JP2004259962A - Package for optical semiconductor element and optical semiconductor device - Google Patents

Package for optical semiconductor element and optical semiconductor device Download PDF

Info

Publication number
JP2004259962A
JP2004259962A JP2003049346A JP2003049346A JP2004259962A JP 2004259962 A JP2004259962 A JP 2004259962A JP 2003049346 A JP2003049346 A JP 2003049346A JP 2003049346 A JP2003049346 A JP 2003049346A JP 2004259962 A JP2004259962 A JP 2004259962A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
metal
semiconductor device
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049346A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakamichi
博之 中道
Hidenobu Egashira
秀伸 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003049346A priority Critical patent/JP2004259962A/en
Publication of JP2004259962A publication Critical patent/JP2004259962A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem in a package for an optical semiconductor element that since the wiring conductor and the metal terminal of an insulating substrate are bonded perpendicularly, high frequency signals of 10 GHz or above interfere and increase the reflection loss extremely thus causing significant deterioration of the optical semiconductor element due to the transmission length. <P>SOLUTION: The package for an optical semiconductor element comprises a metal substrate 1 having a mounting part 1a of the optical semiconductor element S in the center of the upper surface and two through holes 1b formed from the upper surface to the lower surface in the vicinity of the mounting part 1a, two metal terminals 3 inserted into respective through holes 1b and secured through a sealing material 2 such that the end part on the lower surface side projects from the through hole 1b and the electrode of the optical semiconductor element S is connected electrically with the end part on the upper surface side, and a square planar insulating substrate 5 having two linear wiring conductors 4 fixed in parallel to the opposite major surfaces from one side to the opposite side and bonded in parallel to the part of two metallic terminals 3 projecting to the lower surface side such that the opposite major surfaces are held between. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光半導体デバイスに使用する光半導体素子収納用パッケージおよびそれを用いた光半導体装置に関する。
【0002】
【従来の技術】
従来の光通信分野で用いられている、LD(レーザーダイオード)やPD(フォトダイオ−ド)、VCSEL(面発光型素子)等の光半導体素子を収納するための光半導体装置を図2(a)、(b)、(c)に示す。なおここで、図2(a)は光半導体装置の断面図、図2(b)および(c)はそれぞれ図2(a)の光半導体装置の蓋体を外した状態での上面図および下面図である。また、図2(b)では、図が煩雑となることを避けるために、光半導体素子Sを1個のみ記載している。
【0003】
従来の光半導体装置は、上面の中央部に光半導体素子S’の搭載部11aを有するとともにこの搭載部11aの近傍に上面から下面にかけて形成された直径0.5〜2mmの貫通孔11bを有する、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や鉄(Fe)−ニッケル(Ni)合金等の金属から成る円板状の金属基板11と、貫通孔11bに挿通され、下面側の端部が貫通孔11bから突出するように封止材12を介して固定された、上面側の端部が光半導体素子S’の電極と電気的に接続した、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や鉄(Fe)−ニッケル(Ni)合金等の金属から成る金属製端子13と、搭載部11aに搭載されて、その電極が金属製端子13の上面側の端部とボンディングワイヤ等の電気的接続手段16を介して接続された光半導体素子S’と、主面にその一辺から対向する辺にかけて被着された直線状の配線導体14aを有し、この配線導体14aを金属製端子13の下面側に突出した部位に並行に接合させて金属基板11に取着された四角平板状の絶縁基板15とを具備している。
【0004】
なお、金属製端子13が2本ある場合は、通常、金属製端子13の1本は、図2(a)に断面図に示すように直角に折り曲げられるとともに絶縁基板15に形成された貫通孔を通って、絶縁基板15の他方の主面に被着された配線導体14bと低融点ろう材19を介して接合している。
【0005】
また、金属製端子13を金属基板11の貫通孔11bに固定する封止材12には、ソーダ系ガラスやホウ珪酸系ガラス等の絶縁ガラスが用いられ、金属基板11と金属製端子13とは封止材12によって電気的に絶縁されている。さらに、光半導体素子S’は、金属基板11に載置用基台等を介して200〜400℃の融点を有する金(Au)−錫(Sn)等の低融点ろう材によりろう付け固定されている。
【0006】
さらに、金属基板11の上面には、外周端から幅1mm以内の外周部に、光半導体素子S’の保護を目的として、Fe−Ni−Co合金等から成る第1の蓋体17aがYAGレーザ溶接やシーム溶接またはろう付け等により固定され、そして、金属基板11の上面に第1の蓋体17aを、例えばYAGレーザで溶接・接合し、さらに光半導体素子S’に対向する部位に光ファイバ18が固定される第2の蓋体17bを接合することにより、製品としての光半導体装置となる。
【0007】
この光半導体装置は、外部電気回路(図示せず)から供給される駆動信号によって光半導体素子S’を光励起させ、励起した光を戻り光防止用の光アイソレータ(図示せず)を介して光ファイバ18に授受させるとともに光ファイバ18内を伝達させることによって、大容量の光通信等に使用される。そして、その適応範囲は40km以下の伝送距離、かつ2.5Gbps(Giga bit per second)以下の伝送速度の範囲で多用されている。
【0008】
近年、40km以下の伝送距離での高速通信に対する需要が急激に増加しており、高速大容量伝送に関する研究開発が進められている。とりわけ、光通信装置において光信号を発信する光半導体装置が注目されており、光信号の高出力化と高速化が伝送容量を向上させるための課題となっている。
【0009】
なお、従来の光半導体装置の光出力は0.2〜0.5mW程度であり、光半導体素子は5mW程度の駆動電力であった。しかし、より大出力の光半導体装置では、光出力が1mWのレベルまで向上してきており、また、光半導体素子も10mW以上の駆動電力が要求されている。さらに、従来の光半導体装置に用いられていた高周波信号の伝送速度は2.4Gbps程度であったが、10Gbps程度まで高速化してきており、より高出力化と高速化による長距離伝送化が要求され、最終的に10GHz以上の高周波信号の伝送損失を小さくして、光半導体素子の伝送距離の長さによる劣化を少なくした光半導体素子パッケージおよび光半導体装置が求められている。
【0010】
【特許文献1】
特開平8−130266号公報
【0011】
【発明が解決しようとする課題】
しかしながら、従来の光半導体素子収納用パッケージあるいはこれを用いた光半導体装置は、10mW以上の駆動電力で10GHz以上の高周波信号を伝送することを前提としていなかった。このため、10mW以上の駆動電力および10GHz以上の高周波信号で駆動される光半導体素子を搭載した、光出力が1mW程度の光半導体装置を製作した場合、金属製端子13が2本ある場合は上述したように金属製端子13の1本はL字状に90度折曲げて使用されていたために、信号の周波数が高くなると信号の伝搬において、直角に曲がっている箇所、すなわち金属製端子13が直角に曲がる箇所および金属製端子13と配線導体14bとの接合箇所で、信号の全反射により信号同士が干渉し反射損失が極めて大きくなるという問題点を有していた。
【0012】
また、多数の金属製端子13を絶縁基板15に対しそれぞれ平行にして実装しようとした場合、絶縁基板15から離れた位置にある金属製端子13は絶縁基板15から近い位置にある金属製端子13と比べて金属製端子13が長くなるので、絶縁基板15から離れた位置にある金属製端子13内での信号の反射損失が大きくなるという問題点を有していた。
【0013】
さらに、絶縁基板15から離れた位置の金属製端子13を絶縁基板15の近くに位置する金属製端子13と同じ絶縁基板面15に差し込み接合しようとすると実装空間が狭くなるので、金属製端子13間で信号同士が干渉し信号の反射損失が極めて大きくなるという問題点を有していた。
【0014】
そしてこのように反射損失が極めて大きくなると、10GHz以上の高周波信号の伝送損失を小さくして円滑に伝送することが困難となるとともに、光半導体素子S’本来の信号の伝送距離に対し、光半導体素子収納用パッケージに搭載された場合の光半導体素子S’の信号の伝送距離が大幅に短くなるという問題点があった。
【0015】
本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、10GHz以上の高周波信号の伝送損失を小さくして、光半導体素子の伝送距離の長さによる劣化を少なくした光半導体素子パッケージおよび光半導体装置を提供することにある。
【0016】
【課題を解決するための手段】
本発明の光半導体素子収納用パッケージは、上面の中央部に光半導体素子の搭載部を有するとともにこの搭載部の近傍に前記上面から下面にかけて形成された2つの貫通孔を有する金属基板と、前記貫通孔にそれぞれ挿通され、前記下面側の端部が前記貫通孔から突出するように封止材を介して固定された、前記上面側の端部に前記光半導体素子の電極がそれぞれ電気的に接続される2本の金属製端子と、両主面にその一辺から対向する辺にかけて、互いに平行になるように被着された2つの直線状の配線導体を有し、2本の前記金属製端子の前記下面側に突出した部位に前記両主面を挟むように2つの前記配線導体をそれぞれ平行に接合した四角平板状の絶縁基板とを具備することを特徴とするものである。
【0017】
また、本発明の光半導体装置は、上記構成の光半導体素子収納用パッケージと、前記搭載部に搭載されてその電極が前記金属製端子の前記上面側の端部に電気的に接続された光半導体素子とを具備することを特徴とするものである。
【0018】
本発明の半導体素子収納用パッケージおよび光半導体装置によれば、両主面にその一辺から対向する辺にかけて、互いに平行になるように被着された2つの直線状の配線導体を有し、2本の金属製端子の下面側に突出した部位に両主面を挟むように2つの配線導体をそれぞれ平行に接合した四角平板状の絶縁基板を具備することから、金属製端子をL字状に90度折曲げて配線導体と接合する必要がなく、その結果、10GHz以上の高周波信号と高い場合においても、信号が全反射することはなく、信号同士が干渉して反射損失が大きくなることはない。
【0019】
また、2本の金属製端子を絶縁基板に対しそれぞれ平行にして実装した場合においても、金属製端子の長さを等しくできるので、金属製端子の違いによってその内部の反射損失が大きくなることもない。
【0020】
さらに、2本の金属製端子間に絶縁基板が位置することから、金属製端子間の距離が十分なものとなり金属製端子間で信号同士が干渉することもない。
【0021】
そしてこのように反射損失が大きくなることはないので、10GHz以上の高周波信号の伝送損失を小さくして円滑に伝送することが可能となるとともに、光半導体素子を光半導体素子収納用パッケージに収納して光半導体装置としたとしても、光半導体素子の信号の伝送距離が光半導体素子本来の信号の伝送距離に対して大幅に短くなることはない。
【0022】
【発明の実施の形態】
次に、本発明の光半導体素子収納用パッケージおよび光半導体装置について添付の図面に基づいて詳細に説明する。
図1(a)は、本発明の光半導体素子収納用パッケージに光半導体素子Sを搭載して成る光半導体装置の実施の形態の一例を示した断面図であり、図1(b)および(c)は、それぞれ図1(a)に示す光半導体装置の蓋体を外した状態での上面図および下面図である。また、図1(d)は、図1(a)の要部拡大側面図である。なお、図1(b)では、図が煩雑となることを避けるために、光半導体素子Sを1個のみ記載している。
【0023】
これらの図において、1は金属基板、2は封止材、3は金属製端子、4a,4bは配線導体、5は絶縁基板であり、主にこれらで本発明の光半導体素子収納用パッケージが構成され、また、主にこの光半導体素子収納用パッケージと光半導体素子Sとで本発明の光半導体装置が構成される。
【0024】
金属基板1は、光半導体素子Sを搭載するとともに搭載する光半導体素子Sが発生する熱を放散する機能を有し、その形状が円形や円形状・半円形・半円形状・四角形・四角形状等で、厚みが0.5〜2mmの平板状であり、その上面には光半導体素子Sを搭載する搭載部1aを有するとともに搭載部1aの近傍には上面から下面にかけて形成された直径0.5〜2mmの貫通孔1bを2個有する。
【0025】
このような金属基板1は、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や鉄(Fe)−ニッケル(Ni)合金,SPC材、銅(Cu)−タングステン(W)合金等の金属から成り、例えば金属基板1が鉄−ニッケル−コバルト合金から成る場合は、このインゴット(塊)に圧延加工や打ち抜き加工等の従来周知の金属加工方法を施すことによって所定形状に製作される。
【0026】
なお、金属基板1の表面に耐食性に優れ、かつろう材との濡れ性に優れた厚みが0.5〜9μmのニッケル層と厚みが0.5〜5μmの金層とをめっき法により順次被着させておくと、金属基板1が酸化腐食するのを有効に防止するとともに各部品を金属基板1に良好にろう付けすることができる。
【0027】
このような金属基板1は、その厚みが0.5mm以上であることが好ましく、厚みが0.5mm未満の場合、後述する第1の蓋体7aや第2の蓋体7bを金属基体1に溶接する際に、溶接の条件(温度等)により金属基板1が曲がったりして変形し易くなる傾向があり、2mmを超えると半導体素子収納用パッケージや半導体装置の厚みが不要に厚いものとなり小型化をすることが困難となる傾向がある。従って、金属基体1の厚みは0.5〜2mmが好ましい。
【0028】
金属基板1に形成された2個の貫通孔1bには、金属製端子3が封止材2を介してそれぞれ固定されている。金属製端子3は、光半導体素子Sが送受信する電気信号を外部電気回路(図示せず)に伝送する機能を有する。なお、金属製端子3は、少なくとも金属基板1の下面側の端部が貫通孔1bから1〜20mm程度突出するように、封止材2を介して固定されており、後述する絶縁基板5に形成された配線導体4と電気的に接続される。また、金属製端子3の上端部側は、光半導体素子Sにボンディングワイヤ等の電気的接続手段6を介して接続される。
【0029】
このような金属製端子3同士は並列となるように配置され、金属製端子3間の間隔が0.2〜5mmの範囲となることが好ましい。このように金属製端子3同士が平行で、金属製端子3間の間隔を0.2〜5mmと十分な距離とすることにより、金属製端子3間で信号同士が干渉することもない。
【0030】
なお、金属製端子3間の間隔が0.2mm未満の場合、金属製端子3間で信号同士が干渉して反射損失が大きくなる危険性があり、5mmを超えると、金属製端子3間の距離が不要に長いものとなって金属基板1が大きなものとなり、光半導体素子収納用パッケージおよび光半導体装置を小型化することが困難となる傾向がある。
【0031】
このような金属製端子3は、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や鉄(Fe)−ニッケル(Ni)合金等の金属から成り、例えば金属製端子3が鉄−ニッケル−コバルト合金から成る場合は、このインゴット(塊)を圧延加工や打ち抜き加工等の従来周知の金属加工方法を施すことによって、長さが1.5〜22mm、直径が0.1〜1mmのピン状に製作される。
【0032】
なお、金属製端子3の金属基板1の下面に突出した部位の長さが1mm未満であると、後述する配線導体4a,4bとろう材等を用いて強固に接合することが困難と成る傾向があり、20mmを超えると絶縁基板5の長さが不要に長いものとなり、光半導体素子収納用パッケージや光半導体装置を小型化することが困難となる傾向がある。従って、金属製端子3は、少なくとも金属基板1の下面側の端部が貫通孔1bから1〜20mm程度突出するように、封止材2を介して固定されることが好ましい。
【0033】
また、封止材2は、金属基板1と金属製端子3との絶縁間隔を確保するとともに、金属製端子3を金属基板1の貫通孔1bに固定する機能を有し、通常、ソーダ系やホウ珪酸系のガラスやセラミックスなどの無機材料が用いられる。
【0034】
なお、金属製端子3は、例えば厚みが金属基板1の厚みと略同等で、外径が貫通孔1bの径より小さく、内径が金属製端子3の外径より大きいガラス製のリングを貫通孔1bに挿入するとともにリングに金属製端子3を挿入し、しかる後、ガラスを所定の温度で加熱・溶融することにより、金属製端子3の外周面が貫通孔1bの内面に気密に固定される。
【0035】
また、金属基板1の下面には、両主面にその一辺から対向する辺にかけて、互いに平行になるように被着された2つの直線状の配線導体4a,4bを有する四角平板状の絶縁基板5が、2本の金属製端子3の下面側に突出した部位に両主面が挟まれるように、2つの配線導体4a,4bをそれぞれ平行に接合させて取着されている。
【0036】
絶縁基板5は、配線導体4a,4bを支持する機能を有し、ポリイミド樹脂やエポキシ樹脂等の熱硬化性樹脂や、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・炭化珪素質焼結体・窒化珪素質焼結体・ガラス−セラミックス等の無機材料から成り、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することにより複数枚のセラミックグリーンシートを得、しかる後、これらのセラミックグリーンシートに適当な打ち抜き加工・積層加工・切断加工を施すことにより絶縁基板5用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0037】
配線導体4a,4bは、光半導体素子Sおよび外部電気回路間の電気信号を伝送する機能を有し、絶縁基板5の両主面にその一辺から対向する辺にかけて直線状に形成されている。
【0038】
このような配線導体4a,4bは、絶縁基板5がポリイミド樹脂やエポキシ樹脂等の熱硬化性樹脂から成る場合は一般に銅めっきにより形成され、絶縁基板5が酸化アルミニウム質焼結体等の無機材料から成る場合は、タングステンやモリブデン、マンガン等から成り、例えば、絶縁基板5が酸化アルミニウム質焼結体から成る場合であれば、タングステンの粉末に有機溶剤・溶媒を添加混合して得た金属ペーストを、あらかじめ主面となるセラミックグリーンシートにスクリーン印刷法により所定パターンに印刷塗布し、セラミックグリーンシートを焼成することによって絶縁基板5の主面に被着形成される。
【0039】
なお、配線導体4はその表面に、酸化防止のためおよびボンディングワイヤ等の電気的接続手段6や金属製端子3等を強固に接続するために、厚みが0.5〜9μmのニッケル層や厚みが0.5〜5μmの金層等の金属層をめっき法により順次被着させておくことが好ましい。
【0040】
また、絶縁基板5は、配線導体4a,4bの表面に半田や温度が200〜400℃に融点を有する金(Au)−錫(Sn)等の低融点ろう材を従来周知のスクリーン印刷法を用いて印刷し、次に、これを金属製端子3を固定した金属基板1に各配線導体4a,4bと各金属製端子3の金属基板1の下面側に突出した部位とをそれぞれ平行かつ対向するように載置し、しかる後、200〜400℃の温度で加熱することにより金属基板1の金属製端子3間に固定される。
【0041】
また、本発明の光半導体装置は、上述の光半導体素子収納用パッケージの搭載部1aに光半導体素子Sを載置用基体等を介して金(Au)−錫(Sn)の低融点ろう材で実装し、しかる後、その電極を金属製端子3の上面側の端部とボンディングワイヤ等の電気的接続部材6を介して接続することにより製作される。
【0042】
なお通常は、金属基板1の上面には、外周端から幅1mm以内の外周部に、光半導体素子Sの保護を目的として、Fe−Ni−Co合金等から成る第1の蓋体7aがYAGレーザ溶接、シーム溶接またはろう付け等により固定され、そして、金属基板1の上面に第1の蓋体7aを、例えばYAGレーザで溶接・接合し、さらに第1の蓋体7の外周部(鍔状部)に、光ファイバ8と戻り光防止用の光アイソレータ(図示せず)とが樹脂接着剤で接着された第2の蓋体7bをYAGレーザ溶接等で接合することによって、製品としての光半導体装置となる。
【0043】
そして本発明の光半導体素子収納用パッケージおよび光半導体装置によれば、上述したように、両主面にその一辺から対向する辺にかけて、互いに平行になるように被着された2つの直線状の配線導体4a,4bを有し、2本の金属製端子3の下面側に突出した部位に両主面を挟むように2つの配線導体4a,4bをそれぞれ平行に接合した四角平板状の絶縁基板5を具備することから、金属製端子3をL字状に90度折曲げて配線導体と接合する必要がなく、その結果、10GHz以上の高周波信号と高い場合においても、信号が全反射することはなく、信号同士が干渉して反射損失が大きくなることはない。
【0044】
また、2本の金属製端子3を絶縁基板5に対しそれぞれ平行にして実装した場合においても、金属製端子3の長さを等しくできるので、金属製端子3によってその内部での信号の反射損失が大きくなることもない。
【0045】
さらに、2本の金属製端子3間に絶縁基板5が位置することから、金属製端子3間の距離が十分なものとなり金属製端子3間で信号同士が干渉することもない。
【0046】
そしてこのように反射損失が大きくなることはないので、10GHz以上の高周波信号の伝送損失を小さくして円滑に伝送することが可能となるとともに、光半導体素子Sを光半導体素子収納用パッケージに収納して光半導体装置としたとしても、光半導体素子Sの信号の伝送距離が光半導体素子S本来の信号の伝送距離に対して大幅に短くなることはない。
【0047】
かくして、本発明の光半導体素子パッケージおよび光半導体装置によれば、10GHz以上の高周波信号の伝送損失を小さくして、光半導体素子の伝送距離の長さによる劣化を少なくすることが可能となる。
【0048】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、図1(a)〜(c)には、半導体素子Sを2個搭載し、貫通孔1bを2個形成した例を示しているが、3個以上の半導体素子Sを搭載し、3個以上の貫通孔1bを形成してもよい。
【0049】
【実施例】
本発明の光半導体装置を、次に述べる評価用の試料と比較用の試料を作成して評価した。
本発明の光半導体装置を以下のように構成した。まず、上面および下面にそれぞれ配線導体4a,4bおよび接地導体となるパターンをCuめっきした、厚み1.0mm×縦30mm×横15mmのポリイミド樹脂から成る絶縁基板5を製作した。このとき、表面から0.15mmの所に厚さ0.003mmの接地導体を形成した。なお、絶縁基板5は比誘電率を4.1、配線導体4は幅を0.7mm、長さを18.8mm、厚みを0.003mmとした。
【0050】
次に貫通孔1aを形成した金属基板1を用意し、この貫通孔1aに金属製端子3を挿入し、ガラスから成る封止材2で接合して気密封止した。このとき、金属製端子3間の距離を信号の干渉が発生しない0.2mmとした。その後、金属基板1の搭載部1aに光半導体素子SであるLD(アンクールドDFB(Distributed Feed Back)−LD)をAu−Snにてろう付けして搭載し、光半導体素子Sと金属製端子3とをボンディングワイヤ6にて電気的に接続した。さらに、絶縁基板5を金属製端子3間に挟み込んで、各配線導体4a,4bをそれぞれの金属製端子3とを半田で電気的に接続した。
【0051】
そして、Fe−Ni−Co合金から成る第1の蓋体7aを金属基板1の上面の外周部にシーム溶接により接合し気密封止し、しかる後、この第1の蓋体7aの外周端部に、光ファイバ8と光アイソレータとを樹脂接着剤で接着した第2の蓋体7bをYAGレーザ溶接により接合し、評価用の光半導体装置を作製した。
【0052】
次に、比較用の試料は、上述評価用の試料以外の範囲で製作した。具体的には、絶縁基板およびの配線導体に金属製端子が通る大きさの貫通孔を形成し、金属製端子の1本を直角に折曲げてこの貫通孔を挿通し、金属製端子を絶縁基板の配線導体に貫通孔を挿通した箇所で半田を用いて電気的に接合した。評価用および比較用の試料について、光ファイバ8を用いてそれぞれの光学特性を測定した。結果を表1に示す。
【0053】
【表1】

Figure 2004259962
【0054】
表1より、本発明の光半導体装置は、光半導体素子単体の伝送距離に対して、光半導体素子をパッケージに搭載した場合、平均で約90%の距離を伝送可能であることが分かった。一方、比較例の光半導体装置では、平均で約81%の距離しか伝送できないことがわかった。
【0055】
【発明の効果】
本発明の半導体素子収納用パッケージおよび光半導体装置によれば、両主面にその一辺から対向する辺にかけて、互いに平行になるように被着された2つの直線状の配線導体を有し、2本の金属製端子の下面側に突出した部位に両主面を挟むように2つの配線導体をそれぞれ平行に接合した四角平板状の絶縁基板を具備することから、金属製端子をL字状に90度折曲げて配線導体と接合する必要がなく、その結果、10GHz以上の高周波信号と高い場合においても、信号が全反射することはなく、信号同士が干渉して反射損失が大きくなることはない。
【0056】
また、2本の金属製端子を絶縁基板に対しそれぞれ平行にして実装した場合においても、金属製端子の長さを等しくできるので、金属製端子の違いによってその内部の反射損失が大きくなることもない。
【0057】
さらに、2本の金属製端子間に絶縁基板が位置することから、金属製端子間の距離が十分なものとなり金属製端子間で信号同士が干渉することもない。
【0058】
そしてこのように反射損失が大きくなることはないので、10GHz以上の高周波信号の伝送損失を小さくして円滑に伝送することが可能となるとともに、光半導体素子を光半導体素子収納用パッケージに収納して光半導体装置としたとしても、光半導体素子の信号の伝送距離が光半導体素子本来の信号の伝送距離に対して大幅に短くなることはない。
【図面の簡単な説明】
【図1】(a)は、本発明の光半導体素子収納用パッケージに光半導体素子を実装して成る光半導体装置の実施の形態の一例の断面図であり、(b)および(c)は、(a)の蓋体を外した状態での上面図および下面図である。また、(d)は、(a)の要部拡大側面図である。
【図2】(a)は、従来の光半導体装置の断面図であり、(b)および(c)は、(a)の蓋体を外した状態での上面図および下面図である。
【符号の説明】
1・・・・・・・金属基板
1a・・・・・・搭載部
1b・・・・・・貫通孔
2・・・・・・・封止材
3・・・・・・・金属製端子
4・・・・・・・配線導体
5・・・・・・・絶縁基板
6・・・・・・・電気的接続部材
7・・・・・・・蓋体
7a・・・・・・第1の蓋体
7b・・・・・・第2の蓋体
8・・・・・・・光ファイバ
S・・・・・・・光半導体素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical semiconductor element storage package used for an optical semiconductor device and an optical semiconductor device using the same.
[0002]
[Prior art]
FIG. 2 (a) shows an optical semiconductor device for accommodating optical semiconductor elements such as LD (laser diode), PD (photodiode), VCSEL (surface emitting element) used in the conventional optical communication field. ), (B) and (c). 2A is a cross-sectional view of the optical semiconductor device, and FIGS. 2B and 2C are a top view and a lower surface of the optical semiconductor device of FIG. 2A with the lid removed. FIG. In FIG. 2B, only one optical semiconductor element S is shown in order to avoid complicating the drawing.
[0003]
The conventional optical semiconductor device has a mounting portion 11a for the optical semiconductor element S 'in the center of the upper surface and a through hole 11b having a diameter of 0.5 to 2 mm formed from the upper surface to the lower surface in the vicinity of the mounting portion 11a. A disc-shaped metal substrate 11 made of a metal such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or an iron (Fe) -nickel (Ni) alloy; Is fixed via the sealing material 12 so that the end of the ferroelectric element protrudes from the through-hole 11b, and the upper end is electrically connected to the electrode of the optical semiconductor element S ′. A metal terminal 13 made of a metal such as Ni) -cobalt (Co) alloy or iron (Fe) -nickel (Ni) alloy; and an electrode mounted on the mounting portion 11a and having an electrode on the upper surface side of the metal terminal 13. Electrical parts and bonding wires An optical semiconductor element S ′ connected via the connecting means 16 and a linear wiring conductor 14 a attached to the main surface from one side to the opposite side thereof, and this wiring conductor 14 a is connected to the metal terminal 13. A rectangular flat insulating substrate 15 attached to the metal substrate 11 in parallel with a portion projecting to the lower surface side.
[0004]
When there are two metal terminals 13, one of the metal terminals 13 is usually bent at a right angle as shown in the cross-sectional view of FIG. Through a low melting point brazing material 19 with the wiring conductor 14b attached to the other main surface of the insulating substrate 15.
[0005]
Insulating glass such as soda glass or borosilicate glass is used for the sealing material 12 for fixing the metal terminals 13 to the through holes 11b of the metal substrate 11, and the metal substrate 11 and the metal terminals 13 It is electrically insulated by the sealing material 12. Further, the optical semiconductor element S ′ is brazed and fixed to the metal substrate 11 with a low melting point brazing material such as gold (Au) -tin (Sn) having a melting point of 200 to 400 ° C. via a mounting base or the like. ing.
[0006]
Further, on the upper surface of the metal substrate 11, a first lid 17a made of an Fe-Ni-Co alloy or the like is provided on the outer peripheral portion within 1 mm from the outer peripheral edge for the purpose of protecting the optical semiconductor element S '. It is fixed by welding, seam welding, brazing, or the like, and the first lid 17a is welded and joined to the upper surface of the metal substrate 11 by, for example, a YAG laser, and an optical fiber is placed at a portion facing the optical semiconductor element S '. By joining the second lid 17b to which the 18 is fixed, an optical semiconductor device as a product is obtained.
[0007]
In this optical semiconductor device, the optical semiconductor element S ′ is optically excited by a drive signal supplied from an external electric circuit (not shown), and the excited light is transmitted through an optical isolator (not shown) for preventing return light. It is used for large-capacity optical communication and the like by transmitting and receiving the data to and from the fiber 18. The adaptation range is frequently used in a transmission distance of 40 km or less and a transmission speed of 2.5 Gbps (Giga bit per second) or less.
[0008]
In recent years, demand for high-speed communication over a transmission distance of 40 km or less has been rapidly increasing, and research and development on high-speed and large-capacity transmission have been promoted. In particular, an optical semiconductor device that emits an optical signal in an optical communication device has attracted attention, and high output and high speed of an optical signal have been issues for improving transmission capacity.
[0009]
The optical output of the conventional optical semiconductor device is about 0.2 to 0.5 mW, and the driving power of the optical semiconductor element is about 5 mW. However, in a higher output optical semiconductor device, the optical output has been improved to a level of 1 mW, and the optical semiconductor element also requires a driving power of 10 mW or more. Furthermore, the transmission speed of high-frequency signals used in conventional optical semiconductor devices was about 2.4 Gbps, but has been increased to about 10 Gbps, and longer output distances and higher distances due to higher output and higher speed are required. Finally, there is a need for an optical semiconductor device package and an optical semiconductor device in which the transmission loss of a high-frequency signal of 10 GHz or more is reduced to reduce deterioration due to the length of the transmission distance of the optical semiconductor device.
[0010]
[Patent Document 1]
JP-A-8-130266
[Problems to be solved by the invention]
However, the conventional package for housing an optical semiconductor element or an optical semiconductor device using the same has not been premised on transmitting a high-frequency signal of 10 GHz or more with a driving power of 10 mW or more. For this reason, when an optical semiconductor device having an optical output of about 1 mW equipped with an optical semiconductor element driven by a driving power of 10 mW or more and a high-frequency signal of 10 GHz or more is manufactured. As described above, since one of the metal terminals 13 is used by being bent at 90 degrees in an L shape, when the frequency of the signal becomes higher, a portion bent at a right angle in the signal propagation, that is, the metal terminal 13 There has been a problem that signals are interfered with each other due to total reflection of the signal at a portion bent at a right angle and at a position where the metal terminal 13 and the wiring conductor 14b are joined, resulting in an extremely large reflection loss.
[0012]
Further, in the case where a large number of metal terminals 13 are to be mounted in parallel with the insulating substrate 15, the metal terminals 13 located at a position distant from the insulating substrate 15 are arranged at positions close to the insulating substrate 15. Since the length of the metal terminal 13 is longer than that of the metal terminal 13, there is a problem that the reflection loss of a signal in the metal terminal 13 located at a position distant from the insulating substrate 15 increases.
[0013]
Further, if the metal terminals 13 located at a position away from the insulating substrate 15 are to be inserted and joined to the same insulating substrate surface 15 as the metal terminals 13 located near the insulating substrate 15, the mounting space becomes narrow. There is a problem in that the signals interfere with each other and the reflection loss of the signal becomes extremely large.
[0014]
When the reflection loss becomes extremely large, it becomes difficult to reduce the transmission loss of a high-frequency signal of 10 GHz or more to smoothly transmit the signal. There has been a problem that the signal transmission distance of the optical semiconductor element S 'when mounted on the element storage package is greatly reduced.
[0015]
The present invention has been completed in view of the above-mentioned conventional problems, and an object of the present invention is to reduce transmission loss of a high-frequency signal of 10 GHz or more and reduce deterioration due to the length of a transmission distance of an optical semiconductor element. An optical semiconductor element package and an optical semiconductor device are provided.
[0016]
[Means for Solving the Problems]
The optical semiconductor element housing package of the present invention has a metal substrate having an optical semiconductor element mounting portion in the center of the upper surface and having two through holes formed from the upper surface to the lower surface in the vicinity of the mounting portion. The electrodes of the optical semiconductor element are electrically inserted into the upper end, respectively, which are inserted into the through holes, and are fixed via a sealing material such that the lower end is protruded from the through hole. Two metal terminals to be connected, and two linear wiring conductors attached to both main surfaces from one side to the opposite side so as to be parallel to each other, and the two metal terminals A rectangular flat plate-shaped insulating substrate in which the two wiring conductors are joined in parallel so as to sandwich the two main surfaces at a portion protruding from the lower surface side of the terminal.
[0017]
Further, an optical semiconductor device of the present invention includes an optical semiconductor element housing package having the above-described configuration, and an optical element mounted on the mounting section, the electrode of which is electrically connected to an end of the metal terminal on the upper surface side. And a semiconductor element.
[0018]
According to the semiconductor element housing package and the optical semiconductor device of the present invention, two linear wiring conductors are attached to both main surfaces so as to be parallel to each other from one side to the opposite side, Since the metal terminal is provided with a rectangular flat plate-shaped insulating substrate in which two wiring conductors are joined in parallel so as to sandwich both main surfaces at a portion protruding from the lower surface side of the metal terminal, the metal terminal is formed into an L-shape. It is not necessary to bend 90 degrees and join with the wiring conductor. As a result, even when a high frequency signal of 10 GHz or more is high, the signal is not totally reflected, and the signal does not interfere with each other to increase the reflection loss. Absent.
[0019]
Also, even when two metal terminals are mounted in parallel with the insulating substrate, the length of the metal terminals can be equalized, so that the internal reflection loss may increase due to the difference between the metal terminals. Absent.
[0020]
Further, since the insulating substrate is located between the two metal terminals, the distance between the metal terminals is sufficient, and the signals do not interfere with each other between the metal terminals.
[0021]
Since the reflection loss does not increase in this way, the transmission loss of the high-frequency signal of 10 GHz or more can be reduced and transmitted smoothly, and the optical semiconductor element can be stored in the optical semiconductor element storage package. Even when the optical semiconductor device is used, the signal transmission distance of the optical semiconductor element does not become much shorter than the signal transmission distance of the optical semiconductor element.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an optical semiconductor element storage package and an optical semiconductor device of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1A is a cross-sectional view showing an example of an embodiment of an optical semiconductor device in which an optical semiconductor element S is mounted on an optical semiconductor element housing package of the present invention, and FIG. 1B and FIG. 3C is a top view and a bottom view of the optical semiconductor device shown in FIG. 1A with the lid removed. FIG. 1D is an enlarged side view of a main part of FIG. 1A. In FIG. 1B, only one optical semiconductor element S is shown to avoid complicating the drawing.
[0023]
In these figures, 1 is a metal substrate, 2 is a sealing material, 3 is a metal terminal, 4a and 4b are wiring conductors, and 5 is an insulating substrate. These are mainly used for the package for housing an optical semiconductor element of the present invention. The optical semiconductor device of the present invention is mainly composed of the optical semiconductor element housing package and the optical semiconductor element S.
[0024]
The metal substrate 1 has a function of mounting the optical semiconductor element S and dissipating heat generated by the mounted optical semiconductor element S, and has a circular, circular, semicircular, semicircular, quadrangular, or quadrangular shape. And the like, a flat plate having a thickness of 0.5 to 2 mm, having a mounting portion 1a for mounting the optical semiconductor element S on the upper surface thereof, and having a diameter of 0.1 mm formed from the upper surface to the lower surface in the vicinity of the mounting portion 1a. It has two through holes 1b of 5 to 2 mm.
[0025]
Such a metal substrate 1 is made of an iron (Fe) -nickel (Ni) -cobalt (Co) alloy, an iron (Fe) -nickel (Ni) alloy, an SPC material, a copper (Cu) -tungsten (W) alloy, or the like. When the metal substrate 1 is made of, for example, an iron-nickel-cobalt alloy, the ingot is made into a predetermined shape by applying a conventionally known metal working method such as rolling or punching.
[0026]
A nickel layer having a thickness of 0.5 to 9 μm and a gold layer having a thickness of 0.5 to 5 μm having excellent corrosion resistance and excellent wettability with a brazing material are sequentially coated on the surface of the metal substrate 1 by plating. When the metal substrate 1 is attached, it is possible to effectively prevent the metal substrate 1 from being oxidized and corroded, and it is possible to satisfactorily braze the components to the metal substrate 1.
[0027]
Such a metal substrate 1 preferably has a thickness of 0.5 mm or more, and when the thickness is less than 0.5 mm, a first lid 7 a or a second lid 7 b described later is attached to the metal base 1. At the time of welding, the metal substrate 1 tends to bend and be easily deformed depending on welding conditions (temperature, etc.). If it exceeds 2 mm, the thickness of the package for storing semiconductor elements and the semiconductor device becomes unnecessarily thick, resulting in a small size. Tends to be difficult to achieve. Therefore, the thickness of the metal base 1 is preferably 0.5 to 2 mm.
[0028]
Metal terminals 3 are fixed to the two through holes 1 b formed in the metal substrate 1 via the sealing material 2, respectively. The metal terminal 3 has a function of transmitting an electric signal transmitted and received by the optical semiconductor element S to an external electric circuit (not shown). The metal terminal 3 is fixed via the sealing material 2 so that at least an end on the lower surface side of the metal substrate 1 protrudes from the through hole 1b by about 1 to 20 mm. It is electrically connected to the formed wiring conductor 4. Further, the upper end side of the metal terminal 3 is connected to the optical semiconductor element S via an electrical connection means 6 such as a bonding wire.
[0029]
It is preferable that such metal terminals 3 are arranged so as to be in parallel, and the interval between the metal terminals 3 is in the range of 0.2 to 5 mm. As described above, the metal terminals 3 are parallel to each other, and the interval between the metal terminals 3 is set to a sufficient distance of 0.2 to 5 mm, so that signals do not interfere with each other between the metal terminals 3.
[0030]
If the distance between the metal terminals 3 is less than 0.2 mm, there is a risk that signals may interfere with each other between the metal terminals 3 and the reflection loss may increase. The distance becomes unnecessarily long and the metal substrate 1 becomes large, and it tends to be difficult to reduce the size of the optical semiconductor element housing package and the optical semiconductor device.
[0031]
Such a metal terminal 3 is made of a metal such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or an iron (Fe) -nickel (Ni) alloy. In the case of a cobalt alloy, a pin having a length of 1.5 to 22 mm and a diameter of 0.1 to 1 mm is obtained by subjecting the ingot to a conventionally known metal working method such as rolling or punching. It is manufactured in a shape.
[0032]
If the length of the portion of the metal terminal 3 protruding from the lower surface of the metal substrate 1 is less than 1 mm, it tends to be difficult to firmly join the wiring conductors 4a and 4b, which will be described later, using a brazing material or the like. When the thickness exceeds 20 mm, the length of the insulating substrate 5 becomes unnecessarily long, and it tends to be difficult to reduce the size of the package for storing the optical semiconductor element or the optical semiconductor device. Therefore, it is preferable that the metal terminal 3 is fixed via the sealing material 2 so that at least the end on the lower surface side of the metal substrate 1 protrudes from the through hole 1b by about 1 to 20 mm.
[0033]
In addition, the sealing material 2 has a function of securing an insulating interval between the metal substrate 1 and the metal terminal 3 and fixing the metal terminal 3 to the through hole 1b of the metal substrate 1. Inorganic materials such as borosilicate glass and ceramics are used.
[0034]
The metal terminal 3 has, for example, a thickness substantially equal to the thickness of the metal substrate 1, an outer diameter smaller than the diameter of the through hole 1b, and an inner diameter larger than the outer diameter of the metal terminal 3 through a glass ring. 1b, the metal terminal 3 is inserted into the ring, and then the glass is heated and melted at a predetermined temperature, whereby the outer peripheral surface of the metal terminal 3 is air-tightly fixed to the inner surface of the through hole 1b. .
[0035]
On the lower surface of the metal substrate 1, a square plate-shaped insulating substrate having two linear wiring conductors 4a and 4b attached to both main surfaces so as to be parallel to each other from one side to the opposite side. 5, two wiring conductors 4a and 4b are joined in parallel so that both main surfaces are sandwiched between portions projecting from the lower surfaces of the two metal terminals 3.
[0036]
The insulating substrate 5 has a function of supporting the wiring conductors 4a and 4b, and is made of a thermosetting resin such as a polyimide resin or an epoxy resin, an aluminum oxide sintered body, an aluminum nitride sintered body, or a mullite sintered body. -It is made of an inorganic material such as a silicon carbide-based sintered body, a silicon nitride-based sintered body, or a glass-ceramic. For example, in the case of an aluminum oxide-based sintered body, aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide are used. An appropriate organic binder, a solvent, a plasticizer, and a dispersant are added to a ceramic raw material powder such as to form a slurry, and this is formed into a sheet by employing a conventionally known doctor blade method. After obtaining ceramic green sheets, these ceramic green sheets are subjected to appropriate punching, laminating, and cutting processes. It is fabricated by with obtaining raw ceramic body rim substrate 5 firing the green ceramic body at a temperature of about 1600 ° C..
[0037]
The wiring conductors 4a and 4b have a function of transmitting an electric signal between the optical semiconductor element S and an external electric circuit, and are formed linearly on both main surfaces of the insulating substrate 5 from one side to the opposite side.
[0038]
Such wiring conductors 4a and 4b are generally formed by copper plating when the insulating substrate 5 is made of a thermosetting resin such as a polyimide resin or an epoxy resin, and the insulating substrate 5 is made of an inorganic material such as an aluminum oxide sintered body. Metal paste made of tungsten, molybdenum, manganese or the like. For example, when the insulating substrate 5 is made of an aluminum oxide sintered body, a metal paste obtained by adding and mixing an organic solvent and a solvent to tungsten powder Is applied in advance to a ceramic green sheet serving as a main surface in a predetermined pattern by a screen printing method, and the ceramic green sheet is baked to be formed on the main surface of the insulating substrate 5.
[0039]
The wiring conductor 4 has a nickel layer having a thickness of 0.5 to 9 μm on its surface to prevent oxidation and to firmly connect the electrical connection means 6 such as a bonding wire and the metal terminal 3. It is preferable that a metal layer such as a gold layer having a thickness of 0.5 to 5 μm is sequentially applied by a plating method.
[0040]
The insulating substrate 5 is formed by applying a solder or a low melting point brazing material such as gold (Au) -tin (Sn) having a melting point of 200 to 400 ° C. on the surfaces of the wiring conductors 4 a and 4 b by a conventionally known screen printing method. Then, the wiring conductors 4a, 4b and the portions of the metal terminals 3 protruding from the lower surface side of the metal substrate 1 are parallel and opposed to each other on the metal substrate 1 on which the metal terminals 3 are fixed. The metal substrate 1 is fixed between the metal terminals 3 of the metal substrate 1 by heating at a temperature of 200 to 400 ° C.
[0041]
In addition, the optical semiconductor device of the present invention has a low melting point brazing material of gold (Au) -tin (Sn) via the mounting base or the like on which the optical semiconductor element S is mounted on the mounting portion 1a of the package for storing the optical semiconductor element. Thereafter, the electrode is connected to the upper end of the metal terminal 3 via an electrical connection member 6 such as a bonding wire.
[0042]
Usually, on the upper surface of the metal substrate 1, a first lid 7 a made of an Fe—Ni—Co alloy or the like is provided on the outer peripheral portion within 1 mm width from the outer peripheral edge for the purpose of protecting the optical semiconductor element S. It is fixed by laser welding, seam welding, brazing, or the like, and the first lid 7a is welded and joined to the upper surface of the metal substrate 1 by, for example, a YAG laser. The second cover 7b in which the optical fiber 8 and the optical isolator (not shown) for preventing return light are bonded to each other with a resin adhesive is bonded to the second lid 7b by YAG laser welding or the like to obtain a product. It becomes an optical semiconductor device.
[0043]
According to the optical semiconductor element housing package and the optical semiconductor device of the present invention, as described above, the two linear surfaces attached to both main surfaces from one side to the opposite side so as to be parallel to each other. A rectangular plate-shaped insulating substrate having wiring conductors 4a and 4b and joining two wiring conductors 4a and 4b in parallel with each other so as to sandwich both main surfaces at a portion protruding from the lower surface side of the two metal terminals 3 5, it is not necessary to bend the metal terminal 3 in an L-shape by 90 degrees and join it to the wiring conductor. As a result, even when the signal is as high as 10 GHz or higher, the signal is totally reflected. In other words, the reflection loss does not increase due to interference between signals.
[0044]
Even when the two metal terminals 3 are mounted parallel to the insulating substrate 5, the lengths of the metal terminals 3 can be made equal. Does not grow.
[0045]
Furthermore, since the insulating substrate 5 is located between the two metal terminals 3, the distance between the metal terminals 3 is sufficient, and there is no interference between signals between the metal terminals 3.
[0046]
Since the reflection loss does not increase in this way, the transmission loss of the high-frequency signal of 10 GHz or more can be reduced and transmitted smoothly, and the optical semiconductor element S can be stored in the optical semiconductor element storage package. Thus, even if the optical semiconductor device is used, the signal transmission distance of the optical semiconductor element S does not become significantly shorter than the signal transmission distance of the optical semiconductor element S.
[0047]
Thus, according to the optical semiconductor element package and the optical semiconductor device of the present invention, it is possible to reduce the transmission loss of a high-frequency signal of 10 GHz or more and reduce the deterioration due to the length of the transmission distance of the optical semiconductor element.
[0048]
The present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the gist of the present invention. For example, FIGS. 1A to 1C 2) shows an example in which two semiconductor elements S are mounted and two through holes 1b are formed. However, three or more semiconductor elements S are mounted, and three or more through holes 1b are formed. Is also good.
[0049]
【Example】
The optical semiconductor device of the present invention was evaluated by preparing a sample for evaluation described below and a sample for comparison.
The optical semiconductor device of the present invention is configured as follows. First, an insulating substrate 5 made of a polyimide resin having a thickness of 1.0 mm, a length of 30 mm and a width of 15 mm was prepared by plating Cu patterns on the upper and lower surfaces of the wiring conductors 4 a and 4 b and the ground conductor, respectively. At this time, a ground conductor having a thickness of 0.003 mm was formed 0.15 mm from the surface. The insulating substrate 5 had a relative dielectric constant of 4.1, the wiring conductor 4 had a width of 0.7 mm, a length of 18.8 mm, and a thickness of 0.003 mm.
[0050]
Next, a metal substrate 1 having a through-hole 1a was prepared, a metal terminal 3 was inserted into the through-hole 1a, and bonded with a sealing material 2 made of glass to hermetically seal. At this time, the distance between the metal terminals 3 was set to 0.2 mm at which no signal interference occurred. Thereafter, an LD (uncooled DFB (Distributed Feed Back) -LD), which is an optical semiconductor element S, is mounted on the mounting portion 1a of the metal substrate 1 by brazing with Au-Sn, and the optical semiconductor element S and the metal terminal 3 are mounted. Were electrically connected by bonding wires 6. Further, the insulating substrate 5 was sandwiched between the metal terminals 3, and the respective wiring conductors 4a and 4b were electrically connected to the respective metal terminals 3 by soldering.
[0051]
Then, the first lid 7a made of an Fe-Ni-Co alloy is joined to the outer peripheral portion of the upper surface of the metal substrate 1 by seam welding and hermetically sealed, and thereafter, the outer peripheral end of the first lid 7a. Then, a second lid 7b in which the optical fiber 8 and the optical isolator were bonded with a resin adhesive was joined by YAG laser welding to produce an optical semiconductor device for evaluation.
[0052]
Next, a comparative sample was manufactured in a range other than the above-described evaluation sample. Specifically, a through hole having a size through which a metal terminal passes is formed in the insulating substrate and the wiring conductor, and one of the metal terminals is bent at a right angle and inserted through the through hole to insulate the metal terminal. Electrical connection was made by using solder at the place where the through hole was inserted into the wiring conductor of the board. The optical properties of the evaluation and comparison samples were measured using the optical fiber 8. Table 1 shows the results.
[0053]
[Table 1]
Figure 2004259962
[0054]
From Table 1, it has been found that the optical semiconductor device of the present invention can transmit an average of about 90% of the transmission distance of the optical semiconductor element alone when the optical semiconductor element is mounted on the package. On the other hand, it was found that the optical semiconductor device of the comparative example can transmit only an average distance of about 81%.
[0055]
【The invention's effect】
According to the semiconductor element housing package and the optical semiconductor device of the present invention, two linear wiring conductors are attached to both main surfaces so as to be parallel to each other from one side to the opposite side, The metal terminal is formed into an L-shape because it has a rectangular flat plate-shaped insulating substrate in which two wiring conductors are joined in parallel so as to sandwich both main surfaces on a portion protruding from the lower surface side of the metal terminal. It is not necessary to bend 90 degrees and join with the wiring conductor. As a result, even when a high frequency signal of 10 GHz or more is high, the signal is not totally reflected, and the signal does not interfere with each other to increase the reflection loss. Absent.
[0056]
Also, even when two metal terminals are mounted in parallel with the insulating substrate, the length of the metal terminals can be equalized, so that the internal reflection loss may increase due to the difference between the metal terminals. Absent.
[0057]
Further, since the insulating substrate is located between the two metal terminals, the distance between the metal terminals is sufficient, and the signals do not interfere with each other between the metal terminals.
[0058]
Since the reflection loss does not increase in this way, the transmission loss of the high-frequency signal of 10 GHz or more can be reduced and transmitted smoothly, and the optical semiconductor element can be stored in the optical semiconductor element storage package. Even when the optical semiconductor device is used, the signal transmission distance of the optical semiconductor element does not become much shorter than the original signal transmission distance of the optical semiconductor element.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view of an example of an embodiment of an optical semiconductor device in which an optical semiconductor element is mounted on an optical semiconductor element housing package of the present invention, and FIGS. (A) is a top view and a bottom view with the lid removed. (D) is an enlarged side view of the main part of (a).
FIG. 2A is a cross-sectional view of a conventional optical semiconductor device, and FIGS. 2B and 2C are a top view and a bottom view of the optical semiconductor device with the lid removed in FIG.
[Explanation of symbols]
1 Metal substrate 1a Mounting portion 1b Through hole 2 Sealing material 3 Metal terminal 4 Wiring conductor 5 Insulating substrate 6 Electrical connecting member 7 Lid 7a First lid 7b Second lid 8 Optical fiber S Optical semiconductor element

Claims (2)

上面の中央部に光半導体素子の搭載部を有するとともに該搭載部の近傍に前記上面から下面にかけて形成された2つの貫通孔を有する金属基板と、前記貫通孔にそれぞれ挿通され、前記下面側の端部が前記貫通孔から突出するように封止材を介して固定された、前記上面側の端部に前記光半導体素子の電極がそれぞれ電気的に接続される2本の金属製端子と、両主面にその一辺から対向する辺にかけて、互いに平行になるように被着された2つの直線状の配線導体を有し、2本の前記金属製端子の前記下面側に突出した部位に前記両主面を挟むように2つの前記配線導体をそれぞれ平行に接合した四角平板状の絶縁基板とを具備することを特徴とする光半導体素子収納用パッケージ。A metal substrate having a mounting portion for the optical semiconductor element at the center of the upper surface and having two through holes formed from the upper surface to the lower surface in the vicinity of the mounting portion; Two metal terminals each of which is electrically connected to an electrode of the optical semiconductor element at an end on the upper surface side, the end of which is fixed via a sealing material so as to protrude from the through-hole, Two linear wiring conductors are attached to both main surfaces so as to be parallel to each other from one side thereof to the opposite side, and two metal terminals are provided at portions protruding on the lower surface side of the two metal terminals. An optical semiconductor element storage package, comprising: a rectangular flat plate-shaped insulating substrate in which two wiring conductors are joined in parallel so as to sandwich both main surfaces. 請求項1記載の光半導体素子収納用パッケージと、前記搭載部に搭載されてその電極が前記金属製端子の前記上面側の端部に電気的に接続された光半導体素子とを具備することを特徴とする光半導体装置。2. An optical semiconductor device housing package according to claim 1, further comprising: an optical semiconductor device mounted on the mounting portion and having an electrode electrically connected to an end of the metal terminal on the upper surface side. An optical semiconductor device characterized by the following.
JP2003049346A 2003-02-26 2003-02-26 Package for optical semiconductor element and optical semiconductor device Pending JP2004259962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049346A JP2004259962A (en) 2003-02-26 2003-02-26 Package for optical semiconductor element and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049346A JP2004259962A (en) 2003-02-26 2003-02-26 Package for optical semiconductor element and optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2004259962A true JP2004259962A (en) 2004-09-16

Family

ID=33115091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049346A Pending JP2004259962A (en) 2003-02-26 2003-02-26 Package for optical semiconductor element and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2004259962A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174918A (en) * 2011-02-22 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter module
JP2012174917A (en) * 2011-02-22 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter module
JP2012174919A (en) * 2011-02-22 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter module
JP2017216470A (en) * 2017-07-21 2017-12-07 京セラ株式会社 Header for to-can type package and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174918A (en) * 2011-02-22 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter module
JP2012174917A (en) * 2011-02-22 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter module
JP2012174919A (en) * 2011-02-22 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter module
JP2017216470A (en) * 2017-07-21 2017-12-07 京セラ株式会社 Header for to-can type package and semiconductor device

Similar Documents

Publication Publication Date Title
JP4822820B2 (en) Semiconductor element storage package and semiconductor device
JP5610892B2 (en) Element storage package and semiconductor device including the same
JP2009283898A (en) Electronic part container, package for storing electronic part using the same and electronic device
JP2004259962A (en) Package for optical semiconductor element and optical semiconductor device
JP2005159277A (en) Package for housing optical semiconductor device and optical semiconductor apparatus
JP4493285B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP5709427B2 (en) Device storage package and semiconductor device including the same
JP2004207259A (en) Optical semiconductor device and package for housing the same
JP2021064812A (en) Insulating base, semiconductor package, and semiconductor device
JP4594073B2 (en) Connection terminal and electronic component storage package and electronic device using the same
JP3784346B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP4172783B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP2012009172A (en) Coaxial connector, element housing package, and semiconductor device
JP2004134413A (en) Package for housing semiconductor device and semiconductor device
JP4041327B2 (en) Semiconductor element storage package and semiconductor device
JP2011114104A (en) Sub-mount and electronic device using the same
JP4497762B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2004193428A (en) Package for housing semiconductor element and semiconductor device
JP3457921B2 (en) Package for storing input / output terminals and semiconductor elements
JP4295641B2 (en) Manufacturing method of electronic component storage package
JP2002222884A (en) Package for storing semiconductor device
JP3754902B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP3696817B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2004134614A (en) Package for housing semiconductor element and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707