JP3673491B2 - I / O terminal and semiconductor element storage package - Google Patents

I / O terminal and semiconductor element storage package Download PDF

Info

Publication number
JP3673491B2
JP3673491B2 JP2001296629A JP2001296629A JP3673491B2 JP 3673491 B2 JP3673491 B2 JP 3673491B2 JP 2001296629 A JP2001296629 A JP 2001296629A JP 2001296629 A JP2001296629 A JP 2001296629A JP 3673491 B2 JP3673491 B2 JP 3673491B2
Authority
JP
Japan
Prior art keywords
line
conductor
flat plate
ground conductor
standing wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001296629A
Other languages
Japanese (ja)
Other versions
JP2003100922A (en
Inventor
美津夫 柳沢
久義 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001296629A priority Critical patent/JP3673491B2/en
Publication of JP2003100922A publication Critical patent/JP2003100922A/en
Application granted granted Critical
Publication of JP3673491B2 publication Critical patent/JP3673491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Light Receiving Elements (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、数十GHz以上の高周波帯域で作動する半導体レーザ(LD)やフォトダイオード(PD)等の光半導体素子およびIC,LSI等の半導体素子を収納するための半導体素子収納用パッケージ等の入出力部に使用される入出力端子、およびこの入出力端子を用いた半導体素子収納用パッケージに関する。
【0002】
【従来の技術】
従来の光通信やマイクロ波通信、ミリ波通信等の分野で用いられる高周波信号により作動するLD,PD等の光半導体素子およびIC,LSI等の半導体素子を収納するための半導体素子収納用パッケージ(以下、半導体パッケージという)として、例えば光通信分野で用いられる光半導体パッケージを図4に示す。
【0003】
同図に示すように、光半導体パッケージ109は、一般に、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や銅(Cu)−タングステン(W)合金等の金属材料から成る基体110を有する。この光半導体パッケージ109は、上側主面にLDやPD等の光半導体素子113が載置固定される載置部110aを有する基体110と、Fe−Ni−Co合金やFe−Ni合金等の金属材料からなり、載置部110aを囲繞するように基体110の上側主面に接合された枠体111とから主に構成されている。この枠体111は、その側部に設けられた貫通孔112に、光半導体素子113と外部電気回路(図示せず)とを電気的に接続する絶縁端子である同軸コネクタ(ガラスビード端子ともいう)101が嵌着接合されている。
【0004】
また、枠体111には、他の側部に光半導体素子113と光結合するための光伝送路である貫通孔121が形成されている。この貫通孔121の枠体111外側開口の周辺部には、枠体111の熱膨張係数に近似した金属材料からなる筒状の光ファイバの固定部材116が銀ロウ等のロウ材で接合される。固定部材116には、戻り光防止用の光アイソレータ118と光ファイバ114とが樹脂接着剤で接着された金属ホルダ119が固定されている。また、固定部材116の内部には、非晶質ガラス等からなり集光レンズとして機能するとともに光半導体パッケージ109内部を気密に塞ぐ機能を有する透光性部材115が固定される。
【0005】
また、固定部材116と金属ホルダ119とは、各々の端面同士がレーザ溶接等により固定される。一方、固定部材116と透光性部材115とは、200〜400℃の融点を有する金(Au)−錫(Sn)合金等の低融点ロウ材によりロウ付けして固定される。
【0006】
また、光半導体素子113の下面にはペルチェ素子等の電子冷却素子120が配置されており、光半導体素子113の作動時にそれを冷却する。さらに、載置部110a上には、光半導体素子113の駆動用または信号増幅用のLSI等の半導体素子113’が設けられる。半導体素子113’の下面にも電子冷却素子120またはヒートシンクを配設し得る。そして、光半導体素子113の電極が、ボンディングワイヤ(図示せず)を介して外部リード端子(図示せず)に電気的に接続される。
【0007】
また、同軸コネクタ101は、金属材料から成る筒状の外周導体101aと、絶縁体101bと、中心導体101cとから成る。絶縁体101bとしては、硼珪酸ガラス等が外周導体101aの内部に充填されて成る。また、中心導体101cは、外周導体101aの中心軸部分に絶縁体101bを介して装着され、光半導体パッケージ109内外を導通させる機能を有する。また、外周導体101aは枠体111の内側に設けた貫通孔112の内周面にAu−Sn合金等の低融点ロウ材でロウ付けして固定される。この同軸コネクタ101は、外部電気回路と光半導体素子113とを電気的に接続する機能を有するとともに光半導体パッケージ109の内部を気密に塞ぐ機能も有する。
【0008】
そして、基体110の載置部110aに光半導体素子113を電子冷却素子120を介して樹脂接着剤、ロウ材等の接着剤により接着固定する。次に、半導体素子113’の電極をボンディングワイヤを介して同軸コネクタ101の中心導体101cに電気的に接続する。その後、光アイソレータ118と光ファイバ114が固定された金属ホルダ119を固定部材116に溶接する。次いで、枠体111の上面に蓋体117をシーム溶接やロウ接等によって接合して、基体110と枠体111および蓋体117とからなる容器内部に光半導体素子113および半導体素子113’を気密に収容して、製品としての光半導体装置となる。
【0009】
このような光半導体装置は、例えば、外部電気回路から供給される駆動用の高周波信号により光半導体素子113を光励起させ、光励起されたレーザ光等の光を透光性部材115を通して光ファイバ114に授受させ、光ファイバ114内を伝送させることにより、大容量の情報を高速に伝送できる光電変換装置として機能し、光通信分野等に多用されている。
【0010】
しかしながら、上記従来の光半導体パッケージにおいて、同軸コネクタ101の枠体111における基体110底面からの最大高さは、外周導体101aの外径寸法と、絶縁体101bの外径寸法に支配される。この絶縁体101bの外径寸法は、外周導体101aおよび枠体111と同軸コネクタ101の中心導体101cとの絶縁性が十分に確保できるように十分な体積および厚さを有するように設けられている。そのため、電気的な接続を行う中心導体101cの位置が基体110の底面からきわめて高くなる。
【0011】
従って、同軸コネクタ101を嵌着接合する貫通孔112が大きくなるとともに、枠体111自体の高さも高くなる。その結果、光半導体パッケージ109の低背化、即ち小型化が極めて困難になるという問題点があった。
【0012】
そこで、このような問題点を解消するために、上記同軸コネクタ101に代えて、例えば図5に示すようなセラミックスから成る入出力端子101’が用いられている。この入出力端子101’は、平板部104とその上面に設置された立壁部105とから成る。平板部104の上面には、高周波信号の伝送路(入力線路および/または出力線路)として線路導体102が設けられている。また、線路導体102の両側には所定間隔でもって同一面接地導体103が形成されている。平板部104と立壁部105はアルミナセラミックス等から成り、十分な絶縁性を有しているため、その厚さを厚くする必要がなく小型化が可能なものである。
【0013】
【発明が解決しようとする課題】
しかしながら、最近のインターネット等を利用した光通信分野に用いられる光電変換装置に対する高速伝送化の要求はさらに高まり、数十GHz帯域での高速化が切望されている。上記従来の入出力端子101’を用いた光半導体パッケージでも、高周波信号の周波数がさほど高くない場合には、高周波信号の伝送特性はほとんど問題とはならない。しかし、周波数が数十GHz以上に高くなるにしたがって、立壁部105の側面の奥行き(線路方向の長さ)により高周波信号(電磁波)の共振が起こり、電磁波の放射現象が発生して入出力端子101’の特性インピーダンスの不連続が起こる。それを回避するため、絶縁体である立壁部105の横幅および奥行き(線路方向に平行な側面間の幅および線路方向の長さ)を極めて小さくしなければならない。例えば、立壁部105をアルミナセラミックスで形成すると、20GHzの高周波信号を用いる場合立壁部105の奥行き(線路方向の長さ)は約1mm程度、30GHzでは約0.5mm程度とする必要がある。
【0014】
そのため、微細な配線を行なう必要があるうえ設計の自由度が制限される。さら、平板部104と立壁部105との接合の位置精度や枠体111への入出力端子101’の接合の位置精度がばらつき、入出力端子101’の線路導体102で特性インピーダンスが安定しなくなる。そのため、線路導体102における入射信号の反射が増大する。その結果、20GHz以上での高周波信号の伝送特性が劣化するという問題点があった。
【0015】
また、入出力端子101’の線路方向に平行な側面間の幅が狭くなり、その強度が劣化するため、枠体111の取付部に入出力端子101’をロウ付けする際に、入出力端子101’と枠体111との熱膨張差により入出力端子101’にクラック等が生じて、光半導体パッケージ109の気密性が損なわれるという問題点もあった。
【0016】
従って、本発明は、上記問題点に鑑みて完成されたものであり、その目的は、薄型化および小型化が可能となり、半導体素子および光半導体素子と外部電気回路との間で20GHz以上の高周波信号を入出力する際に、伝送損失を小さくして効率良く伝送させることができると共に必要な強度を確保できる入出力端子、およびこの入出力端子を用いた半導体パッケージを提供することにある。
【0017】
【課題を解決するための手段】
本発明の入出力端子は、略長方形の誘電体板から成る平板部と、該平板部の上面の1辺から対向する他辺にかけて入力線路および/または出力線路として形成された、差動線路とされている2本の線路導体と、前記平板部の上面の前記2本の線路導体の両側に等間隔をもって形成された同一面接地導体と、前記平板部の上面に前記線路導体および前記同一面接地導体を間に挟んで接合された誘電体から成る立壁部とを具備した入出力端子において、前記立壁部の上面及び前記線路導体の線路方向に略平行な側面に、前記線路導体の線路方向に略垂直な側面全体が空白部となるようにして接地導体を形成するとともに、前記平板部の下面及び前記線路導体の線路方向に略平行な側面に接地導体が形成されており、前記平板部の前記線路導体が露出している部位に、前記同一面接地導体と前記平板部の下面の前記接地導体とを電気的に接続するとともに前記線路導体の線路方向に略平行な方向に並ぶように前記線路導体で伝送される高周波信号の波長の4分の1以下の間隔で複数の第一の貫通導体が設けられ、前記平板部の前記立壁部が接合された部位に、前記同一面接地導体を貫通して前記立壁部の上面の前記接地導体と前記平板部の下面の前記接地導体とを電気的に接続するとともに前記線路方向に略平行な方向に並ぶように前記高周波信号の波長の4分の1以下の間隔で複数の第二の貫通導体が設けられており、該第二の貫通導体は前記立壁部の前記線路方向に略垂直な隣接する側面との間隔が前記高周波信号の波長の8分の1以下であることを特徴とするものである。
【0018】
また、本発明の入出力端子は、略長方形の誘電体板から成る平板部と、該平板部の上面の1辺から対向する他辺にかけて入力線路および/または出力線路として形成された、差動線路とされている2本の線路導体と、前記平板部の上面の前記2本の線路導体の両側に等間隔をもって形成された同一面接地導体と、前記平板部の上面に前記線路導体および前記同一面接地導体を間に挟んで接合された誘電体から成る立壁部とを具備した入出力端子において、前記立壁部の上面及び前記線路導体の線路方向に略平行な側面に、前記線路導体の線路方向に略垂直な側面全体が空白部となるようにして接地導体が、前記平板部の内部に内層接地導体が、前記線路導体の線路方向に略平行な前記平板部の側面に接地導体が形成されており、前記平板部の前記線路導体が露出している部位に、前記同一面接地導体と前記内層接地導体とを電気的に接続するとともに前記線路導体の線路方向に略平行な方向に並ぶように前記線路導体で伝送される高周波信号の波長の4分の1以下の間隔で複数の第一の貫通導体が設けられ、前記平板部の前記立壁部が接合された部位に、前記同一面接地導体を貫通して前記立壁部の上面の前記接地導体と前記内層接地導体とを電気的に接続するとともに前記線路方向に略平行な方向に並ぶように前記高周波信号の波長の4分の1以下の間隔で複数の第二の貫通導体が設けられており、該第二の貫通導体は前記立壁部の前記線路方向に略垂直な隣接する側面との間隔が前記高周波信号の波長の8分の1以下であることを特徴とするものである。
【0019】
本発明は、第一の貫通導体および第二の貫通導体の間隔(中心間距離)を線路導体で伝送される高周波信号の波長の4分の1以下とすることにより、貫通導体の導体抵抗およびインダクタンス成分に起因する接地電位の不安定が解消される。これにより、数十GHz以上という高い周波数帯域においても、接地電位が安定化する。また、第二の貫通導体は立壁部の線路方向に略垂直な隣接する側面との間隔(第二の貫通導体の中心と側面との距離)が高周波信号の波長の8分の1以下であることから、立壁部における電磁波の共振および放射現象が抑制され、線路導体を通る高周波信号の反射損失を極めて小さくすることができる。
【0020】
その結果、数十GHz帯域以上の高周波信号の入出力を伝送損失を小さくして、正確かつ円滑に行うことができるとともに、入出力端子の薄型化および小型化が可能となる。
【0021】
また、ボンディングワイヤ等のインダクタンス(L)成分が発生しても、一対の線路導体で入出力される伝搬モードによりL成分の影響が緩和でき、かつ特性インピーダンスも整合がとれることから、線路導体での数十GHz以上の高周波信号のさらに良好な伝送特性が実現できる。
【0022】
本発明の半導体パッケージは、上側主面に半導体素子が載置される載置部を有する基体と、該基体の前記上側主面に前記載置部を囲繞するように取着され、側部に貫通孔または切欠き部から成る入出力端子の取付部が形成された枠体と、前記取付部に嵌着された本発明の入出力端子とを具備したことを特徴とする。
【0023】
本発明は、上記の構成により、半導体パッケージの薄型化および小型化を実現でき、半導体素子と外部電気回路との間で数十GHz以上の高周波信号の入出力を伝送損失を小さくして伝達可能なものとすることができる。
【0024】
【発明の実施の形態】
本発明の入出力端子および半導体パッケージについて以下に詳細に説明する。図1は本発明の入出力端子について実施の形態の一例を示す斜視図である。図1において、1は線路導体2と同一面接地導体層3とを有する平板部4と、立壁部5と、貫通導体6とを具備した入出力端子であって、例えば光半導体パッケージに使用される入出力端子である。
【0025】
本発明の入出力端子1の平板部4は、アルミナ(Al23)セラミックス、窒化アルミニウム(AlN)セラミックス、ガラスセラミックス等の略長方形の誘電体からなる。平板部4は、この上面の略中央部に一辺から他辺にかけて形成された入力線路および/または出力線路として形成された差動線路とされている2本の線路導体2と、その両側に等間隔をもって形成された同一面接地導体3とを有する。即ち、2本の線路導体2は、一方が入力線路で他方が出力線路である構成、両方が入力線路である構成、両方が出力線路である構成とし得る。また、平板部4の側面には接地導体3a、下面には接地導体3bが形成されている。
【0026】
この平板部4の上面には、線路導体2と同一面接地導体3を間に挟んで接合された立壁部5が設けられる。立壁部5は、その上面に接地導体3cが形成され、側面に接地導体3aを延出するように接地導体3dが形成されており、Al23セラミックス、AlNセラミックス、ガラスセラミックス等の誘電体から成る。
【0027】
本発明の入出力端子1は、図1のように、平板部4の線路導体2が露出している部位に、同一面接地導体3と平板部4下面の接地導体3bとを電気的に接続するとともに線路導体2の線路方向に略平行な方向に並ぶように線路導体2で伝送される高周波信号の波長の4分の1以下の間隔8で複数の第一の貫通導体6aが設けられ、平板部4の立壁部5が接合された部位に、同一面接地導体3を貫通して立壁部5の上面の接地導体3cと平板部4の下面の接地導体3bとを電気的に接続するとともに線路方向に略平行な方向に並ぶように高周波信号の波長の4分の1以下の間隔8で複数の第二の貫通導体6bが設けられており、第二の貫通導体6bは立壁部5の線路方向に略垂直な隣接する側面との間隔8aが高周波信号の波長の8分の1以下である。
【0028】
また本発明の入出力端子1は、図2のように、平板部4の線路導体2が露出している部位に、同一面接地導体3と内層接地導体3eとを電気的に接続するとともに線路導体2の線路方向に略平行な方向に並ぶように線路導体2で伝送される高周波信号の波長の4分の1以下の間隔8で複数の第一の貫通導体6aが設けられ、平板部4の立壁部5が接合された部位に、同一面接地導体3を貫通して立壁部5の上面の接地導体3cと内層接地導体3eとを電気的に接続するとともに線路方向に略平行な方向に並ぶように高周波信号の波長の4分の1以下の間隔8で複数の第二の貫通導体6bが設けられており、第二の貫通導体6bは立壁部5の線路方向に略垂直な隣接する側面との間隔8aが高周波信号の波長の8分の1以下である。
【0029】
そして、これら貫通導体6a,6b同士の間隔(中心間距離)8が線路導体2で伝送される高周波信号の波長の4分の1以下であることが必要である。即ち、貫通導体6同士の間隔8を高周波信号の波長の4分の1以下とすることにより、数十GHz以上の高い周波数帯域で問題となる、貫通導体6の導通抵抗およびインダクタンス成分による接地電位の不安定化が解消される。その結果、光半導体素子13(図3)と入出力端子1とのインピーダンスの整合がとれ、光半導体素子13と外部電気回路との数十GHz以上の高周波信号の入出力が円滑に行われ、光半導体素子13の作動性を良好なものとできる。
【0030】
貫通導体6a,6b同士の間隔8が高周波信号の波長4分の1を超える場合、外部との電磁的なシールド性(電磁遮蔽性)が損なわれ易くなり、そのため5GHz以上、特に数十GHz以上の高周波帯域で2本の線路導体2のそれぞれで行われるインピーダンス整合が困難になる。
【0031】
また、貫通導体6のうち第二の貫通導体6bは、立壁部5の線路方向に略垂直な隣接する側面との間隔8aが高周波信号の波長の8分の1以下である。即ち、入出力端子1は、下面グランド付きコプレーナ線路構造および両側グランド付きストリップ線路構造を有しており、下面グランド付きコプレーナ線路は、線路導体2と同一面接地導体3および接地導体3bとの間で電界が発生し、高周波信号を効率良く伝送させている。また、両側グランド付きストリップ線路は、線路線路2と同一面接地導体3、接地導体3bおよび接地導体3cとの間で電界が発生し、高周波信号を効率良く伝送させている。よって、線路方向に略垂直な立壁部5側面において電界分布の違いが生じている。この電界分布の違い、即ち伝送モードの違いにより、高周波信号に乱れが生じ反射損失が大きくなる。従って、第二の貫通導体6bと立壁部5の線路方向に略垂直な隣接する側面との間隔8aを高周波信号の波長の8分の1以下とすることにより、伝送モードの乱れを少なくし、円滑に高周波信号を伝送できる。つまり、高周波信号の共振および放射現象を抑制することができ、光半導体素子と入出力端子1との特性インピーダンスの整合がとれることになる。
【0032】
その結果、光半導体素子と外部電気回路との数十GHz以上の高周波信号の入出力が円滑に行なわれ、光半導体素子の作動性を良好なものとすることができる。
【0033】
本発明の図2の構成では平板部4の内部に内層接地導体3eが形成されているが、これにより以下のような利点がある。数十GHz以上の高周波帯域では、平板部4を薄くしなければならず、単板では強度不足となるが、内層接地導体3eが形成されていることにより、平板部4の厚さを確保して強度を増大させることができる。また、内層接地導体3eが形成されていることにより、電磁波の共振を効果的に抑制することができ、電磁波の放射現象がほとんど発生しなくなる。
【0034】
また本発明の入出力端子1は、図1に示すように、所定間隔でもって形成された2本の差動線路としての線路導体2と、それらの両側に沿って間隔Wを開けて形成された同一面接地導体3とを有し、枠体11(図3)の内外を貫通するように形成した略長方形の誘電体板からなる厚さtの平板部4と、平板部4の上面に線路導体2および同一面接地導体3を間に挟んで接合され、半導体パッケージを構成する枠体11の内外を遮断するように形成された立壁部5とから成っている。
【0035】
平板部4および立壁部5は、Al23セラミックス、ALNセラミックス、ガラスセラミックス等の絶縁材料からなる。また、線路導体2は、W,Mo,Mn等で形成されており、例えばW等の粉末に有機溶剤、溶媒を添加混合して得た金属ペーストを、平板部4および立壁部5用のセラミックグリーンシートに、従来周知のスクリーン印刷法により所定パターンに印刷塗布しておくことによって平板部4および立壁部5に形成される。
【0036】
また、貫通導体6は、W,Mo,Mn等から成り、例えば平板部4および立壁部5用のセラミックグリーンシートに所定の打ち抜き工程を施して貫通孔を形成した後、W等の粉末に有機溶剤、溶媒を添加混合して得た金属ペーストをスクリーン印刷法により貫通孔に充填することによって、平板部4および立壁部5に形成される。
【0037】
尚、本発明に適用可能な高周波信号の周波数は、LSI,LD等用の1MHz〜数100GHz程度の高周波帯域、超高周波帯域であり、好ましくは光半導体素子駆動用の5〜100GHz程度、より好ましくは20〜60GHz程度の帯域である。
【0038】
また、本発明の入出力端子1において、2本の線路導体2に1つの高周波信号を同相モードと逆相モードをそれぞれ入力することで、高周波信号のノイズを小さくすることもできる。この線路導体2の表面には、酸化防止のためとボンディングワイヤやリード端子等を強固に接続するために、0.5〜9μmのNi層や0.5〜5μmのAu層等の金属層をメッキ法により被着させておくと良い。
【0039】
次に、本発明の半導体パッケージを図3に基づいて説明する。同図は、本発明の半導体パッケージについて実施の形態の一例を示す断面図である。同図において、9は、基体10、枠体11、枠体11の取付部12に嵌着された高周波信号入出力用の入出力端子1、および基体10の上側主面の載置部10aに載置されたLD,PD等の光半導体素子13から主に構成される半導体パッケージである。これらの基体10、枠体11、入出力端子1、光ファイバ14や透光性部材15を内部に設置固定する筒状の光ファイバの固定部材16および蓋体17とで、内部に光半導体素子13を収容するための容器が構成される。
【0040】
また、固定部材16の外側端面には、光ファイバ14と戻り光防止用の光アイソレータ18とが樹脂接着剤で接着された金属ホルダ19が、YAGレーザ溶接等により接合される。さらに、光半導体素子13の下面にはペルチェ素子等の電子冷却素子20が配置されており、光半導体素子13の作動時にそれを冷却する。
【0041】
また、載置部10a上には、光半導体素子13の駆動用または信号増幅用のLSI等の半導体素子13'が設けられ、半導体素子13' の下面にも電子冷却素子20またはCu−W合金からなるヒートシンクを配設し得る。そして、光半導体素子13と半導体素子13'とをボンディングワイヤ、内部配線パターン(図示せず)等を介して接続し、半導体素子13'は入出力端子1にボンディングワイヤで接続される。そして、光半導体素子13の各電極が、ボンディングワイヤを介して入出力端子1の枠体11外側に設けられた外部リード端子に電気的に接続されることとなる。
【0042】
基体10は、光半導体素子13を支持する支持部材および光半導体素子13で発生した熱を放熱するための放熱板として機能し、その上側主面の略中央部に光半導体素子13を載置するための載置部10aを有している。載置部10aには光半導体素子13が鉛(Pb)−錫(Sn)半田等の接着剤を介して接着固定されるとともに、この接着剤を介して光半導体素子13で発生した熱が載置部10aに伝えられ、外部に効率よく放熱され、光半導体素子13の作動性を良好なものとする。
【0043】
この基体10は、Fe−Ni−Co合金やCu−W合金等の金属材料、またはAl23、ALN等のセラミックスから成る。金属材料から成る場合、そのインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工方法を施すことによって所定の形状に製作される。一方、セラミックスから成る場合、その原料粉末に適当な有機バインダーや溶剤等を添加混合してペースト状と成し、このペーストを用いてドクターブレード法やカレンダーロール法によりセラミックグリーンシートに成形する。その後、セラミックグリーンシートに適当な打ち抜き加工を施し、これを複数枚積層し、1600℃の高温で焼結することによって作製される。
【0044】
なお、基体10が金属材料から成る場合、その表面に耐食性に優れかつロウ材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と厚さ0.5〜5μmのAu層をメッキ法により順次被着させておくのがよく、基体10が酸化腐食するのを有効に防止できるとともに、基体10の上側主面に光半導体素子13を強固に接着固定することができる。
【0045】
一方、基体10がセラミックスから成る場合、光半導体素子13を載置する載置部10aに耐食性に優れかつロウ材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と厚さ0.5〜5μmのAu層とをメッキ法により順次被着させておくのがよく、基体10の上側主面に光半導体素子13を強固に接着固定することができる。
【0046】
また、基体10は、その上側主面に光半導体素子13が載置される載置部10aを囲むように、貫通孔または切欠き部から成る入出力端子1の取付部12が形成された枠体11が接合されており、枠体11の内側に光半導体素子13を収容するための空所が形成される。この枠体11は、基体10と同様に金属材料またはセラミックスから成り、基体10と同様の加工法によって、一側部に取付部12を、他の側部に光透過用の貫通孔21を有するような形状に作製される。
【0047】
そして、枠体11がFe−Ni−Co合金、Fe−Ni合金等の金属材料から成る場合、例えばFe−Ni合金から成る場合、この合金のインゴットに圧延加工やプレス加工等の金属加工を施すことによって所定の形状に製作される。また、枠体11の基体10への接合は、基体10の上側主面と枠体11の下面とを、基体10の上側主面に敷設した適度なボリュームを有するプリフォームとされた銀ロウ等のロウ材を介してロウ付け接合される。さらに、基体10と同様にして、枠体11の表面に0.5〜9μmのNi層や0.5〜5μmのAu層等の金属層をメッキ法により被着させておくと良い。一方、枠体11がセラミックスから成る場合、光半導体素子13と外部電気回路との電気的接続を行う手段として、枠体11の内面の一部および外面の一部に、ボンディングワイヤやリード端子等を接続するための0.5〜9μmのNi層や0.5〜5μmのAu層等の金属層をメッキ法により被着させておくと良い。
【0048】
また、枠体11の貫通孔21の枠体11外側開口の周囲に、内部で光信号が伝送されるように筒状に形成され、Fe−Ni−Co合金やFe−Ni合金等の金属材料から成る光ファイバの固定部材16が、銀ロウ等のロウ材を介して接合される。この固定部材16は、基体10や枠体11と同様の加工法で所望の形状に加工製作されるとともに、その表面に0.5〜9μmのNi層や0.5〜5μmのAu層等の金属層をメッキ法により被着させておくと良い。
【0049】
また、固定部材16の内周面には、集光レンズとして機能するとともに光半導体パッケージ9の内部を塞ぐ機能を有する非晶質ガラス等からなる透光性部材15が、その接合部の表面に形成されたメタライズ層を介して、200〜400℃の融点を有するAu−Sn合金等の低融点のロウ材で接合される。
【0050】
この透光性部材15は、熱膨張係数が4×10-6〜12×10-6/℃(室温〜400℃)のサファイア(単結晶アルミナ)や非晶質ガラス等からなり、球状、半球状、凸レンズ状、ロッドレンズ状等とされ、外部のレーザ光等の光を光ファイバ14を伝わって光半導体素子13に入力させる、または光半導体素子13で出力したレーザ光等の光を光ファイバ14に入力させるための集光用部材として用いられる。透光性部材15が、例えば結晶軸の存在しない非晶質ガラスの場合、酸化珪素(SiO2)、酸化鉛(PbO)を主成分とする鉛系、または硼酸系やケイ砂を主成分とする硼珪酸系のものを用いる。
【0051】
また、透光性部材15は、その熱膨張係数が枠体11のそれと異なっていても、固定部材16が熱膨張差による応力を吸収緩和するので、結晶軸が応力のためにある方向に揃うことによって光の屈折率の変化を起こすようなことは発生し難い。従って、このような透光性部材15を用いることによって、光半導体素子13と光ファイバ14との間の光の結合効率を高くできる。
【0052】
また、蓋体17は、枠体11の上面にシーム溶接等によって接合され、光半導体素子13を光半導体パッケージ9内に封止する。
【0053】
このように、本発明の光半導体パッケージ9は、金属材料またはセラミックスからなる基体10と、その上側主面に光半導体素子13の載置部10aを囲むように接合され、取付部12を有し金属材料またはセラミックスからなる枠体11と、精密なインピーダンス制御が可能な入出力端子1とを具備する。
【0054】
本発明の光半導体パッケージ9は、LD,PD等の光半導体素子13およびLSI等の半導体素子13'を収納した光通信用の場合、枠体11の側部に内外を貫通する貫通孔21を形成し、貫通孔21の枠体11外側開口の周囲に金属材料からなる筒状の固定部材16を接合し、固定部材16の内側に光半導体素子13と光ファイバ14との間で光を集光させ結合させる透光性部材15が接合される。そして、光半導体素子13と半導体素子13'とをボンディングワイヤによって接続し、半導体素子13'と入出力端子1の線路導体2の一端とをボンディングワイヤによって接続した後、枠体11の上面に蓋体17をシーム溶接等によって接合する。しかる後、固定部材16の外側端面に、光ファイバ14と戻り光防止用のアイソレータ18とが樹脂接着剤で接着された金属ホルダ19を、YAGレーザ溶接等で接合することによって、製品としての光半導体装置となる。
【0055】
かくして、本発明の入出力端子は、薄型化および小型化され、精密なインピーダンス制御が可能であるとともに、光半導体素子及び半導体素子と外部電気回路との間で数十GHz以上の高周波信号の入出力を正確かつ円滑、低損失に行うことができる。
【0056】
なお、本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲内において種々の変更を行うことは何等支障ない。
【0057】
【発明の効果】
本発明は、平板部とその上に接合された立壁部とを具備した入出力端子において、立壁部の上面と平板部の下面に接地導体が形成されており、平板部の線路導体が露出している部位に、同一面接地導体と平板部の下面の接地導体とを電気的に接続するとともに線路導体の線路方向に略平行な方向に並ぶように線路導体で伝送される高周波信号の波長の4分の1以下の間隔で複数の第一の貫通導体が設けられ、平板部の立壁部が接合された部位に、同一面接地導体を貫通して立壁部の上面の接地導体と平板部の下面の接地導体とを電気的に接続するとともに線路方向に略平行な方向に並ぶように高周波信号の波長の4分の1以下の間隔で複数の第二の貫通導体が設けられており、第二の貫通導体は立壁部の線路方向に略垂直な隣接する側面との間隔が高周波信号の波長の8分の1以下である。また、本発明は、立壁部の上面に接地導体が、平板部の内部に内層接地導体が形成されており、平板部の線路導体が露出している部位に、同一面接地導体と内層接地導体とを電気的に接続するとともに線路導体の線路方向に略平行な方向に並ぶように線路導体で伝送される高周波信号の波長の4分の1以下の間隔で複数の第一の貫通導体が設けられ、平板部の立壁部が接合された部位に、同一面接地導体を貫通して立壁部の上面の接地導体と内層接地導体とを電気的に接続するとともに線路方向に略平行な方向に並ぶように高周波信号の波長の4分の1以下の間隔で複数の第二の貫通導体が設けられており、第二の貫通導体は立壁部の線路方向に略垂直な隣接する側面との間隔が高周波信号の波長の8分の1以下である。
【0058】
本発明は、第一の貫通導体および第二の貫通導体の間隔を高周波信号の波長の4分の1以下とすることにより、貫通導体の導体抵抗およびインダクタンス成分に起因する接地電位の不安定が解消される。これにより、数十GHz以上という高い周波数帯域においても、接地電位が安定化する。また、第二の貫通導体は立壁部の線路方向に略垂直な隣接する側面との間隔が高周波信号の波長の8分の1以下であることから、立壁部における電磁波の共振および放射現象が抑制され、線路導体を通る高周波信号の反射損失を極めて小さくすることができる。
【0059】
その結果、数十GHz帯域以上の高周波信号の入出力を伝送損失を小さくして、正確かつ円滑に行うことができるとともに、入出力端子の薄型化および小型化が可能となる。
【0060】
また、ボンディングワイヤ等のインダクタンス(L)成分が発生しても、一対の線路導体で入出力される伝搬モードによりL成分の影響が緩和でき、かつ特性インピーダンスも整合がとれることから、線路導体での数十GHz以上の高周波信号のさらに良好な伝送特性が実現できる。
【0061】
本発明の半導体パッケージは、上側主面に半導体素子が載置される載置部を有する基体と、基体の上側主面に載置部を囲繞するように取着され、側部に貫通孔または切欠き部から成る入出力端子の取付部が形成された枠体と、取付部に嵌着された本発明の入出力端子とを具備したことにより、半導体パッケージの薄型化および小型化を実現でき、半導体素子と外部電気回路との間で数十GHz以上の高周波信号の入出力を伝送損失を小さくして伝達可能なものとすることができる。
【図面の簡単な説明】
【図1】本発明の入出力端子について実施の形態の一例を示す斜視図である。
【図2】本発明の入出力端子について実施の形態の他の例を示す斜視図である。
【図3】本発明の半導体パッケージについて実施の形態の一例を示す断面図である。
【図4】従来の光半導体パッケージの断面図である。
【図5】従来の入出力端子の斜視図である。
【符号の説明】
1:入出力端子
2:線路導体
3:同一面接地導体
3a,3b,3c,3d:接地導体
3e:内層接地導体
4:平板部
5:立壁部
6a:第一の貫通導体
6b:第二の貫通導体
7:平板部の下面
8:貫通導体同士の間隔
8a:第二の貫通導体と立壁部側面との間隔
9:半導体パッケージ
10:基体
10a:載置部
11:枠体
12:取付部
13:光半導体素子
13':半導体素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical semiconductor element such as a semiconductor laser (LD) or a photodiode (PD) that operates in a high frequency band of several tens of GHz or more, and a semiconductor element storage package for storing a semiconductor element such as an IC or LSI. The present invention relates to an input / output terminal used in an input / output unit, and a package for housing a semiconductor element using the input / output terminal.
[0002]
[Prior art]
A package for housing semiconductor elements for housing optical semiconductor elements such as LDs and PDs and semiconductor elements such as ICs and LSIs that operate with high-frequency signals used in the fields of conventional optical communications, microwave communications, millimeter wave communications, etc. FIG. 4 shows an optical semiconductor package used in the field of optical communication, for example.
[0003]
As shown in the figure, the optical semiconductor package 109 generally includes a base 110 made of a metal material such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or a copper (Cu) -tungsten (W) alloy. Have. The optical semiconductor package 109 includes a base 110 having a mounting portion 110a on which an optical semiconductor element 113 such as LD or PD is mounted and fixed on an upper main surface, and a metal such as an Fe—Ni—Co alloy or an Fe—Ni alloy. It is mainly composed of a frame body 111 made of a material and joined to the upper main surface of the base 110 so as to surround the mounting portion 110a. The frame body 111 is a coaxial connector (also referred to as a glass bead terminal) that is an insulating terminal that electrically connects the optical semiconductor element 113 and an external electric circuit (not shown) to a through-hole 112 provided in a side portion thereof. ) 101 is fitted and joined.
[0004]
Further, the frame body 111 is formed with a through hole 121 that is an optical transmission path for optically coupling with the optical semiconductor element 113 on the other side portion. A cylindrical optical fiber fixing member 116 made of a metal material approximating the thermal expansion coefficient of the frame 111 is joined to the periphery of the outer opening of the frame 111 of the through hole 121 with a brazing material such as silver brazing. . A metal holder 119 in which an optical isolator 118 for preventing return light and an optical fiber 114 are bonded with a resin adhesive is fixed to the fixing member 116. Further, a translucent member 115 made of amorphous glass or the like and functioning as a condensing lens and having a function of sealing the inside of the optical semiconductor package 109 in an airtight manner is fixed inside the fixing member 116.
[0005]
Further, the end surfaces of the fixing member 116 and the metal holder 119 are fixed by laser welding or the like. On the other hand, the fixing member 116 and the translucent member 115 are fixed by brazing with a low melting point brazing material such as a gold (Au) -tin (Sn) alloy having a melting point of 200 to 400 ° C.
[0006]
Further, an electronic cooling element 120 such as a Peltier element is disposed on the lower surface of the optical semiconductor element 113 and cools it when the optical semiconductor element 113 is operated. Further, a semiconductor element 113 ′ such as an LSI for driving the optical semiconductor element 113 or a signal amplifying is provided on the mounting portion 110 a. An electronic cooling element 120 or a heat sink may also be disposed on the lower surface of the semiconductor element 113 ′. Then, the electrodes of the optical semiconductor element 113 are electrically connected to external lead terminals (not shown) via bonding wires (not shown).
[0007]
The coaxial connector 101 includes a cylindrical outer peripheral conductor 101a made of a metal material, an insulator 101b, and a center conductor 101c. As the insulator 101b, borosilicate glass or the like is filled in the outer conductor 101a. The central conductor 101c is attached to the central axis portion of the outer conductor 101a via an insulator 101b, and has a function of conducting the inside and outside of the optical semiconductor package 109. The outer peripheral conductor 101a is fixed to the inner peripheral surface of the through hole 112 provided inside the frame body 111 by brazing with a low melting point solder such as Au—Sn alloy. The coaxial connector 101 has a function of electrically connecting an external electric circuit and the optical semiconductor element 113 and also has a function of hermetically closing the inside of the optical semiconductor package 109.
[0008]
Then, the optical semiconductor element 113 is bonded and fixed to the mounting portion 110 a of the base 110 with an adhesive such as a resin adhesive or a brazing material via the electronic cooling element 120. Next, the electrode of the semiconductor element 113 ′ is electrically connected to the central conductor 101c of the coaxial connector 101 via a bonding wire. Thereafter, the metal holder 119 to which the optical isolator 118 and the optical fiber 114 are fixed is welded to the fixing member 116. Next, the lid body 117 is joined to the upper surface of the frame body 111 by seam welding, brazing, or the like, and the optical semiconductor element 113 and the semiconductor element 113 ′ are hermetically sealed inside the container composed of the base 110, the frame body 111, and the lid body 117. And an optical semiconductor device as a product.
[0009]
In such an optical semiconductor device, for example, the optical semiconductor element 113 is optically excited by a driving high-frequency signal supplied from an external electric circuit, and light such as optically excited laser light is transmitted to the optical fiber 114 through the translucent member 115. By being exchanged and transmitted through the optical fiber 114, it functions as a photoelectric conversion device capable of transmitting a large amount of information at high speed, and is widely used in the field of optical communication and the like.
[0010]
However, in the conventional optical semiconductor package, the maximum height of the frame 111 of the coaxial connector 101 from the bottom surface of the base 110 is governed by the outer diameter of the outer conductor 101a and the outer diameter of the insulator 101b. The outer diameter of the insulator 101b is set to have a sufficient volume and thickness so that sufficient insulation can be secured between the outer peripheral conductor 101a and the frame body 111 and the center conductor 101c of the coaxial connector 101. . For this reason, the position of the central conductor 101c for electrical connection becomes extremely high from the bottom surface of the base 110.
[0011]
Therefore, the through hole 112 for fitting and joining the coaxial connector 101 is increased, and the height of the frame body 111 itself is also increased. As a result, there is a problem that it is very difficult to reduce the height of the optical semiconductor package 109, that is, to reduce the size.
[0012]
In order to solve such problems, an input / output terminal 101 ′ made of ceramics, for example, as shown in FIG. 5 is used instead of the coaxial connector 101. The input / output terminal 101 ′ includes a flat plate portion 104 and a standing wall portion 105 installed on the upper surface thereof. A line conductor 102 is provided on the upper surface of the flat plate portion 104 as a transmission path (input line and / or output line) for high-frequency signals. Further, the same surface ground conductor 103 is formed on both sides of the line conductor 102 at a predetermined interval. The flat plate portion 104 and the standing wall portion 105 are made of alumina ceramics or the like and have sufficient insulating properties, so that it is not necessary to increase the thickness thereof and the size can be reduced.
[0013]
[Problems to be solved by the invention]
However, the recent demand for high-speed transmission for photoelectric conversion devices used in the field of optical communication using the Internet and the like has further increased, and a high speed in the tens of GHz band is eagerly desired. Even in the above-described conventional optical semiconductor package using the input / output terminal 101 ', the transmission characteristics of the high-frequency signal hardly pose a problem if the frequency of the high-frequency signal is not so high. However, as the frequency is increased to several tens of GHz or more, resonance of a high frequency signal (electromagnetic wave) occurs due to the depth of the side surface of the standing wall 105 (length in the line direction), and an electromagnetic wave radiation phenomenon occurs, resulting in an input / output terminal. 101 'characteristic impedance discontinuity occurs. In order to avoid this, the horizontal width and depth (width between side surfaces parallel to the line direction and length in the line direction) of the standing wall portion 105 that is an insulator must be extremely small. For example, when the standing wall 105 is made of alumina ceramics, the depth (length in the line direction) of the standing wall 105 needs to be about 1 mm when using a high frequency signal of 20 GHz, and about 0.5 mm at 30 GHz.
[0014]
Therefore, it is necessary to carry out fine wiring and the degree of freedom in design is limited. Furthermore, the positional accuracy of the joining between the flat plate portion 104 and the standing wall portion 105 and the positional accuracy of the joining of the input / output terminal 101 ′ to the frame body 111 vary, and the characteristic impedance becomes unstable at the line conductor 102 of the input / output terminal 101 ′. . Therefore, the reflection of the incident signal on the line conductor 102 increases. As a result, there has been a problem that transmission characteristics of high-frequency signals at 20 GHz or more deteriorate.
[0015]
Further, since the width between the side surfaces parallel to the line direction of the input / output terminal 101 ′ becomes narrow and the strength thereof deteriorates, the input / output terminal 101 ′ is brazed to the mounting portion of the frame body 111. There is also a problem that the input / output terminal 101 ′ is cracked due to a difference in thermal expansion between the 101 ′ and the frame body 111, and the airtightness of the optical semiconductor package 109 is impaired.
[0016]
Therefore, the present invention has been completed in view of the above-described problems, and the object thereof is to enable a reduction in thickness and size, and a high frequency of 20 GHz or more between a semiconductor element and an optical semiconductor element and an external electric circuit. An object of the present invention is to provide an input / output terminal capable of reducing transmission loss and efficiently transmitting a signal and securing necessary strength when inputting / outputting a signal, and a semiconductor package using the input / output terminal.
[0017]
[Means for Solving the Problems]
The input / output terminal of the present invention includes a flat plate portion made of a substantially rectangular dielectric plate, a differential line formed as an input line and / or an output line from one side of the upper surface of the flat plate portion to the opposite side. Two line conductors formed on the upper surface of the flat plate portion, the same plane ground conductor formed on both sides of the two line conductors at equal intervals, and the upper surface of the flat plate portion with the line conductor and the same surface contact. In an input / output terminal comprising a standing wall portion made of a dielectric material sandwiched with a ground conductor interposed therebetween, a line direction of the line conductor is arranged on a top surface of the standing wall portion and a side surface substantially parallel to the line direction of the line conductor. The ground conductor is formed so that the entire side surface substantially perpendicular to the gap is a blank portion, and the ground conductor is formed on the lower surface of the flat plate portion and the side surface substantially parallel to the line direction of the line conductor, and the flat plate portion The line conductor of the The same-surface ground conductor and the ground conductor on the lower surface of the flat plate portion are electrically connected to a portion of the line conductor and transmitted by the line conductor so as to be aligned in a direction substantially parallel to the line direction of the line conductor. A plurality of first through conductors are provided at intervals of one-fourth or less of the wavelength of the high-frequency signal, and the standing wall penetrates the same surface ground conductor at a portion where the standing wall portion of the flat plate portion is joined. The ground conductor on the upper surface of the plate portion and the ground conductor on the lower surface of the flat plate portion are electrically connected and spaced at a quarter or less of the wavelength of the high-frequency signal so as to be aligned in a direction substantially parallel to the line direction. A plurality of second through conductors are provided, and the second through conductors have an interval between adjacent side surfaces of the standing wall portion substantially perpendicular to the line direction of 1/8 or less of the wavelength of the high frequency signal. It is characterized by being.
[0018]
The input / output terminal of the present invention is a differential plate formed as an input line and / or an output line from a flat plate portion made of a substantially rectangular dielectric plate and from one side of the upper surface of the flat plate portion to the opposite side. Two line conductors that are formed as lines, the same grounded conductor formed on both sides of the two line conductors on the upper surface of the flat plate portion at equal intervals, and the line conductor and the upper surface of the flat plate portion on the upper surface of the flat plate portion An input / output terminal having a standing wall portion made of a dielectric material sandwiched with a ground conductor on the same plane sandwiched between the upper surface of the standing wall portion and a side surface substantially parallel to the line direction of the line conductor. The ground conductor is such that the entire side surface substantially perpendicular to the line direction is a blank portion, the inner layer ground conductor is inside the flat plate portion, and the ground conductor is on the side surface of the flat plate portion substantially parallel to the line direction of the line conductor. Formed of the flat plate portion The same-surface ground conductor and the inner-layer ground conductor are electrically connected to a portion where the line conductor is exposed and transmitted by the line conductor so as to be aligned in a direction substantially parallel to the line direction of the line conductor. A plurality of first through conductors are provided at intervals of one-fourth or less of the wavelength of the high-frequency signal, and the standing wall penetrates the same surface ground conductor at a portion where the standing wall portion of the flat plate portion is joined. A plurality of second conductors that are electrically connected to the ground conductor on the upper surface of the section and the inner-layer ground conductor and that are arranged in a direction substantially parallel to the line direction at intervals of one quarter or less of the wavelength of the high-frequency signal. The second through conductor has an interval between an adjacent side surface of the standing wall portion substantially perpendicular to the line direction and is equal to or less than 1/8 of the wavelength of the high frequency signal. It is what.
