような本発明の光半導体装置によれば、10Gbps以上の高周波信号であっても外部回路基板8の配線導体9を伝送する電気信号と光ファイバ13を伝送する光信号との間で光半導体素子Sによって光−電気変換を良好に行なうことができ、10Gbps以上の高周波信号を良好に伝送し処理することが可能な光半導体装置とすることができる。
【0037】
【実施例】
本発明の光半導体素子収納用パッケージの実施例を以下に説明する。
【0038】
比誘電率が9.4のアルミナセラミックスから成り、厚みが0.38mmの誘電体層が積層されて成る誘電体基板の下面に、第2の線路導体として0.46mmの線幅のWメタライズ上にNiめっき層およびAuめっき層を被着させて成る線路導体を形成した。また、誘電体基板の下面に同一面接地導体層として、第2の線路導体の両側に第2の線路導体の特性インピーダンスが50Ωとなるように0.25mmの間隔をもって、Wメタライズ上にNiめっき層およびAuめっき層を被着させて成る導体層を形成した。
【0039】
次に、第1の線路導体として、誘電体基板内の誘電体層の一主面に第2の線路導体から1.14mmの間隔をもって平行に、またその誘電体基板の他端面側の端部が第2の線路導体の誘電体基板の一端面側の端部と対向するように、0.41mmの線幅のWメタライズから成る線路導体を形成した。
【0040】
そして、第1の線路導体と外部回路基板の反対側で対向する他の誘電体層の一主面に、第2の線路導体が形成された誘電体基板の下面から2.28mmの間隔をもって、第1の線路導体および同一面接地導体層と対向するように接地導体層を形成した。第1の線路導体と第2の線路導体とを接続する貫通導体、および同一面接地導体層と接地導体層とを接続する複数の接地用貫通導体は、それぞれ横断面形状が直径0.15mmの円形状で、Wメタライズにより形成し、また複数の接地用貫通導体が第1および第2の線路導体に沿って並んで位置する接地用貫通導体間の第1および第2の線路導体に平行な方向における距離を0.8mmとし、第1および第2の線路導体を挟んで対向して位置する接地用貫通導体間の第1および第2の線路導体に直交する方向における距離を1.6mmとして配置した。これにより、本発明の実施例である試料1を得た。
【0041】
一方、比較例の構成は、以下のようにした。まず、金属基板を切削加工して、基板を厚みが1mmで直径が5.6mmの円板状とした。この金属基板の中央部には、打ち抜き加工により金属製端子を気密封止するための円形の貫通孔を形成した。さらに、金属基板の表面には、厚み2μmのNi層と厚さ2μmのAu層とをめっき法により順次被着した。そして、金属基板の貫通孔に金属製端子を挿入し、ガラス封止材で封止して接合した。これにより、比較例である試料2を得た。
【0042】
これら試料1および試料2について、光半導体素子であるVCSEL(Vertical Cavity Surface Emitting Laser:面発光型半導体レーザ)をAu−Snろう材を用いて実装した後、ボンディングワイヤにて第1の線路導体および金属製端子にそれぞれ電気的に接続した。一方、比誘電率が4.1のポリイミド樹脂から成り、主面に配線導体および接地導体となる導体パターンをCuめっきにより形成した、厚み1.6mm×縦30mm×横15mmの外部回路基板を半田を介して試料1の第2の線路導体および試料2の金属製端子にそれぞれ電気的に接続し、配線導体および接地導体をウェハープローブを用いてネットワークアナライザに接続し、高周波信号に対する反射損失の測定を行なった。その結果を図2に示す。
【0043】
図2は、試料1および試料2における反射損失の周波数特性を示すグラフであり、横軸は周波数(単位:GHz)を、縦軸は反射損失(単位:dB)を表している。また、特性曲線のうち実線は試料1の、破線は試料2の反射損失の周波数特性をそれぞれ示している。
【0044】
図2に示す結果より、本発明の実施例である試料1においては、15GHz迄の周波数領域で、反射損失が−15dB以下の良好な周波数特性を実現していることが分かる。これに対し、比較例の試料2においては、2.5GHz以上の周波数領域で反射損失が増大しており、その値は−10dBを超えていることが分かる。本発明の実施例である試料1においては、図示した周波数範囲においてそのような特性の劣化は見られず、良好な特性が得られた。
【0045】
なお、本発明は上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば、上記の実施の形態の例では、外部回路基板8と光半導体素子Sとの間の高周波信号を伝送する伝送線路は、配線導体9、第1および第2の線路導体2・3、貫通導体4のように1本の導体線路から成る伝送線路であるが、これらを差動伝送線路のような一対の導体線路から成る伝送線路としてもよい。
【0046】
【発明の効果】
本発明の光半導体素子収納用パッケージによれば、上記のような構成により、同一面接地導体層および接地導体層ならびにこれらを接続する複数の接地用貫通導体が、光半導体素子と外部回路基板の配線導体とを接続する第1の線路導体および第2の線路導体ならびにこれらを接続する貫通導体を取り囲んで覆うように設けられていることから、第1の線路導体から外部回路基板の配線導体にかけての高周波信号の伝播モードが全てTEMモードとなって伝播モードの変化を抑えることができる。また、誘電体層,同一面接地導体層,接地導体層および複数の接地用貫通導体によって第1および第2の線路導体ならびに貫通導体に容量成分が付加されることにより、これら線路導体における特性インピーダンスの急激な変化を抑えることができ、高周波信号の反射損失を極めて小さくすることができる。その結果、本発明の光半導体素子収納用パッケージによれば、10Gbps以上の高周波信号についても良好な伝送特性が実現でき、搭載収容される光半導体素子を正常に作動させることができる。
【0047】
また、本発明の光半導体装置によれば、10Gbps以上の高周波信号であっても外部回路基板の配線導体を伝送する電気信号と光ファイバを伝送する光信号との間で光半導体素子によって光−電気変換を良好に行なうことができ、10Gbps以上の高周波信号を良好に伝送し処理することが可能な光半導体装置とすることができる。
【0048】
以上のように、本発明によれば、光半導体素子収納用パッケージと外部回路基板との接合部近傍における高周波信号の伝搬モードおよび特性インピーダンスを整合させることができ、その結果、10Gbps以上の高周波信号についても良好な伝送特性が得られ、光半導体素子を正常に作動させることができる光半導体素子パッケージおよびそれを用いた光半導体装置を提供することができる。
【図面の簡単な説明】
【図1】(a)は本発明の光半導体素子収納用パッケージに光半導体素子を搭載して成る光半導体装置の実施の形態の一例を示した断面図であり、(b)および(c)は、(a)に示す光半導体装置の蓋体を外した状態での、それぞれ(a)における右側から見た様子を示す側面図および図1(a)における左側から内部を透視して見た様子を示す側面透視図である。
【図2】本発明の光半導体収納用パッケージの実施例および比較例における周波数と反射損失との関係を示したグラフである。
【図3】(a)は従来の光半導体収納用パッケージを用いた光半導体装置の例を示す断面図であり、(b)は蓋体を外した状態で(a)の右側から見た様子を示す右側面図であり、(c)は(a)の左側から見た様子を示す左側面図である。
【符号の説明】
1・・・・・・・誘電体基板
1a・・・・・・誘電体層
2・・・・・・・第1の線路導体
3・・・・・・・第2の線路導体
4・・・・・・・貫通導体
5・・・・・・・同一面接地導体層
6・・・・・・・接地導体層
7・・・・・・・接地用貫通導体
8・・・・・・・外部回路基板
9・・・・・・・配線導体
10・・・・・・・接地導体
12・・・・・・・蓋体
12a・・・・・・第1の蓋体
12b・・・・・・第2の蓋体
S・・・・・・・光半導体素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical semiconductor element storage package for use in an optical semiconductor device, particularly an optical semiconductor element storage package used in an optical semiconductor device such as an optical transmission / reception module using an optical signal of 10 Gbps or more, and the like. The present invention relates to the used optical semiconductor device.
[0002]
[Prior art]
An example of an optical semiconductor device using an optical semiconductor element storage package for storing an optical semiconductor element such as an LD (laser diode) or PD (photodiode) conventionally used in the optical communication field. 3 (a) to (c). 3A is a cross-sectional view of the optical semiconductor device, FIG. 3B is a right side view showing the state viewed from the right side of FIG. 3A with the lid removed, and FIG. 3C is FIG. It is a left view which shows a mode seen from the left side.
[0003]
