JP2004349568A - Input/output terminal and package for housing semiconductor element, and semiconductor device - Google Patents

Input/output terminal and package for housing semiconductor element, and semiconductor device Download PDF

Info

Publication number
JP2004349568A
JP2004349568A JP2003146630A JP2003146630A JP2004349568A JP 2004349568 A JP2004349568 A JP 2004349568A JP 2003146630 A JP2003146630 A JP 2003146630A JP 2003146630 A JP2003146630 A JP 2003146630A JP 2004349568 A JP2004349568 A JP 2004349568A
Authority
JP
Japan
Prior art keywords
conductor
layer
input
line
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003146630A
Other languages
Japanese (ja)
Inventor
Toshihiko Kitamura
俊彦 北村
Nobuyuki Tanaka
信幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003146630A priority Critical patent/JP2004349568A/en
Publication of JP2004349568A publication Critical patent/JP2004349568A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the transmision efficiency of a high-frequency signal to be transmitted by an input/output terminal and improve the reliability of airtightness inside a package for housing a semicondor element. <P>SOLUTION: The input/output terminal 9 is provided with a line conductor 3 formed from one side to the other side on an upper surface, a square flat plate 1 made of a dielectric having common-surface ground conductors 4 that are formed on both sides with an equal interval, and a rectangular parallelepiped vertical wall 5 made of dielectric wherein an upper ground conductor 6 is formed on the upper surface. In the vertical wall 5, an inner-layer ground conductor 8 is formed inside, and grooves 5a wherein conductor layers 5b are formed on their inner surfaces are formed on upper and lower surfaces in a region that is in contact with two common-surface ground conductors 4 on a pair of side surfaces 5c crossing orthogonally in the direction of line of the line conductor 3, and the inner-layer ground conductor 8 is electrically connected with the upper ground conductor 6 and the common-surface ground conductor 4 by means of the conductor layer 5b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高周波信号で作動する半導体素子を収納するための半導体素子収納用パッケージの信号入出力部に使用される入出力端子および半導体素子収納用パッケージならびに半導体装置に関する。
【0002】
【従来の技術】
従来、マイクロ波帯やミリ波帯等の高周波信号を用いる半導体素子を収納するための半導体素子収納用パッケージ(以下、パッケージともいう)には、半導体素子と外部電気回路基板とを電気的に接続するための入出力端子が設けられている。この入出力端子を図6に斜視図で示す。
【0003】
同図において、101はアルミナ(Al)質セラミックス,窒化アルミニウム(AlN)質セラミックス,ムライト(3Al・2SiO)質セラミックス等の誘電体から成る四角形状の平板部であり、平板部101はその上面に、一辺から対向する他辺にかけて形成され、タングステン(W),モリブデン(Mo)等のメタライズ層から成る線路導体103と、線路導体103の両側に等間隔をもって形成されたW,Mo等のメタライズ層から成る同一面接地導体104とを有する。また、平板部101の下面には、その全面に線路導体103と同様のメタライズ層から成る下部接地導体102を有する。
【0004】
平板部101の上面には、線路導体103の一部を間に挟んで接合されているとともに、上面に上部接地導体106を有するAl質セラミックス,AlN質セラミックス,3Al・2SiO質セラミックス等の誘電体から成る直方体状の立壁部105が設置されている。これにより、線路導体103は、平板部101と立壁部105とに狭持されていない部位のマイクロストリップ線路と、平板部101と立壁部105とに狭持されている部位のストリップ線路とを有するものとなる。また、平板部101と立壁部105の線路導体103の線路方向に平行な側面には線路導体103と同様のメタライズ層から成る側面接地導体107が形成されている。
【0005】
また、線路導体103の両側には等間隔をもって同一面接地導体104が形成されており、線路導体103を伝送する高周波信号の周波数に応じて、線路導体103と同一面接地導体104との間の間隔を適宜調整することによって、線路導体103を特性インピーダンスに整合させ得る。このように、線路導体103を特性インピーダンスに整合させることによって、線路導体103を伝送する高周波信号の伝送効率を良好なものとできる。
【0006】
このような、平板部101と立壁部105とから構成された入出力端子109は、パッケージに設けられ、パッケージ内外を気密に遮断し、その内部を封止することができる(例えば、下記の特許文献1参照)。
【0007】
この入出力端子109が取着されたパッケージは、その構成部材の1つである金属製の枠体に設けられた切欠きまたは貫通孔から成る取付部に入出力端子109を嵌着したいわゆるメタルウォールタイプや、セラミックス製の枠体に信号の伝送線路としての入出力端子部を一体的に設けたいわゆるセラミックウォールタイプがあり、用途に応じて適宜選択され使用されている。
【0008】
【特許文献1】
特開2002−184888号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の入出力端子109では、線路導体103を伝送する高周波信号の周波数が高周波になるにつれ、線路導体103の線路方向に直交する立壁部103の側面の下端が接する線路導体103の部分、つまり線路導体103のマイクロストリップ線路とストリップ線路との境界部で高周波信号が立壁部105内に放射されて、高周波信号の伝送効率が低下し易くなるという問題があった。特に、線路導体103を伝送する高周波信号が10GHz以上である場合、上記問題点が顕著なものとなっていた。
【0010】
そこで、立壁部105の幅や厚みを小さくして立壁部105内に放射される高周波信号を低減させることが考えられる。しかしながら、入出力端子109は、線路導体103の線路方向に平行な側面および上面が銀(Ag)−銅(Cu)ろう等のろう材を介してパッケージの枠体や枠体の上面に設けられた金属製のシールリングに接合されるため、枠体やシールリングとの熱膨張差により熱歪が発生し易く、幅や厚みを小さくした立壁部105を用いた場合、この熱歪により立壁部105にクラック等の破損が発生する場合があった。その結果、パッケージの内部を気密に封止できなくなり、また破損が平板部101にまで及んだ場合には、線路導体103が断線し半導体素子と外部電気回路基板との間で高周波信号を伝送できなくなるという問題点が発生していた。
【0011】
従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、パッケージに収納された半導体素子に高周波信号を伝送させるための入出力端子において、線路導体で高周波信号の放射、反射等の伝送損失が生ずるのを防止することにより、半導体素子と外部電気回路基板との間における高周波信号の伝送効率を向上させ、また内部の気密信頼性を良好に維持してパッケージ内に収納する半導体素子を長期にわたり正常かつ安定に作動させ得るものとすることにある。
【0012】
【課題を解決するための手段】
本発明の入出力端子は、上面に一辺から対向する他辺にかけて形成された線路導体および該線路導体の両側に等間隔をもって形成された同一面接地導体を有する誘電体から成る四角形状の平板部と、該平板部の上面に前記線路導体の一部および前記同一面接地導体の一部を間に挟んで接合され、上面に上部接地導体が形成された誘電体から成る直方体状の立壁部とを具備した入出力端子において、前記立壁部は、内部に内層接地導体が形成されているとともに、前記線路導体の線路方向に直交する一対の側面で前記2つの同一面接地導体に接する部位に、それぞれ内面に導体層が形成された溝が上下面にわたって形成されており、前記内層接地導体が前記導体層を介して前記上部接地導体および前記同一面接地導体に電気的に接続されていることを特徴とする。
【0013】
本発明の入出力端子は、立壁部が、内部に内層接地導体が形成されているとともに、線路導体の線路方向に直交する一対の側面で2つの同一面接地導体に接する部位に、それぞれ内面に導体層が形成された溝が上下面にわたって形成されており、内層接地導体が導体層を介して上部接地導体および同一面接地導体に電気的に接続されていることから、線路導体の線路方向に直交する立壁部の側面で電磁遮蔽効果(シールド効果)が得られ、線路導体の線路方向に直交する立壁部の側面の下端が接する線路導体の部分、つまり線路導体のマイクロストリップ線路とストリップ線路との境界部において、この電磁遮蔽効果により、線路導体を伝送する高周波信号が立壁部の内部に放射されても、その放射された高周波信号の成分は2つの導体層と内層接地導体とで囲まれる領域内に閉じ込められることにより損失が有効に抑えられる。その結果、立壁部の幅や厚みを小さくせずに熱歪みに耐え得る大きさの入出力端子としながら、高周波信号を効率よく伝送させることができる。
【0014】
また、導体層および内層接地導体により線路導体に対する接地電位をより強化することができる。その結果、線路導体を伝送する高周波信号の伝送モードがマイクロストリップ線路のモードからストリップ線路のモードに、またはストリップ線路のモードからマイクロストリップ線路のモードに変化しても、高周波信号の反射損失や透過損失をより有効に抑制することができ、高周波信号を極めて効率良く入出力させることができる。
【0015】
本発明の半導体素子収納用パッケージにおいて、好ましくは、前記立壁部は、前記側面に形成された2つの前記溝の間にわたって前記側面と上面との間に前記内層接地導体が露出するように段差が形成されており、該段差の側面に前記上部接地導体と前記導体層と前記内層接地導体とに接続された側部導体層が形成されていることを特徴とする。
【0016】
本発明の半導体素子収納用パッケージは、立壁部の側面に形成された2つの溝の間にわたって側面と上面との間に内層接地導体が露出するように段差が形成されており、この段差の側面に上部接地導体と導体層と内層接地導体とに接続された側部導体層が形成されていることから、側部導体層によって立壁部の側面をより覆うことができ、線路導体に対してより電磁遮蔽効果を向上させることができる。また、側部導体層によって導体層と上部接地導体との導電性が向上し、内層接地導体および導体層の接地電位を半導体素子収納用パッケージのケースグランドとなる枠体に接合される上部接地導体の接地電位に近づけることができ、線路導体に対する接地をより強化することができる。その結果、高周波信号をより効率よく伝送させることができる。
【0017】
また、立壁部の厚さが、溝が形成された端部から中央にかけて段階的に厚くなっていることから、高周波信号が線路導体の露出した部位から立壁部の端部の薄い誘電体で覆われた部位を経て立壁部の中央の厚い誘電体で覆われた部位を伝送することとなり、高周波信号の伝送モードが急激に変化して損失が生じるのを有効に抑制することができる。
【0018】
本発明の半導体素子収納用パッケージは、上面に半導体素子が載置される載置部を有する基体と、該基体の上面に前記載置部を囲繞するように取着され、側部に貫通孔または切欠きから成る入出力端子の取付部が形成された枠体と、前記取付部に嵌着された上記構成の入出力端子とを具備していることを特徴とする。
【0019】
本発明の半導体素子収納用パッケージは、上記構成により、線路導体を伝送する高周波信号の伝送効率を良好なものとできるとともに、入出力端子にクラックが発生するのを防止して半導体素子収納用パッケージ内部を気密に保持することができる。その結果、半導体素子を長期にわたり正常かつ安定に作動させることができる信頼性の高い半導体素子収納用パッケージとなる。
【0020】
本発明の半導体装置は、上記構成の半導体素子収納用パッケージと、前記載置部に載置固定されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に取着された蓋体とを具備していることを特徴とする。
【0021】
本発明の半導体装置は、上記構成により、上記本発明の半導体素子収納用パッケージを用いた、高周波信号の伝送性に優れるとともに気密信頼性に優れたものとなる。
【0022】
【発明の実施の形態】
本発明の入出力端子および半導体素子収納用パッケージならびに半導体装置について以下に詳細に説明する。図1は本発明の入出力端子について実施の形態の一例を示す斜視図である。同図において、1は平板部、3は線路導体、4は同一面接地導体、5は立壁部、6は上部接地導体、8は内層接地導体、9は入出力端子である。
【0023】
本発明の入出力端子9は、上面に一辺から対向する他辺にかけて形成された線路導体3およびこの線路導体3の両側に等間隔をもって形成された同一面接地導体4を有する誘電体から成る四角形状の平板部1と、この平板部1の上面に線路導体3の一部および同一面接地導体4の一部を間に挟んで接合され、上面に上部接地導体6が形成された誘電体から成る直方体状の立壁部5とを具備している。
【0024】
平板部1は、Al質セラミックス,AlN質セラミックス,3Al・2SiO質セラミックス等の誘電体からなる四角形状のものである。
【0025】
線路導体3および同一面接地導体4は、平板部1の上面に形成されたW,Mo等のメタライズ層から成る。また、平板部1の下面にはその全面に線路導体3と同様のメタライズ層から成る下部接地導体2を有する。
【0026】
立壁部5は、Al質セラミックス,AlN質セラミックス,3Al・2SiO質セラミックス等の誘電体からなる直方体状のものであり、平板部1の上面に、間に線路導体3および同一面接地導体4の一部を挟んで接合されている。
【0027】
また、平板部1の下面および立壁部5の上面にはそれぞれ全面に線路導体3と同様のメタライズ層から成る下部接地導体2および上部接地導体6を有する。さらに、平板部1の側面および立壁部5の側面には線路導体3と同様のメタライズ層から成る側面接地導体7が形成されている。これらの下部接地導体2、上部接地導体6および側面接地導体7と同一面接地導体4とにより、線路導体3に対する接地が強化され、線路導体3の高周波信号の伝送効率に優れたものとなる。
【0028】
さらに、立壁部5は、内部に内層接地導体8が形成されているとともに、線路導体3の線路方向に直交する一対の側面5cで2つの同一面接地導体4に接する部位に、それぞれ内面に導体層5bが形成された溝5aが上下面にわたって形成されており、内層接地導体8が導体層5bを介して上部接地導体6および同一面接地導体4に電気的に接続されている。
【0029】
これにより、立壁部5の側面5cで電磁遮蔽効果が得られ、立壁部5の側面5cの下端が接する線路導体3の部分、つまり線路導体3のマイクロストリップ線路とストリップ線路との境界部において、この電磁遮蔽効果により、線路導体3を伝送する高周波信号が立壁部5の内部に放射されても、その放射された高周波信号の成分は2つの導体層5bと内層接地導体8とで囲まれる領域内に閉じ込められることにより損失が有効に抑えられる。その結果、立壁部5の幅や厚みを小さくせずに熱歪みに耐え得る大きさの入出力端子9としながら、高周波信号を効率よく伝送させることができる。
【0030】
また、導体層5bおよび内層接地導体8により線路導体3に対する接地電位をより強化することができる。その結果、線路導体3を伝送する高周波信号の伝送モードがマイクロストリップ線路のモードからストリップ線路のモードに、またはストリップ線路のモードからマイクロストリップ線路のモードに変化しても、高周波信号の反射損失や透過損失をより有効に抑制することができ、高周波信号を極めて効率良く入出力させることができる。
【0031】
溝5aの拡大断面図を図2に示す。同図に示すように、溝5aの幅XはX=0.3〜1.5mm、深さDはD=0.1〜1mmが良く、この構成により、立壁部5の線路導体3の側面5cの下端が接する部分において、線路導体3のマイクロストリップ線路とストリップ線路との境界部を伝送する高周波信号が立壁部5の内部に放射されても、溝5aの電磁遮蔽効果によってその放射された高周波信号の成分を2つの導体層間に閉じ込めることにより損失が有効に抑えられる。また、立壁部5の側面5cの下端において線路導体3に対する接地電位をより強化でき、線路導体3を伝送する高周波信号の伝送モードがマイクロストリップ線路のモードからストリップ線路のモードに、またはストリップ線路のモードからマイクロストリップ線路のモードに変化しても、高周波信号の反射損失や透過損失が生ずるのをより有効に抑制することができる。
【0032】
X<0.3mmの場合、溝5aの幅が小さすぎて、溝5aを形成するためのセラミックグリーンシートの打ち抜き加工が困難になるとともに、線路導体3に対する接地電位の強化が困難となり、電磁遮蔽効果も低下し易くなる。X>1.5mmの場合、溝5aの幅が大きすぎて立壁部5の角部が欠けやすくなる。また、D<0.1mmの場合、溝5aが浅いため、溝5aを形成するためのセラミックグリーンシートの打ち抜き加工が困難となるとともに、線路導体3に対する接地電位の強化が困難となり、電磁遮蔽効果も低下し易くなる。D>1mmの場合、溝5aが深すぎて、対向する溝5aの間の立壁部5が薄くなり、入出力端子9をパッケージに接合した際に立壁部5にクラック等の破損が生じやすくなる。
【0033】
溝5aの断面形状は、図2のような四角形状や半円状、U字状等の種々の形状とされる。このうち、立壁部5の強度を維持しながら溝5aを深くして電磁遮蔽効果を高くすることができるという観点からU字状のものが好ましい。
【0034】
入出力端子9のX−X’における断面図を図3に示す。同図に示すように、線路導体3と内層接地導体8との距離HはH=0.2〜0.7mmが良く、この構成により、線路導体3のストリップ線路を伝送する高周波信号が立壁部5の上側に放射されるのを有効に抑制できる。また、溝5aに形成された導体層5bと電気的に接続されることにより、ストリップ線路に対する接地電位がより強化され、ストリップ線路を伝送する高周波信号の反射損失や透過損失が生じるのを有効に抑制することができる。
【0035】
H<0.2mmの場合、線路導体3と内層接地導体8との距離が近すぎて、インピーダンスの整合を行うためには、容量成分の低減が必要となって線路導体3を細くしなければならず、線路導体3の形成が困難になるという問題が生じやすい。また、線路導体3と内層接地導体8との間のセラミックグリーンシートを薄くする必要があるため、セラミックグリーンシートを積層して立壁部5を構成する際にセラミックグリーンシートがたわむ等の問題が生じやすくなる。H>0.7mmの場合、線路導体3と内層接地導体8との距離が大きくなるため、十分な電磁遮蔽効果が得られ難くなる。
【0036】
このような入出力端子9は以下のようにして作製される。例えば、Al質セラミックスから成る場合、先ず酸化アルミニウム、酸化珪素(SiO)、酸化マグネシウム(MgO)および酸化カルシウム(CaO)等の原料粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して泥漿状と成す。これを従来周知のドクターブレード法やカレンダーロール法等のテープ成形技術により複数のセラミックグリーンシートを得る。
【0037】
次に、このセラミックグリーンシートに、W,Mo等の高融点金属粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して得た金属ペーストを、スクリーン印刷法等の厚膜形成技術により印刷塗布して、下部接地導体2、線路導体3、同一面接地導体4、上部接地導体6、内層接地導体8となるメタライズ層を所定パターンに形成する。また、立壁部5となるセラミックグリーンシートに金型等によって打ち抜き加工を施すことによって、所望の位置に溝5aを形成し、溝5aの内面に導体層5bとなるW,Mo等の高融点金属粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して得た金属ペーストを塗布する。
【0038】
その後、セラミックグリーンシートを複数枚積層し、側面接地導体7となるW,Mo等の高融点金属粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して得た金属ペーストを塗布する。そして、これを還元雰囲気中、約1600℃の温度で焼成することにより製作される。
【0039】
導体層5bの厚さは5〜30μmがよく、5μm未満では、W等のメタライズにより導体層5bを形成するのが困難となって均一な厚みの導体層5bを形成できず、線路導体3に対する接地電位の強化が困難となり、電磁遮蔽効果も低下し易くなる。また、30μmを超えると、導体層5bと立壁部5との間の熱膨張差により立壁部5に加わる応力が大きくなり立壁部5が破損し易くなる。
【0040】
内層接地導体8の厚さは5〜20μmがよく、5μm未満では、W等のメタライズにより内層接地導体8を形成するのが困難となって均一な厚みの内層接地導体8を形成できず、線路導体3に対する接地電位の強化が困難となり、電磁遮蔽効果も低下し易くなる。また、20μmを超えると、内層接地導体8と立壁部5との間の熱膨張差により立壁部5に加わる応力が大きくなり立壁部5が破損し易くなる。
【0041】
本発明の入出力端子9は、図4に示すように、平板部1において、線路導体3の線路方向に直交する一対の側面1cで2つの同一面接地導体4に接する部位に、それぞれ内面に導体層1bが形成された溝1aが上下面にわたって形成されており、導体層1bを介して下部接地導体2と同一面接地導体4とが電気的に接続されていても良い。この場合、溝1aは、平板部1となるセラミックグリーンシートに金型等によって打ち抜き加工を施すことによって所望の位置に形成される。そして、溝1aに導体層1bとなるW,Mo等の高融点金属粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して得た金属ペーストを塗布し焼成することによって、導体層1bが形成される。
【0042】
溝1aに導体層1bが形成されていることにより、線路導体3に対する接地電位が強化される。その結果、線路導体3を特性インピーダンスにより整合し易くし、半導体素子と電気的に接続するためのボンディングワイヤ等や外部電気回路と電気的に接続するためのリード端子等を線路導体3の端部に接続しても、これらの接続部で高周波信号の反射損失や透過損失が生ずるのを有効に防止でき、線路導体3を伝送する高周波信号の伝送特性をより良好にすることができる。
【0043】
溝1aの断面形状は、溝5aと同様に四角形状や半円状、U字状等の種々の形状とされる。
【0044】
なお立壁部5は、側面に形成された2つの溝5aの間にわたって上部接地導体6と導体層5bとに接続された側部導体層5dが形成されていてもよい。これにより側部導体層5dによって立壁部5の側面をより覆うことができ、線路導体3に対してより電磁遮蔽効果を向上させることができる。また、内層接地導体8および導体層5bの接地電位をパッケージのケースグランドとなる枠体に接合される上部接地導体6の接地電位に近づけることができ、線路導体3に対する接地をより強化することができる。
【0045】
また本発明の入出力端子9は、好ましくは、図7に示すように立壁部5の側面に形成された2つの溝5aの間にわたって側面と上面との間に内層接地導体8が露出するように段差が形成されており、この段差の側面に上部接地導体5dと導体層5bと内層接地導体8とに接続された側部導体層5dが形成されているのがよい。
【0046】
これにより、側部導体層5dによって立壁部5の側面をより覆うことができ、線路導体3に対してより電磁遮蔽効果を向上させることができる。また、側部導体層5dによって導体層5bと上部接地導体6との導電性が向上し、内層接地導体8および導体層5bの接地電位をパッケージのケースグランドとなる枠体に接合される上部接地導体6の接地電位に近づけることができ、線路導体3に対する接地をより強化することができる。その結果、高周波信号をより効率よく伝送させることができる。
【0047】
また、立壁部5の厚さが、溝5aが形成された端部から中央にかけて段階的に厚くなっていることから、高周波信号が線路導体3の露出した部位から立壁部5の端部の薄い誘電体で覆われた部位を経て立壁部5の中央の厚い誘電体で覆われた部位を伝送することとなり、高周波信号の伝送モードが急激に変化して損失が生じるのを有効に抑制することができる。
【0048】
立壁部5に形成した段差は、好ましくは、図7に示すように溝5aと一体になって形成されているのがよい。この構成により、側部導体層5dを導体層5bと同時に形成することができ、入出力端子9を効率よく作製することができる。
【0049】
次に、本発明のパッケージについて図5に基づいて説明する。同図は本発明のパッケージについて実施の形態の一例を示す斜視図であり、21は基体、22は枠体、23は取付部である。
【0050】
本発明のパッケージは、上面に半導体素子25が載置される載置部21aを有する基体21と、この基体21の上面に載置部21aを囲繞するように取着され、側部に貫通孔または切欠きから成る入出力端子9の取付部23が形成された枠体22と、取付部23に嵌着された入出力端子9とを具備している。
【0051】
これにより、線路導体3を伝送する高周波信号の伝送効率を良好なものとできるとともに、入出力端子9にクラックが発生するのを防止してパッケージ内部を気密に保持することができる。その結果、半導体素子25を長期にわたり正常かつ安定に作動させることができる信頼性の高いパッケージとなる。
【0052】
基体21は、上面にIC,LSI,半導体レーザ(LD),フォトダイオード(PD)等の半導体素子25を載置するための載置部21aを有している。図5では載置部21aを凹部とした例を示したが、基体21を平板状としてその上面に載置部21aを形成してもよい。
【0053】
この基体21は、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金,Cu−W合金等の金属、またはAl質セラミックス,AlN質セラミックス,3Al・2SiO質セラミックス等の誘電体からなる。基体21が金属からなる場合、そのインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工法を施すことによって所定形状に製作される。一方、基体21がセラミックスから成る場合、その原料粉末に適当な有機バインダや溶剤等を添加混合しペースト状と成し、このペーストをドクターブレード法やカレンダーロール法等によってセラミックグリーンシートと成し、しかる後、セラミックグリーンシートに適当な打ち抜き加工を施し、これを複数枚積層し約1600℃の高温で焼成することによって作製される。
【0054】
なお、基体21が金属からなる場合、その表面に耐蝕性に優れ、かつろう材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と厚さ0.5〜5μmの金(Au)層とを順次メッキ法により被着させておくのがよい。これにより、基体21が酸化腐蝕するのを有効に防止できるとともに、基体21上面の載置部21aに半導体素子25を強固に接着固定させることができる。一方、基体21がセラミックスから成る場合、載置部21aに、W,Mo等のメタライズ層を下地層として形成し、この表面に耐蝕性に優れ、かつろう材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と厚さ0.5〜5μmのAu層とを順次メッキ法により被着させておくのがよい。これにより、載置部21aに半導体素子25を強固に接着固定することができる。
【0055】
また、枠体22は、基体21上に載置部21aを囲繞するようにAgろう、Ag−Cuろう材等の高融点金属ろう材により接合されており、基体21と同様に誘電体または金属から成る。また、枠体22の側部には、貫通孔または切欠きから成る入出力端子9の取付部23が形成されている。なお、図5に示すように、基体21にも同様の切欠きを設けて入出力端子9の取付部23の一部が形成されていてもよい。
【0056】
取付部23は、枠体22および基体21が誘電体からなる場合、内面にメタライズ層等の導電層が形成されている。この導電層は、基体21および/または枠体22に被着形成された接地導体に接続されて接地されている。
【0057】
取付部23には本発明の入出力端子9がAgろう、Ag−Cuろう材等の高融点金属ろう材により嵌着接合されている。そして、入出力端子9の下部接地導体2、上部接地導体6および側面接地導体7は、枠体22および基体21が誘電体からなる場合、取付部23の内面に形成された導電層に接続されることにより接地され、ケースグランドとなる。あるいは、枠体22および基体21が金属からなる場合、入出力端子9の下部接地導体2、上部接地導体6および側面接地導体7は、金属製の枠体22や基体21に接続されて接地され、ケースグランドとなる。また、入出力端子9の上部接地導体6は、図5に示すように枠体22の上面に取着されるFe−Ni−Co合金等の金属からなるシールリング24に接続されて接地され、ケースグランドとなっていてもよい。
【0058】
このような本発明のパッケージは、上記本発明の入出力端子9を具備していることから、高周波信号の誘電体損失を最小限に抑えて高周波信号の伝送損失を小さくした、良好な伝送特性を有するものとなる。
【0059】
そして、線路導体3を載置部21aに載置される半導体素子25の電極ならびに外部電気回路基板の配線導体にボンディングワイヤ,リボン,リード端子等(図示せず)を介して接続して、半導体素子25と外部電気回路基板とを電気的に接続する。次に、必要に応じて枠体22の上面にシールリング24を鉛(Pb)−錫(Sn)半田やAu−Sn半田等の低融点金属ろう材やAg−Cuろう材等の高融点金属ろう材等により取着し、シールリング24の上面にFe−Ni−Co合金等から成る蓋体26を半田付けやシームウエルド法等の溶接により取着することにより、半導体素子25がパッケージ内部に収納された製品としての半導体装置となる。
【0060】
また、図5の実施の形態では枠体22の対向する側部に入出力端子9を2つ設けているが、必要に応じて他の側部に設けてもよく、または1つの側部に複数の入出力端子9を取り付けてもよく、この場合取付部23を1つの側部に複数設けて入出力端子9を並列的に複数取り付ければよい。
【0061】
このような本発明の半導体装置は、上記本発明の入出力端子9を具備していることから、高周波信号の誘電体損失を最小限に抑えて高周波信号の伝送損失を小さくし、伝送効率を良好に保持することができる。
【0062】
【実施例】
本発明の入出力端子9の実施例を以下に説明する。
【0063】
図1の入出力端子9を以下のように構成した。先ず、焼成後の比誘電率が9.5となるAl質セラミックグリーンシートに打ち抜き加工を施し、Wペーストを印刷塗布することにより下部接地導体2、線路導体3、同一面接地導体4、導体層5b、上部接地導体6、側面接地導体7、内層接地導体8となるメタライズ層を形成するためのWペースト層を形成した。
【0064】
そして、これらを積層し、還元雰囲気中で約1600℃の温度で焼成することにより、縦1.2mm×横3.7mm×高さ1.24mmの直方体の立壁部5と縦3.2mm×横3.7mm×高さ0.76mmの直方体の平板部1とを有した入出力端子9を作製した。
【0065】
なお、平板部1の上面の中央部には縦方向に一辺から他辺にかけて幅が0.5mmの線路導体3が形成され、そして線路導体3の両側に0.35mm離して線路導体3と平行な幅が1.25mmの同一面接地導体4が形成され、立壁部5の両側面には線路導体3の両側の0.6mm離れた位置に上側から下側にかけて幅0.4mm×深さ0.2mmの溝5aが4箇所形成され、かつ平板部1上面(立壁部5下側)から1mm上側の位置に内層接地導体8が設けられたサンプルを作製した。これをサンプルPとした。
【0066】
また、図7の構成のサンプルQをサンプルPと同様に作製した。なお、このサンプルQでは、内層接地導体8より上側の立壁部5に、立壁部5の側面に形成された2つの溝5aの間にわたって側面と上面との間に内層接地導体8が露出するように深さ0.2mmの段差が形成されており、この段差の側面に上部接地導体6,導体層5bおよび内層接地導体8に接続された側部導体層5dが形成されている。この側部導体層5dを設けること以外はサンプルPと同様とした。
【0067】
また、比較例として図6の構成のサンプルRをサンプルPと同様に作製した。なお、このサンプルRは、溝5a、導体層5b、内層接地導体8を設けないこと以外はサンプルPと同様とした。
【0068】
そして、線路導体3に1〜40GHzの高周波信号を入力してその反射損失を測定した結果を図8に示す。図8より、サンプルP,QはサンプルRに比べて1〜40GHzの全周波数帯域で反射損失が改善され、1〜40GHz帯域の高周波信号を入出力する場合に反射損失を有効に低減できることがわかった。特に、サンプルQでは10GHz以上の高周波帯域で反射損失を大幅に低減できることが判った。
【0069】
なお、本発明は上記実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。
【0070】
【発明の効果】
本発明の入出力端子は、上面に一辺から対向する他辺にかけて形成された線路導体およびこの線路導体の両側に等間隔をもって形成された同一面接地導体を有する誘電体から成る四角形状の平板部と、この平板部の上面に線路導体の一部および同一面接地導体の一部を間に挟んで接合され、上面に上部接地導体が形成された誘電体から成る直方体状の立壁部とを具備した入出力端子において、立壁部は、内部に内層接地導体が形成されているとともに、線路導体の線路方向に直交する一対の側面で2つの同一面接地導体に接する部位に、それぞれ内面に導体層が形成された溝が上下面にわたって形成されており、内層接地導体が導体層を介して上部接地導体および同一面接地導体に電気的に接続されていることから、線路導体の線路方向に直交する立壁部の側面で電磁遮蔽効果が得られ、線路導体の線路方向に直交する立壁部の側面の下端が接する線路導体の部分、つまり線路導体のマイクロストリップ線路とストリップ線路との境界部において、この電磁遮蔽効果により、線路導体を伝送する高周波信号が立壁部の内部に放射されても、その放射された高周波信号の成分は2つの導体層と内層接地導体とで囲まれる領域内に閉じ込められることにより損失が有効に抑えられる。その結果、立壁部の幅や厚みを小さくせずに熱歪みに耐え得る大きさの入出力端子としながら、高周波信号を効率よく伝送させることができる。
【0071】
また、導体層および内層接地導体により線路導体に対する接地電位をより強化することができる。その結果、線路導体を伝送する高周波信号の伝送モードがマイクロストリップ線路のモードからストリップ線路のモードに、またはストリップ線路のモードからマイクロストリップ線路のモードに変化しても、高周波信号の反射損失や透過損失をより有効に抑制することができ、高周波信号を極めて効率良く入出力させることができる。
【0072】
本発明の半導体素子収納用パッケージは、上面に半導体素子が載置される載置部を有する基体と、この基体の上面に載置部を囲繞するように取着され、側部に貫通孔または切欠きから成る入出力端子の取付部が形成された枠体と、取付部に嵌着された上記構成の入出力端子とを具備していることにより、線路導体を伝送する高周波信号の伝送効率を良好なものとできるとともに、入出力端子にクラックが発生するのを防止して半導体素子収納用パッケージ内部を気密に保持することができる。その結果、半導体素子を長期にわたり正常かつ安定に作動させることができる信頼性の高い半導体素子収納用パッケージとなる。
【0073】
本発明の半導体素子収納用パッケージは、立壁部の側面に形成された2つの溝の間にわたって側面と上面との間に内層接地導体が露出するように段差が形成されており、この段差の側面に上部接地導体と導体層と内層接地導体とに接続された側部導体層が形成されていることから、側部導体層によって立壁部の側面をより覆うことができ、線路導体に対してより電磁遮蔽効果を向上させることができる。また、側部導体層によって導体層と上部接地導体との導電性が向上し、内層接地導体および導体層の接地電位を半導体素子収納用パッケージのケースグランドとなる枠体に接合される上部接地導体の接地電位に近づけることができ、線路導体に対する接地をより強化することができる。その結果、高周波信号をより効率よく伝送させることができる。
【0074】
また、立壁部の厚さが、溝が形成された端部から中央にかけて段階的に厚くなっていることから、高周波信号が線路導体の露出した部位から立壁部の端部の薄い誘電体で覆われた部位を経て立壁部の中央の厚い誘電体で覆われた部位を伝送することとなり、高周波信号の伝送モードが急激に変化して損失が生じるのを有効に抑制することができる。
【0075】
本発明の半導体装置は、上記構成の半導体素子収納用パッケージと、載置部に載置固定されるとともに入出力端子に電気的に接続された半導体素子と、枠体の上面に取着された蓋体とを具備していることにより、上記本発明の半導体素子収納用パッケージを用いた、高周波信号の伝送性に優れるとともに気密信頼性に優れたものとなる。
【図面の簡単な説明】
【図1】本発明の入出力端子について実施の形態の例を示す斜視図である。
【図2】図1の入出力端子における溝を示す要部拡大断面図である。
【図3】図1の入出力端子のX−X’線における断面図である。
【図4】本発明の入出力端子について実施の形態の他の例を示す斜視図である。
【図5】本発明の半導体素子収納用パッケージについて実施の形態の例を示す分解斜視図である。
【図6】従来の入出力端子の斜視図である。
【図7】本発明の入出力端子について実施の形態の他の例を示す斜視図である。
【図8】従来の入出力端子と本発明の入出力端子について高周波信号の反射損失を測定した結果のグラフである。
【符号の説明】
1:平板部
3:線路導体
4:同一面接地導体
5:立壁部
5a:溝
5b:導体層
5c:線路導体の線路方向に直交する側面
5d:側部導体層
6:上部接地導体
8:内層接地導体
9:入出力端子
21:基体
22:枠体
23:取付部
25:半導体素子
26:蓋体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an input / output terminal used for a signal input / output unit of a semiconductor element housing package for housing a semiconductor element operated by a high frequency signal, a semiconductor element housing package, and a semiconductor device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a semiconductor element housing package (hereinafter, also referred to as a package) for housing a semiconductor element using a high frequency signal such as a microwave band or a millimeter wave band electrically connects a semiconductor element to an external electric circuit board. Input / output terminals are provided. This input / output terminal is shown in a perspective view in FIG.
[0003]
In the figure, 101 is an alumina (Al) 2 O 3 ) -Based ceramics, aluminum nitride (AlN) -based ceramics, mullite (3Al 2 O 3 ・ 2SiO 2 ) Is a rectangular flat plate portion made of a dielectric material such as a ceramic material. It has a line conductor 103 and a coplanar ground conductor 104 made of a metallized layer of W, Mo, etc., formed on both sides of the line conductor 103 at equal intervals. On the lower surface of the flat plate portion 101, a lower ground conductor 102 made of the same metallized layer as the line conductor 103 is provided on the entire lower surface.
[0004]
The upper surface of the flat plate portion 101 is joined with a part of the line conductor 103 interposed therebetween and has an upper ground conductor 106 on the upper surface. 2 O 3 Ceramics, AlN ceramics, 3Al 2 O 3 ・ 2SiO 2 A rectangular parallelepiped standing wall 105 made of a dielectric material such as porous ceramics is provided. Thus, the line conductor 103 has a microstrip line that is not sandwiched between the flat plate portion 101 and the upright wall portion 105 and a stripline that is sandwiched between the flat plate portion 101 and the upright wall portion 105. It will be. Further, a side surface ground conductor 107 made of the same metallized layer as the line conductor 103 is formed on a side surface of the flat plate portion 101 and the vertical wall portion 105 parallel to the line direction of the line conductor 103.
[0005]
Also, on both sides of the line conductor 103, the same-plane ground conductors 104 are formed at equal intervals, and between the line conductor 103 and the same-plane ground conductor 104 according to the frequency of the high-frequency signal transmitted through the line conductor 103. By appropriately adjusting the interval, the line conductor 103 can be matched to the characteristic impedance. As described above, by matching the line conductor 103 to the characteristic impedance, the transmission efficiency of the high-frequency signal transmitted through the line conductor 103 can be improved.
[0006]
Such an input / output terminal 109 composed of the flat plate portion 101 and the upright wall portion 105 is provided in a package, and can hermetically seal the inside and outside of the package and seal the inside thereof (for example, see the following patent). Reference 1).
[0007]
The package to which the input / output terminal 109 is attached is a so-called metal in which the input / output terminal 109 is fitted to a mounting portion formed of a notch or a through hole provided in a metal frame which is one of the constituent members. There are a wall type and a so-called ceramic wall type in which an input / output terminal portion as a signal transmission line is integrally provided on a ceramic frame, and is appropriately selected and used depending on the application.
[0008]
[Patent Document 1]
JP 2002-184888 A
[0009]
[Problems to be solved by the invention]
However, in the above-mentioned conventional input / output terminal 109, as the frequency of the high-frequency signal transmitted through the line conductor 103 becomes higher, a portion of the line conductor 103 where the lower end of the side surface of the standing wall portion 103 orthogonal to the line direction of the line conductor 103 contacts. That is, there is a problem that a high-frequency signal is radiated into the standing wall portion 105 at the boundary between the microstrip line and the strip line of the line conductor 103, and the transmission efficiency of the high-frequency signal is likely to decrease. In particular, when the high-frequency signal transmitted through the line conductor 103 is 10 GHz or more, the above problem has been remarkable.
[0010]
Therefore, it is conceivable to reduce the width and thickness of the standing wall 105 to reduce the high-frequency signal radiated into the standing wall 105. However, the input / output terminal 109 has a side surface and an upper surface parallel to the line direction of the line conductor 103 provided on the package frame or the upper surface of the frame via a brazing material such as silver (Ag) -copper (Cu) brazing. When the upright wall portion 105 having a reduced width or thickness is used, the upright wall portion is likely to be thermally strained due to a difference in thermal expansion between the frame and the seal ring. There was a case where damage such as cracks occurred in 105. As a result, the inside of the package cannot be airtightly sealed, and when the damage reaches the flat plate portion 101, the line conductor 103 is disconnected and a high-frequency signal is transmitted between the semiconductor element and the external electric circuit board. There has been a problem that it is no longer possible.
[0011]
Therefore, the present invention has been completed in view of the above-mentioned problems, and an object of the present invention is to provide a semiconductor device housed in a package at an input / output terminal for transmitting a high-frequency signal, by radiating and reflecting a high-frequency signal by a line conductor. The transmission efficiency of high-frequency signals between the semiconductor element and the external electric circuit board is improved by preventing the occurrence of transmission loss such as that described above, and the package is housed in a package while maintaining good airtight reliability inside. An object of the present invention is to enable a semiconductor element to operate normally and stably for a long period of time.
[0012]
[Means for Solving the Problems]
The input / output terminal of the present invention is a square flat plate portion made of a dielectric having a line conductor formed from one side to the other side opposite to the upper surface and a ground conductor formed on both sides of the line conductor at equal intervals. And a rectangular parallelepiped standing wall portion formed of a dielectric having a part of the line conductor and a part of the same-plane ground conductor interposed therebetween on the upper surface of the flat plate portion and an upper ground conductor formed on the upper surface. In the input / output terminal provided with, the upright wall portion has an inner layer ground conductor formed therein, and a portion in contact with the two same-plane ground conductors on a pair of side surfaces orthogonal to the line direction of the line conductor, Grooves each having a conductor layer formed on the inner surface are formed over the upper and lower surfaces, and the inner-layer ground conductor is electrically connected to the upper ground conductor and the same-plane ground conductor via the conductor layer. And wherein the door.
[0013]
In the input / output terminal of the present invention, the standing wall portion has an inner-layer ground conductor formed therein, and a pair of side surfaces orthogonal to the line direction of the line conductor that are in contact with the two same-plane ground conductors. Since the groove in which the conductor layer is formed is formed over the upper and lower surfaces, and the inner-layer ground conductor is electrically connected to the upper ground conductor and the same-plane ground conductor via the conductor layer, An electromagnetic shielding effect (shielding effect) is obtained on the side surface of the vertical wall portion that is orthogonal to the line conductor portion where the lower end of the side surface of the vertical wall portion that is orthogonal to the line direction of the line conductor contacts, that is, the microstrip line and the strip line of the line conductor. Due to this electromagnetic shielding effect, the high frequency signal transmitted through the line conductor is radiated into the standing wall portion at the boundary of Loss by being confined within the region surrounded by the layer ground conductor is effectively suppressed. As a result, high-frequency signals can be transmitted efficiently while the input and output terminals are large enough to withstand thermal distortion without reducing the width and thickness of the vertical wall.
[0014]
Further, the ground potential with respect to the line conductor can be further enhanced by the conductor layer and the inner-layer ground conductor. As a result, even if the transmission mode of the high-frequency signal transmitted through the line conductor changes from the mode of the microstrip line to the mode of the strip line, or from the mode of the strip line to the mode of the microstrip line, the reflection loss and transmission of the high-frequency signal are reduced. Loss can be suppressed more effectively, and a high-frequency signal can be input and output very efficiently.
[0015]
In the semiconductor device housing package of the present invention, preferably, the upright wall portion has a step so that the inner layer ground conductor is exposed between the side surface and the upper surface over the two grooves formed in the side surface. And a side conductor layer connected to the upper ground conductor, the conductor layer, and the inner-layer ground conductor is formed on a side surface of the step.
[0016]
In the package for housing a semiconductor element of the present invention, a step is formed so that an inner layer ground conductor is exposed between the side surface and the upper surface between two grooves formed on the side surface of the upright wall portion. Since the side conductor layer connected to the upper ground conductor, the conductor layer, and the inner layer ground conductor is formed in the upper conductor, the side conductor layer can further cover the side surface of the standing wall, and the The electromagnetic shielding effect can be improved. Further, the conductivity of the conductor layer and the upper ground conductor is improved by the side conductor layer, and the ground potential of the inner ground conductor and the ground potential of the conductor layer are joined to a frame body serving as a case ground of the package for housing the semiconductor element. , And the ground potential with respect to the line conductor can be further strengthened. As a result, a high-frequency signal can be transmitted more efficiently.
[0017]
In addition, since the thickness of the standing wall is gradually increased from the end where the groove is formed to the center, the high-frequency signal is covered with a thin dielectric at the end of the standing wall from the exposed portion of the line conductor. The transmission of the portion covered with the thick dielectric at the center of the standing wall portion through the broken portion allows the loss of the transmission mode of the high-frequency signal to be abruptly changed and the loss to be effectively suppressed.
[0018]
A semiconductor device housing package according to the present invention is provided with a base having a mounting portion on which a semiconductor element is mounted on an upper surface, and attached to the upper surface of the base so as to surround the mounting portion, and a through hole is formed in a side portion. Alternatively, there is provided a frame body in which a mounting portion of the input / output terminal formed of a notch is formed, and the input / output terminal having the above configuration fitted to the mounting portion.
[0019]
The semiconductor device housing package of the present invention can improve the transmission efficiency of the high-frequency signal transmitted through the line conductor and prevent the input / output terminals from cracking by the above configuration. The inside can be kept airtight. As a result, a highly reliable semiconductor element housing package capable of operating the semiconductor element normally and stably for a long period of time is provided.
[0020]
A semiconductor device according to the present invention includes a semiconductor element housing package having the above-described configuration, a semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal, and a semiconductor device mounted on an upper surface of the frame. And a lid attached thereto.
[0021]
According to the semiconductor device of the present invention having the above configuration, the semiconductor device housing package of the present invention is excellent in high-frequency signal transmission and airtight reliability.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The input / output terminal, the package for accommodating the semiconductor element, and the semiconductor device of the present invention will be described in detail below. FIG. 1 is a perspective view showing an example of an embodiment of an input / output terminal of the present invention. In the figure, 1 is a flat plate portion, 3 is a line conductor, 4 is a ground conductor on the same plane, 5 is a standing wall portion, 6 is an upper ground conductor, 8 is an inner layer ground conductor, and 9 is an input / output terminal.
[0023]
The input / output terminal 9 of the present invention is a square made of a dielectric having a line conductor 3 formed from one side to the other side opposite to the upper surface, and a same-plane ground conductor 4 formed on both sides of the line conductor 3 at equal intervals. A flat plate portion 1 having a shape, and a dielectric member having an upper grounding conductor 6 formed on the upper surface thereof, which is joined to the upper surface of the flat plate portion 1 with a part of the line conductor 3 and a part of the same plane ground conductor 4 interposed therebetween. And a rectangular wall 5 having a rectangular parallelepiped shape.
[0024]
The flat plate portion 1 is made of Al 2 O 3 Ceramics, AlN ceramics, 3Al 2 O 3 ・ 2SiO 2 It has a square shape made of a dielectric such as porous ceramics.
[0025]
The line conductor 3 and the same-plane ground conductor 4 are formed of a metallized layer such as W or Mo formed on the upper surface of the flat plate portion 1. In addition, a lower ground conductor 2 made of the same metallized layer as the line conductor 3 is provided on the entire lower surface of the flat plate portion 1.
[0026]
The standing wall 5 is made of Al 2 O 3 Ceramics, AlN ceramics, 3Al 2 O 3 ・ 2SiO 2 It is a rectangular parallelepiped made of a dielectric material such as porous ceramics, and is joined to the upper surface of the flat plate portion 1 with a part of the line conductor 3 and a part of the same-surface ground conductor 4 interposed therebetween.
[0027]
In addition, a lower ground conductor 2 and an upper ground conductor 6 made of the same metallized layer as the line conductor 3 are provided on the entire lower surface of the flat plate portion 1 and the upper surface of the vertical wall portion 5, respectively. Further, on the side surface of the flat plate portion 1 and the side surface of the standing wall portion 5, a side ground conductor 7 made of the same metallized layer as the line conductor 3 is formed. The lower grounding conductor 2, the upper grounding conductor 6, the side grounding conductor 7, and the same grounding conductor 4 strengthen the grounding with respect to the line conductor 3, thereby improving the transmission efficiency of the line conductor 3 for transmitting a high-frequency signal.
[0028]
Further, the standing wall portion 5 has an inner-layer ground conductor 8 formed therein, and has a pair of side surfaces 5c orthogonal to the line direction of the line conductor 3 that are in contact with the two same-plane ground conductors 4. A groove 5a in which a layer 5b is formed is formed over the upper and lower surfaces, and the inner-layer ground conductor 8 is electrically connected to the upper ground conductor 6 and the same-plane ground conductor 4 via the conductor layer 5b.
[0029]
As a result, an electromagnetic shielding effect is obtained on the side surface 5c of the standing wall portion 5, and at the portion of the line conductor 3 where the lower end of the side surface 5c of the standing wall portion 5 contacts, that is, at the boundary between the microstrip line and the strip line of the line conductor 3, Due to this electromagnetic shielding effect, even if a high-frequency signal transmitted through the line conductor 3 is radiated into the inside of the standing wall portion 5, a component of the radiated high-frequency signal is surrounded by the two conductor layers 5 b and the inner-layer ground conductor 8. The loss is effectively suppressed by being confined inside. As a result, high-frequency signals can be efficiently transmitted while the input and output terminals 9 are large enough to withstand thermal distortion without reducing the width and thickness of the vertical wall 5.
[0030]
Further, the ground potential with respect to the line conductor 3 can be further enhanced by the conductor layer 5b and the inner-layer ground conductor 8. As a result, even if the transmission mode of the high-frequency signal transmitted through the line conductor 3 changes from the mode of the microstrip line to the mode of the strip line, or from the mode of the strip line to the mode of the microstrip line, the reflection loss of the high-frequency signal and the Transmission loss can be more effectively suppressed, and high-frequency signals can be input and output very efficiently.
[0031]
FIG. 2 shows an enlarged sectional view of the groove 5a. As shown in the figure, the width X of the groove 5a is preferably X = 0.3 to 1.5 mm, and the depth D is preferably D = 0.1 to 1 mm. In the portion where the lower end of 5c is in contact, even if a high-frequency signal transmitted at the boundary between the microstrip line and the strip line of the line conductor 3 is radiated into the standing wall 5, the radiated signal is radiated by the electromagnetic shielding effect of the groove 5a. The loss is effectively suppressed by confining the component of the high-frequency signal between the two conductor layers. In addition, the ground potential with respect to the line conductor 3 can be further strengthened at the lower end of the side surface 5c of the vertical wall portion 5, and the transmission mode of the high-frequency signal transmitted through the line conductor 3 changes from the microstrip line mode to the strip line mode or the strip line mode. Even if the mode changes to the mode of the microstrip line, it is possible to more effectively suppress the occurrence of reflection loss and transmission loss of the high-frequency signal.
[0032]
In the case of X <0.3 mm, the width of the groove 5a is too small, so that it is difficult to punch the ceramic green sheet for forming the groove 5a, and it is difficult to enhance the ground potential with respect to the line conductor 3 and to perform electromagnetic shielding. The effect tends to decrease. In the case of X> 1.5 mm, the width of the groove 5a is too large, and the corner of the standing wall 5 is easily chipped. In the case of D <0.1 mm, since the groove 5a is shallow, it is difficult to punch out the ceramic green sheet for forming the groove 5a, and it is difficult to enhance the ground potential with respect to the line conductor 3, so that the electromagnetic shielding effect is obtained. Also tends to decrease. In the case of D> 1 mm, the groove 5a is too deep and the vertical wall 5 between the opposing grooves 5a becomes thin, and when the input / output terminal 9 is joined to the package, the vertical wall 5 is liable to be damaged such as a crack. .
[0033]
The cross-sectional shape of the groove 5a is various shapes such as a square shape, a semicircle shape, and a U-shape as shown in FIG. Among them, a U-shaped one is preferable from the viewpoint that the groove 5a can be deepened to enhance the electromagnetic shielding effect while maintaining the strength of the standing wall portion 5.
[0034]
FIG. 3 is a cross-sectional view of the input / output terminal 9 taken along line XX ′. As shown in the figure, the distance H between the line conductor 3 and the inner-layer ground conductor 8 is preferably H = 0.2 to 0.7 mm. 5 can be effectively suppressed from being radiated upward. Further, by being electrically connected to the conductor layer 5b formed in the groove 5a, the ground potential with respect to the strip line is further strengthened, and reflection loss and transmission loss of a high-frequency signal transmitted through the strip line are effectively generated. Can be suppressed.
[0035]
In the case of H <0.2 mm, the distance between the line conductor 3 and the inner layer ground conductor 8 is too short, and in order to perform impedance matching, it is necessary to reduce the capacitance component. In other words, a problem that the formation of the line conductor 3 becomes difficult is likely to occur. Further, since it is necessary to reduce the thickness of the ceramic green sheet between the line conductor 3 and the inner-layer ground conductor 8, there arises a problem that the ceramic green sheet bends when the ceramic green sheets are laminated to form the standing wall portion 5. It will be easier. When H> 0.7 mm, the distance between the line conductor 3 and the inner-layer ground conductor 8 increases, so that it is difficult to obtain a sufficient electromagnetic shielding effect.
[0036]
Such an input / output terminal 9 is manufactured as follows. For example, Al 2 O 3 When made of porous ceramics, aluminum oxide and silicon oxide (SiO 2 ), Magnesium oxide (MgO), calcium oxide (CaO), and other suitable raw material powders and an appropriate organic binder, plasticizer, solvent, and the like are added and mixed to form a slurry. A plurality of ceramic green sheets are obtained by a tape forming technique such as a doctor blade method and a calender roll method, which are well known in the art.
[0037]
Next, a metal paste obtained by adding an appropriate organic binder, a plasticizer, a solvent, and the like to a high melting point metal powder such as W or Mo to the ceramic green sheet is mixed with a thick film forming technique such as a screen printing method. By printing and applying, a metallized layer serving as the lower ground conductor 2, the line conductor 3, the same-plane ground conductor 4, the upper ground conductor 6, and the inner-layer ground conductor 8 is formed in a predetermined pattern. Also, a groove 5a is formed at a desired position by punching a ceramic green sheet serving as the upright wall portion 5 with a mold or the like, and a high melting point metal such as W or Mo serving as the conductor layer 5b is formed on the inner surface of the groove 5a. A metal paste obtained by adding and mixing an appropriate organic binder, a plasticizer, a solvent, and the like to the powder is applied.
[0038]
Thereafter, a plurality of ceramic green sheets are laminated, and a metal paste obtained by adding and mixing an appropriate organic binder, a plasticizer, a solvent, and the like to a high melting point metal powder such as W or Mo to be the side ground conductor 7 is applied. Then, it is manufactured by firing at a temperature of about 1600 ° C. in a reducing atmosphere.
[0039]
The thickness of the conductor layer 5b is preferably 5 to 30 μm, and if it is less than 5 μm, it is difficult to form the conductor layer 5b due to metallization of W or the like, and the conductor layer 5b having a uniform thickness cannot be formed. It becomes difficult to enhance the ground potential, and the electromagnetic shielding effect is also likely to be reduced. On the other hand, if the thickness exceeds 30 μm, the stress applied to the standing wall 5 due to the difference in thermal expansion between the conductor layer 5b and the standing wall 5 increases, and the standing wall 5 is easily damaged.
[0040]
The thickness of the inner-layer ground conductor 8 is preferably 5 to 20 μm. If the thickness is less than 5 μm, it is difficult to form the inner-layer ground conductor 8 due to metallization of W or the like, and the inner-layer ground conductor 8 having a uniform thickness cannot be formed. It becomes difficult to enhance the ground potential with respect to the conductor 3, and the electromagnetic shielding effect tends to decrease. On the other hand, if the thickness exceeds 20 μm, the stress applied to the standing wall 5 due to the difference in thermal expansion between the inner-layer ground conductor 8 and the standing wall 5 increases, and the standing wall 5 is easily damaged.
[0041]
As shown in FIG. 4, the input / output terminals 9 of the present invention are formed on the inner surface of the flat plate portion 1 at a pair of side surfaces 1 c orthogonal to the line direction of the line conductor 3 and in contact with the two same-plane ground conductors 4. The groove 1a in which the conductor layer 1b is formed is formed over the upper and lower surfaces, and the lower ground conductor 2 and the same-plane ground conductor 4 may be electrically connected via the conductor layer 1b. In this case, the groove 1a is formed at a desired position by punching a ceramic green sheet to be the flat plate portion 1 using a die or the like. Then, a metal paste obtained by adding a suitable organic binder, a plasticizer, a solvent, and the like to the high melting point metal powder such as W or Mo to be the conductor layer 1b is applied to the groove 1a and baked, whereby the conductor layer 1b is formed. Is formed.
[0042]
By forming the conductor layer 1b in the groove 1a, the ground potential for the line conductor 3 is strengthened. As a result, the line conductor 3 is easily matched by the characteristic impedance, and a bonding wire or the like for electrically connecting to the semiconductor element or a lead terminal or the like for electrically connecting to the external electric circuit is connected to the end of the line conductor 3. Even if the connection is made, it is possible to effectively prevent the occurrence of reflection loss and transmission loss of the high-frequency signal at these connection portions, and to improve the transmission characteristics of the high-frequency signal transmitted through the line conductor 3.
[0043]
The cross-sectional shape of the groove 1a has various shapes such as a square shape, a semicircle shape, and a U-shape, like the groove 5a.
[0044]
Note that the standing wall portion 5 may be formed with a side conductor layer 5d connected to the upper ground conductor 6 and the conductor layer 5b across the two grooves 5a formed on the side surface. Thereby, the side surface of the standing wall portion 5 can be further covered by the side conductor layer 5d, and the electromagnetic shielding effect on the line conductor 3 can be further improved. Further, the ground potential of the inner-layer ground conductor 8 and the conductor layer 5b can be made closer to the ground potential of the upper ground conductor 6 joined to the frame serving as the case ground of the package, and the ground to the line conductor 3 can be further strengthened. it can.
[0045]
Further, the input / output terminal 9 of the present invention is preferably such that the inner-layer ground conductor 8 is exposed between the side surface and the upper surface over two grooves 5a formed on the side surface of the upright wall 5 as shown in FIG. Preferably, a side conductor layer 5d connected to the upper ground conductor 5d, the conductor layer 5b, and the inner-layer ground conductor 8 is formed on the side surface of the step.
[0046]
Thereby, the side surface of the standing wall portion 5 can be further covered by the side conductor layer 5d, and the electromagnetic shielding effect on the line conductor 3 can be further improved. In addition, the conductivity of the conductor layer 5b and the upper ground conductor 6 is improved by the side conductor layer 5d, and the ground potential of the inner layer ground conductor 8 and the conductor layer 5b is joined to the frame which becomes the case ground of the package. The potential of the conductor 6 can be approximated to the ground potential, and the ground to the line conductor 3 can be further strengthened. As a result, a high-frequency signal can be transmitted more efficiently.
[0047]
Further, since the thickness of the standing wall 5 is gradually increased from the end where the groove 5 a is formed to the center, the high frequency signal is thin from the exposed portion of the line conductor 3 to the end of the standing wall 5. The transmission is performed through the portion covered with the thick dielectric at the center of the standing wall portion 5 through the portion covered with the dielectric, thereby effectively suppressing loss due to a sudden change in the transmission mode of the high-frequency signal. Can be.
[0048]
The step formed in the upright wall portion 5 is preferably formed integrally with the groove 5a as shown in FIG. With this configuration, the side conductor layer 5d can be formed simultaneously with the conductor layer 5b, and the input / output terminal 9 can be efficiently manufactured.
[0049]
Next, the package of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing an example of an embodiment of the package of the present invention, wherein 21 is a base, 22 is a frame, and 23 is a mounting portion.
[0050]
The package of the present invention has a base 21 having a mounting portion 21a on which a semiconductor element 25 is mounted on an upper surface, and is mounted on the upper surface of the base 21 so as to surround the mounting portion 21a. Alternatively, the frame 22 includes a frame 22 on which a mounting portion 23 of the input / output terminal 9 formed of a notch is formed, and the input / output terminal 9 fitted to the mounting portion 23.
[0051]
Thereby, the transmission efficiency of the high-frequency signal transmitted through the line conductor 3 can be improved, and the occurrence of cracks in the input / output terminals 9 can be prevented and the inside of the package can be kept airtight. As a result, a highly reliable package capable of operating the semiconductor element 25 normally and stably for a long time is obtained.
[0052]
The base 21 has a mounting portion 21a on the upper surface for mounting a semiconductor element 25 such as an IC, an LSI, a semiconductor laser (LD), or a photodiode (PD). FIG. 5 shows an example in which the mounting portion 21a is formed as a concave portion, but the mounting portion 21a may be formed on the upper surface of the base 21 in a flat plate shape.
[0053]
The base 21 is made of a metal such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy, a Cu-W alloy, or Al. 2 O 3 Ceramics, AlN ceramics, 3Al 2 O 3 ・ 2SiO 2 It is made of a dielectric such as porous ceramics. When the base 21 is made of metal, the ingot is formed into a predetermined shape by subjecting the ingot to a conventionally known metal working method such as rolling or punching. On the other hand, when the base 21 is made of ceramics, an appropriate organic binder, a solvent, and the like are added to the raw material powder and mixed to form a paste. The paste is formed into a ceramic green sheet by a doctor blade method, a calendar roll method, or the like. Thereafter, the ceramic green sheet is produced by subjecting the ceramic green sheet to an appropriate punching process, laminating a plurality of the sheets, and firing at a high temperature of about 1600 ° C.
[0054]
When the base 21 is made of a metal, a metal having excellent corrosion resistance on the surface and excellent wettability with a brazing material, specifically, a Ni layer having a thickness of 0.5 to 9 μm and a thickness of 0.5 to 9 μm are formed. It is preferable that a 5 μm gold (Au) layer is sequentially applied by a plating method. Thus, the base 21 can be effectively prevented from being oxidized and corroded, and the semiconductor element 25 can be firmly adhered and fixed to the mounting portion 21a on the top of the base 21. On the other hand, when the base 21 is made of ceramics, a metallized layer of W, Mo, or the like is formed as an underlayer on the mounting portion 21a, and a metal having excellent corrosion resistance and excellent wettability with the brazing material is formed on the surface. Specifically, it is preferable that a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 5 μm are sequentially deposited by plating. Thereby, the semiconductor element 25 can be firmly adhered and fixed to the mounting portion 21a.
[0055]
The frame 22 is joined to the base 21 with a high-melting metal brazing material such as Ag brazing or Ag-Cu brazing material so as to surround the mounting portion 21a. Consists of At the side of the frame 22, a mounting portion 23 for the input / output terminal 9 formed of a through hole or a notch is formed. As shown in FIG. 5, a similar notch may be provided in the base 21 to form a part of the mounting portion 23 of the input / output terminal 9.
[0056]
When the frame 22 and the base 21 are made of a dielectric material, the mounting portion 23 has a conductive layer such as a metallized layer formed on the inner surface. This conductive layer is connected to a ground conductor formed on the base 21 and / or the frame 22 and grounded.
[0057]
The input / output terminal 9 of the present invention is fitted and joined to the mounting portion 23 with a high melting point metal brazing material such as Ag brazing or Ag-Cu brazing material. When the frame 22 and the base 21 are made of a dielectric, the lower ground conductor 2, the upper ground conductor 6, and the side ground conductor 7 of the input / output terminal 9 are connected to a conductive layer formed on the inner surface of the mounting portion 23. Grounding, and becomes a case ground. Alternatively, when the frame 22 and the base 21 are made of metal, the lower ground conductor 2, the upper ground conductor 6, and the side ground conductor 7 of the input / output terminal 9 are connected to the metal frame 22 and the base 21 and grounded. , Which becomes the case ground. In addition, the upper ground conductor 6 of the input / output terminal 9 is connected to a seal ring 24 made of a metal such as an Fe—Ni—Co alloy attached to the upper surface of the frame body 22 as shown in FIG. It may be a case ground.
[0058]
Since such a package of the present invention includes the input / output terminal 9 of the present invention, the transmission loss of the high-frequency signal is reduced by minimizing the dielectric loss of the high-frequency signal. It becomes what has.
[0059]
Then, the line conductor 3 is connected to the electrodes of the semiconductor element 25 mounted on the mounting portion 21a and the wiring conductors of the external electric circuit board via bonding wires, ribbons, lead terminals, etc. (not shown), and The element 25 is electrically connected to an external electric circuit board. Next, if necessary, a seal ring 24 is formed on the upper surface of the frame 22 by using a low-melting metal brazing material such as lead (Pb) -tin (Sn) solder or Au-Sn solder, or a high-melting metal such as Ag-Cu brazing material. The semiconductor element 25 is attached to the inside of the package by attaching with a brazing material or the like and attaching a lid 26 made of an Fe-Ni-Co alloy or the like to the upper surface of the seal ring 24 by soldering or seam welding. It becomes a semiconductor device as a stored product.
[0060]
Further, in the embodiment of FIG. 5, two input / output terminals 9 are provided on opposite sides of the frame 22, but may be provided on other sides as necessary, or on one side. A plurality of input / output terminals 9 may be attached. In this case, a plurality of attachment portions 23 may be provided on one side, and a plurality of input / output terminals 9 may be attached in parallel.
[0061]
Since such a semiconductor device of the present invention includes the input / output terminal 9 of the present invention, the dielectric loss of the high-frequency signal is minimized, the transmission loss of the high-frequency signal is reduced, and the transmission efficiency is reduced. It can be held well.
[0062]
【Example】
An embodiment of the input / output terminal 9 of the present invention will be described below.
[0063]
The input / output terminal 9 of FIG. 1 was configured as follows. First, Al having a relative dielectric constant of 9.5 after firing. 2 O 3 The lower ground conductor 2, the line conductor 3, the same plane ground conductor 4, the conductor layer 5b, the upper ground conductor 6, the side ground conductor 7, the inner ground conductor A W paste layer for forming a metallized layer 8 was formed.
[0064]
Then, these are laminated and fired at a temperature of about 1600 ° C. in a reducing atmosphere to form a rectangular parallelepiped standing wall portion 5 having a length of 1.2 mm × 3.7 mm × 1.24 mm and a height of 3.2 mm × width. An input / output terminal 9 having a rectangular parallelepiped flat plate portion 1 having a size of 3.7 mm × a height of 0.76 mm was produced.
[0065]
A line conductor 3 having a width of 0.5 mm is formed in the center of the upper surface of the flat plate portion 1 from one side to the other side in the vertical direction, and is 0.35 mm apart on both sides of the line conductor 3 and parallel to the line conductor 3. A ground conductor 4 having a width of 1.25 mm is formed on both sides of the standing wall portion 5 at a distance of 0.6 mm on both sides of the line conductor 3 from the upper side to the lower side at a width of 0.4 mm × depth 0. A sample was prepared in which four .2 mm grooves 5a were formed and the inner-layer ground conductor 8 was provided at a position 1 mm above the upper surface of the flat plate portion 1 (below the standing wall portion 5). This was designated as Sample P.
[0066]
A sample Q having the configuration shown in FIG. In this sample Q, the inner-layer ground conductor 8 is exposed on the upright wall 5 above the inner-layer ground conductor 8 between the side surface and the upper surface over the two grooves 5a formed on the side surface of the upright wall 5. The upper ground conductor 6, the conductor layer 5b and the side conductor layer 5d connected to the inner-layer ground conductor 8 are formed on the side surface of the step. Except that this side conductor layer 5d was provided, it was the same as Sample P.
[0067]
As a comparative example, a sample R having the configuration shown in FIG. The sample R was the same as the sample P except that the groove 5a, the conductor layer 5b, and the inner-layer ground conductor 8 were not provided.
[0068]
FIG. 8 shows a result obtained by inputting a high-frequency signal of 1 to 40 GHz to the line conductor 3 and measuring the reflection loss. From FIG. 8, it can be seen that the reflection loss of the samples P and Q is improved over the entire frequency band of 1 to 40 GHz as compared with the sample R, and the reflection loss can be effectively reduced when inputting / outputting a high-frequency signal of the 1 to 40 GHz band. Was. In particular, it was found that in sample Q, the reflection loss can be significantly reduced in a high frequency band of 10 GHz or more.
[0069]
It should be noted that the present invention is not limited to the above-described embodiments and examples, and various changes may be made without departing from the spirit of the present invention.
[0070]
【The invention's effect】
The input / output terminal of the present invention is a rectangular flat plate portion made of a dielectric having a line conductor formed on one side from the other side to the opposite side and ground conductors formed on both sides of the line conductor at equal intervals. And a rectangular parallelepiped standing wall made of a dielectric having a part of the line conductor and a part of the same-plane ground conductor interposed therebetween on the upper surface of the flat plate part and an upper ground conductor formed on the upper surface. In the input / output terminal, the standing wall portion has an inner layer grounding conductor formed therein, and a pair of side surfaces orthogonal to the line direction of the line conductor contacting the two same-plane grounding conductors. Are formed over the upper and lower surfaces, and the inner-layer ground conductor is electrically connected to the upper ground conductor and the same-plane ground conductor via the conductor layer. The electromagnetic shielding effect is obtained on the side surface of the standing wall portion, and at the portion of the line conductor where the lower end of the side surface of the standing wall portion orthogonal to the line direction of the line conductor contacts, that is, at the boundary between the microstrip line and the strip line of the line conductor, Due to this electromagnetic shielding effect, even if a high-frequency signal transmitted through the line conductor is radiated into the standing wall, the component of the radiated high-frequency signal is confined in a region surrounded by the two conductor layers and the inner-layer ground conductor. As a result, loss can be effectively suppressed. As a result, high-frequency signals can be transmitted efficiently while the input and output terminals are large enough to withstand thermal distortion without reducing the width and thickness of the vertical wall.
[0071]
Further, the ground potential with respect to the line conductor can be further enhanced by the conductor layer and the inner-layer ground conductor. As a result, even if the transmission mode of the high-frequency signal transmitted through the line conductor changes from the mode of the microstrip line to the mode of the strip line, or from the mode of the strip line to the mode of the microstrip line, the reflection loss and transmission of the high-frequency signal are reduced. Loss can be suppressed more effectively, and a high-frequency signal can be input and output very efficiently.
[0072]
The semiconductor element housing package of the present invention has a base having a mounting portion on which a semiconductor element is mounted on an upper surface, and is mounted on the upper surface of the base so as to surround the mounting portion, and a through hole or The transmission efficiency of the high-frequency signal transmitted through the line conductor is provided by including the frame body in which the attachment portion of the input / output terminal formed of the notch is formed, and the input / output terminal having the above configuration fitted in the attachment portion. In addition, the occurrence of cracks in the input / output terminals can be prevented, and the inside of the package for housing semiconductor elements can be kept airtight. As a result, a highly reliable semiconductor element housing package capable of operating the semiconductor element normally and stably for a long period of time is provided.
[0073]
In the package for housing a semiconductor element of the present invention, a step is formed so that an inner layer ground conductor is exposed between the side surface and the upper surface between two grooves formed on the side surface of the upright wall portion. Since the side conductor layer connected to the upper ground conductor, the conductor layer, and the inner layer ground conductor is formed in the upper conductor, the side conductor layer can further cover the side surface of the standing wall, and the The electromagnetic shielding effect can be improved. Further, the conductivity of the conductor layer and the upper ground conductor is improved by the side conductor layer, and the ground potential of the inner ground conductor and the ground potential of the conductor layer are joined to a frame body serving as a case ground of the package for housing the semiconductor element. , And the ground potential with respect to the line conductor can be further strengthened. As a result, a high-frequency signal can be transmitted more efficiently.
[0074]
In addition, since the thickness of the standing wall is gradually increased from the end where the groove is formed to the center, the high-frequency signal is covered with a thin dielectric at the end of the standing wall from the exposed portion of the line conductor. The transmission of the portion covered with the thick dielectric at the center of the standing wall portion through the broken portion allows the loss of the transmission mode of the high-frequency signal to be abruptly changed and the loss to be effectively suppressed.
[0075]
The semiconductor device of the present invention has a semiconductor element storage package having the above-described configuration, a semiconductor element mounted and fixed on a mounting portion and electrically connected to an input / output terminal, and attached to an upper surface of a frame. By providing the lid, the semiconductor device housing package of the present invention is excellent in high-frequency signal transmission and airtight reliability.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of an input / output terminal of the present invention.
FIG. 2 is an enlarged sectional view of a main part showing a groove in the input / output terminal of FIG.
FIG. 3 is a cross-sectional view of the input / output terminal of FIG. 1 taken along line XX ′.
FIG. 4 is a perspective view showing another example of the embodiment of the input / output terminal of the present invention.
FIG. 5 is an exploded perspective view showing an example of an embodiment of the package for housing a semiconductor element of the present invention.
FIG. 6 is a perspective view of a conventional input / output terminal.
FIG. 7 is a perspective view showing another example of the embodiment of the input / output terminal of the present invention.
FIG. 8 is a graph showing measurement results of reflection loss of a high-frequency signal for a conventional input / output terminal and the input / output terminal of the present invention.
[Explanation of symbols]
1: Flat plate
3: Line conductor
4: Ground conductor on the same plane
5: standing wall
5a: groove
5b: conductor layer
5c: Side surface of line conductor orthogonal to line direction
5d: side conductor layer
6: Upper ground conductor
8: Inner layer ground conductor
9: Input / output terminal
21: Substrate
22: Frame
23: Mounting part
25: Semiconductor element
26: Lid

Claims (4)

上面に一辺から対向する他辺にかけて形成された線路導体および該線路導体の両側に等間隔をもって形成された同一面接地導体を有する誘電体から成る四角形状の平板部と、該平板部の上面に前記線路導体の一部および前記同一面接地導体の一部を間に挟んで接合され、上面に上部接地導体が形成された誘電体から成る直方体状の立壁部とを具備した入出力端子において、前記立壁部は、内部に内層接地導体が形成されているとともに、前記線路導体の線路方向に直交する一対の側面で前記2つの同一面接地導体に接する部位に、それぞれ内面に導体層が形成された溝が上下面にわたって形成されており、前記内層接地導体が前記導体層を介して前記上部接地導体および前記同一面接地導体に電気的に接続されていることを特徴とする入出力端子。A rectangular flat plate portion made of a dielectric having a line conductor formed from one side to the other side opposite to the upper surface and ground conductors formed at equal intervals on both sides of the line conductor; An input / output terminal comprising: a rectangular parallelepiped standing wall portion made of a dielectric having an upper grounding conductor formed on an upper surface thereof, with a part of the line conductor and a part of the same-plane grounding conductor interposed therebetween, An inner layer ground conductor is formed inside the upright wall portion, and a conductor layer is formed on the inner surface of each of the pair of side surfaces orthogonal to the line direction of the line conductor and in contact with the two same-plane ground conductors. Wherein the inner layer ground conductor is electrically connected to the upper ground conductor and the same plane ground conductor via the conductor layer. Child. 前記立壁部は、前記側面に形成された2つの前記溝の間にわたって前記側面と上面との間に前記内層接地導体が露出するように段差が形成されており、該段差の側面に前記上部接地導体と前記導体層と前記内層接地導体とに接続された側部導体層が形成されていることを特徴とする請求項1記載の入出力端子。The upright wall portion is formed with a step so that the inner layer ground conductor is exposed between the side surface and the upper surface, between the two grooves formed on the side surface, and the upper ground is formed on the side surface of the step. The input / output terminal according to claim 1, wherein a side conductor layer connected to the conductor, the conductor layer, and the inner-layer ground conductor is formed. 上面に半導体素子が載置される載置部を有する基体と、該基体の上面に前記載置部を囲繞するように取着され、側部に貫通孔または切欠きから成る入出力端子の取付部が形成された枠体と、前記取付部に嵌着された請求項1または請求項2記載の入出力端子とを具備していることを特徴とする半導体素子収納用パッケージ。A base having a mounting portion on which a semiconductor element is mounted on an upper surface, and an input / output terminal attached to the upper surface of the base so as to surround the mounting portion and having a through hole or a notch on a side portion. 3. A package for housing a semiconductor element, comprising: a frame formed with a portion; and the input / output terminal according to claim 1 fitted to the mounting portion. 請求項3記載の半導体素子収納用パッケージと、前記載置部に載置固定されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に取着された蓋体とを具備していることを特徴とする半導体装置。4. The package for storing a semiconductor element according to claim 3, a semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal, and a lid attached to an upper surface of the frame. And a semiconductor device comprising:
JP2003146630A 2003-02-17 2003-05-23 Input/output terminal and package for housing semiconductor element, and semiconductor device Withdrawn JP2004349568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146630A JP2004349568A (en) 2003-02-17 2003-05-23 Input/output terminal and package for housing semiconductor element, and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003037554 2003-02-17
JP2003084281 2003-03-26
JP2003146630A JP2004349568A (en) 2003-02-17 2003-05-23 Input/output terminal and package for housing semiconductor element, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004349568A true JP2004349568A (en) 2004-12-09

Family

ID=33545051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146630A Withdrawn JP2004349568A (en) 2003-02-17 2003-05-23 Input/output terminal and package for housing semiconductor element, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004349568A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010149A (en) * 2007-06-28 2009-01-15 Kyocera Corp Connection terminal, package and electronic device using the same
JP2010153547A (en) * 2008-12-25 2010-07-08 Nippon Telegr & Teleph Corp <Ntt> High frequency ic package
WO2011040329A1 (en) * 2009-09-29 2011-04-07 京セラ株式会社 Package for containing element and mounted structure
JP2012033543A (en) * 2010-07-28 2012-02-16 Kyocera Corp Package for housing element and semiconductor device equipped with the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010149A (en) * 2007-06-28 2009-01-15 Kyocera Corp Connection terminal, package and electronic device using the same
JP2010153547A (en) * 2008-12-25 2010-07-08 Nippon Telegr & Teleph Corp <Ntt> High frequency ic package
WO2011040329A1 (en) * 2009-09-29 2011-04-07 京セラ株式会社 Package for containing element and mounted structure
CN102473686A (en) * 2009-09-29 2012-05-23 京瓷株式会社 Package for containing element and mounted structure
US8653649B2 (en) 2009-09-29 2014-02-18 Kyocera Corporation Device housing package and mounting structure
JP5518086B2 (en) * 2009-09-29 2014-06-11 京セラ株式会社 Device storage package and mounting structure
CN102473686B (en) * 2009-09-29 2014-07-30 京瓷株式会社 Package for containing element and mounted structure
JP2012033543A (en) * 2010-07-28 2012-02-16 Kyocera Corp Package for housing element and semiconductor device equipped with the same

Similar Documents

Publication Publication Date Title
EP2221867B1 (en) Connection terminal, package using the same, and electronic device
US20110048796A1 (en) Connector, Package Using the Same and Electronic Device
JP6777755B2 (en) High frequency substrates, high frequency packages and high frequency modules
JP6633656B2 (en) Wiring board, optical semiconductor element package and optical semiconductor device
JP6825986B2 (en) Wiring boards, electronic component storage packages and electronic devices
US6936921B2 (en) High-frequency package
JP4874177B2 (en) Connection terminal, package using the same, and electronic device
JP3981645B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP4789636B2 (en) Semiconductor element storage package and semiconductor device
JP2004349568A (en) Input/output terminal and package for housing semiconductor element, and semiconductor device
JP3771853B2 (en) I / O terminal and semiconductor element storage package
JP4522010B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP4009169B2 (en) Semiconductor element storage package and semiconductor device
JP2002190540A (en) Storage package for semiconductor element
JP5709427B2 (en) Device storage package and semiconductor device including the same
JP2003273276A (en) I/o terminal and package for housing semiconductor element
JP2004356391A (en) Package for encasing semiconductor element and semiconductor device
JP3690656B2 (en) Semiconductor element storage package and semiconductor device
JP4000093B2 (en) Input / output terminal, manufacturing method of input / output terminal, package for storing semiconductor element using input / output terminal, and semiconductor device
JP3181036B2 (en) Mounting structure of high frequency package
JP2006128323A (en) Semiconductor device and storing package thereof
JP3638528B2 (en) Package for storing semiconductor elements
JP2004228532A (en) Input/output terminal, semiconductor element housing package, and semiconductor device
JP2002057239A (en) Input/output terminal and package for housing semiconductor element
JP2004296577A (en) Input/output terminal and package for housing semiconductor element, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061120