[0019]
In the present invention, the conductor resistance of the through conductor is reduced by setting the interval between the first through conductor and the second through conductor (center-to-center distance) to ¼ or less of the wavelength of the high-frequency signal transmitted through the line conductor. The instability of the ground potential due to the inductance component is eliminated. As a result, the ground potential is stabilized even in a high frequency band of several tens of GHz or more. Further, the distance between the second penetrating conductor and the adjacent side surface substantially perpendicular to the line direction of the standing wall portion (the distance between the center and the side surface of the second penetrating conductor) is equal to or less than one-eighth of the wavelength of the high-frequency signal. Therefore, the resonance and radiation phenomenon of the electromagnetic wave in the standing wall portion is suppressed, and the reflection loss of the high frequency signal passing through the line conductor can be extremely reduced.
[0020]
As a result, input / output of high-frequency signals of several tens of GHz or more can be performed accurately and smoothly with reduced transmission loss, and the input / output terminals can be made thinner and smaller.
[0021]
In addition, even if an inductance (L) component such as a bonding wire is generated, the influence of the L component can be mitigated by the propagation mode inputted and outputted by the pair of line conductors, and the characteristic impedance can be matched. Even better transmission characteristics of high-frequency signals of several tens of GHz can be realized.
[0022]
The semiconductor package of the present invention is attached to the base having a mounting portion on which the semiconductor element is mounted on the upper main surface, and the upper main surface of the base so as to surround the mounting portion. It is characterized by comprising a frame body in which an input / output terminal mounting portion composed of a through hole or a notch is formed, and the input / output terminal of the present invention fitted to the mounting portion.
[0023]
With the above configuration, the present invention can realize a thin and small semiconductor package, and can transmit and receive high-frequency signals of several tens of GHz or more between a semiconductor element and an external electric circuit with a small transmission loss. Can be.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The input / output terminals and semiconductor package of the present invention will be described in detail below. FIG. 1 is a perspective view showing an example of an embodiment of an input / output terminal according to the present invention. In FIG. 1, reference numeral 1 denotes an input / output terminal including a flat plate portion 4 having a line conductor 2 and a same-surface ground conductor layer 3, a standing wall portion 5, and a through conductor 6, and is used for an optical semiconductor package, for example. Input / output terminal.
[0025]
The flat plate portion 4 of the input / output terminal 1 of the present invention is made of alumina (Al 2 O Three ) It is made of a substantially rectangular dielectric such as ceramic, aluminum nitride (AlN) ceramic, glass ceramic or the like. The flat plate portion 4 includes two line conductors 2 that are formed as an input line and / or a differential line formed as an output line from one side to the other side in a substantially central portion of the upper surface, and on both sides thereof. It has the same surface grounding conductor 3 formed at intervals. That is, the two line conductors 2 can be configured such that one is an input line and the other is an output line, both are input lines, and both are output lines. Further, a ground conductor 3a is formed on the side surface of the flat plate portion 4, and a ground conductor 3b is formed on the lower surface.
[0026]
On the upper surface of the flat plate portion 4, a standing wall portion 5 is provided which is joined with the line conductor 2 and the same surface ground conductor 3 interposed therebetween. The standing wall portion 5 has a ground conductor 3c formed on the upper surface thereof, and a ground conductor 3d formed on the side surface so as to extend the ground conductor 3a. 2 O Three It consists of dielectric materials such as ceramics, AlN ceramics, and glass ceramics.
[0027]
As shown in FIG. 1, the input / output terminal 1 of the present invention electrically connects the same-surface ground conductor 3 and the ground conductor 3 b on the lower surface of the flat plate portion 4 to the portion where the line conductor 2 of the flat plate portion 4 is exposed. And a plurality of first through conductors 6a are provided at intervals 8 equal to or less than a quarter of the wavelength of the high-frequency signal transmitted by the line conductor 2 so as to be arranged in a direction substantially parallel to the line direction of the line conductor 2. While electrically connecting the ground conductor 3c on the upper surface of the standing wall portion 5 and the ground conductor 3b on the lower surface of the flat plate portion 4 through the same surface ground conductor 3 to the portion where the standing wall portion 5 of the flat plate portion 4 is joined. A plurality of second penetrating conductors 6b are provided at intervals 8 equal to or less than a quarter of the wavelength of the high-frequency signal so as to be arranged in a direction substantially parallel to the line direction. The distance 8a between adjacent side faces that are substantially perpendicular to the line direction is 1/8 or less of the wavelength of the high-frequency signal. A.
[0028]
Further, as shown in FIG. 2, the input / output terminal 1 of the present invention electrically connects the same-surface ground conductor 3 and the inner-layer ground conductor 3e to a portion where the line conductor 2 of the flat plate portion 4 is exposed, and A plurality of first through conductors 6a are provided at intervals 8 equal to or less than a quarter of the wavelength of the high-frequency signal transmitted through the line conductor 2 so as to be arranged in a direction substantially parallel to the line direction of the conductor 2, and the flat plate portion 4 In the direction where the vertical wall 5 is joined, the ground conductor 3c on the upper surface of the vertical wall 5 and the inner ground conductor 3e are electrically connected to each other through the same plane ground conductor 3 and in a direction substantially parallel to the line direction. A plurality of second through conductors 6b are provided at intervals 8 equal to or less than a quarter of the wavelength of the high-frequency signal so that the second through conductors 6b are adjacent to each other substantially perpendicular to the line direction of the standing wall portion 5. The distance 8a from the side surface is 1/8 or less of the wavelength of the high-frequency signal.
[0029]
The distance (inter-center distance) 8 between the through conductors 6a and 6b needs to be equal to or less than a quarter of the wavelength of the high-frequency signal transmitted through the line conductor 2. That is, by setting the interval 8 between the through conductors 6 to ¼ or less of the wavelength of the high-frequency signal, the grounding potential due to the conduction resistance and inductance component of the through conductor 6 is a problem in a high frequency band of several tens of GHz or more. Instability is eliminated. As a result, impedance matching between the optical semiconductor element 13 (FIG. 3) and the input / output terminal 1 is achieved, and high-frequency signals of several tens of GHz or more are smoothly input / output between the optical semiconductor element 13 and the external electric circuit, The operativity of the optical semiconductor element 13 can be made favorable.
[0030]
When the interval 8 between the through conductors 6a and 6b exceeds a quarter of the wavelength of the high-frequency signal, the electromagnetic shielding property (electromagnetic shielding property) from the outside is liable to be damaged, and therefore, 5 GHz or more, especially several tens GHz or more. Impedance matching performed in each of the two line conductors 2 in the high frequency band becomes difficult.
[0031]
In addition, the second through conductor 6b of the through conductors 6 has an interval 8a from an adjacent side surface substantially perpendicular to the line direction of the standing wall portion 5 that is equal to or less than 1/8 of the wavelength of the high frequency signal. That is, the input / output terminal 1 has a coplanar line structure with a bottom ground and a strip line structure with both grounds, and the coplanar line with a bottom ground is between the line conductor 2 and the ground conductor 3 and the ground conductor 3b. An electric field is generated in order to efficiently transmit a high-frequency signal. Further, the strip line with ground on both sides generates an electric field between the ground line 3, the ground conductor 3, the ground conductor 3b, and the ground conductor 3c, and efficiently transmits a high-frequency signal. Therefore, a difference in electric field distribution occurs on the side surface of the standing wall portion 5 that is substantially perpendicular to the line direction. This difference in electric field distribution, that is, the difference in transmission mode, disturbs the high-frequency signal and increases the reflection loss. Therefore, by reducing the distance 8a between the second penetrating conductor 6b and the adjacent side surface substantially perpendicular to the line direction of the standing wall 5 to 1/8 or less of the wavelength of the high frequency signal, the transmission mode is less disturbed, High frequency signals can be transmitted smoothly. That is, the resonance and radiation phenomenon of the high-frequency signal can be suppressed, and the characteristic impedance of the optical semiconductor element and the input / output terminal 1 can be matched.
[0032]
As a result, high-frequency signals of several tens of GHz or more are smoothly input / output between the optical semiconductor element and the external electric circuit, and the operability of the optical semiconductor element can be improved.
[0033]
In the configuration of FIG. 2 of the present invention, the inner-layer ground conductor 3e is formed inside the flat plate portion 4. This provides the following advantages. In the high frequency band of several tens of GHz or more, the flat plate portion 4 must be thinned and the strength of the single plate is insufficient, but the thickness of the flat plate portion 4 is ensured by the formation of the inner layer ground conductor 3e. Strength can be increased. In addition, since the inner-layer ground conductor 3e is formed, the resonance of the electromagnetic wave can be effectively suppressed, and the radiation phenomenon of the electromagnetic wave hardly occurs.
[0034]
Further, as shown in FIG. 1, the input / output terminal 1 of the present invention is formed with two conductors 2 as differential lines formed at a predetermined interval, and with a gap W along both sides thereof. A flat plate portion 4 having a thickness t made of a substantially rectangular dielectric plate formed so as to penetrate the inside and outside of the frame body 11 (FIG. 3), and an upper surface of the flat plate portion 4. It consists of a standing wall portion 5 which is joined with the line conductor 2 and the same-surface ground conductor 3 interposed therebetween and is formed so as to block the inside and outside of the frame body 11 constituting the semiconductor package.
[0035]
The flat plate portion 4 and the standing wall portion 5 are made of Al. 2 O Three It consists of insulating materials, such as ceramics, ALN ceramics, and glass ceramics. The line conductor 2 is made of W, Mo, Mn or the like. For example, a metal paste obtained by adding and mixing an organic solvent and a solvent to a powder of W or the like is used as a ceramic for the flat plate portion 4 and the standing wall portion 5. It is formed on the flat plate portion 4 and the standing wall portion 5 by printing and applying a predetermined pattern on the green sheet by a conventionally known screen printing method.
[0036]
The through conductor 6 is made of W, Mo, Mn or the like. For example, after a predetermined punching process is performed on the ceramic green sheets for the flat plate portion 4 and the standing wall portion 5 to form a through hole, A metal paste obtained by adding and mixing a solvent and a solvent is filled in the through holes by a screen printing method to form the flat plate portion 4 and the standing wall portion 5.
[0037]
The frequency of the high-frequency signal applicable to the present invention is a high-frequency band of about 1 MHz to several hundred GHz for LSI, LD, etc., and an ultra-high-frequency band, preferably about 5 to 100 GHz for driving an optical semiconductor element, more preferably. Is a band of about 20-60 GHz.
[0038]
Moreover, in the input / output terminal 1 of the present invention, by inputting one high-frequency signal to the two line conductors 2 in the in-phase mode and the reverse-phase mode, noise of the high-frequency signal can be reduced. On the surface of the line conductor 2, a metal layer such as a 0.5 to 9 μm Ni layer or a 0.5 to 5 μm Au layer is provided to prevent oxidation and to firmly connect a bonding wire, a lead terminal, and the like. It is good to deposit by plating.
[0039]
Next, the semiconductor package of the present invention will be described with reference to FIG. This figure is a cross-sectional view showing an example of an embodiment of the semiconductor package of the present invention. In the figure, reference numeral 9 denotes a base body 10, a frame body 11, a high-frequency signal input / output terminal 1 fitted to the mounting portion 12 of the frame body 11, and a mounting portion 10 a on the upper main surface of the base body 10. This is a semiconductor package mainly composed of mounted optical semiconductor elements 13 such as LD and PD. These base 10, frame 11, input / output terminal 1, optical fiber 14 and translucent member 15 are installed in a cylindrical optical fiber fixing member 16 and lid 17, and an optical semiconductor element is provided inside. A container for housing 13 is constructed.
[0040]
Further, a metal holder 19 in which the optical fiber 14 and the optical isolator 18 for returning light are bonded with a resin adhesive is joined to the outer end surface of the fixing member 16 by YAG laser welding or the like. Further, an electronic cooling element 20 such as a Peltier element is disposed on the lower surface of the optical semiconductor element 13 and cools it when the optical semiconductor element 13 is operated.
[0041]
Further, a semiconductor element 13 ′ such as an LSI for driving or signal amplification of the optical semiconductor element 13 is provided on the mounting portion 10a, and the electronic cooling element 20 or the Cu—W alloy is also provided on the lower surface of the semiconductor element 13 ′. A heat sink can be provided. Then, the optical semiconductor element 13 and the semiconductor element 13 ′ are connected via a bonding wire, an internal wiring pattern (not shown), etc., and the semiconductor element 13 ′ is connected to the input / output terminal 1 by a bonding wire. Then, each electrode of the optical semiconductor element 13 is electrically connected to an external lead terminal provided outside the frame 11 of the input / output terminal 1 via a bonding wire.
[0042]
The base 10 functions as a support member that supports the optical semiconductor element 13 and a heat radiating plate for dissipating heat generated in the optical semiconductor element 13, and the optical semiconductor element 13 is placed at a substantially central portion of the upper main surface thereof. There is a mounting portion 10a. The optical semiconductor element 13 is bonded and fixed to the mounting portion 10a via an adhesive such as lead (Pb) -tin (Sn) solder, and heat generated in the optical semiconductor element 13 via the adhesive is placed. It is transmitted to the mounting portion 10a and efficiently radiated to the outside, so that the operability of the optical semiconductor element 13 is improved.
[0043]
The substrate 10 is made of a metal material such as Fe-Ni-Co alloy or Cu-W alloy, or Al. 2 O Three It consists of ceramics such as ALN. When made of a metal material, the ingot is manufactured into a predetermined shape by applying a conventionally known metal processing method such as rolling or punching. On the other hand, in the case of ceramics, an appropriate organic binder or solvent is added to the raw material powder to form a paste, and this paste is used to form a ceramic green sheet by a doctor blade method or a calender roll method. Thereafter, an appropriate punching process is performed on the ceramic green sheet, and a plurality of the ceramic green sheets are laminated and sintered at a high temperature of 1600 ° C.
[0044]
In addition, when the base | substrate 10 consists of metal materials, the metal which is excellent in corrosion resistance on the surface, and is excellent in wettability with a brazing material, specifically, a Ni layer with a thickness of 0.5-9 μm and a thickness of 0.5-5 μm The Au layer is preferably deposited sequentially by a plating method, and the base 10 can be effectively prevented from being oxidatively corroded, and the optical semiconductor element 13 can be firmly bonded and fixed to the upper main surface of the base 10. it can.
[0045]
On the other hand, when the substrate 10 is made of ceramic, the mounting portion 10a on which the optical semiconductor element 13 is mounted is a metal having excellent corrosion resistance and wettability with the brazing material, specifically, Ni having a thickness of 0.5 to 9 μm. The layer and the Au layer having a thickness of 0.5 to 5 μm are preferably deposited sequentially by a plating method, and the optical semiconductor element 13 can be firmly bonded and fixed to the upper main surface of the substrate 10.
[0046]
In addition, the base 10 has a frame in which the mounting portion 12 of the input / output terminal 1 composed of a through hole or a notch is formed on the upper main surface so as to surround the mounting portion 10a on which the optical semiconductor element 13 is mounted. The body 11 is joined, and a space for accommodating the optical semiconductor element 13 is formed inside the frame body 11. The frame body 11 is made of a metal material or ceramics similarly to the base body 10, and has a mounting portion 12 on one side and a through hole 21 for light transmission on the other side by the same processing method as the base body 10. It is produced in such a shape.
[0047]
When the frame 11 is made of a metal material such as an Fe—Ni—Co alloy or an Fe—Ni alloy, for example, when made of an Fe—Ni alloy, the alloy ingot is subjected to metal working such as rolling or pressing. Thus, it is manufactured in a predetermined shape. In addition, the frame 11 is joined to the base 10 by silver brazing or the like having an appropriate volume in which the upper main surface of the base 10 and the lower surface of the frame 11 are laid on the upper main surface of the base 10. The brazing material is brazed and joined. Further, in the same manner as the base body 10, a metal layer such as a 0.5 to 9 μm Ni layer or a 0.5 to 5 μm Au layer may be deposited on the surface of the frame 11 by a plating method. On the other hand, when the frame 11 is made of ceramics, a bonding wire, a lead terminal, etc. are provided on a part of the inner surface and a part of the outer surface of the frame 11 as means for electrical connection between the optical semiconductor element 13 and the external electric circuit. It is preferable to deposit a metal layer such as a 0.5 to 9 μm Ni layer or a 0.5 to 5 μm Au layer for the connection by plating.
[0048]
Further, a metal material such as an Fe—Ni—Co alloy or an Fe—Ni alloy is formed around the outer opening of the frame body 11 of the through hole 21 of the frame body 11 so as to transmit an optical signal therein. The optical fiber fixing member 16 is joined via a brazing material such as silver brazing. The fixing member 16 is processed and manufactured into a desired shape by the same processing method as that of the base body 10 and the frame body 11, and a 0.5 to 9 μm Ni layer, a 0.5 to 5 μm Au layer, or the like is formed on the surface thereof. The metal layer is preferably deposited by a plating method.
[0049]
In addition, a translucent member 15 made of amorphous glass or the like that functions as a condensing lens and has a function of blocking the inside of the optical semiconductor package 9 is formed on the surface of the joint portion on the inner peripheral surface of the fixing member 16. Through the formed metallized layer, bonding is performed with a low melting point brazing material such as an Au—Sn alloy having a melting point of 200 to 400 ° C.
[0050]
The translucent member 15 has a thermal expansion coefficient of 4 × 10. -6 ~ 12x10 -6 It is made of sapphire (single crystal alumina) / amorphous glass or the like at / ° C. (room temperature to 400 ° C.), and has a spherical shape, a hemispherical shape, a convex lens shape, a rod lens shape, or the like. And is input to the optical semiconductor element 13 or used as a condensing member for inputting light such as laser light output from the optical semiconductor element 13 to the optical fiber 14. When the translucent member 15 is, for example, amorphous glass having no crystal axis, silicon oxide (SiO 2 2 ), Lead-based materials containing lead oxide (PbO) as a main component, or boric acid-based materials or borosilicate-based materials containing silica sand as the main component.
[0051]
Moreover, even if the thermal expansion coefficient of the translucent member 15 is different from that of the frame 11, the fixing member 16 absorbs and relaxes the stress due to the thermal expansion difference, so that the crystal axes are aligned in a certain direction due to the stress. Therefore, it is difficult to cause a change in the refractive index of light. Therefore, by using such a translucent member 15, the light coupling efficiency between the optical semiconductor element 13 and the optical fiber 14 can be increased.
[0052]
The lid 17 is joined to the upper surface of the frame 11 by seam welding or the like, and seals the optical semiconductor element 13 in the optical semiconductor package 9.
[0053]
As described above, the optical semiconductor package 9 of the present invention is bonded to the base 10 made of a metal material or ceramics and the upper main surface thereof so as to surround the mounting portion 10a of the optical semiconductor element 13, and has the mounting portion 12. A frame 11 made of a metal material or ceramics and an input / output terminal 1 capable of precise impedance control are provided.
[0054]
When the optical semiconductor package 9 of the present invention is used for optical communication in which an optical semiconductor element 13 such as LD and PD and a semiconductor element 13 ′ such as LSI are accommodated, a through hole 21 penetrating the inside and outside of the frame 11 is provided. A cylindrical fixing member 16 made of a metal material is joined around the outer opening of the frame 11 of the through hole 21, and light is collected between the optical semiconductor element 13 and the optical fiber 14 inside the fixing member 16. A translucent member 15 to be bonded by light is bonded. Then, the optical semiconductor element 13 and the semiconductor element 13 ′ are connected by a bonding wire, and the semiconductor element 13 ′ and one end of the line conductor 2 of the input / output terminal 1 are connected by a bonding wire, and then the lid on the upper surface of the frame body 11. The body 17 is joined by seam welding or the like. Thereafter, a metal holder 19 in which the optical fiber 14 and the isolator 18 for preventing return light are bonded to the outer end face of the fixing member 16 with a resin adhesive is joined by YAG laser welding or the like, thereby obtaining light as a product. It becomes a semiconductor device.
[0055]
Thus, the input / output terminal of the present invention is thin and miniaturized so that precise impedance control is possible, and the input of a high-frequency signal of several tens GHz or more between the optical semiconductor element and the semiconductor element and the external electric circuit is possible. Output can be performed accurately, smoothly and with low loss.
[0056]
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
[0057]
【The invention's effect】
According to the present invention, in an input / output terminal including a flat plate portion and an upright wall portion joined thereto, a ground conductor is formed on the upper surface of the upright wall portion and the lower surface of the flat plate portion, and the line conductor of the flat plate portion is exposed. The same-surface ground conductor and the ground conductor on the lower surface of the flat plate portion are electrically connected to each other, and the wavelength of the high-frequency signal transmitted by the line conductor is aligned in a direction substantially parallel to the line direction of the line conductor. A plurality of first through conductors are provided at intervals equal to or less than one-quarter, and the ground conductors on the upper surface of the standing wall portion and the flat plate portion pass through the same surface ground conductor at the portion where the standing wall portion of the flat plate portion is joined. A plurality of second through conductors are provided at intervals equal to or less than one-quarter of the wavelength of the high-frequency signal so as to be electrically connected to the ground conductor on the lower surface and aligned in a direction substantially parallel to the line direction. The two through conductors are connected to the adjacent side surface that is substantially perpendicular to the line direction of the standing wall. Interval is less than one-eighth of the wavelength of the high frequency signal. In the present invention, the ground conductor is formed on the upper surface of the standing wall portion, the inner layer ground conductor is formed inside the flat plate portion, and the same plane ground conductor and the inner layer ground conductor are exposed at the portion where the line conductor of the flat plate portion is exposed. And a plurality of first through conductors are provided at intervals equal to or less than ¼ of the wavelength of the high-frequency signal transmitted by the line conductor so as to be arranged in a direction substantially parallel to the line direction of the line conductor. In addition, the grounding conductor on the upper surface of the standing wall portion is electrically connected to the portion where the standing wall portion of the flat plate portion is joined, and the grounding conductor on the upper surface of the standing wall portion and the inner layer grounding conductor are electrically connected and arranged in a direction substantially parallel to the line direction. In this way, a plurality of second through conductors are provided at intervals of ¼ or less of the wavelength of the high-frequency signal, and the second through conductors are spaced from adjacent side surfaces that are substantially perpendicular to the line direction of the standing wall portion. It is 1/8 or less of the wavelength of a high frequency signal.
[0058]
In the present invention, the ground potential is unstable due to the conductor resistance and inductance component of the through conductor by setting the distance between the first through conductor and the second through conductor to one quarter or less of the wavelength of the high frequency signal. It will be resolved. As a result, the ground potential is stabilized even in a high frequency band of several tens of GHz or more. Further, since the distance between the second penetrating conductor and the adjacent side surface substantially perpendicular to the line direction of the standing wall portion is 1/8 or less of the wavelength of the high frequency signal, the resonance and radiation phenomenon of the electromagnetic wave in the standing wall portion is suppressed. Thus, the reflection loss of the high-frequency signal passing through the line conductor can be extremely reduced.
[0059]
As a result, input / output of high-frequency signals of several tens of GHz or more can be performed accurately and smoothly with reduced transmission loss, and the input / output terminals can be made thinner and smaller.
[0060]
Even if an inductance (L) component such as a bonding wire is generated, the influence of the L component can be mitigated by the propagation mode input and output by the pair of line conductors, and the characteristic impedance can be matched. Even better transmission characteristics of high-frequency signals of several tens of GHz can be realized.
[0061]
The semiconductor package of the present invention is attached to a base having a mounting portion on which the semiconductor element is mounted on the upper main surface, and the upper main surface of the base so as to surround the mounting portion. By providing the frame with the input / output terminal mounting portion formed of the notch and the input / output terminal of the present invention fitted to the mounting portion, the semiconductor package can be made thinner and smaller. The high-frequency signal input / output of several tens of GHz or more can be transmitted between the semiconductor element and the external electric circuit with reduced transmission loss.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of an input / output terminal of the present invention.
FIG. 2 is a perspective view showing another example of the embodiment of the input / output terminal of the present invention.
FIG. 3 is a cross-sectional view showing an example of an embodiment of a semiconductor package of the present invention.
FIG. 4 is a cross-sectional view of a conventional optical semiconductor package.
FIG. 5 is a perspective view of a conventional input / output terminal.
[Explanation of symbols]
1: Input / output terminal
2: Line conductor
3: Ground conductor on the same plane
3a, 3b, 3c, 3d: Ground conductor
3e: Inner layer ground conductor
4: Flat plate
5: Standing wall
6a: first through conductor
6b: second through conductor
7: Bottom surface of flat plate
8: Spacing between through conductors
8a: Distance between the second through conductor and the side surface of the standing wall
9: Semiconductor package
10: Substrate
10a: Placement part
11: Frame
12: Mounting part
13: Optical semiconductor element
13 ': Semiconductor element

Claims (3)

略長方形の誘電体板から成る平板部と、該平板部の上面の1辺から対向する他辺にかけて入力線路および/または出力線路として形成された、差動線路とされている2本の線路導体と、前記平板部の上面の前記2本の線路導体の両側に等間隔をもって形成された同一面接地導体と、前記平板部の上面に前記線路導体および前記同一面接地導体を間に挟んで接合された誘電体から成る立壁部とを具備した入出力端子において、前記立壁部の上面及び前記線路導体の線路方向に略平行な側面に、前記線路導体の線路方向に略垂直な側面全体が空白部となるようにして接地導体を形成するとともに、前記平板部の下面及び前記線路導体の線路方向に略平行な側面に接地導体が形成されており、前記平板部の前記線路導体が露出している部位に、前記同一面接地導体と前記平板部の下面の前記接地導体とを電気的に接続するとともに前記線路導体の線路方向に略平行な方向に並ぶように前記線路導体で伝送される高周波信号の波長の4分の1以下の間隔で複数の第一の貫通導体が設けられ、前記平板部の前記立壁部が接合された部位に、前記同一面接地導体を貫通して前記立壁部の上面の前記接地導体と前記平板部の下面の前記接地導体とを電気的に接続するとともに前記線路方向に略平行な方向に並ぶように前記高周波信号の波長の4分の1以下の間隔で複数の第二の貫通導体が設けられており、該第二の貫通導体は前記立壁部の前記線路方向に略垂直な隣接する側面との間隔が前記高周波信号の波長の8分の1以下であることを特徴とする入出力端子。Two line conductors that are formed as a differential line and formed as an input line and / or an output line from one side of the upper surface of the flat plate part to the other side opposite to the flat part made of a substantially rectangular dielectric plate And the same plane ground conductor formed at equal intervals on both sides of the two line conductors on the upper surface of the flat plate portion, and the line conductor and the same plane ground conductor sandwiched between the upper surface of the flat plate portion. In the input / output terminal including the standing wall portion made of a dielectric, the entire side surface substantially perpendicular to the line direction of the line conductor is blank on the upper surface of the standing wall portion and the side surface substantially parallel to the line direction of the line conductor. And a ground conductor is formed on a lower surface of the flat plate portion and a side surface substantially parallel to the line direction of the line conductor, and the line conductor of the flat plate portion is exposed. Where The one-side ground conductor and the ground conductor on the lower surface of the flat plate portion are electrically connected to each other, and the quarter of the wavelength of the high-frequency signal transmitted through the line conductor so as to be aligned in a direction substantially parallel to the line direction of the line conductor. A plurality of first through conductors are provided at an interval of 1 or less, and the ground conductor on the upper surface of the standing wall portion penetrates the same plane ground conductor at a portion where the standing wall portion of the flat plate portion is joined. A plurality of second through conductors that are electrically connected to the ground conductor on the lower surface of the flat plate portion and are arranged at a distance equal to or less than a quarter of the wavelength of the high-frequency signal so as to be aligned in a direction substantially parallel to the line direction. The second through conductor has an interval between an adjacent side surface of the standing wall portion that is substantially perpendicular to the line direction and is equal to or less than one-eighth of the wavelength of the high-frequency signal. Output terminal. 略長方形の誘電体板から成る平板部と、該平板部の上面の1辺から対向する他辺にかけて入力線路および/または出力線路として形成された、差動線路とされている2本の線路導体と、前記平板部の上面の前記2本の線路導体の両側に等間隔をもって形成された同一面接地導体と、前記平板部の上面に前記線路導体および前記同一面接地導体を間に挟んで接合された誘電体から成る立壁部とを具備した入出力端子において、前記立壁部の上面及び前記線路導体の線路方向に略平行な側面に、前記線路導体の線路方向に略垂直な側面全体が空白部となるようにして接地導体が、前記平板部の内部に内層接地導体が、前記線路導体の線路方向に略平行な前記平板部の側面に接地導体が形成されており、前記平板部の前記線路導体が露出している部位に、前記同一面接地導体と前記内層接地導体とを電気的に接続するとともに前記線路導体の線路方向に略平行な方向に並ぶように前記線路導体で伝送される高周波信号の波長の4分の1以下の間隔で複数の第一の貫通導体が設けられ、前記平板部の前記立壁部が接合された部位に、前記同一面接地導体を貫通して前記立壁部の上面の前記接地導体と前記内層接地導体とを電気的に接続するとともに前記線路方向に略平行な方向に並ぶように前記高周波信号の波長の4分の1以下の間隔で複数の第二の貫通導体が設けられており、該第二の貫通導体は前記立壁部の前記線路方向に略垂直な隣接する側面との間隔が前記高周波信号の波長の8分の1以下であることを特徴とする入出力端子。Two line conductors that are formed as a differential line and formed as an input line and / or an output line from one side of the upper surface of the flat plate part to the other side opposite to the flat part made of a substantially rectangular dielectric plate And the same plane ground conductor formed at equal intervals on both sides of the two line conductors on the upper surface of the flat plate portion, and the line conductor and the same plane ground conductor sandwiched between the upper surface of the flat plate portion. In the input / output terminal including the standing wall portion made of a dielectric, the entire side surface substantially perpendicular to the line direction of the line conductor is blank on the upper surface of the standing wall portion and the side surface substantially parallel to the line direction of the line conductor. A ground conductor is formed in the flat plate portion, an inner layer ground conductor is formed inside the flat plate portion, and a ground conductor is formed on a side surface of the flat plate portion substantially parallel to the line direction of the line conductor. The part where the line conductor is exposed In addition, the same-surface ground conductor and the inner-layer ground conductor are electrically connected to each other and the quarter of the wavelength of the high-frequency signal transmitted through the line conductor so as to be aligned in a direction substantially parallel to the line direction of the line conductor. A plurality of first through conductors are provided at intervals of 1 or less, and the ground conductor on the upper surface of the standing wall portion and the top surface of the standing wall portion pass through the same-surface ground conductor at a portion where the standing wall portion of the flat plate portion is joined. A plurality of second through conductors are provided at intervals of one quarter or less of the wavelength of the high-frequency signal so as to be electrically connected to the inner layer ground conductor and arranged in a direction substantially parallel to the line direction, The input / output terminal, wherein an interval between the second penetrating conductor and an adjacent side surface substantially perpendicular to the line direction of the standing wall portion is 1/8 or less of the wavelength of the high-frequency signal. 上側主面に半導体素子が載置される載置部を有する基体と、該基体の前記上側主面に前記載置部を囲繞するように取着され、側部に貫通孔または切欠き部から成る入出力端子の取付部が形成された枠体と、前記取付部に嵌着された請求項1または請求項2記載の入出力端子とを具備したことを特徴とする半導体素子収納用パッケージ。A base body having a mounting portion on which the semiconductor element is mounted on the upper main surface, and the upper main surface of the base body are attached so as to surround the mounting portion, and the side portion has a through hole or a notch portion. A package for housing a semiconductor element, comprising: a frame having an input / output terminal mounting portion formed thereon; and the input / output terminal according to claim 1 fitted to the mounting portion.
JP2001296629A 2001-09-27 2001-09-27 I / O terminal and semiconductor element storage package Expired - Fee Related JP3673491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296629A JP3673491B2 (en) 2001-09-27 2001-09-27 I / O terminal and semiconductor element storage package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296629A JP3673491B2 (en) 2001-09-27 2001-09-27 I / O terminal and semiconductor element storage package

Publications (2)

Publication Number Publication Date
JP2003100922A JP2003100922A (en) 2003-04-04
JP3673491B2 true JP3673491B2 (en) 2005-07-20

Family

ID=19117829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296629A Expired - Fee Related JP3673491B2 (en) 2001-09-27 2001-09-27 I / O terminal and semiconductor element storage package

Country Status (1)

Country Link
JP (1) JP3673491B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172783B2 (en) * 2003-09-26 2008-10-29 京セラ株式会社 I / O terminal and semiconductor element storage package and semiconductor device
JP5518086B2 (en) * 2009-09-29 2014-06-11 京セラ株式会社 Device storage package and mounting structure
JP5725900B2 (en) * 2011-02-24 2015-05-27 京セラ株式会社 Semiconductor element storage package and semiconductor device including the same
JP2016111240A (en) * 2014-12-08 2016-06-20 株式会社フジクラ Housing for accommodating semiconductor device, semiconductor module, and method for manufacturing housing for accommodating semiconductor device

Also Published As

Publication number Publication date
JP2003100922A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
EP0491161A1 (en) Interconnect package for circuitry components
EP2428989B1 (en) High-frequency circuit package and high-frequency circuit device
US6936921B2 (en) High-frequency package
JP4874177B2 (en) Connection terminal, package using the same, and electronic device
JP3673491B2 (en) I / O terminal and semiconductor element storage package
JP4605957B2 (en) Package for storing semiconductor elements
JP3314163B2 (en) Package for storing semiconductor elements
JP4172783B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP7036646B2 (en) Packages for semiconductor devices and semiconductor devices
JP3457921B2 (en) Package for storing input / output terminals and semiconductor elements
JP3181036B2 (en) Mounting structure of high frequency package
JP3670574B2 (en) I / O terminal and semiconductor element storage package
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP4658313B2 (en) Package for storing semiconductor elements
JP3393837B2 (en) Package for storing semiconductor elements
JP4045110B2 (en) Package for storing semiconductor elements
JP3720694B2 (en) Package for storing semiconductor elements
JP2004140188A (en) Package for storing semiconductor element
JP2004349568A (en) Input/output terminal and package for housing semiconductor element, and semiconductor device
JP3993774B2 (en) Optical semiconductor element storage package
JP2004165507A (en) Package for storing semiconductor element
JP2004200242A (en) Package for housing semiconductor element
JP2004152826A (en) Package for housing semiconductor device
JP2001217331A (en) Package for accommodating semiconductor element
JP2003133630A (en) Semiconductor device, and package for accommodating the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050422

R150 Certificate of patent or registration of utility model

Ref document number: 3673491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees