JP3935082B2 - High frequency package - Google Patents

High frequency package Download PDF

Info

Publication number
JP3935082B2
JP3935082B2 JP2003015994A JP2003015994A JP3935082B2 JP 3935082 B2 JP3935082 B2 JP 3935082B2 JP 2003015994 A JP2003015994 A JP 2003015994A JP 2003015994 A JP2003015994 A JP 2003015994A JP 3935082 B2 JP3935082 B2 JP 3935082B2
Authority
JP
Japan
Prior art keywords
conductor
ground
high frequency
frequency
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003015994A
Other languages
Japanese (ja)
Other versions
JP2004214584A (en
Inventor
克亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003015994A priority Critical patent/JP3935082B2/en
Priority to US10/706,307 priority patent/US6936921B2/en
Publication of JP2004214584A publication Critical patent/JP2004214584A/en
Application granted granted Critical
Publication of JP3935082B2 publication Critical patent/JP3935082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Structure Of Printed Boards (AREA)
  • Waveguides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波帯で用いられる高周波半導体素子や高周波回路等の高周波回路部品を搭載するための高周波用パッケージに関するものである。
【0002】
【従来の技術】
MHz帯またはGHz帯の高周波帯で動作する高周波半導体素子や高周波回路等の高周波回路部品を収容するために用いられる高周波用パッケージには、例えば、特許第2605502号公報に開示された、図9に示すようなものがあった。
【0003】
図9(a)〜(c)はそのような従来の高周波用パッケージの一例を示す図であり、図9(a)は一部を破断した平面図、図9(b)は図9(a)のA−A線による断面図、図9(c)は底面図である。また、図10は図9に示す高周波用パッケージの要部を拡大して示した斜視図である。これらの図において、1はセラミックス等から成るパッケージ基板、2はセラミックスあるいは表面をメタライズしたセラミックス等から成るパッケージ側壁であり、パッケージ基板1の表面上に装着されている。パッケージ側壁2のパッケージ基板1に接しない上端面は、金等の金属や鉄−ニッケル−コバルト合金等の合金から成るフタ3により封止されている。4はパッケージ基板1の表面にメタライズ5を施したダイボンディング領域、6はセラミックス等から成る誘電体基板であり、この誘電体基板6の表面上に金属薄膜から成る内部高周波伝送線路19が形成され、ダイボンディング領域4,誘電体基板6,内部高周波伝送線路19はパッケージ基板1とパッケージ側壁2とフタ3とにより囲まれたキャビティ内に構成されている。また、パッケージ基板1の底面部に、接地金属薄膜8と信号線金属薄膜9が形成され、これらにより外部コプレーナ線路10を構成し、その信号線金属薄膜9は金属から成るバイアホール11により内部高周波伝送線路19と電気的に接続した構造となっている。
【0004】
なお、18は誘電体基板6の表面上に形成された接地金属薄膜であり、内部高周波伝送線路19とともに内部コプレーナ線路20を構成するものである。また、12は外部コプレーナ線路10の接地金属薄膜8と内部コプレーナ線路20の接地金属薄膜18とを電気的に接続する接地用バイアホールである。
【0005】
このような高周波用パッケージが、図11に断面図で示すように、ガラスエポキシ,フッ素樹脂,セラミックス等から成る回路基板13上に表面実装されて、高周波回路が構成される。
【0006】
【特許文献1】
特許第2605502号公報
【0007】
【発明が解決しようとする課題】
従来の高周波用パッケージは以上のように構成されているので、この高周波用パッケージを回路基板13上に表面実装した際に、パッケージ基板1と回路基板13との接合部分では、信号線金属薄膜9の両側に配置された接地金属薄膜8間の間隔が使用される高周波信号の波長の1/2よりも長い場合は、接地金属薄膜8間のグランドネットワーク経路が長くなり、インダクタンス成分が増大することにより、接地金属薄膜8の接地状態が不安定となる傾向があるため、この部分で局部的に特性インピーダンスが変化して高周波信号の反射損失を生じることとなり、また、この部分で高周波信号のシールド効果が不充分となって放射損失を生じることとなるため、これらの損失によって高周波信号の伝送特性が劣化するという問題点があった。
【0008】
さらに、従来の高周波用パッケージは以上のように構成されているので、この高周波用パッケージを回路基板13上に表面実装した際に、信号線金属薄膜9と接地金属薄膜18および8との間に存在するパッケージ基板1内の浮遊キャパシタンス成分や、この高周波用パッケージを回路基板13に表面実装した際の信号線金属薄膜9と回路基板13の下面側接地導体(図示せず)との間に存在する回路基板13の誘電体基板内の浮遊キャパシタンス成分の発生により、パッケージ基板1と回路基板13との間に存在するキャパシタンス成分が増大するため、回路基板13に表面実装した際の高周波用パッケージの入出力部において高周波的な不整合が生じ、高周波入出力信号の損失が増大して、電圧定在波比(以下、VSWRと略す)が劣化するという問題点があった。
【0009】
さらに、従来の高周波用パッケージは、この高周波用パッケージを回路基板13上に表面実装した際に、パッケージ基板1の上面の接地金属薄膜18と下面の接地金属薄膜8とを電気的に接続する接地導体が設けられていなかったため、接地金属薄膜18と接地金属薄膜8とが高周波的に接続されていないために接地状態が不安定になり、パッケージ基板1の入出力部において高周波入出力信号の損失が増大して、VSWRが劣化する傾向があるという問題点があった。また、パッケージ基板1の入出力部において高周波信号の伝搬モードが不連続になるため、放射損失が増大し、その結果、高周波用パッケージの入出力部における高周波信号の伝送特性が劣化するという問題点があった。
【0010】
本発明は、このような問題点を解消するためになされたもので、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合および放射損失を抑止し、低損失で、かつ低VSWRの高周波用パッケージを提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明の高周波用パッケージは、上面および下面を有する誘電体基板と、高周波信号が伝送される第1の線路導体と第1の接地導体とからなり、該誘電体基板の前記上面に形成された第1のコプレーナ線路と、前記第1の線路導体に電気的に接続された第2の線路導体と前記第1の接地導体に電気的に接続された第2の接地導体とからなり、該誘電体基板の前記下面に形成された第2のコプレーナ線路と、前記第2の線路導体に接合された金属端子と、前記金属端子の両側に配置されており、前記第2の接地導体に接合された複数の接地金属端子とを備え、該複数の接地金属端子が、前記高周波信号の波長の1/2以下の間隔で配置されていることを特徴とするものである。
【0012】
また、本発明の高周波用パッケージは、上記構成において、前記第1の同一面接地導体の前記金属端子の上部に位置する部位に導体の非形成部を設けたことを特徴とするものである。
【0013】
また、本発明の高周波用パッケージは、上記構成において、前記誘電体基板の側面の前記接地金属端子の上に位置する部位に前記第1の同一面接地導体と前記接地金属端子とを電気的に接続するキャスタレーション接地導体を設けたことを特徴とするものである。
【0014】
本発明の高周波用パッケージによれば、上記構成の高周波用パッケージにおいて、金属端子の両側に平行に配置された接地金属端子間の間隔(ギャップ)が使用周波数の高周波信号の波長λの1/2(λ/2)以下であるものとしたことから、この高周波用パッケージを回路基板上に表面実装した際に、接地金属端子間のグランドネットワーク経路が短くなり、インダクタンス成分の増大を防ぐことができるので、パッケージの誘電体基板とこの高周波用パッケージが実装される回路基板との接合部分において接地金属端子が安定した接地状態を構成することができ、また、この部分で高周波信号の漏れを抑制することができ、その結果、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合および放射損失を抑止し、高周波入出力信号の損失を低く抑え、VSWRを下げることができる。
【0015】
さらに、第1の同一面接地導体の金属端子部の上部に位置する部位に導体の非形成部を設けることにより、金属端子と第1および第2の同一面接地導体との間に存在する誘電体基板内のキャパシタンス成分や、この高周波用パッケージを回路基板に表面実装した際の金属端子と回路基板の下面側接地導体との間に存在する回路基板の誘電体基板内のキャパシタンス成分を非形成部の大きさに応じて小さくできるので、高周波用パッケージを構成する誘電体基板とこのパッケージが表面実装される回路基板の誘電体基板との間に発生するキャパシタンス成分を軽減することができ、その結果、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止し、高周波入出力信号の損失を低く抑え、VSWRを下げることができる。
【0016】
さらに、誘電体基板の側面の接地金属端子の上に位置する部位に第1の同一面接地導体と接地金属端子とを接続するキャスタレーション接地導体を設けることにより、第1の同一面接地導体と接地金属端子とが電気的に直接に接続されているために入出力部の接地状態が安定し、反射特性を低減することができるとともに、電磁波シールド効果を高めて放射損失を抑制することができ、その結果、高周波信号の入出力部における高周波入出力信号の損失を低く抑え、VSWRを下げることができ、高周波信号の伝送特性を良好なものとすることができる。
【0017】
【発明の実施の形態】
以下、本発明の高周波用パッケージを図面を参照しつつ説明する。
【0018】
図1,図2および図3は本発明の高周波用パッケージの実施の形態の一例を示す図であり、図1は一部を破断した断面図、図2は底面図、図3は上面図である。
【0019】
これらの図において、21は誘電体基板、21aは高周波用半導体素子等の高周波回路部品Sが搭載される搭載部、22は第1の線路導体、23は第1の同一面接地導体、24は第2の線路導体、25は第2の同一面接地導体、26は貫通導体、27は接地貫通導体、32は金属端子、34は接地金属端子であり、これらで高周波用パッケージが構成されている。また、28は高周波回路部品Sと第1の線路導体2とを接続するボンディングワイヤ等の導電性接続部材である。
【0020】
また、29は誘電体基体、30は接続用線路導体であり、これらで回路基板31が構成されており、高周波用パッケージの第2の線路導体24と回路基板31の接続用線路導体30とを間に金属端子32を挟んで接続することにより、高周波用パッケージが回路基板31に実装されることになる。なお、本例では、誘電体基体29の下面に下面側接地導体33を、上面に上面側接地導体34を形成し、上面側接地導体34と第2の同一面接地導体25とを電気的に接続した例を示している。
【0021】
また、本例では誘電体基板21の上面中央部に凹部を形成してその凹部に搭載部21aを設けているが、誘電体基板21を平板状としてその上面に搭載部21aを形成してもよい。
【0022】
誘電体基板21は、高周波回路部品Sを支持するための支持体であり、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラスセラミックス等の無機系誘電体材料、あるいはポリイミド,ガラスエポキシ等の有機系誘電体材料、あるいはセラミックス粉末等の無機誘電体粉末をエポキシ系樹脂等の熱硬化性樹脂で結合して成る複合誘電体材料等から成り、この例では上面中央部に高周波回路部品Sを収容するための凹部を有する略四角状である。そして凹部の底面には高周波回路部品Sを搭載するための搭載部21aを形成しており、この搭載部21aに高周波回路部品Sがろう材,樹脂,ガラス等の接着剤を介して接着固定される。なお、搭載部21aには、必要に応じて誘電体基板21の表面にメタライズ層が形成される。
【0023】
この誘電体基板21は、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム,酸化珪素,酸化カルシウム等の原料粉末に適当な有機バインダ,溶剤,可塑剤,分散剤等を添加混合して泥漿状となすとともに、これをドクタブレード法等のシート成形法を採用することによってセラミックグリーンシートとなし、しかる後、このセラミックグリーンシートに適当な打ち抜き加工を施すとともに複数枚積層し、還元雰囲気中約1600℃の温度で焼成することによって製作される。
【0024】
誘電体基板21には、その上面に搭載部21aの近傍から外周方向にその途中まで、幅が0.1〜1.0mm程度の第1の線路導体22が形成されるとともに、下面に第1の線路導体22の外周側の端部と端部を対向させて、その対向する領域から外周縁に向けて第1の線路導体22と平行に、幅が0.1〜1.5mm程度の第2の線路導体24が形成されており、また、内部に第1の線路導体22の端部とこれに対向する第2の線路導体24の端部とを電気的に接続する貫通導体26が配設されている。これらの第1および第2の線路導体22,24ならびに貫通導体26は、高周波回路部品Sの各電極を外部電気回路に電気的に接続するための導電路として機能する。
【0025】
なお、第1および第2の線路導体22,24の幅は、伝搬される高周波信号の周波数や高周波用パッケージの大きさにより適宜設定される。本発明の高周波用パッケージにおいては、例えば誘電体基板21の比誘電率を6とした際には、第1の線路導体22の幅は0.32mm程度に、第2の線路導体24の幅は0.32mm程度に設定される。
【0026】
また、誘電体基板21には、上面に第1の線路導体22の両側に第1の同一面接地導体23が形成されるとともに、下面に第2の線路導体24の両側に第2の同一面接地導体25が形成されており、また、内部に第1の同一面接地導体23と第2の同一面接地導体25とを電気的に接続する接地貫通導体27が配設されている。第1の同一面接地導体23および第2の同一面接地導体25は、第1の線路導体22と導電性接続部材28との不連続性を補償したり、第1の線路導体22と第2の線路導体24との間のアイソレーションを向上させる機能を有する。また、接地貫通導体27は、高インピーダンスの貫通導体26に対して容量成分を補うことができ、貫通導体26におけるインピーダンスの不整合を防ぐことが可能である。これらの結果、高周波回路部品Sと外部電気回路との間の電気的接続におけるインピーダンスのミスマッチングを効果的に抑えて高周波信号の伝送特性の劣化を抑えることができ、低反射損失の高周波用パッケージとすることができる。
【0027】
また、第1の同一面接地導体23と第2の同一面接地導体25とを電気的に接続する接地貫通導体27は、第1の線路導体22と第2の線路導体24とを電気的に接続する貫通導体26に対し、擬似同軸構造を構成するように複数本を配置することにより、第1の線路導体22と第2の線路導体24との間での高周波入出力信号の授受を、不整合を少なくし低損失かつ低VSWRで行なわせることができる。
【0028】
なお、本例においては、第1の同一面接地導体23および第2の同一面接地導体25は、第1の線路導体22および第2の線路導体24の対向する端部をそれぞれ取り囲むように連続して一体的に形成されており、より良好な接地状態を得ることができるものとしている。
【0029】
第1および第2の線路導体22,24,貫通導体26,第1および第2の同一面接地導体23,25ならびに接地貫通導体27は、タングステンやモリブデン,銅,銀等の金属メタライズ等の導電性材料から形成されている。例えば、タングステンメタライズから成る場合であれば、タングステン粉末に適当な有機バインダ,溶剤を添加混合して得たタングステンぺーストを、貫通導体26または接地貫通導体27となる貫通孔をあらかじめ穿設した誘電体基板21となるセラミックグリーンシートにスクリーン印刷法により所定パターンに印刷塗布し、または充填し、これを誘電体基板21となるセラミックグリーンシートとともに焼成することによって、誘電体基板1の上面から下面にかけて所定のパターンに被着形成される。
【0030】
なお、これらの第1および第2の線路導体22,24ならびに第1および第2の同一面接地導体23,25は、その露出する表面にニッケル,金等の耐蝕性に優れ、かつろう材やボンディングワイヤ等の接続部材との接合性に優れる金属をめっき法により1〜20μmの厚みに設けておくと、これらの線路導体22,24および同一面接地導体23,25が酸化腐蝕するのを有効に防止することができるとともに、線路導体22,24および同一面接地導体23,25とボンディングワイヤや半田等との接続を強固かつ容易なものとなすことができる。従って、第1および第2の線路導体22,24ならびに第1および第2の同一面接地導体23,25の各導体には、その露出する表面にニッケル,金等の耐蝕性に優れる金属をめっき法により1〜20μmの厚みに設けておくことが好ましい。
【0031】
そして、搭載部21aに搭載した高周波回路部品Sを導電性接続部材28により第1の線路導体22と電気的に接続し、搭載部21aの上面に蓋体(図示せず)を取着して高周波回路部品Sを気密封止した後、この高周波用パッケージを、誘電体基体29の上面に高周波信号を伝送する接続用線路導体30が形成された回路基板31に、第2の線路導体24および接続用線路導体30を平行に対向させて位置させて、第2の線路導体24に接合されて誘電体基板21の外周端に配置された金属端子32を挟んで電気的に接続することにより、高周波用パッケージ内部の高周波回路部品Sと回路基板31の外部電気回路とが電気的に接続される。
【0032】
そして、本発明の高周波用パッケージは、金属端子32の両側に配置された接地金属端子34間の間隔が使用周波数の高周波信号の波長λの1/2(λ/2)以下であるものとなっている。
【0033】
このように接地金属端子34間の間隔がλ/2以下であるものとしたことから、この高周波用パッケージを回路基板31上に表面実装した際に、接地金属端子34間のグランドネットワーク経路が短くなり、インダクタンス成分の増大を防ぐことができるので、高周波用パッケージの誘電体基板21と回路基板31との接合部分において接地金属端子34が安定した接地状態を構成することができ、また、この部分で高周波信号の漏れを抑制することができる。その結果、本発明の高周波用パッケージによれば、回路基板31に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合および放射損失を抑止し、高周波入出力信号の損失を低く抑え、VSWRを下げることができる。
【0034】
本発明の高周波用パッケージにおいて、誘電体基板21は、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体等の各種セラミックスやガラスセラミックス等の無機系誘電体材料、あるいはポリテトラフルオロエチレン(PTFE),エポキシ,ポリイミド,ガラスエポキシ等の有機系誘電体材料、あるいはセラミックス粉末等の無機誘電体粉末をエポキシ系樹脂等の熱硬化性樹脂で結合して成る複合誘電体材料等の誘電体材料から成り、必要に応じて複数の誘電体層を積層して形成される。
【0035】
そして、搭載部21aに搭載した高周波回路部品Sをボンディングワイヤ等の導電性接続部材28により第1の線路導体22と電気的に接続し、これを気密封止するには、例えば搭載部21aの上面に蓋体(図示せず)を取着する。この蓋体には、Fe−Ni−Co合金やFe−Ni42アロイ等のFe−Ni系合金,無酸素銅,アルミニウム,ステンレス,Cu−W合金,Cu−Mo合金等の金属材料、あるいは酸化アルミニウム質焼結体やガラスセラミックス等の無機系材料、あるいはPTFE,ガラスエポキシ等の樹脂系材料等が用いられる。また、蓋体を取着するには、それらの材料に応じて、半田,Au−Snろう等の低融点金属ろう材やAu−Geろう等の高融点金属ろう材、あるいはエポキシ,導電性エポキシ等の樹脂接着剤、あるいはシームウェルド,電子ビーム溶接等の溶接等により取着する。
【0036】
第1および第2の線路導体22,24,貫通導体26,第1および第2の同一面接地導体23,25ならびに接地貫通導体27は、高周波線路導体用の金属材料、例えばCuやMoMn+Ni+Au,W+Ni+Au,Cr+Cu,Cr+Cu+Ni+Au,Ta2N+NiCr+Au,Ti+Pd+Au,NiCr+Pd+Au等の金属薄膜や金属箔,金属板,メタライズ導体等を用いて、厚膜印刷法あるいは各種の薄膜形成方法やメッキ処理法等により形成される。その厚みや形状,線路幅,線路導体と同一面接地導体との間隔等は、これら線路導体22,24や貫通導体26により伝送される高周波入出力信号の周波数や特性インピーダンス等に応じて適宜設定される。本発明の高周波用パッケージにおいては、例えば誘電体基板21の比誘電率を6とした際には、第1の線路導体22の幅は0.32mm程度に、第2の線路導体24の幅は0.32mm程度に、貫通導体26の直径はφ0.15mm程度に、第1の線路導体22と第1の同一面接地導体23との間隔は0.1mm程度に、第2の線路導体24と第2の同一面接地導体25との間隔は0.3mm程度にそれぞれ設定される。
【0037】
このような本発明の高周波用パッケージにおいては、金属端子32の両側に平行に配置された接地金属端子34間の間隔をλ/2以下に設定することが重要である。
【0038】
ここで、図4に、図1〜図3に示す本発明の高周波用パッケージの例における接地金属端子34間の間隔と高周波信号の使用限界周波数との関係を線図で示す。本データは3次元電磁界シミュレータを用いて検討を行なった結果である。誘電体基板21には比誘電率が6.0で厚みが0.4mmの誘電体材料を用い、回路基板31には比誘電率が3.38で厚みが0.2mmの誘電体材料を用いた。第1の線路導体22は、伝送線路インピーダンスが約50Ωとなるよう線路幅を0.32mmに設定した。また、回路基板31上に形成された接続用線路導体30の線路幅は、伝送線路インピーダンスが約50Ωとなるよう0.42mmに設定した。また、金属端子32の幅は0.2mmに設定した。図4の横軸には接地金属端子34間の間隔(単位:nλ)を示し、縦軸には使用限界周波数(単位:GHz)を示した。使用限界周波数は、電磁界シミュレータにより算出される、S11(反射特性)の値が−15dB以下となる周波数とした。
【0039】
図4にそれぞれ結果を黒点で示して特性曲線で結んだように、接地金属端子34間の間隔をλ/4,λ/3,λ/2,λおよび2λに変化させたとき、使用限界周波数はそれぞれ62GHz,61GHz,60GHz,30GHzおよび15GHzとなった。以上の結果より分かるように、接地金属端子34間の間隔が使用周波数の高周波信号の波長λの1/2(λ/2)を超えるときには、この高周波用パッケージを回路基板31上に表面実装した際に、誘電体基板21と回路基板31との接合部分において接地金属端子34の接地状態が不安定となる傾向があるため、この部分で局部的に特性インピーダンスが変化して反射損失を生じることとなり、また、この部分で高周波信号のシールド効果が不充分となって放射損失を生じることとなるため、これらの損失によって高周波信号の伝送特性が劣化する。したがって、本発明の高周波用パッケージにおいては、金属端子32の両側に平行に配置された接地金属端子34間の間隔をλ/2以下に設定することが望ましい。
【0040】
このような金属端子32および接地金属端子34は、例えば鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の板材に打抜き加工やエッチング加工を施すことによって所定の形状に形成される。また、金属端子32と第2の線路導体24および接続用線路導体30との接合は、例えば、金属端子32を第2の線路導体24に間に銀−銅ろう等の第1のろう材を挟んで当接させるとともに、これらを第1のろう材の融点以上の温度に加熱することにより金属端子32を第2の線路導体24にろう付けし、その後、第2の線路導体24に接合された金属端子32を回路基板31の上面の接続用線路導体30に間に第1のろう材よりも融点の低い銀−銅ろう等の第2のろう材を挟んで当接させるとともに、これらを第2のろう材の融点以上かつ第1のろう材の融点以下の温度に加熱することにより金属端子32と接続用線路導体30とをろう付けする方法が採用される。
【0041】
また、金属端子32および接地金属端子34は、その表面にニッケル,金等の良導電性で、かつ耐蝕性に優れた金属をめっき法により1〜20μmの厚みに被着させておくと、金属端子32および接地金属端子34の酸化腐蝕を有効に防止することができるとともに、シグナル(信号)系およびグランド(接地)系の電気的接続を良好となすことができる。従って、金属端子32および接地金属端子34はその表面にニッケル,金等をめっき法により1〜20μmの厚みに被着させておくことが好ましい。
【0042】
回路基板31は、誘電体基体29の上面に接続用線路導体30が被着形成されて成り、この誘電体基体29は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラスセラミックス等のセラミックスや有機樹脂等の誘電体材料から成る。例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム,酸化珪素,酸化カルシウム等の原料粉末に適当な有機バインダ,溶剤,可塑剤,分散剤等を添加混合して泥漿状となすとともに、これをドクタブレード法等のシート成形法を採用することによってセラミックグリーンシートとなし、しかる後、このセラミックグリーンシートに適当な打ち抜き加工を施し、還元雰囲気中約1600℃の温度で焼成することによって製作される。
【0043】
また、接続用線路導体30は、0.1〜2.0mm程度の幅であり、タングステンやモリブデン,銅,銀等の金属メタライズ等の導電性材料から形成されている。例えばタングステンメタライズから成る場合であれば、タングステン粉末に適当な有機バインダ,溶剤を添加混合して得たタングステンぺーストを、回路基板31の誘電体基体29となるセラミックグリーンシートにスクリーン印刷法により所定パターンに印刷塗布し、これを誘電体基体29となるセラミックグリーンシートとともに焼成することによって、誘電体基体29の上面から下面にかけて所定のパターンに被着形成される。
【0044】
なお、本例では、誘電体基板21の下面の第2の同一面接地導体25に、金属端子32の両側に平行に配置されて第2の同一面接地導体25に接合される接地金属端子34を一体的に形成した導電性基板35を、ろう材等の接着剤を介して接合した例を示している。この導電性基板35は、鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属から成る。例えば鉄−ニッケル−コバルト合金から成る場合は、このインゴット(塊)に圧延加工法や打ち抜き加工法等の金属加工法を施すことによって所定の形状に形成される。
【0045】
さらに、本例では、誘電体基板21の下面に電源用接続端子36を取り付けている。この電源用接続端子36は、高周波回路部品Sを駆動させるために必要な、バイアス用の端子であり、回路基板31上面の電源用導体(図示せず)にろう付けされるとともに、この電源用接続端子36が接続された配線導体(図示せず)が搭載部21aに導出されて搭載部21aに搭載した高周波回路部品Sとボンディングワイヤやリボン等の導電性接続部材により電気的に接続され、高周波回路部品Sにバイアス電力を供給するものである。このように金属端子32と同様の材料・形状で電源用接続端子36を取り付けることにより、これら電源用接続端子36によっても高周波用パッケージを回路基板31にろう付けにより良好に、かつ強固に接続することができる。また、この例のように金属端子32と電源用接続端子36とを誘電体基板21の外周のそれぞれの辺に配置することによって、高周波用パッケージの回路基板31への実装をより強固なものとすることができ、より信頼性の高い実装を行なうことができるものとなる。
【0046】
次に、図5は本発明の高周波用パッケージの実施の形態の他の例を示す、図3と同様の上面図である。図5において、図1〜図3と同様の箇所には同じ符号を付してある。この本発明の高周波用パッケージの例においては、第1の同一面接地導体23の金属端子32の上部に位置する部位に導体の非形成部37を設けている。
【0047】
このように、金属端子32の上部に位置する部位の第1の同一面接地導体23の一部にその導体の非形成部37を設けることにより、金属端子32と第1および第2の同一面接地導体23,25との間に存在する誘電体基板21内のキャパシタンス成分や、この高周波用パッケージを回路基板31に表面実装した際の金属端子32と回路基板31の下面側接地導体33との間に存在する回路基板31の誘電体基板29内のキャパシタンス成分をこの非形成部37の大きさに応じて小さくできるので、高周波用パッケージを構成する誘電体基板21とこのパッケージが表面実装される回路基板31の誘電体基板29との間に発生するキャパシタンス成分を軽減することができ、その結果、回路基板31に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止し、高周波入出力信号の損失を低く抑え、VSWRを下げることができる。
【0048】
ここで、図6に、図5に示す本発明の高周波用パッケージの例における、第1の同一面接地導体23の金属端子32の上部に位置する部位に接地導体の非形成部37を設けた場合と設けない場合との高周波特性シミュレーション結果を示す。このデータは3次元電磁界シミュレータを用いて検討を行なった結果である。高周波用パッケージの誘電体基板21には比誘電率が6.0で厚みが0.4mmの誘電体材料を用い、回路基板31の誘電体基板29には比誘電率が3.38で厚みが0.2mmの誘電体材料を用いた。第1の線路導体22は、伝送線路インピーダンスが約50Ωとなるよう線路幅を0.32mmに設定した。また、回路基板31上に形成された接続用線路導体30の線路幅は、伝送線路インピーダンスが約50Ωとなるよう0.42mmに設定した。なお、金属端子32の上部に存在し、第1の同一面接地導体23と同一平面上に位置する接地導体の非形成部37の大きさは、0.7mm×1.0mmとした。
【0049】
図6の線図において、横軸には周波数(単位:GHz)を示し、縦軸には反射特性(単位:dB)を示した。また、特性曲線のうち点線Aは非形成部37を設けない場合の結果を示し、実線Bは非形成部37を設けた場合の結果を示す。この結果より分かるように、第1の同一面接地導体23の金属端子32の上部に位置する部位に接地導体の非形成部37を設けない場合(A)は、62GHzまで反射特性が15dBになっているのに対し、非形成部37を設けた場合(B)は、83GHzまで反射特性が15dBになっており、非形成部37を設けた場合には、設けない場合よりも高周波特性が改善されている。
【0050】
なお、非形成部37の幅は、広い方がパッケージの誘電体基板21と実装基板である回路基板31の誘電体基板29との間に発生するキャパシタンス成分をより大きく軽減できるため、より効果があるものとなるが、接地金属端子34間の幅と同等の幅か、もしくは接地金属端子34間の約80%以下であることが望ましい。これは、非形成部37の幅が広くなりすぎると、非形成部37から高周波信号の電磁波が放射するようになってしまうことにより、高周波信号の伝送特性が劣化する傾向にあるためである。
【0051】
また、図5に示した例では、非形成部37の形状は略四角形として設けられているが、このような四角形状の場合は、例えば70GHz以上の超高周波領域では、非形成部37の端部に電界が集中し、伝播モードが不連続になることから挿入損失が増大する懸念がある。このようなときは、非形成部37の形状を円形状もしくは楕円形状等にして、非形成部37における局部的な電界集中を緩和する構造としてもよい。
【0052】
次に、図7は本発明の高周波用パッケージの実施の形態のさらに他の例を示す、図3,図5と同様の上面である。図7において、図1〜図3,図5と同様の箇所には同じ符号を付してある。この本発明の高周波用パッケージにおいては、誘電体基板21の側面の接地金属端子34の上に位置する部位に、第1の同一面接地導体23と接地金属端子34とを電気的に接続する、側面に上面から下面にかけて形成された溝状の凹部の内部に導体が形成された、いわゆるキャスタレーション接地導体38を設けている。これにより、第1の同一面接地導体23と接地金属端子34とがキャスタレーション導体38によって電気的に直接に接続されているために高周波信号の入出力部の接地状態が安定し、入出力部において、高周波信号の反射損失を低減することができるとともに、電磁波シールド効果を高めて放射損失を抑制することができ、その結果、高周波信号の入出力部における高周波入出力信号の損失を低く抑え、VSWRを下げることができ、高周波信号の伝送特性を良好なものとすることができる。
【0053】
ここで、図8に、図7に示す本発明の高周波用パッケージの例における、誘電体基板21の側面の接地金属端子34の上に位置する部位に第1の同一面接地導体23と接地金属端子34とを電気的に接続するキャスタレーション接地導体37を設けた場合と設けない場合との高周波特性シミュレーション結果を示す。このデータも3次元電磁界シミュレータを用いて検討を行なった結果である。高周波用パッケージの誘電体基板21には比誘電率が6.0で厚みが0.4mmの誘電体材料を用い、回路基板31の誘電体基板29には比誘電率が3.38で厚みが0.2mmの誘電体材料を用いた。第1の線路導体22は、伝送線路インピーダンスが約50Ωとなるよう線路幅を0.32mmに設定した。また、回路基板31上に形成された接続用線路導体30の線路幅は、伝送線路インピーダンスが約50Ωとなるよう0.42mmに設定した。
【0054】
図8の線図において、横軸には周波数(単位:GHz)を示し、縦軸には反射特性(単位:dB)を示した。また、特性曲線のうち点線Aは誘電体基板21の側面の接地金属端子34の上に位置する部位に第1の同一面接地導体23と接地金属端子34とを電気的に接続するキャスタレーション接地導体37を設けない場合の結果を示し、実線Bはキャスタレーション接地導体37を設けた場合の結果を示す。この結果より分かるように、誘電体基板21の側面の接地金属端子34の上に位置する部位に第1の同一面接地導体23と接地金属端子34とを電気的に接続するキャスタレーション導体37を設けない場合(A)は、62GHzまで反射特性が15dBになっているのに対し、キャスタレーション接地導体37を設けた場合(B)は、82GHzまで反射特性が15dBになっており、キャスタレーション接地導体37を設けた場合には、設けない場合よりも高周波特性が改善されている。
【0055】
なお、キャスタレーション接地導体37は、誘電体基板21の側面の接地金属端子34の上に位置する部位に形成された、誘電体基板21の上面から下面にわたる溝状の凹部の内面に第1の同一面接地導体23と接地金属端子34とを電気的に接続するように導体層が形成されているものとして、上記の各導体層と同様の材料を用いて同様の方法により被着形成すればよく、また、この溝状の凹部に他の導電部材、例えば金属板や金属ブロックを取着することにより形成してもよい。また、凹部を誘電体基板21の中央部に向かって深く形成するほど、より長い距離にわたって接地状態が安定するようになり、入出力部における高周波入出力信号の損失を低く抑え、VSWRを下げることができ、高周波信号の伝送特性をより優れたものとすることができる。
【0056】
かくして、本発明の高周波用パッケージによれば、金属端子32の両側に平行に配置された接地金属端子34間の間隔がλ/2以下であるものとしたことから、この高周波用パッケージを回路基板31上に表面実装した際に、接地金属端子34間のグランドネットワーク経路が短くなり、インダクタンス成分の増大を防ぐことができるので、パッケージの誘電体基板21と回路基板31との接合部分において、接地金属端子34が安定した接地状態を構成することができ、また、この部分で高周波信号の漏れを抑制することができる。その結果、本発明によれば、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合および放射損失を抑止し、高周波入出力信号の損失を低く抑え、VSWRを下げることができる、高周波信号の入出力特性に優れた高周波用パッケージとなる。
【0057】
さらに、本発明の高周波用パッケージにおいては、第1の同一面接地導体23の金属端子32の上部に位置する部位に接地導体の非形成部37を設けることにより、金属端子32と第1および第2の同一面接地導体23,25との間に存在する誘電体基板21内のキャパシタンス成分や、この高周波用パッケージを回路基板31に表面実装した際の金属端子32と回路基板31の下面側接地導体33との間に存在する回路基板31の誘電体基板29内のキャパシタンス成分を非形成部37の大きさに応じて小さくできるので、高周波用パッケージを構成する誘電体基板21とこのパッケージが表面実装される回路基板31の誘電体基板29との間に発生するキャパシタンス成分を軽減することができ、その結果、回路基板31に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止し、高周波入出力信号の損失を低く抑え、VSWRを下げることができる。
【0058】
さらに、本発明の高周波パッケージにおいては、誘電体基板21の側面の接地金属端子34の上に位置する部位に第1の同一面接地導体23と接地金属端子34とを電気的に接続するキャスタレーション接地導体37を設けることにより、第1の同一面接地導体23と接地金属端子34とが電気的に直接に接続されているために、高周波信号の入出力部の接地状態が安定し、入出力部において、反射特性を低減することができるとともに、電磁波シールド効果を高めて放射損失を抑制することができ、その結果、高周波信号の入出力部における高周波入出力信号の損失を低く抑え、VSWRを下げることができ、高周波信号の伝送特性を良好なものとすることができる。
【0059】
なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更が可能である。例えば、上述の実施の形態の例では、金属端子32および接地金属端子34を鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属から成るものとして説明したが、金属端子32および接地金属端子34が半田,銅,ろう材等の端子の場合にも応用が可能であることはいうまでもない。
【0060】
また、高周波信号の入出力部としての金属端子32および接地金属端子34は、高周波用半導体素子等の高周波回路部品Sが搭載される搭載部21aの領域に面する一辺につき一対の入出力部を有する場合について述べたが、多ポートICに対応させて、一辺につき二対以上の入出力部を配設する構造としてもよい。
【0061】
【発明の効果】
本発明の高周波用パッケージによれば、上面に高周波回路部品の搭載部が形成された誘電体基板と、この誘電体基板の上面に前記搭載部の近傍から外周方向に形成された高周波信号を伝送する第1の線路導体およびこの第1の線路導体の両側に形成された第1の同一面接地導体と、前記誘電体基板の下面に前記第1の線路導体の外周側の端部と端部を対向させて外周縁に向けて形成された前記高周波信号を伝送する第2の線路導体およびこの第2の線路導体の両側に形成された第2の同一面接地導体と、前記誘電体基板の内部に形成され、前記第1および第2の線路導体の対向する端部同士を電気的に接続する貫通導体ならびに前記第1および第2の同一面接地導体を電気的に接続する接地貫通導体と、前記第2の線路導体に接合された金属端子およびこの金属端子の両側に平行にそれぞれ前記第2の線路導体に接合された接地金属端子とを具備して成り、この接地金属端子間の間隔が前記高周波信号の波長の1/2以下であるものとしたことから、この高周波用パッケージを回路基板上に表面実装した際に、接地金属端子間のグランドネットワーク経路が短くなり、インダクタンス成分の増大を防ぐことができるので、パッケージの誘電体基板と回路基板との接合部分において、接地金属端子が安定した接地状態を構成することができ、また、この部分で高周波信号の漏れを抑制することができる。
【0062】
さらに、第1の同一面接地導体の金属端子部の上部に位置する部位に導体の非形成部を設けることにより、金属端子と第1および第2の同一面接地導体との間に存在する誘電体基板内のキャパシタンス成分や、この高周波用パッケージを回路基板に表面実装した際の金属端子と回路基板の下面側接地導体との間に存在する回路基板の誘電体基板内のキャパシタンス成分を非形成部の大きさに応じて小さくできるので、高周波用パッケージを構成する誘電体基板とこのパッケージが表面実装される回路基板の誘電体基板との間に発生するキャパシタンス成分を軽減することができ、その結果、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止し、高周波入出力信号の損失を低く抑え、VSWRを下げることができる。
【0063】
さらに、誘電体基板の側面の接地金属端子の上に位置する部位に第1の同一面接地導体と接地金属端子とを接続するキャスタレーション接地導体を設けることにより、第1の同一面接地導体と接地金属端子とが電気的に直接に接続されているために入出力部の接地状態が安定し、反射特性を低減することができるとともに、電磁波シールド効果を高めて放射損失を抑制することができ、その結果、高周波信号の入出力部における高周波入出力信号の損失を低く抑え、VSWRを下げることができ、高周波信号の伝送特性を良好なものとすることができる。
【0064】
その結果、本発明によれば、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合および放射損失を抑止し、高周波入出力信号の損失を低く抑え、VSWRを下げることができる、高周波信号の入出力特性に優れた高周波用パッケージとなる。
【0065】
以上により、本発明によれば、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合および放射損失を抑止し、低損失で、かつ低VSWRの高周波用パッケージを提供することができた。
【図面の簡単な説明】
【図1】本発明の高周波用パッケージの実施の形態の一例を示す一部を破断した断面図である。
【図2】本発明の高周波用パッケージの実施の形態の一例を示す底面図である。
【図3】本発明の高周波用パッケージの実施の形態の一例を示す上面図である。
【図4】本発明の高周波用パッケージにおける接地金属端子間の間隔と高周波信号の使用限界周波数との関係を示す線図である。
【図5】本発明の高周波用パッケージの実施の形態の他の例を示す上面図である。
【図6】本発明の高周波用パッケージにおける第1の同一面接地導体の非形成部の有無による高周波特性の比較を示す線図である。
【図7】本発明の高周波用パッケージの実施の形態のさらに他の例を示す上面図である。
【図8】本発明の高周波用パッケージにおける第1の同一面接地導体と接地金属端子とを接続するキャスタレーション接地導体の有無による高周波特性の比較を示す線図である。
【図9】(a)は従来の高周波用パッケージの一例を示す一部を破断した平面図、(b)は(a)のA−A線による断面図、(c)は底面図である。
【図10】図9に示す従来の高周波用パッケージの要部を拡大して示した斜視図である。
【図11】従来の高周波用パッケージの回路基板上に実装された様子を示す断面図である。
【符号の説明】
21・・・・・・誘電体基板
21a・・・・・搭載部
22・・・・・・第1の線路導体
23・・・・・・第1の同一面接地導体
24・・・・・・第2の線路導体
25・・・・・・第2の同一面接地導体
26・・・・・・貫通導体
27・・・・・・接地貫通導体
32・・・・・・金属端子
34・・・・・・接地金属端子
37・・・・・・非形成部
38・・・・・・キャスタレーション接地導体
S・・・・・・高周波回路部品(高周波用半導体素子)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high frequency package for mounting a high frequency circuit component such as a high frequency semiconductor element or a high frequency circuit used in a high frequency band.
[0002]
[Prior art]
For example, a high frequency package used for housing a high frequency circuit component such as a high frequency semiconductor element or a high frequency circuit operating in a high frequency band of MHz band or GHz band is disclosed in, for example, Japanese Patent No. 2605502, FIG. There was something to show.
[0003]
FIGS. 9A to 9C are views showing an example of such a conventional high-frequency package. FIG. 9A is a plan view partly broken, and FIG. 9B is a plan view of FIG. ) Is a cross-sectional view taken along line AA, and FIG. 9C is a bottom view. FIG. 10 is an enlarged perspective view showing a main part of the high frequency package shown in FIG. In these figures, 1 is a package substrate made of ceramics, etc. 2 is a package side wall made of ceramics or ceramics whose surface is metallized, etc., and is mounted on the surface of the package substrate 1. An upper end surface of the package side wall 2 not contacting the package substrate 1 is sealed with a lid 3 made of a metal such as gold or an alloy such as iron-nickel-cobalt alloy. Reference numeral 4 denotes a die bonding region in which the surface of the package substrate 1 is metalized 5, and reference numeral 6 denotes a dielectric substrate made of ceramics. An internal high-frequency transmission line 19 made of a metal thin film is formed on the surface of the dielectric substrate 6. The die bonding region 4, the dielectric substrate 6, and the internal high-frequency transmission line 19 are formed in a cavity surrounded by the package substrate 1, the package side wall 2, and the lid 3. Also, a ground metal thin film 8 and a signal line metal thin film 9 are formed on the bottom surface of the package substrate 1 to form an external coplanar line 10. The signal line metal thin film 9 has an internal high frequency by a via hole 11 made of metal. The transmission line 19 is electrically connected.
[0004]
Reference numeral 18 denotes a ground metal thin film formed on the surface of the dielectric substrate 6 and constitutes the internal coplanar line 20 together with the internal high-frequency transmission line 19. Reference numeral 12 denotes a ground via hole for electrically connecting the ground metal thin film 8 of the external coplanar line 10 and the ground metal thin film 18 of the internal coplanar line 20.
[0005]
Such a high frequency package is surface-mounted on a circuit board 13 made of glass epoxy, fluororesin, ceramics, or the like, as shown in a sectional view in FIG.
[0006]
[Patent Document 1]
Japanese Patent No. 2605502
[0007]
[Problems to be solved by the invention]
Since the conventional high frequency package is configured as described above, when the high frequency package is surface-mounted on the circuit board 13, the signal line metal thin film 9 is formed at the junction between the package substrate 1 and the circuit board 13. When the distance between the ground metal thin films 8 arranged on both sides of the wire is longer than ½ of the wavelength of the high-frequency signal to be used, the ground network path between the ground metal thin films 8 becomes long and the inductance component increases. As a result, the grounding state of the ground metal thin film 8 tends to become unstable, so that the characteristic impedance changes locally in this part, resulting in high-frequency signal reflection loss. Since the effect is insufficient and radiation loss occurs, there is a problem that the transmission characteristics of the high-frequency signal deteriorate due to these losses.
[0008]
Furthermore, since the conventional high frequency package is configured as described above, when this high frequency package is surface-mounted on the circuit board 13, it is between the signal line metal thin film 9 and the ground metal thin films 18 and 8. The existing floating capacitance component in the package substrate 1 and the signal line metal thin film 9 when the high frequency package is surface-mounted on the circuit board 13 and the lower surface side ground conductor (not shown) of the circuit board 13 exist. Since the capacitance component existing between the package substrate 1 and the circuit board 13 increases due to the generation of the floating capacitance component in the dielectric substrate of the circuit board 13 to be operated, the high-frequency package when mounted on the surface of the circuit board 13 is increased. There is a problem that high-frequency mismatch occurs in the input / output unit, loss of the high-frequency input / output signal increases, and the voltage standing wave ratio (hereinafter abbreviated as VSWR) deteriorates. Was Tsu.
[0009]
Further, in the conventional high frequency package, when the high frequency package is surface-mounted on the circuit board 13, the ground metal thin film 18 on the upper surface of the package substrate 1 and the ground metal thin film 8 on the lower surface are electrically connected. Since the conductor is not provided, the ground metal thin film 18 and the ground metal thin film 8 are not connected at high frequency, so that the ground state becomes unstable, and loss of the high frequency input / output signal at the input / output portion of the package substrate 1 However, there is a problem that VSWR tends to deteriorate. Further, since the propagation mode of the high frequency signal becomes discontinuous in the input / output portion of the package substrate 1, radiation loss increases, and as a result, the transmission characteristics of the high frequency signal in the input / output portion of the high frequency package deteriorate. was there.
[0010]
The present invention has been made to solve such problems, and suppresses high-frequency mismatch and radiation loss with respect to high-frequency input / output signals in the input / output section when surface-mounted on a circuit board, and has low loss. And it aims at providing the package for high frequency of low VSWR.
[0011]
[Means for Solving the Problems]
The high frequency package of the present invention comprises a dielectric substrate having an upper surface and a lower surface, a first line conductor for transmitting a high frequency signal, and a first ground conductor, and is formed on the upper surface of the dielectric substrate. A first coplanar line; a second line conductor electrically connected to the first line conductor; and a second ground conductor electrically connected to the first ground conductor. A second coplanar line formed on the lower surface of the body substrate, a metal terminal joined to the second line conductor, and arranged on both sides of the metal terminal, and joined to the second ground conductor. A plurality of ground metal terminals, and the plurality of ground metal terminals are arranged at intervals of 1/2 or less of the wavelength of the high-frequency signal.
[0012]
The high-frequency package according to the present invention is characterized in that, in the above-described configuration, a conductor non-formation portion is provided at a position located above the metal terminal of the first coplanar ground conductor.
[0013]
In the high frequency package of the present invention, the first coplanar ground conductor and the ground metal terminal are electrically connected to a portion located on the ground metal terminal on the side surface of the dielectric substrate. A castellation grounding conductor to be connected is provided.
[0014]
According to the high frequency package of the present invention, in the high frequency package having the above-described configuration, the interval (gap) between the ground metal terminals arranged in parallel on both sides of the metal terminal is 1/2 of the wavelength λ of the high frequency signal at the operating frequency. Since (λ / 2) or less, when this high frequency package is surface-mounted on a circuit board, the ground network path between the ground metal terminals is shortened, and an increase in inductance component can be prevented. Therefore, the ground metal terminal can constitute a stable ground state at the junction between the dielectric substrate of the package and the circuit board on which the high-frequency package is mounted, and leakage of high-frequency signals is suppressed at this portion. As a result, high-frequency mismatch and radiation loss for high-frequency input / output signals in the input / output section when surface-mounted on a circuit board Loss can be suppressed, loss of high-frequency input / output signals can be kept low, and VSWR can be lowered.
[0015]
Furthermore, by providing a non-forming portion of the conductor at a position located above the metal terminal portion of the first coplanar ground conductor, a dielectric existing between the metal terminal and the first and second coplanar ground conductors. The capacitance component in the body substrate and the capacitance component in the dielectric substrate of the circuit board that exists between the metal terminal when this high frequency package is surface-mounted on the circuit board and the ground conductor on the lower surface side of the circuit board are not formed. The capacitance component generated between the dielectric substrate constituting the high frequency package and the dielectric substrate of the circuit board on which the package is surface-mounted can be reduced. As a result, the high frequency input / output signal at the input / output unit when mounted on the surface of the circuit board is prevented from mismatching at a high frequency, the loss of the high frequency input / output signal is suppressed, and the VSWR is reduced. It can gel.
[0016]
Further, by providing a castellation grounding conductor for connecting the first grounded ground conductor and the grounded metal terminal at a portion positioned on the grounded metal terminal on the side surface of the dielectric substrate, the first grounded grounded conductor and Since the grounding metal terminal is electrically connected directly, the grounding state of the input / output unit is stabilized, the reflection characteristics can be reduced, and the radiation loss can be suppressed by enhancing the electromagnetic shielding effect. As a result, the loss of the high-frequency input / output signal in the input / output unit of the high-frequency signal can be suppressed low, the VSWR can be lowered, and the transmission characteristic of the high-frequency signal can be improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the high frequency package of the present invention will be described with reference to the drawings.
[0018]
1, 2 and 3 are views showing an example of an embodiment of a high frequency package according to the present invention. FIG. 1 is a sectional view, FIG. 2 is a bottom view, and FIG. 3 is a top view. is there.
[0019]
In these drawings, 21 is a dielectric substrate, 21a is a mounting portion on which a high-frequency circuit component S such as a high-frequency semiconductor element is mounted, 22 is a first line conductor, 23 is a first coplanar ground conductor, and 24 is The second line conductor, 25 is a second coplanar ground conductor, 26 is a through conductor, 27 is a ground through conductor, 32 is a metal terminal, and 34 is a ground metal terminal, and these constitute a high frequency package. . Reference numeral 28 denotes a conductive connection member such as a bonding wire for connecting the high-frequency circuit component S and the first line conductor 2.
[0020]
Reference numeral 29 denotes a dielectric substrate, and reference numeral 30 denotes a connection line conductor. The circuit board 31 is composed of these, and the second line conductor 24 of the high frequency package and the connection line conductor 30 of the circuit board 31 are connected to each other. By connecting the metal terminals 32 between them, the high frequency package is mounted on the circuit board 31. In this example, the lower surface side ground conductor 33 is formed on the lower surface of the dielectric substrate 29, the upper surface side ground conductor 34 is formed on the upper surface, and the upper surface side ground conductor 34 and the second same-surface ground conductor 25 are electrically connected. An example of connection is shown.
[0021]
In this example, the concave portion is formed in the central portion of the upper surface of the dielectric substrate 21 and the mounting portion 21a is provided in the concave portion. However, the mounting portion 21a may be formed on the upper surface of the dielectric substrate 21 as a flat plate. Good.
[0022]
The dielectric substrate 21 is a support for supporting the high-frequency circuit component S, and is an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, or a silicon nitride based material. An inorganic dielectric material such as sintered body or glass ceramic, or an organic dielectric material such as polyimide or glass epoxy, or an inorganic dielectric powder such as ceramic powder is bonded with a thermosetting resin such as epoxy resin. In this example, it has a substantially square shape having a recess for accommodating the high-frequency circuit component S at the center of the upper surface. A mounting portion 21a for mounting the high-frequency circuit component S is formed on the bottom surface of the recess, and the high-frequency circuit component S is bonded and fixed to the mounting portion 21a via an adhesive such as brazing material, resin, glass, or the like. The In the mounting portion 21a, a metallized layer is formed on the surface of the dielectric substrate 21 as necessary.
[0023]
If this dielectric substrate 21 is made of, for example, an aluminum oxide sintered body, an appropriate organic binder, solvent, plasticizer, dispersant, etc. are added to and mixed with raw material powders such as aluminum oxide, silicon oxide, and calcium oxide. Then, it is made into a mud shape, and this is formed into a ceramic green sheet by adopting a sheet forming method such as the doctor blade method. After that, the ceramic green sheet is appropriately punched and laminated, and then reduced. It is manufactured by firing at a temperature of about 1600 ° C in an atmosphere.
[0024]
A first line conductor 22 having a width of about 0.1 to 1.0 mm is formed on the upper surface of the dielectric substrate 21 from the vicinity of the mounting portion 21a to the middle in the outer peripheral direction, and the first line conductor is formed on the lower surface. A second line conductor 24 having a width of about 0.1 to 1.5 mm is formed in parallel with the first line conductor 22 from the opposed region toward the outer peripheral edge. Further, a through conductor 26 that electrically connects the end portion of the first line conductor 22 and the end portion of the second line conductor 24 opposite to the end portion of the first line conductor 22 is disposed. The first and second line conductors 22 and 24 and the through conductor 26 function as conductive paths for electrically connecting the electrodes of the high-frequency circuit component S to an external electric circuit.
[0025]
The widths of the first and second line conductors 22 and 24 are appropriately set according to the frequency of the high-frequency signal to be propagated and the size of the high-frequency package. In the high frequency package of the present invention, for example, when the relative permittivity of the dielectric substrate 21 is 6, the width of the first line conductor 22 is about 0.32 mm and the width of the second line conductor 24 is 0.32. It is set to about mm.
[0026]
In addition, the dielectric substrate 21 is provided with first coplanar ground conductors 23 on both sides of the first line conductor 22 on the upper surface and second coplanar surfaces on both sides of the second line conductor 24 on the lower surface. A ground conductor 25 is formed, and a grounding through conductor 27 that electrically connects the first same-surface ground conductor 23 and the second same-surface ground conductor 25 is disposed therein. The first coplanar grounding conductor 23 and the second coplanar grounding conductor 25 compensate for discontinuity between the first line conductor 22 and the conductive connecting member 28, and the first line conductor 22 and the second line grounding conductor 25. It has a function of improving the isolation between the line conductor 24 and the line conductor 24. In addition, the grounding through conductor 27 can supplement the capacitive component with respect to the high impedance through conductor 26 and can prevent impedance mismatch in the through conductor 26. As a result, the impedance mismatching in the electrical connection between the high-frequency circuit component S and the external electric circuit can be effectively suppressed, and the deterioration of the transmission characteristics of the high-frequency signal can be suppressed. It can be.
[0027]
The ground through conductor 27 that electrically connects the first ground conductor 23 and the second ground conductor 25 electrically connects the first line conductor 22 and the second line conductor 24 to each other. By arranging a plurality of through conductors 26 to be connected to form a pseudo coaxial structure, high-frequency input / output signals are exchanged between the first line conductor 22 and the second line conductor 24. Mismatches can be reduced, and low loss and low VSWR can be achieved.
[0028]
In this example, the first same-surface ground conductor 23 and the second same-surface ground conductor 25 are continuous so as to surround opposite ends of the first line conductor 22 and the second line conductor 24, respectively. Thus, a better grounding state can be obtained.
[0029]
The first and second line conductors 22 and 24, the through conductor 26, the first and second coplanar ground conductors 23 and 25, and the ground through conductor 27 are conductive metals such as tungsten, molybdenum, copper, and silver. It is formed from a functional material. For example, in the case of tungsten metallization, a tungsten paste obtained by adding and mixing an appropriate organic binder and solvent to tungsten powder is a dielectric in which a through hole to be a through conductor 26 or a ground through conductor 27 is previously formed. The ceramic green sheet to be the body substrate 21 is printed and applied in a predetermined pattern by a screen printing method, or is filled and fired together with the ceramic green sheet to be the dielectric substrate 21, so that the upper surface of the dielectric substrate 1 is spread from the lower surface to the lower surface. It is formed in a predetermined pattern.
[0030]
The first and second line conductors 22 and 24 and the first and second coplanar grounding conductors 23 and 25 are excellent in corrosion resistance such as nickel and gold on the exposed surfaces, It is effective to oxidize and corrode the line conductors 22 and 24 and the ground conductors 23 and 25 on the same plane when a metal having excellent bonding properties with a connecting member such as a bonding wire is provided to a thickness of 1 to 20 μm by plating. In addition, the connection between the line conductors 22 and 24 and the same-surface ground conductors 23 and 25 and the bonding wire, solder, or the like can be made strong and easy. Therefore, the first and second line conductors 22 and 24 and the first and second same-surface ground conductors 23 and 25 are plated with a metal having excellent corrosion resistance such as nickel or gold on the exposed surface. It is preferable to provide a thickness of 1 to 20 μm by the method.
[0031]
Then, the high-frequency circuit component S mounted on the mounting portion 21a is electrically connected to the first line conductor 22 by the conductive connecting member 28, and a lid (not shown) is attached to the upper surface of the mounting portion 21a. After the high-frequency circuit component S is hermetically sealed, the high-frequency package is connected to the circuit board 31 on which the connection line conductor 30 for transmitting a high-frequency signal is formed on the upper surface of the dielectric substrate 29, the second line conductor 24 and By connecting the connecting line conductors 30 in parallel and facing each other and electrically connecting them with the metal terminals 32 bonded to the second line conductors 24 and arranged at the outer peripheral end of the dielectric substrate 21, The high frequency circuit component S inside the high frequency package and the external electric circuit of the circuit board 31 are electrically connected.
[0032]
In the high frequency package of the present invention, the distance between the ground metal terminals 34 arranged on both sides of the metal terminal 32 is equal to or less than ½ (λ / 2) of the wavelength λ of the high frequency signal at the use frequency. ing.
[0033]
Since the distance between the ground metal terminals 34 is λ / 2 or less as described above, when the high frequency package is surface-mounted on the circuit board 31, the ground network path between the ground metal terminals 34 is short. Therefore, an increase in the inductance component can be prevented, so that the ground metal terminal 34 can form a stable ground state at the junction between the dielectric substrate 21 and the circuit board 31 of the high frequency package. Thus, leakage of high frequency signals can be suppressed. As a result, according to the high frequency package of the present invention, the high frequency input / output signal at the input / output unit when surface-mounted on the circuit board 31 is suppressed from high frequency mismatch and radiation loss, and the high frequency input / output signal loss is reduced. The VSWR can be lowered while keeping it low.
[0034]
In the high frequency package of the present invention, the dielectric substrate 21 is made of various materials such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, and a silicon nitride sintered body. Inorganic dielectric materials such as ceramics and glass ceramics, organic dielectric materials such as polytetrafluoroethylene (PTFE), epoxy, polyimide, and glass epoxy, or inorganic dielectric powders such as ceramic powder are used as epoxy resins. It is made of a dielectric material such as a composite dielectric material formed by bonding with a thermosetting resin, and is formed by laminating a plurality of dielectric layers as required.
[0035]
Then, the high-frequency circuit component S mounted on the mounting portion 21a is electrically connected to the first line conductor 22 by a conductive connecting member 28 such as a bonding wire and hermetically sealed. A cover (not shown) is attached to the upper surface. The lid includes a Fe-Ni alloy such as an Fe-Ni-Co alloy or Fe-Ni42 alloy, a metal material such as oxygen-free copper, aluminum, stainless steel, Cu-W alloy, Cu-Mo alloy, or aluminum oxide. An inorganic material such as a sintered material or glass ceramic, or a resin material such as PTFE or glass epoxy is used. Further, in order to attach the lid, depending on the material, a low melting point metal brazing material such as solder, Au—Sn brazing, a high melting point metal brazing material such as Au—Ge brazing, or an epoxy, conductive epoxy It is attached by resin adhesive such as seam weld or welding such as seam weld or electron beam welding.
[0036]
The first and second line conductors 22, 24, the through conductor 26, the first and second coplanar ground conductors 23, 25, and the ground through conductor 27 are metal materials for high-frequency line conductors such as Cu, MoMn + Ni + Au, W + Ni + Au. , Cr + Cu, Cr + Cu + Ni + Au, Ta 2 It is formed by a thick film printing method, various thin film forming methods, plating methods, or the like using a metal thin film such as N + NiCr + Au, Ti + Pd + Au, NiCr + Pd + Au, a metal foil, a metal plate, a metallized conductor or the like. The thickness, shape, line width, distance between the line conductor and the same plane ground conductor, etc. are set appropriately according to the frequency, characteristic impedance, etc. of the high-frequency input / output signals transmitted by these line conductors 22, 24 and through conductors 26. Is done. In the high frequency package of the present invention, for example, when the relative permittivity of the dielectric substrate 21 is 6, the width of the first line conductor 22 is about 0.32 mm and the width of the second line conductor 24 is 0.32. The diameter of the through conductor 26 is about φ0.15 mm, the distance between the first line conductor 22 and the first coplanar ground conductor 23 is about 0.1 mm, and the second line conductor 24 and the second conductor 24 The distance from the same surface ground conductor 25 is set to about 0.3 mm.
[0037]
In such a high frequency package of the present invention, it is important to set the interval between the ground metal terminals 34 arranged in parallel on both sides of the metal terminal 32 to λ / 2 or less.
[0038]
Here, FIG. 4 is a diagram showing the relationship between the spacing between the ground metal terminals 34 and the usable frequency limit of the high frequency signal in the example of the high frequency package of the present invention shown in FIGS. This data is the result of examination using a three-dimensional electromagnetic simulator. The dielectric substrate 21 was made of a dielectric material having a relative dielectric constant of 6.0 and a thickness of 0.4 mm, and the circuit board 31 was made of a dielectric material having a relative dielectric constant of 3.38 and a thickness of 0.2 mm. The line width of the first line conductor 22 was set to 0.32 mm so that the transmission line impedance was about 50Ω. The line width of the connection line conductor 30 formed on the circuit board 31 was set to 0.42 mm so that the transmission line impedance was about 50Ω. The width of the metal terminal 32 was set to 0.2 mm. The horizontal axis of FIG. 4 shows the interval (unit: nλ) between the ground metal terminals 34, and the vertical axis shows the usable limit frequency (unit: GHz). The use limit frequency was a frequency at which the value of S11 (reflection characteristics) calculated by the electromagnetic field simulator was −15 dB or less.
[0039]
When the intervals between the ground metal terminals 34 are changed to λ / 4, λ / 3, λ / 2, λ, and 2λ, as shown in FIG. Became 62 GHz, 61 GHz, 60 GHz, 30 GHz and 15 GHz, respectively. As can be seen from the above results, when the distance between the ground metal terminals 34 exceeds 1/2 (λ / 2) of the wavelength λ of the high frequency signal at the operating frequency, this high frequency package was surface-mounted on the circuit board 31. In this case, since the ground state of the ground metal terminal 34 tends to become unstable at the junction between the dielectric substrate 21 and the circuit board 31, the characteristic impedance locally changes at this portion, resulting in reflection loss. In addition, since the shielding effect of the high frequency signal is insufficient at this portion and a radiation loss occurs, the transmission characteristic of the high frequency signal is deteriorated due to the loss. Therefore, in the high frequency package of the present invention, it is desirable to set the interval between the ground metal terminals 34 arranged in parallel on both sides of the metal terminal 32 to λ / 2 or less.
[0040]
The metal terminal 32 and the ground metal terminal 34 are formed in a predetermined shape by punching or etching a plate material such as an iron-nickel-cobalt alloy or an iron-nickel alloy. The metal terminal 32 is joined to the second line conductor 24 and the connecting line conductor 30 by, for example, a first brazing material such as silver-copper brazing between the metal terminal 32 and the second line conductor 24. The metal terminals 32 are brazed to the second line conductor 24 by heating them to a temperature equal to or higher than the melting point of the first brazing material, and then joined to the second line conductor 24. The metal terminal 32 is brought into contact with the connecting line conductor 30 on the upper surface of the circuit board 31 with a second brazing material such as a silver-copper brazing material having a melting point lower than that of the first brazing material interposed therebetween. A method is adopted in which the metal terminal 32 and the connecting line conductor 30 are brazed by heating to a temperature not lower than the melting point of the second brazing material and not higher than the melting point of the first brazing material.
[0041]
Further, the metal terminal 32 and the ground metal terminal 34 can be formed by depositing a metal having good conductivity such as nickel and gold and excellent corrosion resistance on the surface thereof to a thickness of 1 to 20 μm by plating. It is possible to effectively prevent the oxidative corrosion of the terminal 32 and the ground metal terminal 34 and to improve the electrical connection between the signal (signal) system and the ground (ground) system. Therefore, it is preferable that the metal terminal 32 and the ground metal terminal 34 have nickel, gold or the like deposited on their surfaces to a thickness of 1 to 20 μm by plating.
[0042]
The circuit board 31 is formed by adhering and forming a connection line conductor 30 on the upper surface of a dielectric substrate 29. This dielectric substrate 29 is made of an aluminum oxide sintered body, an aluminum nitride sintered body, or a mullite sintered body. Body, silicon carbide sintered body, silicon nitride sintered body, ceramics such as glass ceramics, and dielectric materials such as organic resin. For example, in the case of an aluminum oxide sintered body, a suitable organic binder, solvent, plasticizer, dispersant, etc. are added to and mixed with raw material powders such as aluminum oxide, silicon oxide, calcium oxide, etc. By adopting a sheet forming method such as the doctor blade method, this is made into a ceramic green sheet, and then the ceramic green sheet is appropriately punched and fired at a temperature of about 1600 ° C. in a reducing atmosphere. Produced.
[0043]
The connecting line conductor 30 has a width of about 0.1 to 2.0 mm, and is made of a conductive material such as metal metallization such as tungsten, molybdenum, copper, or silver. For example, in the case of tungsten metallization, a tungsten paste obtained by adding and mixing a suitable organic binder and solvent to tungsten powder is applied to a ceramic green sheet to be a dielectric substrate 29 of the circuit board 31 by a screen printing method. A pattern is printed and applied, and this is fired together with a ceramic green sheet to be the dielectric substrate 29, whereby a predetermined pattern is deposited from the upper surface to the lower surface of the dielectric substrate 29.
[0044]
In this example, the ground metal terminal 34 is arranged on the second same-surface ground conductor 25 on the lower surface of the dielectric substrate 21 in parallel with both sides of the metal terminal 32 and joined to the second same-surface ground conductor 25. An example is shown in which the conductive substrate 35 formed by integrally bonding is bonded via an adhesive such as a brazing material. The conductive substrate 35 is made of a metal such as an iron-nickel-cobalt alloy or an iron-nickel alloy. For example, in the case of an iron-nickel-cobalt alloy, the ingot is formed into a predetermined shape by applying a metal processing method such as a rolling method or a punching method.
[0045]
Further, in this example, a power connection terminal 36 is attached to the lower surface of the dielectric substrate 21. The power supply connection terminal 36 is a bias terminal necessary for driving the high-frequency circuit component S, and is brazed to a power supply conductor (not shown) on the upper surface of the circuit board 31. A wiring conductor (not shown) connected to the connection terminal 36 is led out to the mounting portion 21a and electrically connected to the high-frequency circuit component S mounted on the mounting portion 21a by a conductive connecting member such as a bonding wire or a ribbon, Bias power is supplied to the high-frequency circuit component S. By attaching the power connection terminals 36 with the same material and shape as the metal terminals 32 in this way, the high frequency package can be connected to the circuit board 31 by the power supply connection terminals 36 by the brazing. be able to. Further, by arranging the metal terminal 32 and the power connection terminal 36 on each side of the outer periphery of the dielectric substrate 21 as in this example, the mounting of the high frequency package on the circuit board 31 is made stronger. Thus, more reliable mounting can be performed.
[0046]
Next, FIG. 5 is a top view similar to FIG. 3, showing another example of the high-frequency package according to the present invention. In FIG. 5, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals. In the example of the high-frequency package of the present invention, a conductor non-forming portion 37 is provided at a position located above the metal terminal 32 of the first coplanar ground conductor 23.
[0047]
In this way, by providing the non-forming portion 37 of the conductor on a part of the first coplanar ground conductor 23 located at the top of the metal terminal 32, the metal terminal 32 and the first and second coplanar contacts are provided. The capacitance component in the dielectric substrate 21 existing between the ground conductors 23 and 25 and the metal terminal 32 when the high frequency package is surface-mounted on the circuit board 31 and the lower surface side ground conductor 33 of the circuit board 31 Since the capacitance component in the dielectric substrate 29 of the circuit board 31 existing therebetween can be reduced according to the size of the non-forming portion 37, the dielectric substrate 21 constituting the high frequency package and the package are surface-mounted. Capacitance components generated between the circuit board 31 and the dielectric substrate 29 can be reduced. As a result, high-frequency mismatch with respect to high-frequency input / output signals in the input / output section when the circuit board 31 is surface-mounted. Deterred, high Suppressing the loss of the wave input and output signals, it is possible to reduce the VSWR.
[0048]
Here, in FIG. 6, in the example of the high frequency package of the present invention shown in FIG. 5, a ground conductor non-forming portion 37 is provided at a position located above the metal terminal 32 of the first coplanar ground conductor 23. The high frequency characteristic simulation result with and without the case is shown. This data is the result of examination using a three-dimensional electromagnetic field simulator. The dielectric substrate 21 of the high frequency package is made of a dielectric material having a relative dielectric constant of 6.0 and a thickness of 0.4 mm, and the dielectric substrate 29 of the circuit board 31 is a dielectric having a relative dielectric constant of 3.38 and a thickness of 0.2 mm. Material was used. The line width of the first line conductor 22 was set to 0.32 mm so that the transmission line impedance was about 50Ω. The line width of the connection line conductor 30 formed on the circuit board 31 was set to 0.42 mm so that the transmission line impedance was about 50Ω. The size of the non-formation portion 37 of the ground conductor that is present on the metal terminal 32 and is on the same plane as the first same-surface ground conductor 23 is 0.7 mm × 1.0 mm.
[0049]
In the diagram of FIG. 6, the horizontal axis represents frequency (unit: GHz), and the vertical axis represents reflection characteristics (unit: dB). Also, among the characteristic curves, the dotted line A indicates the result when the non-formed part 37 is not provided, and the solid line B indicates the result when the non-formed part 37 is provided. As can be seen from this result, in the case where the ground conductor non-forming portion 37 is not provided in the portion located above the metal terminal 32 of the first coplanar ground conductor 23 (A), the reflection characteristic becomes 15 dB up to 62 GHz. On the other hand, when the non-forming portion 37 is provided (B), the reflection characteristic is 15 dB up to 83 GHz, and when the non-forming portion 37 is provided, the high frequency characteristics are improved as compared with the case where the non-forming portion 37 is not provided. Has been.
[0050]
Note that the width of the non-forming portion 37 is more effective because the wider one can greatly reduce the capacitance component generated between the dielectric substrate 21 of the package and the dielectric substrate 29 of the circuit board 31 that is the mounting substrate. It is desirable that the width is equal to the width between the ground metal terminals 34 or about 80% or less between the ground metal terminals 34. This is because if the width of the non-forming portion 37 becomes too wide, the high-frequency signal transmission characteristics tend to deteriorate due to the electromagnetic waves of the high-frequency signal being emitted from the non-forming portion 37.
[0051]
In the example shown in FIG. 5, the shape of the non-forming portion 37 is provided as a substantially square shape. In the case of such a rectangular shape, for example, in the ultrahigh frequency region of 70 GHz or higher, the end of the non-forming portion 37 is provided. There is a concern that the insertion loss increases because the electric field concentrates on the part and the propagation mode becomes discontinuous. In such a case, the shape of the non-forming portion 37 may be circular or elliptical so that local electric field concentration in the non-forming portion 37 is alleviated.
[0052]
Next, FIG. 7 is a top view similar to FIGS. 3 and 5, showing still another example of the embodiment of the high frequency package of the present invention. In FIG. 7, the same parts as those in FIGS. 1 to 3 and FIG. In the high frequency package of the present invention, the first coplanar ground conductor 23 and the ground metal terminal 34 are electrically connected to a portion located on the ground metal terminal 34 on the side surface of the dielectric substrate 21. A so-called castellation grounding conductor 38, in which a conductor is formed inside a groove-like recess formed from the upper surface to the lower surface on the side surface, is provided. As a result, since the first coplanar ground conductor 23 and the ground metal terminal 34 are electrically connected directly by the castellation conductor 38, the ground state of the input / output unit of the high-frequency signal is stabilized, and the input / output unit In addition to reducing the reflection loss of the high-frequency signal, it is possible to suppress the radiation loss by enhancing the electromagnetic wave shielding effect, and as a result, the loss of the high-frequency input / output signal in the input / output part of the high-frequency signal is kept low, VSWR can be reduced, and high-frequency signal transmission characteristics can be improved.
[0053]
Here, FIG. 8 shows a first coplanar grounding conductor 23 and a grounding metal at a portion located on the grounding metal terminal 34 on the side surface of the dielectric substrate 21 in the example of the high frequency package of the present invention shown in FIG. The high-frequency characteristic simulation results with and without the castellation ground conductor 37 electrically connecting the terminal 34 are shown. This data is also the result of examination using a three-dimensional electromagnetic field simulator. The dielectric substrate 21 of the high frequency package is made of a dielectric material having a relative dielectric constant of 6.0 and a thickness of 0.4 mm, and the dielectric substrate 29 of the circuit board 31 is a dielectric having a relative dielectric constant of 3.38 and a thickness of 0.2 mm. Material was used. The line width of the first line conductor 22 was set to 0.32 mm so that the transmission line impedance was about 50Ω. The line width of the connection line conductor 30 formed on the circuit board 31 was set to 0.42 mm so that the transmission line impedance was about 50Ω.
[0054]
In the diagram of FIG. 8, the horizontal axis represents frequency (unit: GHz), and the vertical axis represents reflection characteristics (unit: dB). A dotted line A in the characteristic curve indicates a castellation grounding that electrically connects the first coplanar grounding conductor 23 and the grounding metal terminal 34 to a portion located on the grounding metal terminal 34 on the side surface of the dielectric substrate 21. The result when the conductor 37 is not provided is shown, and the solid line B shows the result when the castellation ground conductor 37 is provided. As can be seen from this result, a castellation conductor 37 for electrically connecting the first coplanar grounding conductor 23 and the grounding metal terminal 34 to the portion located on the grounding metal terminal 34 on the side surface of the dielectric substrate 21 is provided. When not provided (A), the reflection characteristic is 15 dB up to 62 GHz, whereas when the castellation ground conductor 37 is provided (B), the reflection characteristic is 15 dB up to 82 GHz, and the castellation grounding When the conductor 37 is provided, the high frequency characteristics are improved as compared with the case where the conductor 37 is not provided.
[0055]
The castellation ground conductor 37 is formed on the inner surface of the groove-shaped recess formed on the side surface of the dielectric substrate 21 on the ground metal terminal 34 and extending from the upper surface to the lower surface of the dielectric substrate 21. Assuming that the conductor layer is formed so as to electrically connect the same-surface ground conductor 23 and the ground metal terminal 34, if the same material is used for the above-mentioned conductor layers, the same method is used. Alternatively, another conductive member such as a metal plate or a metal block may be attached to the groove-shaped recess. In addition, the deeper the concave portion is formed toward the central portion of the dielectric substrate 21, the more stable the grounding state is over a longer distance, and the loss of high-frequency input / output signals in the input / output portion is suppressed to lower the VSWR. Thus, the transmission characteristics of the high frequency signal can be further improved.
[0056]
Thus, according to the high frequency package of the present invention, the interval between the ground metal terminals 34 arranged in parallel on both sides of the metal terminal 32 is λ / 2 or less. When the surface is mounted on 31, the ground network path between the ground metal terminals 34 is shortened, and an increase in inductance component can be prevented, so that the ground at the junction between the dielectric substrate 21 and the circuit board 31 of the package. The metal terminal 34 can constitute a stable grounding state, and leakage of high-frequency signals can be suppressed at this portion. As a result, according to the present invention, high-frequency mismatch and radiation loss with respect to high-frequency input / output signals in the input / output unit when surface-mounted on a circuit board are suppressed, loss of high-frequency input / output signals is suppressed, and VSWR is reduced. The high-frequency package can be lowered and has excellent high-frequency signal input / output characteristics.
[0057]
Further, in the high frequency package of the present invention, the ground terminal non-formation portion 37 is provided at a position located above the metal terminal 32 of the first coplanar ground conductor 23, so that the metal terminal 32 and the first and first portions are provided. The capacitance component in the dielectric substrate 21 existing between the two same-surface grounding conductors 23 and 25, and the lower surface side grounding of the metal terminal 32 and the circuit board 31 when this high frequency package is surface-mounted on the circuit board 31. Since the capacitance component in the dielectric substrate 29 of the circuit board 31 existing between the conductor 33 can be reduced according to the size of the non-forming portion 37, the dielectric substrate 21 constituting the high frequency package and the surface of the package Capacitance components generated between the circuit board 31 to be mounted and the dielectric substrate 29 can be reduced. As a result, a high frequency for high frequency input / output signals in the input / output unit when the circuit board 31 is surface-mounted. Suppress inconsistencies, suppressing the loss of the high-frequency input and output signals, it is possible to reduce the VSWR.
[0058]
Further, in the high frequency package of the present invention, a castellation for electrically connecting the first coplanar ground conductor 23 and the ground metal terminal 34 to a portion located on the side of the ground metal terminal 34 on the side surface of the dielectric substrate 21. By providing the grounding conductor 37, the first coplanar grounding conductor 23 and the grounding metal terminal 34 are electrically connected directly, so that the grounding state of the high-frequency signal input / output unit is stabilized, and the input / output Can reduce the reflection characteristics and enhance the electromagnetic wave shielding effect to suppress the radiation loss. As a result, the loss of the high-frequency input / output signal in the input / output unit of the high-frequency signal can be suppressed low, and the VSWR can be reduced. The transmission characteristics of the high frequency signal can be improved.
[0059]
Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the metal terminal 32 and the ground metal terminal 34 are described as being made of a metal such as iron-nickel-cobalt alloy or iron-nickel alloy, but the metal terminal 32 and the ground metal terminal 34 are described. Needless to say, the present invention can also be applied to terminals such as solder, copper, and brazing material.
[0060]
The metal terminal 32 and the ground metal terminal 34 as the input / output unit for the high-frequency signal have a pair of input / output units per side facing the area of the mounting portion 21a on which the high-frequency circuit component S such as a high-frequency semiconductor element is mounted. As described above, the structure may be such that two or more pairs of input / output units are provided per side in correspondence with the multi-port IC.
[0061]
【The invention's effect】
According to the high-frequency package of the present invention, a dielectric substrate having a mounting portion for high-frequency circuit components formed on the top surface, and a high-frequency signal formed on the top surface of the dielectric substrate from the vicinity of the mounting portion in the outer peripheral direction are transmitted. A first line conductor, a first ground conductor formed on both sides of the first line conductor, and an outer end and an end of the first line conductor on the lower surface of the dielectric substrate. A second line conductor that transmits the high-frequency signal and facing the outer peripheral edge, a second coplanar ground conductor formed on both sides of the second line conductor, and the dielectric substrate A through conductor formed inside and electrically connecting opposite ends of the first and second line conductors and a ground through conductor electrically connecting the first and second coplanar ground conductors; , Metal bonded to the second line conductor And a ground metal terminal joined to each of the second line conductors in parallel on both sides of the metal terminal, and an interval between the ground metal terminals is equal to or less than ½ of the wavelength of the high-frequency signal. Therefore, when this high-frequency package is surface-mounted on a circuit board, the ground network path between the ground metal terminals is shortened to prevent an increase in inductance component. The ground metal terminal can constitute a stable ground state at the joint between the circuit board and the circuit board, and leakage of high-frequency signals can be suppressed at this part.
[0062]
Furthermore, by providing a non-forming portion of the conductor at a position located above the metal terminal portion of the first coplanar ground conductor, a dielectric existing between the metal terminal and the first and second coplanar ground conductors. The capacitance component in the body substrate and the capacitance component in the dielectric substrate of the circuit board that exists between the metal terminal when this high frequency package is surface-mounted on the circuit board and the ground conductor on the lower surface side of the circuit board are not formed. The capacitance component generated between the dielectric substrate constituting the high frequency package and the dielectric substrate of the circuit board on which the package is surface-mounted can be reduced. As a result, the high frequency input / output signal at the input / output unit when mounted on the surface of the circuit board is prevented from mismatching at a high frequency, the loss of the high frequency input / output signal is suppressed, and the VSWR is reduced. It can gel.
[0063]
Further, by providing a castellation grounding conductor for connecting the first grounded ground conductor and the grounded metal terminal at a portion positioned on the grounded metal terminal on the side surface of the dielectric substrate, the first grounded grounded conductor and Since the grounding metal terminal is electrically connected directly, the grounding state of the input / output unit is stabilized, the reflection characteristics can be reduced, and the radiation loss can be suppressed by enhancing the electromagnetic shielding effect. As a result, the loss of the high-frequency input / output signal in the input / output unit of the high-frequency signal can be suppressed low, the VSWR can be lowered, and the transmission characteristic of the high-frequency signal can be improved.
[0064]
As a result, according to the present invention, high-frequency mismatch and radiation loss with respect to high-frequency input / output signals in the input / output unit when surface-mounted on a circuit board are suppressed, loss of high-frequency input / output signals is suppressed, and VSWR is reduced. The high-frequency package can be lowered and has excellent high-frequency signal input / output characteristics.
[0065]
As described above, according to the present invention, a high-frequency package with low loss and low VSWR is suppressed by suppressing high-frequency mismatch and radiation loss with respect to high-frequency input / output signals in the input / output unit when surface-mounted on a circuit board. Could be provided.
[Brief description of the drawings]
FIG. 1 is a partially cutaway sectional view showing an example of an embodiment of a high frequency package according to the present invention.
FIG. 2 is a bottom view showing an example of an embodiment of a high frequency package according to the present invention.
FIG. 3 is a top view showing an example of an embodiment of a high-frequency package according to the present invention.
FIG. 4 is a diagram showing a relationship between an interval between ground metal terminals and a use limit frequency of a high frequency signal in the high frequency package of the present invention.
FIG. 5 is a top view showing another example of the embodiment of the high-frequency package of the present invention.
FIG. 6 is a diagram showing a comparison of high-frequency characteristics depending on the presence or absence of a first coplanar ground conductor non-formation portion in the high-frequency package of the present invention.
FIG. 7 is a top view showing still another example of the embodiment of the high-frequency package of the present invention.
FIG. 8 is a diagram showing a comparison of high-frequency characteristics according to the presence or absence of a castellation ground conductor that connects the first coplanar ground conductor and the ground metal terminal in the high-frequency package of the present invention.
9A is a plan view with a part broken away showing an example of a conventional high-frequency package, FIG. 9B is a sectional view taken along line AA of FIG. 9A, and FIG. 9C is a bottom view.
10 is an enlarged perspective view showing a main part of the conventional high frequency package shown in FIG.
FIG. 11 is a cross-sectional view showing a state where the conventional high frequency package is mounted on a circuit board.
[Explanation of symbols]
21 ・ ・ ・ ・ ・ ・ Dielectric substrate
21a ・ ・ ・ ・ ・ Mounting part
22 ・ ・ ・ ・ ・ ・ First line conductor
23 ・ ・ ・ ・ ・ ・ First grounded conductor on the same plane
24 ・ ・ ・ ・ ・ ・ Second line conductor
25 ・ ・ ・ ・ ・ ・ Second ground conductor
26 ・ ・ ・ ・ ・ ・ Penetration conductor
27 ・ ・ ・ ・ ・ ・ Ground through conductor
32 ・ ・ ・ ・ ・ ・ Metal terminal
34 ・ ・ ・ ・ ・ ・ Ground metal terminal
37 ・ ・ ・ ・ ・ ・ Non-formed part
38 ・ ・ ・ ・ ・ ・ Castellation grounding conductor
S ... High frequency circuit components (high frequency semiconductor elements)

Claims (3)

上面および下面を有する誘電体基板と、
高周波信号が伝送される第1の線路導体と第1の接地導体とからなり、該誘電体基板の前記上面に形成された第1のコプレーナ線路と、
前記第1の線路導体に電気的に接続された第2の線路導体と前記第1の接地導体に電気的に接続された第2の接地導体とからなり、該誘電体基板の前記下面に形成された第2のコプレーナ線路と、
前記第2の線路導体に接合された金属端子と、
前記金属端子の両側に配置されており、前記第2の接地導体に接合された複数の接地金属端子とを備え、
該複数の接地金属端子が、前記高周波信号の波長の1/2以下の間隔で配置されていることを特徴とする高周波用パッケージ。
A dielectric substrate having an upper surface and a lower surface;
A first coplanar line comprising a first line conductor for transmitting a high-frequency signal and a first ground conductor, and formed on the upper surface of the dielectric substrate;
A second line conductor electrically connected to the first line conductor and a second ground conductor electrically connected to the first ground conductor are formed on the lower surface of the dielectric substrate. A second coplanar track,
A metal terminal joined to the second line conductor;
A plurality of ground metal terminals disposed on both sides of the metal terminal and joined to the second ground conductor;
The high frequency package characterized in that the plurality of ground metal terminals are arranged at intervals of 1/2 or less of the wavelength of the high frequency signal.
前記第1の接地導体の前記金属端子の上部に位置する部位に導体の非形成部を設けたことを特徴とする請求項1記載の高周波用パッケージ。  2. The high frequency package according to claim 1, wherein a conductor non-formation portion is provided at a portion of the first ground conductor located above the metal terminal. 前記誘電体基板の側面の前記接地金属端子の上に位置する部位に前記第1の接地導体と前記接地金属端子とを電気的に接続するキャスタレーション接地導体を設けたことを特徴とする請求項1または請求項2記載の高周波用パッケージ。 Claims, characterized in that a castellation ground conductor electrically connecting said first grounding conductor and the site and the ground metal terminal located on the ground metal terminal side of said dielectric substrate The high frequency package according to claim 1 .
JP2003015994A 2002-08-30 2003-01-24 High frequency package Expired - Fee Related JP3935082B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003015994A JP3935082B2 (en) 2002-08-30 2003-01-24 High frequency package
US10/706,307 US6936921B2 (en) 2002-11-11 2003-11-12 High-frequency package

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002253861 2002-08-30
JP2002326979 2002-11-11
JP2003015994A JP3935082B2 (en) 2002-08-30 2003-01-24 High frequency package

Publications (2)

Publication Number Publication Date
JP2004214584A JP2004214584A (en) 2004-07-29
JP3935082B2 true JP3935082B2 (en) 2007-06-20

Family

ID=32830575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015994A Expired - Fee Related JP3935082B2 (en) 2002-08-30 2003-01-24 High frequency package

Country Status (1)

Country Link
JP (1) JP3935082B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335637A (en) 2006-06-15 2007-12-27 Mitsubishi Electric Corp High frequency semiconductor device
KR100836652B1 (en) 2007-03-07 2008-06-10 삼성전기주식회사 Package using piezoelectric wafer and fabrication method thereof
JP5512566B2 (en) 2011-01-31 2014-06-04 株式会社東芝 Semiconductor device
JP5710558B2 (en) 2012-08-24 2015-04-30 株式会社東芝 Wireless device, information processing device and storage device including the same
JP5779265B2 (en) * 2014-03-25 2015-09-16 株式会社東芝 Semiconductor device
JP2015084456A (en) * 2015-02-02 2015-04-30 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JP2004214584A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP3500268B2 (en) High frequency input / output terminal and high frequency semiconductor element storage package using the same
JP3493301B2 (en) High frequency input / output terminals and high frequency semiconductor element storage package
US6936921B2 (en) High-frequency package
JP5926290B2 (en) Input / output member and electronic component storage package and electronic device
JP3667274B2 (en) High frequency package
JP3935082B2 (en) High frequency package
JP3439969B2 (en) High frequency input / output terminal and high frequency semiconductor element storage package
JP3618046B2 (en) High frequency circuit package
JP4454144B2 (en) High frequency circuit package
JP3725983B2 (en) High frequency circuit package
JP2002190540A (en) Storage package for semiconductor element
JP4522010B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP3771853B2 (en) I / O terminal and semiconductor element storage package
JP2004055570A (en) Package for high frequency
JP3840160B2 (en) High frequency device storage package
JP3181036B2 (en) Mounting structure of high frequency package
JP4272570B2 (en) High frequency transmission line
JP2001230342A (en) Mounting structure of high frequency circuit component mounting board
JP3638528B2 (en) Package for storing semiconductor elements
JP2004153165A (en) Package for housing semiconductor component and its mounting structure
JP2004088504A (en) Package for storing high frequency element
JP2001189405A (en) High-frequency input/output terminal and package housing high-frequency semiconductor device
JPH11339898A (en) High frequency input and output terminal, and package for high frequency circuit
JP2003273276A (en) I/o terminal and package for housing semiconductor element
JP3628254B2 (en) Package for storing semiconductor elements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Ref document number: 3935082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees