【0001】
【発明の属する技術分野】
本発明は、高周波帯で用いられる高周波半導体素子や高周波回路等の高周波回路部品を搭載するための高周波用パッケージに関するものである。
【0002】
【従来の技術】
MHz帯またはGHz帯の高周波帯で動作する高周波半導体素子や高周波回路等の高周波回路部品を収容するために用いられる高周波用パッケージには、例えば、特許第2605502号公報に開示された、図5に示すようなものがあった。
【0003】
図5(a)〜(c)はそのような従来の高周波用パッケージの一例を示す図であり、図5(a)は一部を破断した平面図、図5(b)は図5(a)のA−A線による断面図、図5(c)は底面図である。また、図6は図5に示す高周波用パッケージの要部を拡大して示した斜視図である。これらの図において、1はセラミックス等から成るパッケージ基板、2はセラミックスあるいは表面をメタライズしたセラミックス等から成るパッケージ側壁であり、パッケージ基板1の表面上に装着されている。パッケージ側壁2のパッケージ基板1に接しない上端面は、金等の金属や鉄−ニッケル−コバルト合金等の合金から成るフタ3により封止されている。4はパッケージ基板1の表面にメタライズ5を施したダイボンディング領域、6はセラミックス等から成る誘電体基板であり、この誘電体基板6の表面上に金属薄膜から成る内部高周波伝送線路19が形成され、ダイボンディング領域4,誘電体基板6,内部高周波伝送線路19はパッケージ基板1とパッケージ側壁2とフタ3とにより囲まれたキャビティ内に構成されている。また、パッケージ基板1の底面部に、接地金属薄膜8と信号線金属薄膜9が形成され、これらにより外部コプレナ線路10を構成し、その信号線金属薄膜9は金属から成るバイアホール11により内部高周波伝送線路19と電気的に接続した構造となっている。
【0004】
なお、18は誘電体基板6の表面上に形成された接地金属薄膜であり、内部高周波伝送線路19とともに内部コプレナ線路20を構成するものである。また、12は外部コプレナ線路10の接地金属薄膜8と内部コプレナ線路20の接地金属薄膜18とを電気的に接続する接地用バイアホールである。
【0005】
このような高周波用パッケージが、図7に断面図で示すように、ガラスエポキシ,フッ素樹脂,セラミックス等から成る回路基板13上に表面実装されて、高周波回路が構成される。
【0006】
【発明が解決しようとする課題】
従来の高周波用パッケージは以上のように構成されているので、この高周波用パッケージを回路基板13上に表面実装した際に、パッケージ基板1と回路基板13間に存在するキャパシタンス成分が増大するため、高周波的な不整合が生じ、高周波入出力信号の損失が増大し、定在波比(以下、VSWRと略す)が劣化するという問題点があった。
【0007】
本発明は、このような問題点を解消するためになされたもので、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止し、低損失で、かつ低VSWRの高周波用パッケージを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の高周波用パッケージの端子構造は、上面に高周波回路部品の搭載部が形成された誘電体基板と、この誘電体基板の上面に前記搭載部の近傍から外周方向に形成された高周波信号を伝送する第1の線路導体およびこの第1の線路導体の両側に形成された第1の同一面接地導体と、前記誘電体基板の下面に前記第1の線路導体の外周側の端部と端部を対向させて外周縁に向けて形成された前記高周波信号を伝送する第2の線路導体およびこの第2の線路導体の両側に形成された第2の同一面接地導体と、前記誘電体基板の内部に形成され、前記第1および第2の線路導体の対向する端部同士を電気的に接続する貫通導体ならびに前記第1および第2の同一面接地導体を電気的に接続する接地貫通導体と、前記第2の線路導体に平行に接合された金属端子およびこの金属端子の両側に平行にそれぞれ前記第2の同一面接地導体に接合された接地金属端子とを具備して成り、前記高周波信号の周波数が5GHz以上であり、前記金属端子の幅が0.05〜1.2mmであることを特徴とするものである。
【0009】
本発明の高周波用パッケージによれば、上記構成の高周波用パッケージにおいて、高周波信号の周波数が5GHz以上であり、金属端子の幅が0.05〜1.2mmであるものとしたことから、金属端子と第1および第2の同一面接地導体との間に存在する誘電体基板内のキャパシタンス成分や、この高周波用パッケージを回路基板に実装した際の金属端子と回路基板の下面側接地導体との間に存在する回路基板の誘電体基板内のキャパシタンス成分を小さくできることにより、高周波用パッケージを構成する誘電体基板とこのパッケージが実装される回路基板の誘電体基板との間に発生するキャパシタンス成分を、金属端子の幅を1.5mm以上に設定したときよりも約30%以上軽減することができ、その結果、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止し、高周波入出力信号の損失を低く抑え、VSWRを下げることができる。
【0010】
【発明の実施の形態】
以下、本発明の高周波用パッケージを図面を参照しつつ説明する。
【0011】
図1,図2および図3は本発明の高周波用パッケージの実施の形態の一例を示す図であり、図1は一部を破断した断面図、図2は底面図、図3は上面図である。
【0012】
これらの図において、21は誘電体基板、21aは高周波用半導体素子等の高周波回路部品Sが搭載される搭載部、22は第1の線路導体、23は第1の同一面接地導体、24は第2の線路導体、25は第2の同一面接地導体、26は貫通導体、27は接地貫通導体、32は金属端子、34は接地金属端子であり、これらで高周波用パッケージが構成されている。また、28は高周波回路部品Sと第1の線路導体2とを接続するボンディングワイヤ等の導電性接続部材である。
【0013】
また、29は誘電体基体、30は接続用線路導体であり、これらで回路基板31が構成されており、高周波用パッケージの第2の線路導体24と回路基板31の接続用線路導体30とを間に金属端子32を挟んで接続することにより、高周波用パッケージが回路基板31に実装されることになる。なお、本例では、誘電体基体29の下面に下面側接地導体33を、上面に上面側接地導体34を形成し、上面側接地導体34と第2の同一面接地導体25とを電気的に接続した例を示している。
【0014】
また、本例では誘電体基板21の上面中央部に凹部を形成してその凹部に搭載部21aを設けているが、誘電体基板21を平板状としてその上面に搭載部21aを形成してもよい。
【0015】
誘電体基板21は、高周波回路部品Sを支持するための支持体であり、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラスセラミックス等の無機系誘電体材料、あるいはポリイミド,ガラスエポキシ等の有機系誘電体材料、あるいはセラミックス粉末等の無機誘電体粉末をエポキシ系樹脂等の熱硬化性樹脂で結合して成る複合誘電体材料等から成り、この例では上面中央部に高周波回路部品Sを収容するための凹部を有する略四角状である。そして凹部の底面には高周波回路部品Sを搭載するための搭載部21aを形成しており、この搭載部21aに高周波回路部品Sがろう材,樹脂,ガラス等の接着剤を介して接着固定される。なお、搭載部21aには、必要に応じて誘電体基板21の表面にメタライズ層が形成される。
【0016】
この誘電体基板21は、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム,酸化珪素,酸化カルシウム等の原料粉末に適当な有機バインダ,溶剤,可塑剤,分散剤等を添加混合して泥漿状となすとともに、これを従来周知のドクタブレード法等のシート成形法を採用することによってセラミックグリーンシートとなし、しかる後、このセラミックグリーンシートに適当な打ち抜き加工を施すとともに複数枚積層し、還元雰囲気中約1600℃の温度で焼成することによって製作される。
【0017】
誘電体基板21には、その上面に搭載部21aの近傍から外周方向にその途中まで、幅が0.1〜1.0mm程度の第1の線路導体22が形成されるとともに、下面に第1の線路導体22の外周側の端部と端部を対向させて、その対向する領域から外周縁に向けて第1の線路導体22と平行に、幅が0.1〜1.5mm程度の第2の線路導体24が形成されており、また、内部に第1の線路導体22の端部とこれに対向する第2の線路導体24の端部とを電気的に接続する貫通導体26が配設されている。これらの第1および第2の線路導体22,24ならびに貫通導体26は、高周波回路部品Sの各電極を外部電気回路に電気的に接続するための導電路として機能する。
【0018】
なお、第1および第2の線路導体22,24の幅は、伝搬される高周波信号の周波数や高周波用パッケージの大きさにより適宜設定される。本発明の高周波用パッケージにおいては、高周波信号の周波数が5GHz以上であることから、例えば誘電体基板21の比誘電率を6とした際には、第1の線路導体22の幅は0.32mm程度に、第2の線路導体24の幅は0.32mm程度に設定される。
【0019】
また、誘電体基板21には、上面に第1の線路導体22の両側に第1の同一面接地導体23が形成されるとともに、下面に第2の線路導体24の両側に第2の同一面接地導体25が形成されており、また、内部に第1の同一面接地導体23と第2の同一面接地導体25とを電気的に接続する接地貫通導体27が配設されている。第1の同一面接地導体23および第2の同一面接地導体25は、第1の線路導体22と導電性接続部材28との不連続性を補償したり、第1の線路導体22と第2の線路導体24との間のアイソレーションを向上させる機能を有する。また、接地貫通導体27は、高インピーダンスの貫通導体26に対して容量成分を補うことができ、貫通導体26におけるインピーダンスの不整合を防ぐことが可能である。これらの結果、高周波回路部品Sと外部電気回路との間の電気的接続におけるインピーダンスのミスマッチングを効果的に抑えて高周波信号の伝送特性の劣化を抑えることができ、低反射損失の高周波用パッケージとすることができる。
【0020】
また、第1の同一面接地導体23と第2の同一面接地導体25とを電気的に接続する接地貫通導体27は、第1の線路導体22と第2の線路導体24とを電気的に接続する貫通導体26に対し、擬似同軸構造を構成するように複数本を配置することにより、第1の線路導体22と第2の線路導体24との間での高周波入出力信号の授受を、不整合を少なくし低損失かつ低VSWRで行なわせることができる。
【0021】
なお、本例においては、第1の同一面接地導体23および第2の同一面接地導体25は、第1の線路導体22および第2の線路導体24の対向する端部をそれぞれ取り囲むように連続して一体的に形成されており、より良好な接地状態を得ることができるものとしている。
【0022】
第1および第2の線路導体22,24、貫通導体26,第1および第2の同一面接地導体23,25ならびに接地貫通導体27は、タングステンやモリブデン,銅,銀等の金属メタライズ等の導電性材料から形成されている。例えば、タングステンメタライズから成る場合であれば、タングステン粉末に適当な有機バインダ,溶剤を添加混合して得たタングステンぺーストを、貫通導体26または接地貫通導体27となる貫通孔をあらかじめ穿設した誘電体基板21となるセラミックグリーンシートに従来周知のスクリーン印刷法により所定パターンに印刷塗布し、または充填し、これを誘電体基板21となるセラミックグリーンシートとともに焼成することによって、誘電体基板1の上面から下面にかけて所定のパターンに被着形成される。
【0023】
なお、これらの第1および第2の線路導体22,24ならびに第1および第2の同一面接地導体23,25は、その露出する表面にニッケル,金等の耐蝕性に優れ、かつろう材やボンディングワイヤ等の接続部材との接合性に優れる金属をめっき法により1〜20μmの厚みに設けておくと、これらの線路導体22,24および同一面接地導体23,25が酸化腐蝕するのを有効に防止することができるとともに、線路導体22,24および同一面接地導体23,25とボンディングワイヤや半田等との接続を強固かつ容易なものとなすことができる。従って、第1および第2の線路導体22,24ならびに第1および第2の同一面接地導体23,25の各導体には、その露出する表面にニッケル,金等の耐蝕性に優れる金属をめっき法により1〜20μmの厚みに設けておくことが好ましい。
【0024】
そして、搭載部21aに搭載した高周波回路部品Sを導電性接続部材28により第1の線路導体22と電気的に接続し、搭載部21aの上面に蓋体(図示せず)を取着して高周波回路部品Sを気密封止した後、この高周波用パッケージを、誘電体基体29の上面に高周波信号を伝送する接続用線路導体30が形成された回路基板31に、第2の線路導体24および接続用線路導体30を平行に対向させて位置させて、第2の線路導体24に接合されて誘電体基板21の外周端に配置された金属端子32を挟んで電気的に接続することにより、高周波用パッケージ内部の高周波回路部品Sと回路基板31の外部電気回路とが電気的に接続される。
【0025】
そして、本発明の高周波用パッケージは、高周波信号の周波数が5GHz以上であり、金属端子32の幅が0.05〜1.2mmであるものとなっている。
【0026】
このように高周波信号の周波数が5GHz以上であるのに対して、金属端子32の幅が0.05〜1.2mmであることにより、金属端子32と第1および第2の同一面接地導体23,25との間に存在する誘電体基板21内のキャパシタンス成分や、金属端子32と回路基板31の下面側接地導体33との間に存在する誘電体基板29内のキャパシタンス成分を小さくすることができるため、高周波用パッケージを構成する誘電体基板21とこのパッケージが実装される誘電体基板29との間に発生するキャパシタンス成分を、金属端子32の幅を1.4mm以上に設定したときよりも約30%以上軽減することができ、それによって誘電体基板21とこのパッケージが実装される誘電体基板29との間における金属端子32と第1および第2の同一面接地導体23,25との間、また金属端子32と下面側接地導体33との間の電界集中が緩和されるため、高周波用パッケージを回路基板31に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止することができ、高周波入出力信号の損失を低く抑え、VSWRを下げることができる。その結果、本発明によれば、低損失で、かつ低VSWRの高周波用パッケージを得ることができる。
【0027】
本発明の高周波用パッケージにおいて、誘電体基板21は、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体等の各種セラミックスやガラスセラミックス等の無機系誘電体材料、あるいはポリテトラフルオロエチレン(PTFE),エポキシ,ポリイミド,ガラスエポキシ等の有機系誘電体材料、あるいはセラミックス粉末等の無機誘電体粉末をエポキシ系樹脂等の熱硬化性樹脂で結合して成る複合誘電体材料等の誘電体材料から成り、必要に応じて複数の誘電体層を積層して形成される。
【0028】
そして、搭載部21aに搭載した高周波回路部品Sをボンディングワイヤ等の導電性接続部材28により第1の線路導体22と電気的に接続し、これを気密封止するには、例えば搭載部21aの上面に蓋体(図示せず)を取着する。この蓋体には、Fe−Ni−Co合金やFe−Ni42アロイ等のFe−Ni系合金,無酸素銅,アルミニウム,ステンレス,Cu−W合金,Cu−Mo合金等の金属材料、あるいは酸化アルミニウム質焼結体やガラスセラミックス等の無機系材料、あるいはPTFE,ガラスエポキシ等の樹脂系材料等が用いられる。また、蓋体を取着するには、それらの材料に応じて、半田,Au−Snろう等の低融点金属ろう材やAu−Geろう等の高融点金属ろう材、あるいはエポキシ,導電性エポキシ等の樹脂接着剤、あるいはシームウェルド,電子ビーム溶接等の溶接等により取着する。
【0029】
第1および第2の線路導体22,24,貫通導体26,第1および第2の同一面接地導体23,25ならびに接地貫通導体27は、高周波線路導体用の金属材料、例えばCuやMoMn+Ni+Au,W+Ni+Au,Cr+Cu,Cr+Cu+Ni+Au,Ta2N+NiCr+Au,Ti+Pd+Au,NiCr+Pd+Au等の金属薄膜や金属箔,金属板,メタライズ導体等を用いて、厚膜印刷法あるいは各種の薄膜形成方法やメッキ処理法等により形成される。その厚みや形状,線路幅,線路導体と同一面接地導体との間隔等は、これら線路導体22,24や貫通導体26により伝送される高周波入出力信号の周波数や特性インピーダンス等に応じて適宜設定される。本発明の高周波用パッケージにおいては、高周波信号の周波数が5GHz以上であることから、例えば誘電体基板21の比誘電率を6とした際には、第1の線路導体22の幅は0.32mm程度に、第2の線路導体24の幅は0.32mm程度に、貫通導体26の直径はφ0.15mm程度に、第1の線路導体22と第1の同一面接地導体23との間隔は0.1mm程度に、第2の線路導体24と第2の同一面接地導体25との間隔は0.3mm程度にそれぞれ設定される。
【0030】
このような本発明の高周波用パッケージにおいては、高周波信号の周波数が5GHz以上であるのに対して、金属端子32の幅を0.05〜1.2mmに設定することが重要である。
【0031】
ここで、図4に本発明の高周波用パッケージにおける金属端子32の幅と高周波信号の使用周波数との関係を線図で示す。本データは3次元電磁界シミュレータを用いて検討を行なった結果である。誘電体基板21には比誘電率が6.0で厚みが0.4mmの誘電体材料を用い、回路基板31には比誘電率が3.38で厚みが0.2mmの誘電体材料を用いた。第1の線路導体22は、伝送線路インピーダンスが約50Ωとなるよう線路幅を0.32mmに設定した。また、回路基板31上に形成された接続用線路導体30の線路幅は、伝送線路インピーダンスが約50Ωとなるよう0.42mmに設定した。図7の横軸には金属端子32の幅(単位:mm)を示し、縦軸には使用限界周波数(単位:GHz)を示した。使用限界周波数は、電磁界シミュレータにより算出される、S11(反射特性)の値が−10dB以下となる周波数とした。
【0032】
図7にそれぞれ結果を黒点で示して特性曲線で結んだように、金属端子の幅32の幅を0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.8,1.0,1.2および1.4mmに変化させたとき、使用限界周波数は、94GHz,80GHz,60GHz,43GHz,28GHz,18GHz,12GHz,9GHz,8GHz,6.5GHzおよび4GHzとなった。以上の結果より分かるように、金属端子32の幅が1.2mmを超えるときには、高周波用パッケージを構成する誘電体基板とこのパッケージが実装される回路基板の誘電体基体との間に発生するキャパシタンス成分が増大し、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合が生じるため、5GHz以上の高周波領域では、VSWRが劣化し、高周波入出力信号の損失が大きくなる。また、金属端子32の幅が0.05mm未満では、金属端子32の機械的強度が不足し、また回路基板とパッケージとの熱膨張差によるミスマッチから、金属端子32が破断するという傾向があった。また、金属端子32の幅が0.05mm未満では、安定に加工して製造することが非常に困難であり、量産性に乏しい傾向がある。したがって、高周波信号の周波数が5GHz以上の本発明の高周波用パッケージにおいては、金属端子32の幅は0.05〜1.2mmに特定される。
【0033】
このような金属端子32は、例えば鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の板材に打抜き加工やエッチング加工を施すことによって0.05〜1.2mmの幅で所定の形状に形成される。また、金属端子32と第2の線路導体24および接続用線路導体30との接合は、例えば、金属端子32を第2の線路導体24に間に銀−銅ろう等の第1のろう材を挟んで当接させるとともに、これらを第1のろう材の融点以上の温度に加熱することにより金属端子32を第2の線路導体24にろう付けし、その後、第2の線路導体24に接合された金属端子32を回路基板31の上面の接続用線路導体30に間に第1のろう材よりも融点の低い銀−銅ろう等の第2のろう材を挟んで当接させるとともに、これらを第2のろう材の融点以上かつ第1のろう材の融点以下の温度に加熱することにより金属端子32と接続用線路導体30とをろう付けする方法が採用される。
【0034】
また、金属端子32は、その表面にニッケル,金等の良導電性で、かつ耐蝕性に優れた金属をめっき法により1〜20μmの厚みに被着させておくと、金属端子32の酸化腐蝕を有効に防止することができるとともに、金属端子32と第2の線路導体24や接続用線路導体30との電気的接続を良好となすことができる。従って、金属端子32はその表面にニッケル,金等をめっき法により1〜20μmの厚みに被着させておくことが好ましい。
【0035】
回路基板31は、誘電体基体29の上面に接続用線路導体30が被着形成されて成り、この誘電体基体29は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ガラスセラミックス等のセラミックスや有機樹脂等の誘電体材料から成る。例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム,酸化珪素,酸化カルシウム等の原料粉末に適当な有機バインダ,溶剤,可塑剤,分散剤等を添加混合して泥漿状となすとともに、これを従来周知のドクタブレード法等のシート成形法を採用することによってセラミックグリーンシートとなし、しかる後、このセラミックグリーンシートに適当な打ち抜き加工を施し、還元雰囲気中約1600℃の温度で焼成することによって製作される。
【0036】
また、接続用線路導体30は、0.1〜2.0mm程度の幅であり、タングステンやモリブデン,銅,銀等の金属メタライズ等の導電性材料から形成されている。例えばタングステンメタライズから成る場合であれば、タングステン粉末に適当な有機バインダ,溶剤を添加混合して得たタングステンぺーストを、回路基板31の誘電体基体29となるセラミックグリーンシートに従来周知のスクリーン印刷法により所定パターンに印刷塗布し、これを誘電体基体29となるセラミックグリーンシートとともに焼成することによって、誘電体基体29の上面から下面にかけて所定のパターンに被着形成される。
【0037】
なお、本例では、誘電体基板21の下面の第2の同一面接地導体25に、金属端子32の両側に平行に配置されて第2の同一面接地導体25に接合される接地金属端子34を一体的に形成した導電性基板35を、ろう材等の接着剤を介して接合した例を示している。この導電性基板35は、鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属から成る。例えば鉄−ニッケル−コバルト合金から成る場合は、このインゴット(塊)に圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって所定の形状に形成される。
【0038】
さらに、本例では、誘電体基板21の下面に電源用接続端子36を取り付けている。この電源用接続端子36は、高周波回路部品Sを駆動させるために必要な、バイアス用の端子であり、回路基板31上面の電源用導体(図示せず)にろう付けされるとともに、この電源用接続端子36が接続された配線導体(図示せず)が搭載部21aに導出されて搭載部21aに搭載した高周波回路部品Sとボンディングワイヤやリボン等の導電性接続部材により電気的に接続され、高周波回路部品Sにバイアス電力を供給するものである。このように金属端子32と同様の材料・形状で電源用接続端子36を取り付けることにより、これら電源用接続端子36によっても高周波用パッケージを回路基板31にろう付けにより良好に、かつ強固に接続することができる。また、この例のように金属端子32と電源用接続端子36とを誘電体基板21の外周のそれぞれの辺に配置することによって、高周波用パッケージの回路基板31への実装をより強固なものとすることができ、より信頼性の高い実装を行なうことができるものとなる。
【0039】
かくして、本発明の高周波用パッケージによれば、上記構成において、前記高周波信号の周波数が5GHz以上であり、前記金属端子の幅が0.05〜1.2mmであるものとしたことから、金属端子と第1および第2の同一面接地導体との間に存在する誘電体基板内のキャパシタンス成分や、この高周波用パッケージを回路基板に実装した際の金属端子と回路基板の下面側接地導体との間に存在する回路基板の誘電体基板内のキャパシタンス成分を小さくできることにより、高周波用パッケージを構成する誘電体基板とこのパッケージが実装される回路基板の誘電体基板との間に発生するキャパシタンス成分を、金属端子の幅を1.5mm以上に設定したときよりも約30%以上軽減することができ、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止し、30GHz以上のミリ波領域でも、高周波入出力信号の損失を低く抑え、VSWRを下げることができる、高周波信号の入出力特性に優れた高周波用パッケージとなる。
【0040】
なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更が可能である。例えば、上述の実施の形態の例では、金属端子32を鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の金属から成るものとして説明したが、金属端子32が半田,銅,ろう材等の端子の場合にも応用が可能であることはいうまでもない。
【0041】
【発明の効果】
本発明の高周波用パッケージによれば、上面に高周波回路部品の搭載部が形成された誘電体基板と、この誘電体基板の上面に前記搭載部の近傍から外周方向に形成された高周波信号を伝送する第1の線路導体およびこの第1の線路導体の両側に形成された第1の同一面接地導体と、前記誘電体基板の下面に前記第1の線路導体の外周側の端部と端部を対向させて外周縁に向けて形成された前記高周波信号を伝送する第2の線路導体およびこの第2の線路導体の両側に形成された第2の同一面接地導体と、前記誘電体基板の内部に形成され、前記第1および第2の線路導体の対向する端部同士を電気的に接続する貫通導体ならびに前記第1および第2の同一面接地導体を電気的に接続する接地貫通導体と、前記第2の線路導体に接合された金属端子およびこの金属端子の両側に平行にそれぞれ前記第2の線路導体に接合された接地金属端子とを具備して成り、前記高周波信号の周波数が5GHz以上であり、前記金属端子の幅が0.05〜1.2mmであるものとしたことから、金属端子と第1および第2の同一面接地導体との間に存在する誘電体基板内のキャパシタンス成分や、この高周波用パッケージを回路基板に実装した際の金属端子と回路基板の下面側接地導体との間に存在する回路基板の誘電体基板内のキャパシタンス成分を小さくできることにより、高周波用パッケージを構成する誘電体基板とこのパッケージが実装される回路基板の誘電体基板との間に発生するキャパシタンス成分を、金属端子の幅を1.5mm以上に設定したときよりも約30%以上軽減することができ、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止し、30GHz以上のミリ波領域でも、高周波入出力信号の損失を低く抑え、VSWRを下げることができる、高周波信号の入出力特性に優れた高周波用パッケージとなる。
【0042】
以上により、本発明によれば、回路基板に表面実装した際の入出力部における高周波入出力信号に対する高周波的な不整合を抑止し、低損失で、かつ低VSWRの高周波用パッケージを提供することができた。
【図面の簡単な説明】
【図1】本発明の高周波用パッケージの実施の形態の一例を示す一部を破断した平面図である。
【図2】本発明の高周波用パッケージの実施の形態の一例を示す底面図である。
【図3】本発明の高周波用パッケージのの実施の形態の一例を示す上面図である。
【図4】本発明の高周波用パッケージにおける金属端子の幅と使用限界周波数との関係を示す線図である。
【図5】(a)は従来の高周波用パッケージの一例を示す一部を破断した平面図、(b)は(a)のA−A線による断面図、(c)は底面図である。
【図6】図5に示す従来の高周波用パッケージの要部を拡大して示した斜視図である。
【図7】従来の高周波用パッケージの回路基板上に実装された様子を示す断面図である。
【符号の説明】
21・・・・・・誘電体基板
21a・・・・・搭載部
22・・・・・・第1の線路導体
23・・・・・・第1の同一面接地導体
24・・・・・・第2の線路導体
25・・・・・・第2の同一面接地導体
26・・・・・・貫通導体
27・・・・・・接地貫通導体
32・・・・・・金属端子
S・・・・・・高周波回路部品(高周波用半導体素子)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency package for mounting high-frequency circuit components such as high-frequency semiconductor elements and high-frequency circuits used in a high-frequency band.
[0002]
[Prior art]
A high-frequency package used for housing a high-frequency circuit element such as a high-frequency semiconductor element or a high-frequency circuit operating in a high-frequency band of a MHz band or a GHz band includes, for example, a package disclosed in Japanese Patent No. 2605502, FIG. There was something like that shown.
[0003]
FIGS. 5A to 5C are views showing an example of such a conventional high-frequency package. FIG. 5A is a partially cutaway plan view, and FIG. ) Is a sectional view taken along line AA, and FIG. 5C is a bottom view. FIG. 6 is an enlarged perspective view of a main part of the high frequency package shown in FIG. In these figures, 1 is a package substrate made of ceramics or the like, 2 is a package side wall made of ceramics or ceramics whose surface is metallized, and is mounted on the surface of the package substrate 1. An upper end surface of the package side wall 2 not in contact with the package substrate 1 is sealed with a lid 3 made of a metal such as gold or an alloy such as an iron-nickel-cobalt alloy. Reference numeral 4 denotes a die bonding region in which metallization 5 is applied to the surface of the package substrate 1, and reference numeral 6 denotes a dielectric substrate made of ceramics or the like. On the surface of the dielectric substrate 6, an internal high-frequency transmission line 19 made of a metal thin film is formed. The die bonding area 4, the dielectric substrate 6, and the internal high-frequency transmission line 19 are formed in a cavity surrounded by the package substrate 1, the package side wall 2, and the lid 3. A ground metal thin film 8 and a signal line metal thin film 9 are formed on the bottom surface of the package substrate 1 to form an external coplanar line 10. The signal line metal thin film 9 has an internal high-frequency wave formed by a via hole 11 made of metal. It has a structure electrically connected to the transmission line 19.
[0004]
Reference numeral 18 denotes a ground metal thin film formed on the surface of the dielectric substrate 6, and constitutes an internal coplanar line 20 together with the internal high-frequency transmission line 19. A ground via hole 12 electrically connects the ground metal thin film 8 of the external coplanar line 10 and the ground metal thin film 18 of the internal coplanar line 20.
[0005]
Such a high-frequency package is surface-mounted on a circuit board 13 made of glass epoxy, fluororesin, ceramics, or the like, as shown in a sectional view of FIG. 7, to form a high-frequency circuit.
[0006]
[Problems to be solved by the invention]
Since the conventional high-frequency package is configured as described above, when the high-frequency package is surface-mounted on the circuit board 13, the capacitance component existing between the package substrate 1 and the circuit board 13 increases. There is a problem that a high-frequency mismatch occurs, a loss of a high-frequency input / output signal increases, and a standing wave ratio (hereinafter abbreviated as VSWR) deteriorates.
[0007]
The present invention has been made in order to solve such problems, and suppresses high-frequency mismatch with respect to high-frequency input / output signals in an input / output unit when surface-mounted on a circuit board, with low loss, and It is an object of the present invention to provide a low-VSWR high-frequency package.
[0008]
[Means for Solving the Problems]
The terminal structure of the high-frequency package according to the present invention includes a dielectric substrate having an upper surface on which a mounting portion for high-frequency circuit components is formed, and a high-frequency signal formed on the upper surface of the dielectric substrate from the vicinity of the mounting portion toward the outer periphery. A first line conductor for transmission, a first same-plane ground conductor formed on both sides of the first line conductor, and an outer peripheral end and an end of the first line conductor on a lower surface of the dielectric substrate; A second line conductor for transmitting the high-frequency signal formed toward the outer peripheral edge with the portions facing each other, second ground conductors formed on both sides of the second line conductor, and the dielectric substrate And a through conductor for electrically connecting opposing ends of the first and second line conductors and a ground through conductor for electrically connecting the first and second same-plane ground conductors And joined in parallel with the second line conductor A metal terminal connected to the second same-plane ground conductor in parallel on both sides of the metal terminal, wherein the frequency of the high-frequency signal is 5 GHz or more, Has a width of 0.05 to 1.2 mm.
[0009]
According to the high-frequency package of the present invention, in the high-frequency package having the above configuration, the frequency of the high-frequency signal is 5 GHz or more and the width of the metal terminal is 0.05 to 1.2 mm. And the capacitance component in the dielectric substrate existing between the first and second ground conductors on the same plane and the metal terminal when this high-frequency package is mounted on the circuit board and the ground conductor on the lower surface side of the circuit board. Capacitance components in the dielectric substrate of the circuit board between them can be reduced, thereby reducing the capacitance component generated between the dielectric substrate constituting the high-frequency package and the dielectric substrate of the circuit board on which this package is mounted. The width of the metal terminals can be reduced by about 30% or more than when the width is set to 1.5 mm or more. Of Suppresses high frequency inconsistencies for the high frequency input signal in the input-output unit, suppressing the loss of the high-frequency input and output signals, it is possible to reduce the VSWR.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a high-frequency package according to the present invention will be described with reference to the drawings.
[0011]
1, 2 and 3 are views showing an example of an embodiment of a high-frequency package according to the present invention. FIG. 1 is a partially cutaway sectional view, FIG. 2 is a bottom view, and FIG. 3 is a top view. is there.
[0012]
In these figures, 21 is a dielectric substrate, 21a is a mounting portion on which a high-frequency circuit component S such as a high-frequency semiconductor element is mounted, 22 is a first line conductor, 23 is a first ground conductor on the same plane, and 24 is a ground conductor. A second line conductor, 25 is a second ground conductor on the same plane, 26 is a through conductor, 27 is a ground through conductor, 32 is a metal terminal, and 34 is a ground metal terminal, and these constitute a high-frequency package. . Reference numeral 28 denotes a conductive connection member such as a bonding wire for connecting the high-frequency circuit component S and the first line conductor 2.
[0013]
Reference numeral 29 denotes a dielectric substrate, and reference numeral 30 denotes a connection line conductor, and these constitute a circuit board 31. The second line conductor 24 of the high-frequency package and the connection line conductor 30 of the circuit board 31 are connected to each other. By connecting the metal terminals 32 therebetween, the high-frequency package is mounted on the circuit board 31. In this example, the lower surface side ground conductor 33 is formed on the lower surface of the dielectric substrate 29 and the upper surface side ground conductor 34 is formed on the upper surface, and the upper surface side ground conductor 34 and the second same surface ground conductor 25 are electrically connected. An example of connection is shown.
[0014]
Further, in this example, the concave portion is formed in the center of the upper surface of the dielectric substrate 21 and the mounting portion 21a is provided in the concave portion. Good.
[0015]
The dielectric substrate 21 is a support for supporting the high-frequency circuit component S, and includes an aluminum oxide-based sintered body, an aluminum nitride-based sintered body, a mullite-based sintered body, a silicon carbide-based sintered body, and a silicon nitride-based sintered body. Sintered body, inorganic dielectric material such as glass ceramics, organic dielectric material such as polyimide or glass epoxy, or inorganic dielectric powder such as ceramic powder is bonded with thermosetting resin such as epoxy resin In this example, it has a substantially square shape having a concave portion for accommodating the high-frequency circuit component S in the center of the upper surface. A mounting portion 21a for mounting the high-frequency circuit component S is formed on the bottom surface of the concave portion, and the high-frequency circuit component S is bonded and fixed to the mounting portion 21a via an adhesive such as brazing material, resin, or glass. You. In the mounting portion 21a, a metallized layer is formed on the surface of the dielectric substrate 21 as necessary.
[0016]
If the dielectric substrate 21 is made of, for example, an aluminum oxide sintered body, an appropriate organic binder, a solvent, a plasticizer, a dispersant, and the like are added to a raw material powder such as aluminum oxide, silicon oxide, and calcium oxide. In addition, a ceramic green sheet is formed by adopting a conventionally known sheet forming method such as a doctor blade method, and thereafter, the ceramic green sheet is subjected to an appropriate punching process and a plurality of sheets are laminated. Then, it is manufactured by firing at a temperature of about 1600 ° C. in a reducing atmosphere.
[0017]
A first line conductor 22 having a width of about 0.1 to 1.0 mm is formed on the upper surface of the dielectric substrate 21 from the vicinity of the mounting portion 21a to the middle in the outer peripheral direction, and the first line conductor 22 is formed on the lower surface thereof. The end on the outer peripheral side of the line conductor 22 is opposed to the end, and a width of about 0.1 to 1.5 mm is parallel to the first line conductor 22 from the opposing region toward the outer peripheral edge. Two line conductors 24 are formed, and a penetrating conductor 26 that electrically connects the end of the first line conductor 22 and the end of the second line conductor 24 opposed thereto is disposed inside. Is established. The first and second line conductors 22 and 24 and the through conductor 26 function as conductive paths for electrically connecting the electrodes of the high-frequency circuit component S to an external electric circuit.
[0018]
The widths of the first and second line conductors 22 and 24 are appropriately set according to the frequency of the transmitted high-frequency signal and the size of the high-frequency package. In the high-frequency package of the present invention, since the frequency of the high-frequency signal is 5 GHz or more, when the dielectric constant of the dielectric substrate 21 is 6, for example, the width of the first line conductor 22 is 0.32 mm. The width of the second line conductor 24 is set to about 0.32 mm.
[0019]
On the dielectric substrate 21, a first same-plane ground conductor 23 is formed on both sides of the first line conductor 22 on the upper surface, and a second same-plane contact is formed on both sides of the second line conductor 24 on the lower surface. A ground conductor 25 is formed, and a ground through conductor 27 that electrically connects the first same-plane ground conductor 23 and the second same-plane ground conductor 25 is provided inside. The first coplanar ground conductor 23 and the second coplanar ground conductor 25 compensate for the discontinuity between the first line conductor 22 and the conductive connecting member 28, and can be used to compensate for the first line conductor 22 and the second line conductor 22. Has a function of improving the isolation between the line conductor 24 and the line conductor 24. In addition, the ground through conductor 27 can supplement the capacitive component of the high impedance through conductor 26, and can prevent the impedance mismatch in the through conductor 26. As a result, it is possible to effectively suppress the impedance mismatch in the electrical connection between the high-frequency circuit component S and the external electric circuit, to suppress the deterioration of the transmission characteristics of the high-frequency signal, and to obtain a low-reflection loss high-frequency package. It can be.
[0020]
The ground through conductor 27 that electrically connects the first same-plane ground conductor 23 and the second same-plane ground conductor 25 electrically connects the first line conductor 22 and the second line conductor 24 to each other. By arranging a plurality of through conductors 26 to be connected so as to form a pseudo coaxial structure, transmission and reception of high-frequency input / output signals between the first line conductor 22 and the second line conductor 24 can be performed. Mismatch can be reduced to achieve low loss and low VSWR.
[0021]
In this example, the first same-plane ground conductor 23 and the second same-plane ground conductor 25 are continuous so as to surround the opposing ends of the first line conductor 22 and the second line conductor 24, respectively. And is formed integrally, so that a better grounding state can be obtained.
[0022]
The first and second line conductors 22 and 24, the through conductor 26, the first and second same-plane ground conductors 23 and 25, and the ground through conductor 27 are made of conductive metal such as tungsten, molybdenum, copper, or silver. It is formed from a conductive material. For example, in the case of tungsten metallization, a tungsten paste obtained by adding and mixing an appropriate organic binder and a solvent to tungsten powder is used as a dielectric material in which a through hole serving as the through conductor 26 or the ground through conductor 27 is formed in advance. The ceramic green sheet serving as the body substrate 21 is printed or coated in a predetermined pattern by a conventionally known screen printing method or filled, and is fired together with the ceramic green sheet serving as the dielectric substrate 21, thereby forming the upper surface of the dielectric substrate 1. From the lower surface to the lower surface.
[0023]
The first and second line conductors 22 and 24 and the first and second same-surface ground conductors 23 and 25 have excellent corrosion resistance, such as nickel and gold, on the exposed surfaces thereof, and have a brazing material or the like. By providing a metal having a good bonding property with a connection member such as a bonding wire to a thickness of 1 to 20 μm by plating, it is effective to oxidize and corrode these line conductors 22 and 24 and the same-surface ground conductors 23 and 25. In addition, the connection between the line conductors 22 and 24 and the ground conductors 23 and 25 on the same plane and the bonding wire or the solder can be made strong and easy. Therefore, each of the first and second line conductors 22 and 24 and the first and second same-plane ground conductors 23 and 25 is plated with a metal having excellent corrosion resistance such as nickel or gold on the exposed surface. It is preferable to provide a thickness of 1 to 20 μm by a method.
[0024]
Then, the high-frequency circuit component S mounted on the mounting portion 21a is electrically connected to the first line conductor 22 by the conductive connecting member 28, and a lid (not shown) is attached to the upper surface of the mounting portion 21a. After the high-frequency circuit component S is hermetically sealed, the high-frequency package is mounted on a circuit board 31 on which a connection line conductor 30 for transmitting a high-frequency signal is formed on the upper surface of a dielectric substrate 29. The connection line conductors 30 are positioned so as to face each other in parallel, and are electrically connected to each other with the metal terminal 32 joined to the second line conductor 24 and arranged at the outer peripheral end of the dielectric substrate 21 interposed therebetween. The high-frequency circuit component S inside the high-frequency package and the external electric circuit of the circuit board 31 are electrically connected.
[0025]
In the high-frequency package of the present invention, the frequency of the high-frequency signal is 5 GHz or more, and the width of the metal terminal 32 is 0.05 to 1.2 mm.
[0026]
Since the frequency of the high-frequency signal is 5 GHz or more and the width of the metal terminal 32 is 0.05 to 1.2 mm, the metal terminal 32 and the first and second same-plane ground conductors 23 , 25, and the capacitance component in the dielectric substrate 29 existing between the metal terminal 32 and the lower surface side ground conductor 33 of the circuit board 31. Therefore, the capacitance component generated between the dielectric substrate 21 constituting the high-frequency package and the dielectric substrate 29 on which this package is mounted is smaller than when the width of the metal terminal 32 is set to 1.4 mm or more. It can be reduced by about 30% or more, so that the metal terminal 32 and the first and second metal terminals 32 between the dielectric substrate 21 and the dielectric substrate 29 on which this package is mounted. Since the electric field concentration between the ground conductors 23 and 25 on the same plane and between the metal terminal 32 and the ground conductor 33 on the lower surface is reduced, the input / output when the high-frequency package is surface-mounted on the circuit board 31 is reduced. It is possible to suppress a high-frequency mismatch with respect to the high-frequency input / output signal in the section, suppress the loss of the high-frequency input / output signal, and lower the VSWR. As a result, according to the present invention, a high-frequency package with low loss and low VSWR can be obtained.
[0027]
In the high-frequency package of the present invention, the dielectric substrate 21 is made of various materials such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, and a silicon nitride sintered body. Inorganic dielectric materials such as ceramics and glass ceramics, organic dielectric materials such as polytetrafluoroethylene (PTFE), epoxy, polyimide, and glass epoxy, or inorganic dielectric powders such as ceramic powders and epoxy resin It is made of a dielectric material such as a composite dielectric material bonded by a thermosetting resin, and is formed by laminating a plurality of dielectric layers as necessary.
[0028]
Then, the high-frequency circuit component S mounted on the mounting portion 21a is electrically connected to the first line conductor 22 by a conductive connection member 28 such as a bonding wire, and the first line conductor 22 is hermetically sealed. A lid (not shown) is attached to the upper surface. The lid is made of a metal material such as an Fe-Ni alloy such as an Fe-Ni-Co alloy or an Fe-Ni42 alloy, oxygen-free copper, aluminum, stainless steel, a Cu-W alloy, a Cu-Mo alloy, or aluminum oxide. An inorganic material such as a porous sintered body or a glass ceramic, or a resin material such as PTFE or glass epoxy is used. In order to attach the lid, depending on the material, solder, a low melting point metal brazing material such as Au-Sn brazing, a high melting point metal brazing material such as Au-Ge brazing, or epoxy or conductive epoxy. , Or by welding such as seam welding or electron beam welding.
[0029]
The first and second line conductors 22, 24, the through conductor 26, the first and second same-plane ground conductors 23, 25 and the ground through conductor 27 are made of a metal material for a high-frequency line conductor, for example, Cu, MoMn + Ni + Au, W + Ni + Au. , Cr + Cu, Cr + Cu + Ni + Au, Ta 2 Using a metal thin film such as N + NiCr + Au, Ti + Pd + Au, or NiCr + Pd + Au, a metal foil, a metal plate, a metallized conductor, or the like, it is formed by a thick film printing method, various thin film forming methods, a plating method, or the like. The thickness and shape, the line width, the distance between the line conductor and the ground conductor on the same plane, and the like are appropriately set according to the frequency and characteristic impedance of the high-frequency input / output signals transmitted by the line conductors 22, 24 and the through conductor 26. Is done. In the high-frequency package of the present invention, since the frequency of the high-frequency signal is 5 GHz or more, when the dielectric constant of the dielectric substrate 21 is 6, for example, the width of the first line conductor 22 is 0.32 mm. The width of the second line conductor 24 is approximately 0.32 mm, the diameter of the through conductor 26 is approximately 0.15 mm, and the distance between the first line conductor 22 and the first ground conductor 23 is 0. The distance between the second line conductor 24 and the second ground conductor 25 is set to about 0.3 mm.
[0030]
In such a high-frequency package of the present invention, it is important to set the width of the metal terminal 32 to 0.05 to 1.2 mm while the frequency of the high-frequency signal is 5 GHz or more.
[0031]
Here, FIG. 4 is a diagram showing the relationship between the width of the metal terminal 32 and the operating frequency of the high-frequency signal in the high-frequency package of the present invention. This data is the result of study using a three-dimensional electromagnetic field simulator. A dielectric material having a relative dielectric constant of 6.0 and a thickness of 0.4 mm is used for the dielectric substrate 21, and a dielectric material having a relative dielectric constant of 3.38 and a thickness of 0.2 mm is used for the circuit board 31. Was. The line width of the first line conductor 22 was set to 0.32 mm so that the transmission line impedance was about 50Ω. The line width of the connection line conductor 30 formed on the circuit board 31 was set to 0.42 mm so that the transmission line impedance was about 50Ω. The horizontal axis of FIG. 7 indicates the width (unit: mm) of the metal terminal 32, and the vertical axis indicates the use limit frequency (unit: GHz). The use limit frequency was a frequency calculated by an electromagnetic field simulator and at which the value of S11 (reflection characteristics) became −10 dB or less.
[0032]
As shown in FIG. 7, the results are indicated by black points and connected by characteristic curves, and the width of the metal terminal 32 is set to 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, When changed to 0.6, 0.8, 1.0, 1.2 and 1.4 mm, the usage limit frequencies are 94 GHz, 80 GHz, 60 GHz, 43 GHz, 28 GHz, 18 GHz, 12 GHz, 9 GHz, 8 GHz and 6. 5 GHz and 4 GHz. As can be seen from the above results, when the width of the metal terminal 32 exceeds 1.2 mm, the capacitance generated between the dielectric substrate constituting the high-frequency package and the dielectric substrate of the circuit board on which the package is mounted. As the component increases, high-frequency mismatch occurs with respect to high-frequency input / output signals in the input / output unit when the device is surface-mounted on a circuit board. growing. When the width of the metal terminal 32 is less than 0.05 mm, the mechanical strength of the metal terminal 32 is insufficient, and the metal terminal 32 tends to be broken due to a mismatch due to a difference in thermal expansion between the circuit board and the package. . Further, when the width of the metal terminal 32 is less than 0.05 mm, it is extremely difficult to stably process and manufacture, and the mass productivity tends to be poor. Therefore, in the high-frequency package of the present invention in which the frequency of the high-frequency signal is 5 GHz or more, the width of the metal terminal 32 is specified to be 0.05 to 1.2 mm.
[0033]
Such a metal terminal 32 is formed into a predetermined shape with a width of 0.05 to 1.2 mm by punching or etching a plate material such as an iron-nickel-cobalt alloy or an iron-nickel alloy. . The metal terminal 32 is joined to the second line conductor 24 and the connection line conductor 30 by, for example, inserting a first brazing material such as silver-copper solder between the metal terminal 32 and the second line conductor 24. The metal terminals 32 are brazed to the second line conductor 24 by heating them to a temperature equal to or higher than the melting point of the first brazing material, and then joined to the second line conductor 24. The metal terminal 32 is brought into contact with the connection line conductor 30 on the upper surface of the circuit board 31 with a second brazing material such as silver-copper brazing material having a lower melting point than the first brazing material interposed therebetween. A method is employed in which the metal terminal 32 and the connection line conductor 30 are brazed by heating to a temperature equal to or higher than the melting point of the second brazing material and equal to or lower than the melting point of the first brazing material.
[0034]
If the metal terminal 32 is coated with a metal having good conductivity and excellent corrosion resistance, such as nickel or gold, to a thickness of 1 to 20 μm by plating, the metal terminal 32 is oxidized and corroded. Can be effectively prevented, and good electrical connection between the metal terminal 32 and the second line conductor 24 or the connection line conductor 30 can be achieved. Therefore, it is preferable that nickel, gold, or the like be applied to the surface of the metal terminal 32 to a thickness of 1 to 20 μm by plating.
[0035]
The circuit board 31 is formed by attaching a connection line conductor 30 to the upper surface of a dielectric substrate 29. The dielectric substrate 29 is made of an aluminum oxide sintered body, an aluminum nitride sintered body, or a mullite sintered body. And ceramics such as glass ceramics and dielectric materials such as organic resins. For example, in the case of a sintered body made of aluminum oxide, an appropriate organic binder, a solvent, a plasticizer, a dispersant, etc. are added to and mixed with raw material powders of aluminum oxide, silicon oxide, calcium oxide and the like to form a slurry. This is formed into a ceramic green sheet by adopting a conventionally known sheet forming method such as a doctor blade method. Thereafter, the ceramic green sheet is subjected to an appropriate punching process and fired at a temperature of about 1600 ° C. in a reducing atmosphere. It is produced by doing.
[0036]
The connecting line conductor 30 has a width of about 0.1 to 2.0 mm, and is formed of a conductive material such as metallized metal such as tungsten, molybdenum, copper, and silver. For example, in the case of tungsten metallization, a tungsten paste obtained by adding and mixing an appropriate organic binder and a solvent to tungsten powder is applied to a ceramic green sheet serving as the dielectric substrate 29 of the circuit board 31 by screen printing conventionally known. By printing and applying a predetermined pattern by a method and firing this together with a ceramic green sheet to be the dielectric substrate 29, the dielectric substrate 29 is adhered and formed in a predetermined pattern from the upper surface to the lower surface.
[0037]
In this example, a ground metal terminal 34 disposed on the lower surface of the dielectric substrate 21 on the second same-surface ground conductor 25 in parallel with both sides of the metal terminal 32 and joined to the second same-surface ground conductor 25. In this example, a conductive substrate 35 integrally formed with a conductive material is bonded via an adhesive such as a brazing material. The conductive substrate 35 is made of a metal such as an iron-nickel-cobalt alloy or an iron-nickel alloy. For example, when it is made of an iron-nickel-cobalt alloy, the ingot is formed into a predetermined shape by subjecting the ingot to a conventionally known metal working method such as a rolling method or a punching method.
[0038]
Further, in this example, the power supply connection terminals 36 are attached to the lower surface of the dielectric substrate 21. The power supply connection terminal 36 is a bias terminal necessary for driving the high-frequency circuit component S. The power supply connection terminal 36 is brazed to a power supply conductor (not shown) on the upper surface of the circuit board 31. A wiring conductor (not shown) to which the connection terminal 36 is connected is led out to the mounting portion 21a and is electrically connected to the high-frequency circuit component S mounted on the mounting portion 21a by a conductive connecting member such as a bonding wire or a ribbon. The bias power is supplied to the high frequency circuit component S. By attaching the power supply connection terminals 36 with the same material and shape as the metal terminals 32 in this manner, the high frequency package is also satisfactorily and firmly connected to the circuit board 31 by the power supply connection terminals 36 by brazing. be able to. Further, by arranging the metal terminal 32 and the power supply connection terminal 36 on each side of the outer periphery of the dielectric substrate 21 as in this example, the mounting of the high-frequency package on the circuit board 31 can be made more robust. And more reliable mounting can be performed.
[0039]
Thus, according to the high frequency package of the present invention, in the above configuration, the frequency of the high frequency signal is 5 GHz or more, and the width of the metal terminal is 0.05 to 1.2 mm. And the capacitance component in the dielectric substrate existing between the first and second ground conductors on the same plane and the metal terminal when this high-frequency package is mounted on the circuit board and the ground conductor on the lower surface side of the circuit board. Capacitance components in the dielectric substrate of the circuit board between them can be reduced, thereby reducing the capacitance component generated between the dielectric substrate constituting the high-frequency package and the dielectric substrate of the circuit board on which this package is mounted. The width of the metal terminals can be reduced by about 30% or more than when the width is set to 1.5 mm or more. High frequency input / output signals, and high frequency input / output characteristics excellent in high frequency signal input / output characteristics, which can suppress loss of high frequency input / output signals and reduce VSWR even in a millimeter wave region of 30 GHz or more. Package.
[0040]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, in the example of the above-described embodiment, the metal terminal 32 is described as being made of a metal such as an iron-nickel-cobalt alloy or an iron-nickel alloy. Needless to say, the application is also possible in the case of.
[0041]
【The invention's effect】
According to the high-frequency package of the present invention, a dielectric substrate having a mounting portion for high-frequency circuit components formed on an upper surface thereof, and a high-frequency signal formed in an outer peripheral direction from near the mounting portion on the upper surface of the dielectric substrate are transmitted. A first line conductor to be formed, a first same-plane ground conductor formed on both sides of the first line conductor, and an outer peripheral end and an end of the first line conductor on a lower surface of the dielectric substrate. A second line conductor for transmitting the high-frequency signal formed toward the outer peripheral edge with the second line conductor and second ground conductors formed on both sides of the second line conductor; A through conductor formed inside and electrically connecting opposing ends of the first and second line conductors, and a ground through conductor electrically connecting the first and second same-plane ground conductors; Metal bonded to the second line conductor And a ground metal terminal joined to the second line conductor in parallel on both sides of the metal terminal, wherein the frequency of the high-frequency signal is 5 GHz or more, and the width of the metal terminal is 0. Since the thickness is set to 0.5 to 1.2 mm, the capacitance component in the dielectric substrate existing between the metal terminal and the first and second ground conductors on the same plane and the high-frequency package are mounted on the circuit board. The capacitance component in the dielectric substrate of the circuit board existing between the metal terminal and the ground conductor on the lower surface side of the circuit board at this time can be reduced, so that the dielectric board constituting the high-frequency package and the package are mounted. Capacitance components generated between the circuit board and the dielectric substrate can be reduced by about 30% or more than when the width of the metal terminal is set to 1.5 mm or more. To suppress high-frequency mismatch with respect to high-frequency input / output signals in the input / output unit when surface-mounted on a circuit board, to suppress loss of high-frequency input / output signals even in a millimeter wave region of 30 GHz or more, and to reduce VSWR. And a high-frequency package having excellent high-frequency signal input / output characteristics.
[0042]
As described above, according to the present invention, it is possible to provide a high-frequency package with low loss and low VSWR that suppresses high-frequency mismatching of high-frequency input / output signals in an input / output unit when surface-mounted on a circuit board. Was completed.
[Brief description of the drawings]
FIG. 1 is a partially broken plan view showing an embodiment of a high-frequency package according to the present invention.
FIG. 2 is a bottom view showing an example of a high-frequency package according to an embodiment of the present invention.
FIG. 3 is a top view showing an example of an embodiment of a high-frequency package according to the present invention.
FIG. 4 is a diagram showing a relationship between a width of a metal terminal and a use limit frequency in the high frequency package of the present invention.
5A is a partially cutaway plan view showing an example of a conventional high-frequency package, FIG. 5B is a sectional view taken along line AA of FIG. 5A, and FIG. 5C is a bottom view.
6 is an enlarged perspective view showing a main part of the conventional high-frequency package shown in FIG.
FIG. 7 is a cross-sectional view showing a state where a conventional high-frequency package is mounted on a circuit board.
[Explanation of symbols]
21 ... Dielectric substrate
21a ····· Mounting section
22 First line conductor
23 first first ground conductor
24... Second line conductor
25 second ground conductor on the same plane
26 ... Through conductor
27 ... Ground through conductor
32 Metal terminals
S: High-frequency circuit components (high-frequency semiconductor elements)