This conventional optical semiconductor device has a mounting portion for the optical semiconductor element S at the center of the upper surface, and a through hole 101b having a diameter of 0.5 to 2 mm formed from one main surface to the other main surface in the vicinity of the mounting portion. , A disc-shaped metal substrate 101 made of a metal such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or an iron (Fe) -nickel (Ni) alloy, and the through hole 101b, and at least other Iron (which is fixed through the sealing material 102 so that the end on the main surface side protrudes from the through hole 101b is electrically connected to the electrode of the optical semiconductor element S. A metal terminal 103 made of a metal such as an Fe) -nickel (Ni) -cobalt (Co) alloy or an iron (Fe) -nickel (Ni) alloy, and an electrode mounted on the mounting portion. And an optical semiconductor element S electrically connected to the end on the main surface side. The external circuit board 105 having the linear wiring conductor 104 formed on the upper surface from one side to the opposite side is connected to the metal terminal 103 protruding to the other main surface side of the metal board 101 in parallel to the wiring conductor 104. It is attached so as to be joined.
[0004]
The metal terminal 103 is fixed to the through hole 101b of the metal substrate 101 through a sealing material 102 made of insulating glass containing lead as a main component, and the metal substrate 101 and the metal are fixed by the sealing material 102. The product terminal 103 is electrically insulated.
[0005]
The optical semiconductor element S is brazed and fixed to the metal substrate 101 with a low melting point brazing material such as gold (Au) -tin (Sn) having a melting point of 200 to 400 ° C., and the electrode of the optical semiconductor element S is bonded to the bonding wire. It is electrically connected to an end portion on one main surface side of the metal terminal 103 through 106.
[0006]
Further, on the main surface of the metal substrate 101, a first lid 107a made of Fe—Ni—Co alloy or the like is provided on the outer peripheral portion within a width of 1 mm from the outer peripheral end for the purpose of protecting the optical semiconductor element S. The optical fiber 108 is fixed by laser welding, seam welding, brazing, or the like, and is optically coupled to a portion facing the optical semiconductor element S so as to cover the first lid 107a. The lid 107 is attached by joining the second lid 107b made of Fe—Ni—Co alloy or the like, and an optical semiconductor device as a product is obtained.
[0007]
In this optical semiconductor device, for example, the optical semiconductor element S is optically excited by a drive signal supplied from an external electric circuit (not shown), and the excited light is transmitted through an optical isolator (not shown) for returning light. The optical fiber 108 is used for high-capacity optical communication and the like by being transferred to and from the optical fiber 108. The adaptation range is widely used within a transmission distance of 40 km or less and a transmission capacity of 2.5 Gbps (Giga bit per second) or less.
[0008]
In recent years, the demand for high-speed communication at a transmission distance of 40 km or less has increased rapidly, and research and development on high-speed and large-capacity transmission has been promoted. In particular, an optical semiconductor device such as an optical transmission device that transmits an optical signal in an optical communication device has been attracting attention, and an increase in the speed of a high-frequency signal is a problem for improving the transmission capacity. In addition, the high-frequency signal used in the conventional optical semiconductor device is 2.5 Gbps or less, but in recent years, a higher speed of 10 Gbps or more has been demanded.
[0009]
[Patent Document 1]
JP-A-8-130266
[0010]
[Problems to be solved by the invention]
However, when an optical semiconductor device in which an optical semiconductor element driven by a high frequency signal of about 10 Gbps is mounted on a conventional optical semiconductor element storage package, the propagation mode of the high frequency signal changes in the metal terminal, and As a result, the characteristic impedance of the metal terminal also changes, so that the optical semiconductor element becomes difficult to operate normally, and particularly, there is a problem that the transmission characteristic of a high-frequency signal of 10 Gbps or more is greatly deteriorated.
[0011]
This is because the portion of the metal terminal that protrudes from the through hole of the metal substrate to the other main surface side does not have a so-called coaxial structure, so if the frequency of the high-frequency signal transmitted by this metal terminal increases, This is due to a large shift in the propagation mode of the part that is not structured, and a significant change in the characteristic impedance. As a result, the reflection loss at the time of input / output of the high-frequency signal increases, and the optical semiconductor element This is because the operability deteriorates.
[0012]
That is, in the configuration of the conventional optical semiconductor element storage package, the propagation mode of the high-frequency signal in the metal substrate, the portion located inside the through hole of the metal terminal, and the wiring conductor formed in the external circuit substrate is TEM (Transverse Electro Magnetic) mode, on the other hand, the part that protrudes from the through hole of the metal substrate of the metal terminal, and the propagation mode of the part other than the junction with the wiring conductor of the external circuit board is TE (Transverse Electric) Mode. For this reason, as the high frequency signal is transmitted, the TEM mode-TE mode-TEM mode and the propagation mode change. As for the characteristic impedance, the inductive component is dominant in the portion of the metal terminal that protrudes from the through hole of the metal substrate and other than the junction with the wiring conductor of the external circuit board, and the characteristic impedance is abrupt. To be high. This is because the reflection loss of the high-frequency signal is increased.
[0013]
The present invention has been made in view of the problems in the conventional technology as described above, and its purpose is to propagate a high-frequency signal in the vicinity of the junction between the optical semiconductor element housing package and the external circuit board and the characteristics thereof. Impedance can be matched, and as a result, an optical semiconductor element package capable of obtaining good transmission characteristics even for a high-frequency signal of 10 Gbps or more and operating an optical semiconductor element normally, and an optical semiconductor device using the same It is to provide.
[0014]
  The optical semiconductor element storage package of the present invention is:An optical semiconductor storage package bonded to an external circuit board,Dielectric substrate and the dielectric substrateThe one end face of the dielectric substrate insideFrom the other end surface to the lower surface of the dielectric substrate, and the one end surface from the other end surface to the lower end of the dielectric substrate. And formed parallel to the first line conductor toward the side, The one end face sideAn end is electrically connected to an end on the other end surface side of the first line conductor via a through conductor,A region extending from the end connected to the through conductor to the other end surface side isFormed on the top surface of the external circuit boardBonded to the wiring conductorA second line conductor and a coplanar ground conductor layer formed on each side of the second line conductor on the lower surface of the dielectric substrate;To face the first line conductor inside the dielectric substrateFormed,The first line conductor is formed on the side opposite to the second line conductor.A grounding conductor layer; and a plurality of grounding through conductors that electrically connect the same-surface grounding conductor layer and the grounding conductor layer, respectively.The coplanar ground conductor layer is closer to the one end surface of the dielectric substrate than the connection portion,The first line conductorExists in the area opposite to.
  The joined body of the present invention comprises an external circuit board having a linear wiring conductor on the surface and a ground conductor provided on both sides of the wiring conductor, and an optical semiconductor element housing package to be joined to the external circuit board. Have. The optical semiconductor element storage package is:A dielectric substrate;The dielectric substrate is formed from one end surface to the other end surface side of the dielectric substrate, and the end portion on the one end surface side is electrically connected to the optical semiconductor element.The first line conductor is formed on the lower surface of the dielectric substrate in parallel with the first line conductor from the other end surface side toward the one end surface side., The one end face sideAn end portion is electrically connected to an end portion on the other end surface side of the first line conductor via a through conductor,AboveExternal circuit boardAboveA second line conductor joined in parallel to the wiring conductor, and the external circuit board formed on both sides of the second line conductor on the lower surface of the dielectric board, respectively.AboveA coplanar ground conductor layer joined to the ground conductor; andTo face the first line conductor inside the dielectric substrateBeen formed,The first line conductor is formed on the side opposite to the second line conductor.A grounding conductor layer, and a plurality of grounding through conductors that electrically connect the same-surface grounding conductor layer and the grounding conductor layer, respectively.It has.A connecting portion between the second line conductor and the through conductor is located on the external circuit board; andThe coplanar ground conductor layer is closer to one end surface of the dielectric substrate than the connection portion,The first line conductor and the external circuit board;Exist between.
[0015]
According to the optical semiconductor element storage package of the present invention, with the above-described configuration, the same-surface ground conductor layer, the ground conductor layer, and the plurality of grounding through conductors that connect them are formed between the optical semiconductor element and the external circuit board. Since it is provided so as to surround and cover the first line conductor and the second line conductor connecting the wiring conductor and the through conductor connecting these wiring conductors, it extends from the first line conductor to the wiring conductor of the external circuit board. All the high-frequency signal propagation modes become TEM modes, and changes in the propagation modes can be suppressed. In addition, a capacitive component is added to the first and second line conductors and the through conductors by the dielectric layer, the coplanar ground conductor layer, the ground conductor layer, and the plurality of ground through conductors, so that the characteristic impedance of these line conductors is increased. Can be suppressed, and the reflection loss of the high-frequency signal can be made extremely small. As a result, according to the optical semiconductor element housing package of the present invention, good transmission characteristics can be realized even for high-frequency signals of 10 Gbps or more, and the optical semiconductor element housed and accommodated can be operated normally.
[0016]
The optical semiconductor device of the present invention has the above structure.The one end surface of the dielectric substrateAn optical semiconductor element is mounted on the electrode, and an electrode of the optical semiconductor element is electrically connected to an end portion on the one end face side of the first line conductor to cover the optical semiconductor element and connect the optical fiber to the optical semiconductor. On one end face to optically couple to the elementLidIs attached.
  Moreover, the mounting structure of the optical semiconductor device of the present invention is the above bonded body.An optical semiconductor element is mounted on the one end face of the dielectric substrate, and an electrode of the optical semiconductor element is electrically connected to an end portion on the one end face side of the first line conductor to cover the optical semiconductor element. In addition, a lid is attached to the one end surface so as to optically couple the optical fiber to the optical semiconductor element.
[0017]
According to the optical semiconductor device of the present invention, with the above-described configuration, even if a high-frequency signal of 10 Gbps or higher, light is transmitted between an electrical signal transmitted through the wiring conductor of the external circuit board and an optical signal transmitted through the optical fiber. An optical semiconductor device capable of satisfactorily performing photoelectric conversion by the semiconductor element and capable of satisfactorily transmitting and processing a high-frequency signal of 10 Gbps or more can be obtained.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, an optical semiconductor element housing package of the present invention and an optical semiconductor device of the present invention using the same will be described in detail with reference to the accompanying drawings.
[0019]
FIG. 1A is a cross-sectional view showing an example of an embodiment of an optical semiconductor device in which an optical semiconductor element is mounted on an optical semiconductor element storage package of the present invention, and FIG. 1B and FIG. ) Is a side view showing the optical semiconductor device shown in FIG. 1A viewed from the right side in FIG. 1A with the lid removed, and the inside from the left side in FIG. 1A. It is side surface perspective drawing which shows a mode that it saw and seen.
[0020]
In these drawings, 1 is a dielectric substrate, 1a is a dielectric layer, 2 is a first line conductor, 3 is a second line conductor, 4 is a through conductor, 5 is a ground conductor layer on the same plane, and 6 is a ground conductor. Layer, 7 is a grounding through conductor, 8 is an external circuit board, 9 is a wiring conductor, 10 is a grounding conductor, and 12 is a lid, and these mainly constitute the package for housing an optical semiconductor element of the present invention. The optical semiconductor element storage package and the optical semiconductor element S constitute the optical semiconductor device of the present invention.
[0021]
The dielectric substrate 1 is formed by laminating a plurality of dielectric layers 1a, and has an optical semiconductor element S mounting portion on one end face thereof. Such a dielectric substrate 1 has a function of mounting the optical semiconductor element S and supporting a line conductor that electrically connects the optical semiconductor element S and the wiring conductor 9 of the external circuit board 8.
[0022]
The dielectric layer 1a constituting the dielectric substrate 1 is made of alumina (Al2O3) Ceramics, mullite (3Al2O3・ 2SiO2) From ceramic materials such as ceramics, inorganic materials such as glass ceramics, or tetrafluoroethylene resin (polytetrafluoroethylene; PTFE), tetrafluoroethylene-ethylene copolymer resin (tetrafluoroethylene-ethylene copolymer resin; ETFE), fluororesin such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer resin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin; PFA), resin such as glass epoxy resin, polyphenylene ether resin, liquid crystal polyester, polyimide, etc. It consists of a system material, and its shape and dimensions (thickness, width, length, etc.) are appropriately set according to the frequency, characteristic impedance, etc. of the high-frequency signal used.
[0023]
Further, one main surface of the dielectric layer 1a is directed from one end surface of the dielectric substrate 1 to the other end surface side, and the main surface of the dielectric layer 1a which is the lower surface of the dielectric substrate 1 is disposed on the main surface of the dielectric substrate 1. A first line conductor 2 and a second line conductor 3 are attached in parallel to each other from the other end surface side to the one end surface side. The first line conductor 2 and the second line conductor 3 electrically connect the electrode of the optical semiconductor element S mounted on the mounting portion on one end face of the dielectric substrate 1 and the wiring conductor 9 of the external circuit board 8 described later. Connected.
[0024]
The first line conductor 2 and the second line conductor 3 are formed on a conductive layer made of a metal material suitable for high-frequency signal transmission, such as a Cu layer, a Mo—Mn layer, a W layer, or a Mo—Mn metallized layer. Ni plating layer and Au plating layer deposited, W metallized layer deposited Ni plating layer and Au plating layer, Cr-Cu alloy layer, Ni plating layer on Cr-Cu alloy layer and Ta plated with Au plating layer2Ni-Cr alloy layer and Au plating layer deposited on N layer, Pt layer and Au plating layer deposited on Ti layer, or Pt layer and Au plating on Ni-Cr alloy layer It consists of a layer deposited, and is formed by thick film printing methods or various thin film forming methods, plating methods, etc., and its thickness and width are set according to the frequency and characteristic impedance of the transmitted high frequency signal The
[0025]
Further, the same surface ground conductor layer 5 is provided on both sides of the second line conductor 3 on the lower surface of the dielectric substrate 1, and the first line conductor 2 and the outside are provided on one main surface of the other dielectric layer 1a. The grounding conductor layer 6 facing the opposite side of the circuit board 8 is formed of the same material and the same method as the first line conductor 2 and the second line conductor 3.
[0026]
The intervals between the first line conductor 2 and the second line conductor 3 and the ground conductor layer 5 and the ground conductor layer 6 are set according to the frequency of the high-frequency signal to be transmitted, the characteristic impedance, and the like.
[0027]
In addition, the dielectric substrate 1 is electrically connected to an end portion of the first line conductor 2 on the other end surface side of the dielectric substrate 1 and an end portion on the one end surface side of the second line conductor 3 opposed thereto. The through conductors 4 are connected to each other, and the grounding through conductor 7 is formed to electrically connect the ground conductor layer 5 and the ground conductor layer 6 to the same plane. Such through conductors 4 and grounding through conductors 7 are provided, for example, by forming through-hole conductors or via-hole conductors in the dielectric layer 1a, or by embedding metal plates, metal bars, metal pipes, or the like.
[0028]
The dielectric substrate 1 in the optical semiconductor element housing package of the present invention is manufactured by the following method.
[0029]
For example, if the dielectric layer 1a is made of alumina ceramics, first prepare a green sheet of alumina ceramics to be the dielectric layer 1a, and punch it through a predetermined punching process using a punching method or the like. To do. Next, if the first line conductor 2, the second line conductor 3, the through conductor 4, the coplanar ground conductor layer 5, the ground conductor layer 6, and the ground through conductor 7 are made of W metallized, a plurality of sheets A W paste is printed on a predetermined surface of the dielectric layer 1a by screen printing or the like to form the first line conductor 2, the second line conductor 3, the coplanar ground conductor layer 5 and the ground conductor layer 6. At the same time, the through conductor 4 and the grounding through conductor 7 are formed by filling the inside of the through hole with W paste. Next, the dielectric layer 1a in which the first line conductor 2, the second line conductor 3, the through conductor 4, the coplanar ground conductor layer 5, the ground conductor layer 6, and the grounding through conductor 7 are formed at predetermined positions. Then, a plurality of layers are sequentially stacked and pressed to obtain a stacked body that becomes the dielectric substrate 1.
[0030]
One end surface of this laminate is a mounting portion for mounting the optical semiconductor element S, and the second line conductor 3 is exposed on the lower surface of the dielectric substrate 1 so as to be joined in parallel with the wiring conductor 9 of the external circuit substrate 8. It is formed to do.
[0031]
In this case, it is formed so that the end portion of the first line conductor 2 is exposed on one end surface of the laminated body where the dielectric substrate 1 is mounted. Also, W paste is printed and applied to one end surface of the stacked body so as to be electrically connected to the exposed end of the first line conductor 2, and the optical semiconductor element S to be mounted and the electric The end face electrodes to be connected may be printed and applied. These are fired at a temperature of about 1600 ° C., and finally, Ni plating and Au plating are performed on each W metallized surface exposed on the surface.
[0032]
The second line conductor 3 formed on the lower surface of the dielectric substrate 1 is joined and electrically connected in parallel to the linear wiring conductor 9 formed on the surface of the external circuit substrate 8. The external circuit board 8 is a support base for supporting the wiring conductor 9, and is formed by the same material and the same method as those for the dielectric layer 1a. The wiring conductor 9 is for electrically connecting the second line conductor 3 and the wiring conductor of the external electric circuit board (not shown), and the first line conductor 2 and the second line conductor 2 described above. The line conductor 3 is formed as a straight line conductor on the upper surface of the external circuit board 8 by the same material and the same method. Further, ground conductors 10 are formed on both sides of the wiring conductor 9 on the upper surface of the external circuit board 8 by the same material and the same method as the wiring conductor 9, respectively. The ground conductor 10 also has a function of shielding a high-frequency signal transmitted through the wiring conductor 9. The dielectric substrate 1 and the external circuit substrate 8 are joined in parallel with the second line conductor 3 and the wiring conductor 9, and the same-surface ground conductor layer 5 and the ground conductor 10 with a brazing material or the like. It is joined by.
[0033]
The optical semiconductor element storage package of the present invention is formed by laminating a plurality of dielectric layers 1a as described above, and a dielectric substrate 1 having an optical semiconductor element S mounting portion on one end surface, and a dielectric substrate A first line conductor formed on one main surface of the dielectric layer 1a in the substrate 1 from one end surface toward the other end surface side and having an end on one end surface side electrically connected to an electrode of the optical semiconductor element S 2 and formed on the lower surface of the dielectric substrate 1 from the other end surface side to the one end surface side, and its end portion is electrically connected to the end portion on the other end surface side of the first line conductor 2 via the through conductor 4. The second line conductor 3 connected in parallel to the linear wiring conductor 9 formed on the upper surface of the external circuit board 8 and the both sides of the second line conductor 3 on the lower surface of the dielectric substrate 1. And ground conductors 10 formed on both sides of the wiring conductor 9 of the external circuit board 8 respectively. The same ground contact conductor layer 5 and the ground conductor layer 6 formed on one main surface of the other dielectric layer 1a and facing the first line conductor 2 on the opposite side of the external circuit board 8 A plurality of grounding through conductors 7 that electrically connect the ground conductor layer 5 and the ground conductor layer 6 and the optical fiber 13 are held, the optical semiconductor element S mounted on the mounting portion is covered, and the optical fiber 13 is In an optical semiconductor element storage package comprising a lid body 12 attached to one end face of the dielectric substrate 1 so as to be optically coupled to the optical semiconductor element S, the second line conductor 3 and the through conductor 4 The connecting portion is located on the external circuit board 8 before the peripheral edge of the external circuit board 8, and on the end of the external circuit board 8, the first line conductor 2, the external circuit board 8, The same-surface ground conductor layer 5 is extended in the area where the is important.
[0034]
According to the package for housing a semiconductor element of the present invention, with the configuration as described above, the same-surface ground conductor layer 5 and the ground conductor layer 6 and the plurality of grounding through conductors 7 connecting them are connected to the optical semiconductor element S and the outside. Since the first line conductor 2 and the second line conductor 3 that connect the wiring conductor 9 of the circuit board 8 and the through-conductor 4 that connects these are provided so as to surround and cover, the first line conductor All the high-frequency signal propagation modes from 2 to the wiring conductor 9 of the external circuit board 8 become TEM modes, and changes in the propagation modes can be suppressed. Further, a capacitive component is added to the first line conductor 2, the second line conductor 3, and the through conductor 4 by the dielectric layer 1 a, the coplanar ground conductor layer 5, the ground conductor layer 6, and the plurality of grounding through conductors 7. As a result, a sudden change in characteristic impedance in these line conductors can be suppressed, and the reflection loss of the high-frequency signal can be extremely reduced. As a result, according to the optical semiconductor element housing package of the present invention, good transmission characteristics can be realized even for high-frequency signals of 10 Gbps or more, and the optical semiconductor element S mounted and accommodated can be operated normally.
[0035]
Then, the optical semiconductor element S is mounted on the mounting portion on one end face of the dielectric substrate 1, and the electrode of the optical semiconductor element S and the end of the first line conductor 2 are electrically connected by a connecting member 14 such as a bonding wire. Then, the ring-shaped metal plate 11 made of Fe-Ni-Co alloy or the like is fixed by brazing or the like so as to surround the mounting portion on the outer peripheral portion of one end surface, and the outer peripheral end of the metal plate 11 The first lid 12a made of Fe-Ni-Co alloy or the like is fixed to the outer peripheral portion within 1 mm from the end by YAG laser welding, seam welding, brazing, or the like for the purpose of protecting the optical semiconductor element S. The second lid 12b in which the optical fiber 13 and the optical isolator (not shown) for preventing return light are bonded to the outer periphery of the first lid 12a with a resin adhesive or the like is attached by YAG laser welding or the like. By joining, the optical half mounted on the mounting part The optical fiber 13 is attached to the lid 12 to the one end face of the dielectric substrate 1 so as to optically couple to the optical semiconductor element S covers the body element S, the optical semiconductor device of the present invention as a product.
[0036]
According to such an optical semiconductor device of the present invention, even a high-frequency signal of 10 Gbps or more is transmitted between an electrical signal transmitted through the wiring conductor 9 of the external circuit board 8 and an optical signal transmitted through the optical fiber 13. Opto-electrical conversion can be satisfactorily performed by the optical semiconductor element S, and an optical semiconductor device capable of satisfactorily transmitting and processing a high-frequency signal of 10 Gbps or more can be obtained.
[0037]
【Example】
Examples of the optical semiconductor element storage package of the present invention will be described below.
[0038]
A Ni plating layer is formed on the lower surface of a dielectric substrate made of alumina ceramic having a relative dielectric constant of 9.4 and having a thickness of 0.38 mm and laminated on a W metallization having a line width of 0.46 mm as a second line conductor. And a line conductor formed by depositing an Au plating layer. In addition, the same-surface ground conductor layer is formed on the lower surface of the dielectric substrate, and the Ni plating layer is formed on the W metallization on the W metallization with a spacing of 0.25 mm so that the characteristic impedance of the second line conductor is 50Ω on both sides of the second line conductor. And a conductor layer formed by depositing an Au plating layer.
[0039]
Next, the first line conductor is parallel to the main surface of the dielectric layer in the dielectric substrate with a distance of 1.14 mm from the second line conductor, and the end on the other end surface side of the dielectric substrate is A line conductor made of W metallization having a line width of 0.41 mm was formed so as to face the end of the second line conductor on one end face side of the dielectric substrate.
[0040]
Then, on the main surface of the other dielectric layer facing the first line conductor on the opposite side of the external circuit board, with a distance of 2.28 mm from the lower surface of the dielectric board on which the second line conductor is formed, A ground conductor layer was formed so as to face one line conductor and the same-surface ground conductor layer. A through conductor that connects the first line conductor and the second line conductor, and a plurality of grounding through conductors that connect the same-surface ground conductor layer and the ground conductor layer are each a circle having a cross-sectional diameter of 0.15 mm. In a shape, formed by W metallization, and a direction parallel to the first and second line conductors between the grounding through conductors in which a plurality of grounding through conductors are arranged along the first and second line conductors And the distance in the direction perpendicular to the first and second line conductors between the grounding through conductors positioned opposite to each other with the first and second line conductors interposed therebetween is 1.6 mm. This obtained the sample 1 which is an Example of this invention.
[0041]
On the other hand, the configuration of the comparative example was as follows. First, the metal substrate was cut into a disk shape having a thickness of 1 mm and a diameter of 5.6 mm. A circular through hole for hermetically sealing the metal terminal by punching was formed in the center of the metal substrate. Further, a Ni layer having a thickness of 2 μm and an Au layer having a thickness of 2 μm were sequentially deposited on the surface of the metal substrate by a plating method. And the metal terminal was inserted in the through-hole of the metal substrate, and it sealed and joined with the glass sealing material. Thereby, Sample 2 as a comparative example was obtained.
[0042]
About these sample 1 and sample 2, after mounting VCSEL (Vertical Cavity Surface Emitting Laser) which is an optical semiconductor element using an Au-Sn brazing material, a first line conductor and a bonding wire are used. Each was electrically connected to a metal terminal. On the other hand, an external circuit board made of polyimide resin having a relative dielectric constant of 4.1 and having a conductor pattern to be a wiring conductor and a ground conductor formed on the main surface by Cu plating, having a thickness of 1.6 mm × length 30 mm × width 15 mm via solder The second line conductor of sample 1 and the metal terminal of sample 2 were electrically connected to each other, the wiring conductor and the ground conductor were connected to a network analyzer using a wafer probe, and the reflection loss for the high-frequency signal was measured. . The result is shown in FIG.
[0043]
FIG. 2 is a graph showing the frequency characteristics of reflection loss in Sample 1 and Sample 2. The horizontal axis represents frequency (unit: GHz), and the vertical axis represents reflection loss (unit: dB). Of the characteristic curves, the solid line indicates the frequency characteristic of the reflection loss of the sample 1 and the broken line indicates the frequency characteristic of the reflection loss of the sample 2.
[0044]
From the results shown in FIG. 2, it can be seen that Sample 1 which is an embodiment of the present invention realizes a favorable frequency characteristic with a reflection loss of −15 dB or less in a frequency region up to 15 GHz. On the other hand, in the sample 2 of the comparative example, it can be seen that the reflection loss increases in the frequency region of 2.5 GHz or more, and the value exceeds −10 dB. In the sample 1 which is an example of the present invention, such a characteristic deterioration was not observed in the illustrated frequency range, and a good characteristic was obtained.
[0045]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the example of the above embodiment, the transmission line for transmitting a high-frequency signal between the external circuit board 8 and the optical semiconductor element S is the wiring conductor 9, the first and second line conductors 2 and 3, and the through-hole. Although the transmission line is composed of one conductor line like the conductor 4, these may be a transmission line composed of a pair of conductor lines such as a differential transmission line.
[0046]
【The invention's effect】
According to the optical semiconductor element storage package of the present invention, with the above-described configuration, the same-surface ground conductor layer, the ground conductor layer, and the plurality of grounding through conductors that connect them are formed between the optical semiconductor element and the external circuit board. Since it is provided so as to surround and cover the first line conductor and the second line conductor connecting the wiring conductor and the through conductor connecting these wiring conductors, it extends from the first line conductor to the wiring conductor of the external circuit board. All the high-frequency signal propagation modes become TEM modes, and changes in the propagation modes can be suppressed. In addition, a capacitive component is added to the first and second line conductors and the through conductors by the dielectric layer, the coplanar ground conductor layer, the ground conductor layer, and the plurality of ground through conductors, so that the characteristic impedance of these line conductors is increased. Can be suppressed, and the reflection loss of the high-frequency signal can be made extremely small. As a result, according to the optical semiconductor element housing package of the present invention, good transmission characteristics can be realized even for high-frequency signals of 10 Gbps or more, and the optical semiconductor element housed and accommodated can be operated normally.
[0047]
In addition, according to the optical semiconductor device of the present invention, even if a high-frequency signal of 10 Gbps or higher, an optical semiconductor element transmits an optical signal between an electrical signal transmitted through a wiring conductor of an external circuit board and an optical signal transmitted through an optical fiber. An optical semiconductor device which can perform electrical conversion well and can transmit and process high-frequency signals of 10 Gbps or more can be obtained.
[0048]
As described above, according to the present invention, it is possible to match the propagation mode and characteristic impedance of a high-frequency signal in the vicinity of the junction between the optical semiconductor element housing package and the external circuit board. As a result, a high-frequency signal of 10 Gbps or higher With respect to the optical semiconductor device, it is possible to provide an optical semiconductor device package capable of obtaining good transmission characteristics and operating the optical semiconductor device normally, and an optical semiconductor device using the same.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view showing an example of an embodiment of an optical semiconductor device in which an optical semiconductor element is mounted on an optical semiconductor element storage package of the present invention, and FIGS. FIG. 1A is a side view showing a state seen from the right side in FIG. 1A with the lid of the optical semiconductor device shown in FIG. 1A removed, and the inside is seen through from the left side in FIG. It is a side perspective figure which shows a mode.
FIG. 2 is a graph showing the relationship between frequency and reflection loss in an example and a comparative example of an optical semiconductor storage package of the present invention.
3A is a cross-sectional view showing an example of an optical semiconductor device using a conventional optical semiconductor storage package, and FIG. 3B is a view seen from the right side of FIG. (C) is a left side view showing a state viewed from the left side of (a).
[Explanation of symbols]
1. Dielectric substrate
1a ・ ・ ・ ・ ・ ・ Dielectric layer
2 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ First line conductor
3 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Second line conductor
4 .... Penetration conductor
5 ... Same grounded conductor layer
6 .... Grounding conductor layer
7 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Penetration conductor for grounding
8 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ External circuit board
9 ... Wiring conductor
10. ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Grounding conductor
12 ...
12a ・ ・ ・ ・ ・ ・ First cover
12b ......... the second lid
S ... Optical semiconductor device

Claims (4)

外部回路基板に接合される光半導体収納用パッケージであって、
誘電体基板と、
該誘電体基板の内部において前記誘電体基板の前記一端面から他端面側に向けて形成され、前記一端面側の端部が光半導体素子に電気的に接続される第1の線路導体と、
前記誘電体基板の下面に前記他端面側から前記一端面側に向けて前記第1の線路導体と平行に形成されるとともに、前記一端面側の端部が貫通導体を介して前記第1の線路導体の前記他端面側の端部と電気的に接続され、前記貫通導体に接続される前記端部から前記他端面側に延在する領域が、前記外部回路基板の上面に形成された配線導体に接合される第2の線路導体と、
前記誘電体基板の前記下面の前記第2の線路導体の両側にそれぞれ形成された同一面接地導体層と、
前記誘電体基板の内部において前記第1の線路導体に対向するように形成され、前記第1の線路導体に関して前記第2の線路導体と反対側に形成される接地導体層と、
前記同一面接地導体層と前記接地導体層とをそれぞれ電気的に接続する複数の接地用貫通導体
を具備しており、
前記同一面接地導体層が、前記第2の線路導体と前記貫通導体との前記接続部よりも前記誘電体基板の前記一端面側であって、前記第1の線路導体に対向する領域に存在している光半導体素子収納用パッケージ。
An optical semiconductor storage package bonded to an external circuit board,
A dielectric substrate ;
A first line conductor formed from the one end surface of the dielectric substrate toward the other end surface inside the dielectric substrate, the end of the one end surface being electrically connected to the optical semiconductor element ;
The dielectric substrate is formed on the lower surface of the dielectric substrate in parallel with the first line conductor from the other end surface side toward the one end surface side, and the end portion on the one end surface side is formed through the through conductor. is the other end surface side end portion and electrically connected to the line conductor, the region extending to the other end face side from the end connected to the through conductor, formed on the upper surface of the external circuit board wiring A second line conductor joined to the conductor;
A coplanar ground conductor layer formed on each side of the second line conductor on the lower surface of the dielectric substrate;
A grounding conductor layer formed so as to face the first line conductor inside the dielectric substrate, and formed on the opposite side of the second line conductor with respect to the first line conductor ;
A plurality of grounding through conductors that electrically connect the same-surface grounding conductor layer and the grounding conductor layer, respectively.
The coplanar ground conductor layer is present on the one end face side of the dielectric substrate with respect to the connection portion between the second line conductor and the through conductor and in a region facing the first line conductor. An optical semiconductor element storage package.
表面に直線状の配線導体と該配線導体の両側に設けられた接地導体とを有する外部回路基板と、
前記外部回路基板に接合される光半導体素子収納用パッケージと
を有する接合体であって、
前記光半導体素子収納用パッケージは、
誘電体基板と、
該誘電体基板の内部において前記誘電体基板の一端面から他端面側に向けて形成され、前記一端面側の端部が光半導体素子に電気的に接続される第1の線路導体と、
前記誘電体基板の下面に前記他端面側から前記一端面側に向けて前記第1の線路導体と平行に形成されるとともに、前記一端面側の端部が貫通導体を介して前記第1の線路導体の前記他端面側の端部と電気的に接続された、前記外部回路基板の前記配線導体に平行に接合される第2の線路導体と、
前記誘電体基板の前記下面の前記第2の線路導体の両側にそれぞれ形成された、前記外部回路基板の前記接地導体と接合される同一面接地導体層と、
前記誘電体基板の内部において前記第1の線路導体に対向するように形成された、前記第1の線路導体に関して前記第2の線路導体と反対側に形成される接地導体層と、
前記同一面接地導体層と前記接地導体層とをそれぞれ電気的に接続する複数の接地用貫通導体
を具備しており、
前記第2の線路導体と前記貫通導体との接続部が前記外部回路基板の上に位置し、かつ前記同一面接地導体層が、前記接続部よりも前記誘電体基板の一端面側であって、前記第1の線路導体と前記外部回路基板との間に存在している接合体
An external circuit board having a linear wiring conductor on the surface and a ground conductor provided on both sides of the wiring conductor;
A package for housing an optical semiconductor element bonded to the external circuit board;
A joined body having
The optical semiconductor element storage package is:
A dielectric substrate;
A first line conductor formed from one end surface of the dielectric substrate toward the other end surface inside the dielectric substrate, the end of the one end surface being electrically connected to the optical semiconductor element ;
The dielectric substrate is formed on the lower surface of the dielectric substrate in parallel with the first line conductor from the other end surface side toward the one end surface side, and the end portion on the one end surface side is formed through the through conductor. is the other end surface side end portion and electrically connected to the line conductor, and a second line conductor which are joined in parallel to the wiring conductor of the external circuit board,
The respectively formed on both sides of the second line conductor of the lower surface of the dielectric substrate, and the same plane ground conductor layer is bonded to the grounding conductor of the external circuit board,
A grounding conductor layer formed on the opposite side of the second line conductor with respect to the first line conductor, the grounding conductor layer formed to face the first line conductor inside the dielectric substrate ;
A plurality of grounding through conductors that electrically connect the same-surface grounding conductor layer and the grounding conductor layer, respectively.
A connection portion between the second line conductor and the through conductor is located on the external circuit board, and the same-surface ground conductor layer is closer to one end surface of the dielectric substrate than the connection portion. , conjugate is present between the external circuit board and the first line conductor.
請求項1記載の前記誘電体基板の前記一端面に光半導体素子を搭載するとともに該光半導体素子の電極を前記第1の線路導体の前記一端面側の端部に電気的に接続し、前記光半導体素子を覆うとともに前記光ファイバを前記光半導体素子に光学的に結合させるように前記一端面に蓋体が取着されて成る光半導体装置。An optical semiconductor element is mounted on the one end face of the dielectric substrate according to claim 1, and an electrode of the optical semiconductor element is electrically connected to an end portion on the one end face side of the first line conductor, An optical semiconductor device comprising a lid attached to the one end surface so as to cover the optical semiconductor element and to optically couple the optical fiber to the optical semiconductor element. 請求項2記載の前記誘電体基板の前記一端面に光半導体素子を搭載するとともに該光半導体素子の電極を前記第1の線路導体の前記一端面側の端部に電気的に接続し、前記光半導体素子を覆うとともに前記光ファイバを前記光半導体素子に光学的に結合させるように前記一端面に蓋体が取着されて成る光半導体装置の実装構造体。An optical semiconductor element is mounted on the one end face of the dielectric substrate according to claim 2, and an electrode of the optical semiconductor element is electrically connected to an end portion on the one end face side of the first line conductor, A mounting structure for an optical semiconductor device, wherein a cover is attached to the one end surface so as to cover the optical semiconductor element and to optically couple the optical fiber to the optical semiconductor element.
JP2003049434A 2003-02-26 2003-02-26 Optical semiconductor element storage package and optical semiconductor device Expired - Fee Related JP4295526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049434A JP4295526B2 (en) 2003-02-26 2003-02-26 Optical semiconductor element storage package and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049434A JP4295526B2 (en) 2003-02-26 2003-02-26 Optical semiconductor element storage package and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2004259973A JP2004259973A (en) 2004-09-16
JP4295526B2 true JP4295526B2 (en) 2009-07-15

Family

ID=33115153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049434A Expired - Fee Related JP4295526B2 (en) 2003-02-26 2003-02-26 Optical semiconductor element storage package and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP4295526B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071525B2 (en) * 1991-11-12 2000-07-31 富士通株式会社 Semiconductor package
JP3201893B2 (en) * 1993-09-27 2001-08-27 松下電器産業株式会社 Semiconductor laser device
JPH08130266A (en) * 1994-11-01 1996-05-21 Sharp Corp Semiconductor device
JP3500268B2 (en) * 1997-02-27 2004-02-23 京セラ株式会社 High frequency input / output terminal and high frequency semiconductor element storage package using the same
JP2001257415A (en) * 2000-03-13 2001-09-21 Sumitomo Metal Electronics Devices Inc Optical semiconductor device
JP4638025B2 (en) * 2000-12-27 2011-02-23 京セラ株式会社 Wiring board
JP4522010B2 (en) * 2001-03-16 2010-08-11 京セラ株式会社 I / O terminal and semiconductor element storage package and semiconductor device
JP2003229629A (en) * 2002-02-04 2003-08-15 Opnext Japan Inc Optical module

Also Published As

Publication number Publication date
JP2004259973A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
US5451818A (en) Millimeter wave ceramic package
JP6825986B2 (en) Wiring boards, electronic component storage packages and electronic devices
JP6412274B2 (en) Electronic component mounting package and electronic device using the same
US6936921B2 (en) High-frequency package
JP5241609B2 (en) Structure, connection terminal, package, and electronic device
JP2012064817A (en) Package for mounting electronic component and module for communication
JP2009054982A (en) Package for mounting electronic component, and electronic equipment using the same
JP4903738B2 (en) Electronic component storage package and electronic device
JP4295526B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP3935082B2 (en) High frequency package
JP4522010B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP5709427B2 (en) Device storage package and semiconductor device including the same
JP3673491B2 (en) I / O terminal and semiconductor element storage package
JP2004134413A (en) Package for housing semiconductor device and semiconductor device
JP4493285B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2004207361A (en) Package for housing optical semiconductor device
JP3670574B2 (en) I / O terminal and semiconductor element storage package
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP4172783B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP2004259962A (en) Package for optical semiconductor element and optical semiconductor device
JP2004207259A (en) Optical semiconductor device and package for housing the same
JP2004349568A (en) Input/output terminal and package for housing semiconductor element, and semiconductor device
JP3638528B2 (en) Package for storing semiconductor elements
JP4206321B2 (en) Semiconductor element storage package and semiconductor device
JP3628254B2 (en) Package for storing semiconductor elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees