JP3720694B2 - Package for storing semiconductor elements - Google Patents

Package for storing semiconductor elements Download PDF

Info

Publication number
JP3720694B2
JP3720694B2 JP2000279870A JP2000279870A JP3720694B2 JP 3720694 B2 JP3720694 B2 JP 3720694B2 JP 2000279870 A JP2000279870 A JP 2000279870A JP 2000279870 A JP2000279870 A JP 2000279870A JP 3720694 B2 JP3720694 B2 JP 3720694B2
Authority
JP
Japan
Prior art keywords
metal layer
optical semiconductor
semiconductor element
frame
coaxial connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000279870A
Other languages
Japanese (ja)
Other versions
JP2002094167A (en
Inventor
剛史 小川
義信 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000279870A priority Critical patent/JP3720694B2/en
Publication of JP2002094167A publication Critical patent/JP2002094167A/en
Application granted granted Critical
Publication of JP3720694B2 publication Critical patent/JP3720694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信やマイクロ波通信,ミリ波通信等の高い周波数で作動する各種半導体素子を収納する半導体素子収納用パッケージに関するものである。
【0002】
【従来の技術】
従来の光通信やマイクロ波通信またはミリ波通信等の高い周波数で作動する各種半導体素子を収納する半導体素子収納用パッケージ(以下、半導体パッケージという)のうち、光通信分野に用いられる光半導体パッケージを図3に示す。
【0003】
同図に示すように、光半導体パッケージは、一般に上面にLD(半導体レーザ),PD(フォトダイオード)等の光半導体素子107が載置用基台108を介して載置される載置部101aを有する鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や銅(Cu)−タングステン(W)合金等の金属材料から成る基体101を有する。また、載置部101aを囲繞するようにして基体101の上面に銀ロウ等のロウ材を介して接合されるとともに、一側面に光半導体素子107と外部電気回路(図示せず)とを電気的に接続する同軸コネクタ103(ガラスビーズ端子ともいう)の嵌着用の貫通孔102aが形成され、対向する側面に光半導体素子107と光結合するための光伝送路である貫通孔102bが形成された、Fe−Ni−Co合金等の金属材料から成る枠体102を有する。
【0004】
この枠体102の光伝送路である貫通孔102bの外側周辺部には、枠体102の熱膨張係数に近似するFe−Ni−Co合金,Fe−Ni合金等の金属材料から成り、戻り光防止用の光アイソレータ111と光ファイバ113とが樹脂接着剤で接着された金属ホルダ112と、非晶質ガラス等から成り集光レンズとして機能するとともに半導体パッケージ内部を塞ぐ機能を有する透光性部材105とを固定する筒状の固定部材104が銀ロウ等のロウ材で接合される。
【0005】
なお、この固定部材104と金属ホルダ112とは、各々の端面同士がYAGレーザ溶接等により固定され、一方、固定部材104と透光性部材105とは、固定部材104内周面に形成されたメッキ層と透光性部材105外周面の一部に形成されたメッキ層とを、金(Au)−錫(Sn)合金半田等の低融点ロウ材でロウ付けすることにより固定される。
【0006】
また、同軸コネクタ103は、Fe−Ni−Co合金等の金属材料から成り貫通孔102a内周面にAu−Sn合金半田等の低融点ロウ材によりロウ付けされる筒状のホルダー(外周導体)103aと、このホルダー103a内部に充填されたホウケイ酸ガラス等の絶縁体から成るガラス103bと、このガラス103bの中心軸部分に装着され光半導体パッケージ内外を導通させる金属端子(中心導体)103cとから成る。そして、同軸コネクタ103は、外部電気回路と光半導体素子107とを電気的に接続する機能を有するとともに半導体パッケージ内部を塞ぐ機能を有する。
【0007】
また、この同軸コネクタ103は、高周波信号が伝送される金属端子103cと、その外周部、即ち金属材料から成るホルダー103a、および貫通孔102a内周部とが、高周波信号伝送時のインピーダンスの整合が可能な同軸構造を成している。
【0008】
なお、この同軸コネクタ103と光半導体素子107との電気的接続は、金属端子103cの枠体102内側に突出された一端と、回路基板109上面に形成され、金属端子103cの貫通孔102a内部のインピーダンスと同じになるように形成されたマイクロストリップ線路であるメタライズ金属層109aとを、錫−鉛(Pb)半田等の低融点ロウ材を介して接合するとともに、このメタライズ金属層109aと光半導体素子107とをボンディングワイヤ110で接続することにより成される。
【0009】
このような光半導体パッケージは、それに光半導体素子107やインピーダンス整合用等の回路基板109を搭載した載置用基台108を樹脂接着剤,ロウ材等の接着剤を介して載置固定した後、同軸コネクタ103の金属端子103cの一端を回路基板109上面のメタライズ金属層109aに低融点ロウ材で接合するとともに、光半導体素子107とメタライズ金属層109aとをボンディングワイヤ110で電気的に接続し、その後、光アイソレータ111,光ファイバ113が固定された金属ホルダ112を固定部材104に溶接し、枠体102上面に蓋体106をシーム溶接やロウ付け等により接合することにより、製品としての光半導体装置となる。
【0010】
このような光半導体装置は、例えば外部から供給される高周波信号により光半導体素子107を光励起させ、励起したレーザ光等の光を透光性部材105を通して光ファイバ113に授受させ光ファイバ113内を伝送させることにより、大容量の情報を高速に伝送できる光電変換装置として機能し、光通信分野等に多く用いられる。
【0011】
【発明が解決しようとする課題】
しかしながら、上記従来の半導体パッケージにおいて、同軸コネクタ103の金属端子103cの枠体102内側に突出した部位は同軸構造となっていないため、伝送される高周波信号の周波数が高くなると、その部位に発生するインピーダンスが非常に大きくなる。従って、金属端子103cの枠体102内側に突出していない部位とメタライズ金属層109aとの間のインピーダンスのギャップが非常に大きくなり、その結果、高周波信号の入出力時における反射損失が大きくなり、光半導体素子107の作動性が損なわれるという問題点を有していた。
【0012】
従って、本発明は上記問題点に鑑み完成されたもので、その目的は、高周波信号の入出力時における反射損失を非常に小さいものとすることにより、光半導体素子107の作動性を良好なものとすることにある。
【0013】
【課題を解決するための手段】
本発明の半導体パッケージは、上面に半導体素子およびメタライズ金属層が形成された回路基板が載置用基台を介して載置される載置部を有する基体と、該基体上面に前記載置部を囲繞するように取着されるとともに側部に貫通孔が形成された枠体と、筒状の外周導体およびその中心軸に設置された中心導体ならびにそれらの間に介在された絶縁体から成るとともに前記貫通孔に嵌着されて前記回路基板に電気的に接続される同軸コネクタとを具備した半導体素子収納用パッケージにおいて、前記同軸コネクタは、前記中心導体が前記絶縁体より突出しかつ前記枠体の内側に突出しないように設けられるとともに、前記中心導体と前記回路基板の前記メタライズ金属層とが板状の金属片を介して接続されており、該金属片は、その幅が平面視して前記中心導体の直径以下であり、且つ側断面形状がメタライズ金属層に向かって先細り状のテーパー状とされていることを特徴とする。
【0014】
本発明は、このような構成により、中心導体の枠体内側に突出していない部位と、回路基板のメタライズ金属層との間のインピーダンスのギャップを小さくでき、高周波信号の入出力時における反射損失を非常に小さくできる。即ち、高周波信号の伝送時にメタライズ金属層で発生する電界の大きさは、中心導体が枠体内側に突出している場合のその部位に発生する電界の大きさよりも、金属片で発生する電界の大きさにより近いため、枠体内側の空間で金属片により接続することにより、メタライズ金属層との間の電界の変化を緩やかなものとする。その結果、インピーダンスの急激な変化を抑えることができ、インピーダンスの変化により発生する反射損失をきわめて小さくできる。
【0015】
より具体的に説明すると、図3の従来の構成においては、外周導体および貫通孔の内周面に覆われた部位の中心導体、およびマイクロストリップ線路であるメタライズ金属層109aの伝搬モードはTEMモードであるのに対し、枠体内部に露出しメタライズ金属層109aに接続された部位以外の部位の伝搬モードはTEモードである。従って、高周波信号は、TEMモード、TEモード、TEMモードと伝搬モードが変化するため、伝搬モード変化部でインピーダンスがステップ状に変化するため、高周波信号の反射損失が大きくなる。
【0016】
一方、本発明の構成においては、中心導体と板状の金属片との接合部ではTEMモードとTEモードが混在したものとなるが、金属片での伝搬モードはTEMモードであり、伝搬モードの変化は非常に小さなものとなり、その結果インピーダンスの変化がきわめて緩やかなものとなり、高周波信号の反射損失を非常に小さなものとできる。
【0017】
【発明の実施の形態】
本発明の半導体パッケージの1種である光半導体パッケージについて、以下に詳細に説明する。図1は、本発明の光半導体パッケージの一実施形態を示す断面図,図2は図1の同軸コネクタ周辺部の要部拡大断面図である。
【0018】
これらの図において、1は容器本体の底面を構成する基体、2は容器本体の側壁用の枠体、3は高周波信号の入出力端子である同軸コネクタ、4は透光性部材5や金属ホルダ12を設置固定するための筒状の固定部材、5は透光性部材、6は蓋体、7はLD,PD等の光半導体素子である。これら基体1、枠体2、同軸コネクタ3、固定部材4、透光性部材5および蓋体6とで、内部に光半導体素子7を収容するための容器が構成される。
【0019】
また、従来技術と同様に、固定部材4の外部側の端面には、光アイソレータ11と光ファイバ13とが樹脂接着剤で接着された金属ホルダ12が、YAGレーザ溶接等により固定される。
【0020】
本発明の基体1は、光半導体素子7を支持するための支持部材ならびに光半導体素子7から発せられる熱を放散するための放熱板として機能し、その上面の略中央部に光半導体素子7が載置用基台8を介して載置される載置部1aを有している。この載置部1aに、載置用基台8がSn−Pb半田等の低融点ロウ材を介して接着固定されるとともに、この低融点ロウ材を介して光半導体素子7から発せられた熱が伝えられ、外部に効率良く放散され、光半導体素子7の作動性を良好なものとする。
【0021】
この基体1は、Fe−Ni−Co合金やCu−W合金等の金属材料から成り、そのインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工法を施すことによって所定の形状に製作される。また、その表面に耐蝕性に優れかつロウ材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と厚さ0.5〜9μmのAu層を順次メッキ法により被着させておくと、基体1が酸化腐食するのを有効に防止することができるとともに、基体1上面に載置用基台8を介して光半導体素子7を強固に接着固定させることができる。従って、所定の形状に製作された基体1の表面に0.5〜9μmのNi層や0.5〜9μmのAu層等の金属層をメッキ法により被着させておくことが好ましい。
【0022】
また、この載置用基台8はシリコン(Si)やCu−W合金等の熱伝導性の高い金属から成り、光半導体素子7から基体1へ熱を伝えるための媒体として機能するとともに、その高さを適宜設定することにより透光性部材5と光半導体素子7との光軸が合うようにする機能を有する。また、その上面には、上面に伝送線路としてのメタライズ金属層9aが形成された、アルミナ(Al23)セラミックス等のセラミックスから成るインピーダンス整合等用の回路基板9が接合される。
【0023】
このメタライズ金属層9aは、同軸コネクタ3の中心導体3cのインピーダンスと同じになるように形成されたマイクロストリップ線路であり、光半導体素子7にボンディングワイヤ10を介して、また、中心導体3cに金属片3c'を介して接合され、中心導体3cと光半導体素子7とを電気的に接続する機能を有する。
【0024】
また、このメタライズ金属層9aは、モリブデン(Mo),マンガン(Mn),タングステン(W)等の粉末に有機溶剤、溶媒を添加混合して得た金属ペーストを、回路基板9となるセラミックグリーンシートに予め従来周知のスクリーン印刷法により所定パターンに印刷塗布し焼結することにより形成される。
【0025】
同軸コネクタ3は、枠体2の貫通孔2a内周面にAu−Sn合金半田等の低融点ロウ材によりロウ付けされるホルダー(外周導体)3aと、このホルダー3aに形成された貫通孔に充填されたホウケイ酸ガラス等の絶縁体から成るガラス3bと、このガラス3bの中心軸部分に装着され光半導体パッケージ内外を導通させるとともに、枠体2内側の一端が枠体2内周面と面一または枠体2内周面よりも貫通孔2a内部側にある中心導体3cとから成る。即ち、中心導体3cは、端部がガラス3bから突出しかつ枠体2内側に突出しないように設けられる。そして、同軸コネクタ3は、外部電気回路と光半導体素子7とを電気的に接続する機能を有するとともに光半導体パッケージ内部を塞ぐ機能を有する。
【0026】
また、この同軸コネクタ3は、高周波信号が伝送される中心導体3cと、その外周部、即ち金属材料から成るホルダー3aおよび貫通孔2aの内周面とが、高周波信号伝送時のインピーダンスの整合が可能な同軸構造を成している。
【0027】
同軸コネクタ3は、このような構造であることから、伝送される高周波信号の周波数が高くなっても中心導体3cにインピーダンスの整合が困難になる部位が出現することはない。
【0028】
さらに、中心導体3cの半導体パッケージ内部側の先端とメタライズ金属層9aとは、板状の金属片3c'を介して電気的に接続されている。即ち、高周波信号の伝送時にメタライズ金属層9aに発生する電界の大きさが、従来の中心導体103c(図3)の枠体2内側に突出した部位で発生する電界の大きさよりも近い金属片3c'を用いることにより、メタライズ金属層9aと中心導体3cとの間の電界の変化を緩やかなものとし、インピーダンスの急激な変化を抑えることができ、インピーダンスの変化により発生する反射損失をより小さくできる。
【0029】
この金属片3c’は、その側断面形状がメタライズ金属層9aに向かって先細り状とされたテーパー状を有しており、その厚さは10μm〜100μmの範囲であれば良く、10μm未満の場合製造上困難となり、100μmを超える場合反射損失が非常に大きくなる。
【0030】
また、金属片3c’は、その平面形状が長方形状またはメタライズ金属層9aに向かって先細り状とされたテーパー状を有しており、その最も狭い部位の幅が、メタライズ金属層9aにSn−Pb半田等の低融点ロウ材で強固に接合できる程度の幅であれば良く、一方、最も広い部位の幅が、中心導体3cの直径以下であれば良く、最も広い部位の幅が中心導体3cの直径を超える場合、反射損失が非常に大きくなる。
【0031】
また、金属片3c'は、その主面とメタライズ金属層9aの表面の延長面との成す角の角度θが0°〜90°の範囲であれば良く、その範囲を外れる場合、反射損失が非常に大きくなる。
【0032】
また、金属片3c'は金属材料から成り、メタライズ金属層9aや中心導体3cとの接合時における熱歪みを有効に防止するために、それらに熱膨張係数の近似するFe−Ni−Co合金やFe−Ni合金等を用いるのが好ましい。
【0033】
このような金属片3c'が接続される同軸コネクタ3が嵌着される枠体2は、載置部1aを囲繞するようにして基体1の上面に銀ロウ等のロウ材を介して接合され、一方の側面に同軸コネクタ3の嵌着用の貫通孔2aとともに、片方の側面に光半導体素子7と光結合するための光伝送路である貫通孔2bが形成される。
【0034】
また、枠体2は基体1との接合における熱歪みを小さくし接合を強固なものとするとともに、光半導体パッケージ外部との電磁的遮蔽を行うために、基体1の熱膨張係数に近似するFe−Ni−Co合金やFe−Ni合金等の金属材料を用いるのがよい。
【0035】
また、この枠体2は、基体1と同様にその材料のインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工法を施すことにより所定の形状に製作され、その表面に耐蝕性に優れかつロウ材との濡れ性に優れる金属、具体的には厚さ0.5〜9μmのNi層と厚さ0.5〜9μmのAu層を順次メッキ法により被着させておくと、枠体2が酸化腐食するのを有効に防止できるとともに、貫通孔2a、2bにそれぞれ同軸コネクタ3、透光性部材5を強固に接合できる。従って、所定の形状に製作された枠体2の表面に0.5〜9μmのNi層や0.5〜9μmのAu層等の金属層をメッキ法により被着させておくことが好ましい。
【0036】
この枠体2の貫通孔2bの外側周辺部には、枠体2の熱膨張係数に近似するFe−Ni−Co合金,Fe−Ni合金等の金属材料から成り、戻り光防止用の光アイソレータ11と光ファイバ13とが樹脂接着剤で接着された金属ホルダ12と、非晶質ガラス等から成り集光レンズとして機能するとともに光半導体パッケージ内部を塞ぐ機能を有する透光性部材5とを固定する筒状の固定部材4が銀ロウ等のロウ材で接合される。
【0037】
この固定部材4の内周面には、集光レンズとして機能するとともに光半導体パッケージ内部を塞ぐ非晶質ガラス等から成る透光性部材5が、その接合部の表面に形成されたメタライズ層を介して、200〜400℃の融点を有するAu−Sn合金半田等の低融点ロウ材で接合される。
【0038】
この透光性部材5は、熱膨張係数が4×10-6〜12×10-6/℃(室温〜400℃)のサファイア(単結晶アルミナ)や非晶質ガラス等から成り、球状,半球状,凸レンズ状,ロッドレンズ状等とされ、外部のレーザ光等の光を光ファイバ13により伝送させて光半導体素子7に入力させる、または光半導体素子7で出力したレーザ光等の光を光ファイバ13に入力させるための集光用部材として用いられる。透光性部材5が、例えば結晶軸の存在しない非晶質ガラスの場合、SiO2,酸化鉛(PbO)を主成分とする鉛系、またはホウ酸やケイ砂を主成分とするホウケイ酸系のものを用いる。
【0039】
また、この透光性部材5は、その熱膨張係数が枠体2のそれと異なっていても固定部材4が熱膨張差による応力を吸収し緩和するので、結晶軸が応力のためにある方向に揃うことによって光の屈折率の変化を起こすようなことは発生しにくい。従って、このような透光性部材5を用いることにより光半導体素子7と光ファイバ13との間の光の結合効率を高くできる。
【0040】
また蓋体6は、Fe−Ni−Co合金等の金属材料やアルミナセラミックス等のセラミックスから成るとともに、枠体2上面にAu−Sn合金半田等の低融点ロウ材を介して接合されたり、YAGレーザ溶接等の溶接法により接合され、光半導体素子7を光半導体パッケージ内に封止する。
【0041】
このように、本発明の半導体パッケージの1種である光半導体パッケージは、上面にメタライズ金属層9aが形成された回路基板9が接合された載置用基台8を介して光半導体素子7を上面に載置する載置部1aを有するとともに金属材料から成る基体1と、この基体1上面に載置部1aを囲繞するようにロウ材を介して接合され、側部に同軸コネクタ3を嵌着するための貫通孔2aが、また対向する側部に光伝送路である貫通孔2bが形成された金属材料から成る枠体2とを具備しており、この同軸コネクタ3の中心導体3cの回路基板9に接続される一端が枠体2内面と面一または枠体2内面よりも貫通孔2a内周面側にあり、回路基板9と中心導体3cとは板状の金属片3c'を介して電気的に接続される構造を有している。
【0042】
このように、中心導体3cの一端が、枠体2内面と面一または枠体2内面よりも貫通孔2a内周面側にあるとともに、この中心導体3cの一端とメタライズ金属層9aとの電気的接続を金属片3c’を介して行うため、伝送される高周波信号の周波数が高くなってもインピーダンスの急激な変化を抑えることが可能となる。即ち、インピーダンスの変化により発生する高周波信号の反射損失を非常に小さくでき伝送特性の向上を可能とする。
【0043】
本発明の半導体パッケージは、光半導体パッケージの場合には光半導体素子7を、無線通信用の半導体パッケージの場合には高周波用の半導体素子を、それぞれ収納して、外部電気回路と各種半導体素子が高周波信号の入出力を行う半導体パッケージ等として構成されるものである。光半導体パッケージの場合、光半導体素子7や回路基板9を搭載した載置用基台8を樹脂接着剤,ロウ材等の接着剤を介して載置固定した後、同軸コネクタ3の中心導体3bの一端を回路基板9上面のメタライズ金属層9aに低融点ロウ材で接合するとともに光半導体素子7とメタライズ金属層9aとをボンディングワイヤ10で電気的に接続し、その後、光アイソレータ11,光ファイバ13が固定されている金属ホルダ12を固定部材4に溶接し、枠体2上面に蓋体6をシーム溶接やロウ付け等により接合することにより製品としての光半導体装置となる。
【0044】
かくして、本発明は、伝送される高周波信号の周波数が高くなってもインピーダンスの急激な変化を抑えることが可能となる。即ちインピーダンスの変化により発生する反射損失を非常に小さくでき高周波伝送特性の向上を可能とする。その結果、従来の同軸コネクタ3を用いた場合に比し、中心導体3cの枠体2内側に突出していない部位とメタライズ金属層9aとの間のインピーダンスのギャップを小さくでき、高周波信号の入出力時における反射損失を非常に小さくできる。従って、光半導体素子7と外部電気回路との高周波伝送特性を良好なものとでき、光半導体素子7の作動性を良好なものとできる。
【0045】
本発明において、高周波信号の周波数は1〜100GHz程度であり、特に30GHz以上の周波数において従来インピーダンスの変化が急激であったのを、本発明では緩やかなものとすることができる。
【0046】
なお、本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲内において種々の変更を行うことは何等支障ない。例えば、基体1と枠体2とが一体的に形成された所謂メタル・インジェクション・モールド(MIM)であっても良い。
【0047】
【発明の効果】
本発明は、上面に半導体素子およびメタライズ金属層が形成された回路基板が載置用基台を介して載置される載置部を有する基体と、基体上面に載置部を囲繞するように取着されるとともに側部に貫通孔が形成された枠体と、筒状の外周導体およびその中心軸に設置された中心導体ならびにそれらの間に介在された絶縁体から成るとともに貫通孔に嵌着されて回路基板に電気的に接続される同軸コネクタとを具備し、同軸コネクタは、中心導体が絶縁体より突出しかつ枠体の内側に突出しないように設けられるとともに、中心導体と回路基板のメタライズ金属層とが板状の金属片を介して接続されており、この金属片は、その幅が平面視して中心導体の直径以下であり、且つ側断面形状がメタライズ金属層に向かって先細り状のテーパー状とされていることにより、中心導体の枠体内側に突出していない部位とメタライズ金属層との間のインピーダンスのギャップを小さくでき、高周波信号の入出力時における反射損失を非常に小さくできる。即ち、高周波信号の伝送時にメタライズ金属層で発生する電界の大きさは、中心導体が枠体内側に突出している部位に発生する電界の大きさよりも、板状の金属片で発生する電界の大きさにより近いため、金属片を用いることでメタライズ金属層との間の電界の変化を緩やかなものとし、インピーダンスの急激な変化を抑えることができ、インピーダンスの変化により発生する反射損失をより小さくできる。その結果、光半導体素子と外部電気回路との高周波伝送特性を非常に良好なものとできる。
【図面の簡単な説明】
【図1】本発明の半導体パッケージの一実施形態を示す断面図である。
【図2】図1の同軸コネクタ周辺部の要部拡大断面図である。
【図3】従来の半導体パッケージの断面図である。
【符号の説明】
1:基体
1a:載置部
2:枠体
2a:貫通孔
3:同軸コネクタ
3c:中心導体
3c’:金属片
7:半導体素子
8:載置用基台
9:回路基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a package for housing semiconductor elements that houses various semiconductor elements that operate at a high frequency such as optical communication, microwave communication, and millimeter wave communication.
[0002]
[Prior art]
Among semiconductor device storage packages (hereinafter referred to as semiconductor packages) for storing various semiconductor devices that operate at high frequencies such as conventional optical communication, microwave communication, and millimeter wave communication, optical semiconductor packages used in the optical communication field As shown in FIG.
[0003]
As shown in the figure, the optical semiconductor package generally has a mounting portion 101a on which an optical semiconductor element 107 such as an LD (semiconductor laser), PD (photodiode) or the like is mounted via a mounting base 108. And a base 101 made of a metal material such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or a copper (Cu) -tungsten (W) alloy. Further, it is bonded to the upper surface of the base 101 via a brazing material such as silver brazing so as to surround the mounting portion 101a, and the optical semiconductor element 107 and an external electric circuit (not shown) are electrically connected to one side surface. A through hole 102a for fitting a coaxial connector 103 (also referred to as a glass bead terminal) to be connected is formed, and a through hole 102b which is an optical transmission path for optically coupling with the optical semiconductor element 107 is formed on the opposite side surface. The frame 102 is made of a metal material such as an Fe-Ni-Co alloy.
[0004]
The outer peripheral portion of the through hole 102b, which is an optical transmission path of the frame body 102, is made of a metal material such as an Fe—Ni—Co alloy or Fe—Ni alloy that approximates the thermal expansion coefficient of the frame body 102, and returns light. A metal holder 112 in which an optical isolator 111 for prevention and an optical fiber 113 are bonded with a resin adhesive, and a translucent member made of amorphous glass and the like, which functions as a condenser lens and has a function of closing the inside of a semiconductor package A cylindrical fixing member 104 that fixes the magnetic head 105 is joined with a brazing material such as silver brazing.
[0005]
The fixing member 104 and the metal holder 112 are fixed to each other by YAG laser welding or the like, while the fixing member 104 and the translucent member 105 are formed on the inner peripheral surface of the fixing member 104. The plating layer and the plating layer formed on a part of the outer peripheral surface of the translucent member 105 are fixed by brazing with a low melting point brazing material such as gold (Au) -tin (Sn) alloy solder.
[0006]
The coaxial connector 103 is made of a metal material such as an Fe—Ni—Co alloy, and is a cylindrical holder (outer conductor) that is brazed to the inner peripheral surface of the through hole 102a with a low melting point solder such as Au—Sn alloy solder. 103a, a glass 103b made of an insulator such as borosilicate glass filled in the holder 103a, and a metal terminal (center conductor) 103c mounted on the central axis portion of the glass 103b and conducting inside and outside of the optical semiconductor package. Become. The coaxial connector 103 has a function of electrically connecting an external electric circuit and the optical semiconductor element 107 and a function of closing the inside of the semiconductor package.
[0007]
In addition, the coaxial connector 103 has impedance matching at the time of high-frequency signal transmission between the metal terminal 103c through which a high-frequency signal is transmitted, the outer periphery thereof, that is, the holder 103a made of a metal material, and the inner periphery of the through hole 102a. It has a possible coaxial structure.
[0008]
The electrical connection between the coaxial connector 103 and the optical semiconductor element 107 is formed on one end of the metal terminal 103c protruding inside the frame 102 and on the upper surface of the circuit board 109, and inside the through hole 102a of the metal terminal 103c. The metallized metal layer 109a, which is a microstrip line formed so as to have the same impedance, is joined via a low melting point brazing material such as tin-lead (Pb) solder, and the metallized metal layer 109a and the optical semiconductor. This is achieved by connecting the element 107 to the bonding wire 110.
[0009]
In such an optical semiconductor package, a mounting base 108 on which an optical semiconductor element 107 and a circuit board 109 for impedance matching are mounted is mounted and fixed via an adhesive such as a resin adhesive or a brazing material. One end of the metal terminal 103c of the coaxial connector 103 is joined to the metallized metal layer 109a on the upper surface of the circuit board 109 with a low melting point brazing material, and the optical semiconductor element 107 and the metallized metal layer 109a are electrically connected to each other with a bonding wire 110. Thereafter, the metal holder 112 to which the optical isolator 111 and the optical fiber 113 are fixed is welded to the fixing member 104, and the lid body 106 is joined to the upper surface of the frame 102 by seam welding, brazing, or the like. It becomes a semiconductor device.
[0010]
Such an optical semiconductor device, for example, optically excites the optical semiconductor element 107 with a high-frequency signal supplied from the outside, and transmits and receives the excited laser light or the like to the optical fiber 113 through the translucent member 105. By transmitting it, it functions as a photoelectric conversion device capable of transmitting a large amount of information at high speed, and is often used in the field of optical communications.
[0011]
[Problems to be solved by the invention]
However, in the above-described conventional semiconductor package, the portion of the coaxial connector 103 that protrudes inside the frame 102 of the metal terminal 103c does not have a coaxial structure. Therefore, when the frequency of the transmitted high-frequency signal increases, the portion is generated at that portion. The impedance becomes very large. Therefore, the impedance gap between the portion of the metal terminal 103c that does not protrude to the inside of the frame 102 and the metallized metal layer 109a becomes very large. As a result, the reflection loss at the time of input / output of the high-frequency signal increases, There is a problem that the operability of the semiconductor element 107 is impaired.
[0012]
Accordingly, the present invention has been completed in view of the above problems, and its purpose is to improve the operability of the optical semiconductor element 107 by making the reflection loss during input / output of a high-frequency signal very small. It is to do.
[0013]
[Means for Solving the Problems]
The semiconductor package of the present invention includes a base having a mounting portion on which a circuit board on which a semiconductor element and a metallized metal layer are formed is mounted via a mounting base, and the mounting portion described above on the upper surface of the base A frame having a through-hole formed in a side portion thereof, a cylindrical outer peripheral conductor, a central conductor installed on the central axis thereof, and an insulator interposed therebetween And a coaxial element housing package that is fitted into the through hole and electrically connected to the circuit board, wherein the coaxial connector has the central conductor protruding from the insulator and the frame body. The center conductor and the metallized metal layer of the circuit board are connected via a plate-like metal piece, and the metal piece has a width in plan view. Said central conductor or less in diameter, and side cross-sectional shape, characterized in that there is a tapered tapered toward the metallized metal layer Te.
[0014]
With this configuration, the present invention can reduce the impedance gap between the portion of the central conductor that does not protrude inside the frame body and the metallized metal layer of the circuit board, thereby reducing the reflection loss when inputting and outputting high-frequency signals. Can be very small. That is, the magnitude of the electric field generated in the metallized metal layer during transmission of the high-frequency signal is larger than the magnitude of the electric field generated in that portion when the central conductor protrudes inside the frame body. Since it is closer, the electric field between the metallized metal layer is moderated by connecting with metal pieces in the space inside the frame. As a result, a sudden change in impedance can be suppressed, and the reflection loss caused by the change in impedance can be made extremely small.
[0015]
More specifically, in the conventional configuration of FIG. 3, the propagation mode of the metallized metal layer 109a which is the center conductor of the portion covered with the outer peripheral conductor and the inner peripheral surface of the through hole and the microstrip line is the TEM mode. On the other hand, the propagation mode of the part other than the part exposed inside the frame and connected to the metallized metal layer 109a is the TE mode. Accordingly, since the propagation mode of the high-frequency signal changes between the TEM mode, the TE mode, and the TEM mode, the impedance changes stepwise at the propagation mode changing portion, so that the reflection loss of the high-frequency signal increases.
[0016]
On the other hand, in the configuration of the present invention, the TEM mode and the TE mode are mixed at the joint between the central conductor and the plate-like metal piece, but the propagation mode in the metal piece is the TEM mode, The change becomes very small, and as a result, the change in impedance becomes very gradual, and the reflection loss of the high frequency signal can be made very small.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An optical semiconductor package which is one type of the semiconductor package of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an embodiment of an optical semiconductor package according to the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part in the periphery of the coaxial connector of FIG.
[0018]
In these drawings, 1 is a base constituting the bottom surface of the container body, 2 is a frame for a side wall of the container body, 3 is a coaxial connector which is an input / output terminal for high-frequency signals, and 4 is a translucent member 5 or a metal holder. A cylindrical fixing member for installing and fixing 12 is a translucent member, 6 is a lid, and 7 is an optical semiconductor element such as an LD or PD. The base body 1, the frame body 2, the coaxial connector 3, the fixing member 4, the translucent member 5, and the lid body 6 constitute a container for housing the optical semiconductor element 7 therein.
[0019]
Similarly to the prior art, the metal holder 12 in which the optical isolator 11 and the optical fiber 13 are bonded with a resin adhesive is fixed to the outer end face of the fixing member 4 by YAG laser welding or the like.
[0020]
The substrate 1 of the present invention functions as a support member for supporting the optical semiconductor element 7 and a heat radiating plate for dissipating heat emitted from the optical semiconductor element 7. It has the mounting part 1a mounted via the mounting base 8. The mounting base 8 is bonded and fixed to the mounting portion 1a via a low melting point brazing material such as Sn-Pb solder, and the heat generated from the optical semiconductor element 7 via the low melting point brazing material. Is transmitted to the outside efficiently, and the operability of the optical semiconductor element 7 is improved.
[0021]
The substrate 1 is made of a metal material such as an Fe—Ni—Co alloy or a Cu—W alloy, and is manufactured in a predetermined shape by subjecting the ingot to a conventionally known metal processing method such as rolling or punching. . Further, a metal having excellent corrosion resistance and wettability with the brazing material on its surface, specifically, a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 9 μm are successively deposited by a plating method. If it is made to adhere, the base 1 can be effectively prevented from being oxidatively corroded, and the optical semiconductor element 7 can be firmly bonded and fixed to the upper surface of the base 1 via the mounting base 8. . Therefore, it is preferable to deposit a metal layer such as a 0.5 to 9 μm Ni layer or a 0.5 to 9 μm Au layer on the surface of the base 1 manufactured in a predetermined shape by a plating method.
[0022]
The mounting base 8 is made of a metal having high thermal conductivity such as silicon (Si) or Cu—W alloy, and functions as a medium for transferring heat from the optical semiconductor element 7 to the base 1. By appropriately setting the height, the light transmitting member 5 and the optical semiconductor element 7 have a function of matching the optical axes. Further, on the upper surface, a circuit board 9 for impedance matching and the like made of ceramics such as alumina (Al 2 O 3 ) ceramics, on which a metallized metal layer 9a as a transmission line is formed, is joined.
[0023]
The metallized metal layer 9a is a microstrip line formed so as to have the same impedance as that of the center conductor 3c of the coaxial connector 3. The metallized metal layer 9a is bonded to the optical semiconductor element 7 via the bonding wire 10 and to the center conductor 3c. It is joined via the piece 3c ′ and has a function of electrically connecting the central conductor 3c and the optical semiconductor element 7.
[0024]
The metallized metal layer 9a is a ceramic green sheet that becomes a circuit board 9 by using a metal paste obtained by adding and mixing an organic solvent and a solvent to a powder of molybdenum (Mo), manganese (Mn), tungsten (W) or the like. In addition, it is formed in advance by printing and applying to a predetermined pattern by a conventionally known screen printing method and sintering.
[0025]
The coaxial connector 3 includes a holder (outer peripheral conductor) 3a brazed to the inner peripheral surface of the through hole 2a of the frame body 2 with a low melting point brazing material such as Au—Sn alloy solder, and a through hole formed in the holder 3a. The filled glass 3b made of an insulator such as borosilicate glass and the like is attached to the central axis portion of the glass 3b to conduct the inside and outside of the optical semiconductor package, and one end of the inside of the frame 2 faces the inner peripheral surface of the frame 2 One or a central conductor 3c located inside the through hole 2a with respect to the inner peripheral surface of the frame body 2. That is, the center conductor 3c is provided so that the end portion protrudes from the glass 3b and does not protrude inside the frame body 2. The coaxial connector 3 has a function of electrically connecting an external electric circuit and the optical semiconductor element 7 and a function of closing the inside of the optical semiconductor package.
[0026]
In addition, the coaxial connector 3 has impedance matching at the time of high-frequency signal transmission between the central conductor 3c through which high-frequency signals are transmitted and the outer peripheral portions thereof, that is, the inner peripheral surfaces of the holder 3a made of a metal material and the through holes 2a. It has a possible coaxial structure.
[0027]
Since the coaxial connector 3 has such a structure, even if the frequency of the transmitted high-frequency signal is increased, a portion where impedance matching is difficult to appear in the center conductor 3c does not appear.
[0028]
Furthermore, the tip of the central conductor 3c on the inside of the semiconductor package and the metallized metal layer 9a are electrically connected via a plate-shaped metal piece 3c ′. That is, the magnitude of the electric field generated in the metallized metal layer 9a during the transmission of the high frequency signal is closer to the magnitude of the electric field generated at the portion protruding inside the frame 2 of the conventional central conductor 103c (FIG. 3). By using ', the change in the electric field between the metallized metal layer 9a and the central conductor 3c can be made gradual, the sudden change in impedance can be suppressed, and the reflection loss caused by the change in impedance can be further reduced. .
[0029]
The metal piece 3c ′ has a taper shape whose side cross-sectional shape is tapered toward the metallized metal layer 9a, and the thickness may be in the range of 10 μm to 100 μm. It becomes difficult to manufacture, and when it exceeds 100 μm, the reflection loss becomes very large.
[0030]
Further, the metal piece 3c ′ has a rectangular shape or a taper shape tapered toward the metallized metal layer 9a, and the width of the narrowest portion of the metal piece 3c ′ is Sn− on the metallized metal layer 9a. It is sufficient that the width is such that it can be firmly joined with a low melting point brazing material such as Pb solder. On the other hand, the width of the widest portion may be equal to or smaller than the diameter of the center conductor 3c, and the width of the widest portion is the center conductor 3c. When the diameter is exceeded, the reflection loss becomes very large.
[0031]
Further, the metal piece 3c ′ may have an angle θ between the main surface and the extended surface of the metallized metal layer 9a within a range of 0 ° to 90 °. Become very large.
[0032]
In addition, the metal piece 3c ′ is made of a metal material, and in order to effectively prevent thermal distortion at the time of joining to the metallized metal layer 9a and the central conductor 3c, an Fe—Ni—Co alloy having an approximate thermal expansion coefficient, It is preferable to use an Fe—Ni alloy or the like.
[0033]
The frame 2 to which the coaxial connector 3 to which such a metal piece 3c ′ is connected is fitted is joined to the upper surface of the base 1 via a brazing material such as silver brazing so as to surround the mounting portion 1a. The through-hole 2b which is an optical transmission path for optically coupling with the optical semiconductor element 7 is formed on one side surface together with the through-hole 2a for fitting the coaxial connector 3 on one side surface.
[0034]
In addition, the frame 2 reduces the thermal strain in the bonding with the base 1 and strengthens the bonding, and also provides an electromagnetic shield from the outside of the optical semiconductor package. It is preferable to use a metal material such as a Ni—Co alloy or a Fe—Ni alloy.
[0035]
In addition, the frame body 2 is manufactured in a predetermined shape by subjecting an ingot of the material to a known metal processing method such as rolling or punching, similar to the base body 1, and has excellent corrosion resistance on the surface. When a metal excellent in wettability with the brazing material, specifically, a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 9 μm are sequentially deposited by a plating method, the frame 2 Can be effectively prevented from oxidative corrosion, and the coaxial connector 3 and the translucent member 5 can be firmly joined to the through holes 2a and 2b, respectively. Therefore, it is preferable to deposit a metal layer such as a 0.5 to 9 μm Ni layer or a 0.5 to 9 μm Au layer on the surface of the frame 2 manufactured in a predetermined shape by a plating method.
[0036]
An outer peripheral portion of the through hole 2b of the frame body 2 is made of a metal material such as an Fe—Ni—Co alloy or an Fe—Ni alloy that approximates the thermal expansion coefficient of the frame body 2, and is an optical isolator for preventing return light. 11 and the optical fiber 13 are fixed with a resin holder and a translucent member 5 made of amorphous glass or the like and functioning as a condenser lens and having a function of closing the inside of the optical semiconductor package. The cylindrical fixing member 4 is joined with a brazing material such as silver brazing.
[0037]
On the inner peripheral surface of the fixing member 4, a translucent member 5 made of amorphous glass or the like that functions as a condensing lens and closes the inside of the optical semiconductor package is provided with a metallized layer formed on the surface of the joint portion. And a low melting point brazing material such as Au—Sn alloy solder having a melting point of 200 to 400 ° C.
[0038]
The translucent member 5 is made of sapphire (single crystal alumina) or amorphous glass having a thermal expansion coefficient of 4 × 10 −6 to 12 × 10 −6 / ° C. (room temperature to 400 ° C.), and is spherical or hemispherical. In the shape of a lens, a convex lens, a rod lens, etc., light such as external laser light is transmitted through the optical fiber 13 and input to the optical semiconductor element 7 or light such as laser light output from the optical semiconductor element 7 is emitted. Used as a condensing member for input to the fiber 13. In the case where the translucent member 5 is, for example, amorphous glass having no crystal axis, a lead-based material mainly composed of SiO 2 and lead oxide (PbO), or a borosilicate-based material mainly composed of boric acid or silica sand. Use one.
[0039]
Further, even if the thermal expansion coefficient of the translucent member 5 is different from that of the frame 2, the fixing member 4 absorbs and relaxes the stress due to the thermal expansion difference, so that the crystal axis is in a certain direction due to the stress. It is difficult to cause a change in the refractive index of light by aligning. Therefore, by using such a translucent member 5, the light coupling efficiency between the optical semiconductor element 7 and the optical fiber 13 can be increased.
[0040]
The lid 6 is made of a metal material such as Fe—Ni—Co alloy or ceramics such as alumina ceramics, and is joined to the upper surface of the frame 2 via a low melting point solder such as Au—Sn alloy solder, or YAG. The optical semiconductor element 7 is sealed in an optical semiconductor package by being joined by a welding method such as laser welding.
[0041]
As described above, the optical semiconductor package which is a kind of the semiconductor package of the present invention has the optical semiconductor element 7 via the mounting base 8 on which the circuit board 9 having the metallized metal layer 9a formed thereon is bonded. The base 1 made of a metal material and having a mounting portion 1a mounted on the upper surface is joined to the upper surface of the base 1 via a brazing material so as to surround the mounting portion 1a, and the coaxial connector 3 is fitted to the side portion. A through-hole 2a for wearing, and a frame 2 made of a metal material having a through-hole 2b as an optical transmission path formed on the opposite side portion. The center conductor 3c of the coaxial connector 3 One end connected to the circuit board 9 is flush with the inner surface of the frame body 2 or on the inner peripheral surface side of the through hole 2a with respect to the inner surface of the frame body 2, and the circuit board 9 and the central conductor 3c are formed of a plate-shaped metal piece 3c ′. It has the structure electrically connected via.
[0042]
As described above, one end of the center conductor 3c is flush with the inner surface of the frame body 2 or closer to the inner peripheral surface of the through hole 2a than the inner surface of the frame body 2, and the electrical connection between the one end of the center conductor 3c and the metallized metal layer 9a. Since the electrical connection is performed via the metal piece 3c ′, it is possible to suppress a rapid change in impedance even when the frequency of the transmitted high-frequency signal is increased. That is, the reflection loss of the high-frequency signal generated due to the impedance change can be made extremely small, and the transmission characteristics can be improved.
[0043]
The semiconductor package of the present invention accommodates an optical semiconductor element 7 in the case of an optical semiconductor package, and a high-frequency semiconductor element in the case of a semiconductor package for wireless communication. It is configured as a semiconductor package or the like that inputs and outputs high-frequency signals. In the case of an optical semiconductor package, the mounting base 8 on which the optical semiconductor element 7 and the circuit board 9 are mounted is mounted and fixed via an adhesive such as a resin adhesive or brazing material, and then the central conductor 3b of the coaxial connector 3 is placed. One end of the optical semiconductor element 7 is joined to the metallized metal layer 9a on the upper surface of the circuit board 9 with a low melting point brazing material, and the optical semiconductor element 7 and the metallized metal layer 9a are electrically connected by the bonding wire 10, and then the optical isolator 11 and the optical fiber are connected. An optical semiconductor device as a product is obtained by welding the metal holder 12 to which the reference numeral 13 is fixed to the fixing member 4 and joining the lid 6 to the upper surface of the frame 2 by seam welding or brazing.
[0044]
Thus, according to the present invention, it is possible to suppress an abrupt change in impedance even when the frequency of the transmitted high-frequency signal increases. That is, the reflection loss caused by the impedance change can be made very small, and the high frequency transmission characteristics can be improved. As a result, compared to the case where the conventional coaxial connector 3 is used, the impedance gap between the portion of the central conductor 3c that does not protrude inside the frame 2 and the metallized metal layer 9a can be reduced, and the input / output of high-frequency signals can be reduced. The reflection loss at the time can be very small. Therefore, the high-frequency transmission characteristics between the optical semiconductor element 7 and the external electric circuit can be improved, and the operability of the optical semiconductor element 7 can be improved.
[0045]
In the present invention, the frequency of the high-frequency signal is about 1 to 100 GHz. In particular, the rapid change in impedance in the conventional frequency at a frequency of 30 GHz or higher can be made gentle in the present invention.
[0046]
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, a so-called metal injection mold (MIM) in which the base 1 and the frame 2 are integrally formed may be used.
[0047]
【The invention's effect】
The present invention provides a base having a mounting portion on which a circuit board having a semiconductor element and a metallized metal layer formed thereon is mounted via a mounting base, and surrounds the mounting portion on the upper surface of the base. It consists of a frame that is attached and has through holes on the side, a cylindrical outer conductor, a central conductor installed on the central axis of the frame, and an insulator interposed between them, and fits into the through hole A coaxial connector that is attached and electrically connected to the circuit board. The coaxial connector is provided so that the center conductor protrudes from the insulator and does not protrude from the inside of the frame body. The metallized metal layer is connected via a plate-shaped metal piece, the width of the metal piece is equal to or smaller than the diameter of the central conductor in plan view, and the side cross-sectional shape tapers toward the metallized metal layer. Taper shape By being, can be reduced gap impedance between the site and the metallized metal layer does not protrude inside the frame side of the center conductor, the return loss between input and output of the high-frequency signal can be made very small. That is, the magnitude of the electric field generated in the metallized metal layer when transmitting a high-frequency signal is larger than the magnitude of the electric field generated in the portion where the central conductor protrudes inside the frame body. Because it is closer, the use of a metal piece makes the change in the electric field between the metallized metal layer gradual, suppresses a sudden change in impedance, and reduces the reflection loss caused by the change in impedance. . As a result, the high-frequency transmission characteristics between the optical semiconductor element and the external electric circuit can be made very good.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor package of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part around a coaxial connector in FIG.
FIG. 3 is a cross-sectional view of a conventional semiconductor package.
[Explanation of symbols]
1: Base 1a: Placement part 2: Frame body 2a: Through hole 3: Coaxial connector 3c: Center conductor 3c ': Metal piece 7: Semiconductor element 8: Mounting base 9: Circuit board

Claims (1)

上面に半導体素子およびメタライズ金属層が形成された回路基板が載置用基台を介して載置される載置部を有する基体と、該基体上面に前記載置部を囲繞するように取着されるとともに側部に貫通孔が形成された枠体と、筒状の外周導体およびその中心軸に設置された中心導体ならびにそれらの間に介在された絶縁体から成るとともに前記貫通孔に嵌着されて前記回路基板に電気的に接続される同軸コネクタとを具備した半導体素子収納用パッケージにおいて、前記同軸コネクタは、前記中心導体が前記絶縁体より突出しかつ前記枠体の内側に突出しないように設けられるとともに、前記中心導体と前記回路基板の前記メタライズ金属層とが板状の金属片を介して接続されており、該金属片は、その幅が平面視して前記中心導体の直径以下であり、且つ側断面形状がメタライズ金属層に向かって先細り状のテーパー状とされていることを特徴とする半導体素子収納用パッケージ。A substrate having a mounting portion on which a circuit board having a semiconductor element and a metallized metal layer formed on the upper surface is mounted via a mounting base, and is attached so as to surround the mounting portion on the upper surface of the substrate. And a frame having a through-hole formed in the side, a cylindrical outer conductor, a central conductor installed at the central axis thereof, and an insulator interposed therebetween, and is fitted into the through-hole. And a coaxial connector that is electrically connected to the circuit board. The coaxial connector is arranged so that the central conductor protrudes from the insulator and does not protrude from the inside of the frame. together provided, said center conductor and said metallized metal layer of the circuit board are connected via a plate-shaped metal piece, said metal piece has a width is equal to or less than the diameter of the center conductor in a plan view Ri, and the semiconductor device package for housing side sectional shape, characterized in that there is a tapered tapered toward the metallized metal layer.
JP2000279870A 2000-09-14 2000-09-14 Package for storing semiconductor elements Expired - Fee Related JP3720694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279870A JP3720694B2 (en) 2000-09-14 2000-09-14 Package for storing semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279870A JP3720694B2 (en) 2000-09-14 2000-09-14 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JP2002094167A JP2002094167A (en) 2002-03-29
JP3720694B2 true JP3720694B2 (en) 2005-11-30

Family

ID=18764810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279870A Expired - Fee Related JP3720694B2 (en) 2000-09-14 2000-09-14 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP3720694B2 (en)

Also Published As

Publication number Publication date
JP2002094167A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
JP4605957B2 (en) Package for storing semiconductor elements
JP3720694B2 (en) Package for storing semiconductor elements
JP4658313B2 (en) Package for storing semiconductor elements
JP3673491B2 (en) I / O terminal and semiconductor element storage package
JP3967905B2 (en) Semiconductor element storage package and semiconductor device
JP3314163B2 (en) Package for storing semiconductor elements
JP4172783B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP4045110B2 (en) Package for storing semiconductor elements
JP2002141594A (en) Package for containing semiconductor element
JP2002246681A (en) Package for storing semiconductor element
JP2002319643A (en) Package for housing semiconductor element
JP3702200B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2004140188A (en) Package for storing semiconductor element
JP3993774B2 (en) Optical semiconductor element storage package
JP2004200242A (en) Package for housing semiconductor element
JP3457921B2 (en) Package for storing input / output terminals and semiconductor elements
JP3881554B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP3598059B2 (en) Package for storing semiconductor elements
JP2003069126A (en) Package for accommodating semiconductor element
JP2001217331A (en) Package for accommodating semiconductor element
JP3393837B2 (en) Package for storing semiconductor elements
JP2004259609A (en) Package for semiconductor device housing
JP2004152826A (en) Package for housing semiconductor device
JP2004165507A (en) Package for storing semiconductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees