JP4274131B2 - 内燃機関の燃料噴射装置 - Google Patents

内燃機関の燃料噴射装置 Download PDF

Info

Publication number
JP4274131B2
JP4274131B2 JP2005030207A JP2005030207A JP4274131B2 JP 4274131 B2 JP4274131 B2 JP 4274131B2 JP 2005030207 A JP2005030207 A JP 2005030207A JP 2005030207 A JP2005030207 A JP 2005030207A JP 4274131 B2 JP4274131 B2 JP 4274131B2
Authority
JP
Japan
Prior art keywords
amount
injection
fluctuation
fluctuation amount
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005030207A
Other languages
English (en)
Other versions
JP2006214402A (ja
Inventor
恒雄 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005030207A priority Critical patent/JP4274131B2/ja
Publication of JP2006214402A publication Critical patent/JP2006214402A/ja
Application granted granted Critical
Publication of JP4274131B2 publication Critical patent/JP4274131B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は内燃機関の燃料噴射装置に関する。
燃料噴射弁のノズル室が高圧ラインを介してコモンレールに連結されており、二つの燃料噴射、例えばパイロット噴射とそれに続く主噴射とを行うようにした内燃機関では、パイロット噴射が行われるとそのとき燃料噴射弁のノズル室内に発生した圧力波が高圧ライン内を伝播してコモンレールに達し、次いでこの圧力波はコモンレールで反射して、今度は高圧レール内をノズル室に向けて進む。その結果ノズル室内の燃料圧が脈動することになる。この場合、ノズル室内の燃料圧が低くなったときに主噴射が行われると主噴射量が減少し、ノズル室内の燃料圧が高くなったときに主噴射が行われると主噴射量が増大するので主噴射量の変動量は主噴射の時期によって変化することになる。
即ち、パイロット噴射が開始されてから主噴射が開始されるまでの時間間隔をインターバル時間と称すると、このインターバル時間に応じて主噴射量の変動量が変化し、コモンレール内の目標燃料圧が一定の場合には主噴射量の変動量はインターバル時間を横軸にとると一定の変動パターンでもって変化する。一方、燃料圧が変化すると圧力波の伝播速度が変化し、従ってコモンレール内の燃料圧が変化すると主噴射量の変動量の変動パターンの周期が長くなったり短かくなったりする。この場合、このように変動パターンの周期が長くなったり短かくなったりしてもこれら変動パターンをインターバル時間軸方向に収縮又は伸長させると或る基準の変動パターンに重ね合せることができる。そこでこのような基準の変動パターンを予め記憶しておき、この基準の変動パターンに基づいて主噴射量の変動量を求めるようにした内燃機関が公知である(例えば特許文献1)。
特開2003−314337号公報
この内燃機関ではインターバル時間およびコモンレール内の燃料圧に応じた主噴射量の変動量が基準の変動パターンから常時算出される。しかしながら実際には変動量が零の場合、或いは零とみなされる場合があり、上述の内燃機関ではこのような場合でも変動量の算出作業が行われるので変動量の算出に多くの時間を要するという問題がある。
上記問題点を解決するために本発明によれば、コモンレールと、コモンレールに連結された燃料噴射弁とを具備し、各燃料噴射弁から機関の一サイクル中に先の噴射と後の噴射の少なくとも二回の燃料噴射が行われ、先の噴射が行われてから後の噴射が行われるまでのインターバル時間によって後の噴射の目標値に対する変動量が変化する内燃機関の噴射制御装置において、レール圧が予め定められた基準レール圧のときにインターバル時間の増大に伴い基準の変動パターンに沿って変化する後の噴射の基準変動量が記憶されており、レール圧が基準レール圧でないときに基準変動量から後の噴射の変動量を求める際にはインターバル時間としてレール圧に応じ修正された修正インターバル時間が用いられ、修正インターバル時間を用いて基準変動量から求められる後の噴射の変動量が予め定められた微少変動量よりも小さくなると判断されるときには後の噴射の変動量の算出作業を停止して後の噴射の変動量が零とされる。
噴射量の演算時間を短縮することができる。
図1を参照すると、1は圧縮着火式多気筒内燃機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口はエアクリーナ8に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁9が配置される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結される。
排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路10を介して互いに連結され、EGR通路10内には電子制御式EGR制御弁11が配置される。一方、各燃料噴射弁3は対応する燃料供給管12を介してコモンレール13に連結される。このコモンレール13内へは電子制御式の吐出量可変な燃料ポンプ14により燃料タンク15から燃料が供給され、コモンレール13内に供給された燃料は各燃料供給管12を介して対応する燃料噴射弁3に供給される。コモンレール13にはコモンレール13内の燃料圧を検出するための燃料圧センサ16が取付けられ、燃料圧センサ16の出力信号に基づいてコモンレール16内の燃料圧が目標燃料圧となるように燃料ポンプ14の吐出量が制御される。
電子制御ユニット20はデジタルコンピュータからなり、双方向性バス21によって互いに接続されたROM(リードオンリメモリ)22、RAM(ランダムアクセスメモリ)23、CPU(マイクロプロセッサ)24、入力ポート25および出力ポート26を具備する。燃料圧センサ16の出力信号は対応するAD変換器27を介して入力ポート25に入力される。一方、アクセルペダル17にはアクセルペダル17の踏込み量Lに比例した出力電圧を発生する負荷センサ18が接続され、負荷センサ18の出力電圧は対応するAD変換器27を介して入力ポート25に入力される。更に入力ポート25にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ19が接続される。一方、出力ポート26は対応する駆動回路28を介して燃料噴射弁3、スロットル弁9駆動用ステップモータ、EGR制御弁11、および燃料ポンプ14に接続される。
図2に燃料噴射弁3の拡大図を示す。図2に示されるように燃料噴射弁3は弁座30上に着座可能なニードル弁31と、ニードル弁31の先端周りに形成されているサック室32と、サック室32から燃焼室2内に延びる噴孔33と、ニードル弁31周りに形成されたノズル室34とを具備する。ノズル室34は燃料噴射弁3の本体内および燃料供給管12内を延びる高圧燃料供給通路、いわゆる高圧ライン35を介してコモンレール13内に連結されており、コモンレール13内の高圧の燃料がこの高圧ライン35を介してノズル室34内に供給される。
ニードル弁31の頂面上には圧力制御室36が形成されており、この圧力制御室36内にはニードル弁31を弁座30に向けて押圧する圧縮ばね37が配置されている。この圧力制御室36は一方では入口側絞り38を介して高圧ライン35の途中に連結されており、他方では出口側絞り39を介して溢流制御弁40により開閉制御される燃料溢流口41に連結されている。圧力制御室36へは絞り38を介して高圧の燃料が常時供給されており、従って圧力制御室36は常時燃料で満たされている。
燃料溢流口41が溢流制御弁40により閉鎖されているときには図2に示されるようにニードル弁31が弁座30上に着座しており、従って燃料噴射は停止されている。このときノズル室34内と圧力制御室36内とは同じ燃料圧となっている。溢流制御弁40が開弁、即ち燃料溢流口41を開口すると圧力制御室36内の高圧の燃料が絞り39を介して燃料溢流口41から流出し、斯くして圧力制御室36内の圧力は徐々に低下する。圧力制御室36内の圧力が低下するとニードル弁31が上昇し、噴孔33から燃料の噴射が開始される。
即ち、圧力制御室36と燃料溢流口41との間には絞り39が設けられており、またその他の遅れ要素によって溢流制御弁40が開弁した後暫らくしてから燃料の噴射が開始される。次いで溢流制御弁40が閉弁、即ち燃料溢流口41を閉鎖すると絞り38を介して圧力制御室36内に供給される燃料によって圧力制御室36内の圧力は徐々に増大し、斯くして溢流制御弁40が閉弁した後暫らくしてから燃料噴射が停止される。
本発明では各燃料噴射弁3から機関の一サイクル中に先の噴射と後の噴射の少なくとも二回の燃料噴射が行われる。図3に代表的な二つの燃料噴射方法を示す。図3(A)は主噴射Mの前にパイロット噴射Pを行うようにした場合を示している。この場合にはパイロット噴射Pが先の噴射であり、主噴射Mが後の噴射となる。
一方、図3(B)は主噴射Mの前の複数回のパイロット噴射P1,P2を行い、主噴射Mの後に複数回のポスト噴射P3,P4を行うようにした場合を示している。この場合にはパイロット噴射P2を後の噴射とするとパイロット噴射P1が先の噴射となり、主噴射Mを後の噴射とするとパイロット噴射P1,P2が先の噴射となり、ポスト噴射P3を後の噴射とするとパイロット噴射P1,P2および主噴射Mが先の噴射となる。
なお、以下図3(A)に示すように主噴射Mの前にパイロット噴射Pを行うようにした場合を例にとって本発明を説明する。
本発明における実施例では目標とする全噴射量QTが図4(A)に示すようにアクセルペダル17の踏込み量、即ちアクセル開度Lと機関回転数Nとの関数としてマップの形で予めROM22内に記憶されている。また、目標とする主噴射量QMが図4(B)に示すように全噴射量QTおよび機関回転数Nの関数としてマップの形で予めROM22内に記憶されている。一方、目標とするパイロット噴射量QPは全噴射量QTから主噴射量QMを減算することによって得られる。
また、主噴射Mの噴射開始時期θMは図5(A)に示されるように全噴射量QTおよび機関回転数Nの関数としてマップの形で予めROM22内に記憶されている。更に、先の噴射が行われてから後の噴射が行われるまでの時間間隔、即ちインターバル時間が予め設定されている。本発明による実施例ではパイロット噴射Pが開始されたときから主噴射Mが開始されるときまでのインターバル時間TIが図5(B)に示されるように全噴射量QTおよび機関回転数Nの関数としてマップの形で予めROM22内に記憶されており、主噴射Mの噴射開始時期θMとインターバル時間TIからパイロット噴射Pの噴射開始時期θPが算出される。
また、本発明による実施例ではコモンレール13内の目標レール圧が予め設定されている。この目標レール圧は概略的に云うと全噴射量QTが増大するほど高くなる。
さて、図2においてニードル弁31が開弁して燃料噴射が開始されるとノズル室34内の圧力は急速に低下する。このようにノズル室34内の圧力が急速に低下すると圧力波が発生し、この圧力波が高圧ライン35内をコモンレール13に向けて伝播する。次いでこの圧力波は高圧ライン35のコモンレール13内への開放端において反射し、今度はこの圧力波は平均圧力に対して圧力が反転した状態で、即ち高圧の圧力波の形で高圧ライン35内をノズル室34に向けて進み、ノズル室34内に高圧を一時的に発生させる。例えばパイロット噴射が行われたとするとその後暫らくしてコモンレール13における反射波によってノズル室34内には一時的に高圧が発生する。
一方、ニードル弁31が閉弁すると燃料の流動が急激に堰き止められるためにノズル室34内の圧力が一時的に上昇し、圧力波が発生する。この圧力波も高圧ライン35内を伝播し、コモンレール13において反射してノズル室34内に戻ってくる。
また、溢流制御弁40の開閉弁動作によってもノズル室34内に伝播する圧力波が発生する。即ち、溢流制御弁40が開弁すれば燃料溢流口41の圧力が急激に低下するために圧力波が発生し、溢流制御弁40が閉弁すれば燃料溢流口41の圧力が急激に上昇するために圧力波が発生する。これらの圧力波は一対の絞り39,38を通ってノズル室34内に伝播してノズル室34内の圧力を上昇或いは低下させ、同時にこの圧力波はノズル室34内において反射してコモンレール13又は燃料溢流口41に向けて伝播する。
このようにパイロット噴射Pが行われるとニードル弁31の開閉動作および溢流制御弁40の開閉動作により発生する圧力波によってノズル室34内の燃料圧が脈動を生ずる。次いでこのようにノズル室34内の燃料圧が脈動を生じているときに主噴射Mが行われる。しかしながらこのようにノズル室34内の燃料圧が脈動を生じているときに主噴射Mが行われるとノズル室34内の燃料圧が高くなったときには噴射量が増大し、ノズル室34内の燃料圧が低くなったときには噴射量が減少するので主噴射Mの噴射量が変動することになる。
次に図6および図7を参照しつつ主噴射Mの燃料量が実際にどのような変動パターンでもって変化するかということ、およびこの変動パターンに基づいて行われる噴射制御の基本的なやり方についてまず初めに説明し、その後本発明において用いられている噴射制御方法について説明する。
図6を参照すると横軸Tiはパイロット噴射Pが開始されたときから主噴射Mが開始されるまでのインターバル時間(msec)を表しており、縦軸dQは主噴射Mの噴射量の目標値に対する変動量(mm3)を表している。また、図6において□印はレール圧が48MPaのときを示しており、○印はレール圧が80MPaのときを示しており、△印はレール圧が128MPaのときを示している。また、図6はパイロット噴射量が2(mm3)で主噴射量が20(mm3)のときを示している。図6(A)は三つの異なるレール圧に対する主噴射Mの噴射量の目標値に対する実際の変動量dQを表しており、図6(A)からパイロット噴射が行われた後、ノズル室34内の燃料圧が上昇と下降を繰返すこと、即ち脈動していることがわかる。
ところで図6(A)をみると各曲線で表される主噴射量の変動パターンは周期は異なるが、即ちレール圧が高くなるほど周期は短かくなるが同じ様な形で上下動していることがわかる。前述したようにノズル室34内の燃料圧はノズル室34とコモンレール13間、或いはノズル室34と燃料溢流口41間を伝播する圧力波によって変動する。これらノズル室34とコモンレール13間は一定長であり、ノズル室34と燃料溢流口41間も一定長であるので圧力波の伝播速度が一定であればパイロット噴射Pが行われた後にノズル室34内に発生する燃料圧は決まった変動パターンで脈動することになる。
ところが圧力波の伝播速度は燃料圧および燃料温によって変化する。即ち、圧力波の伝播速度は、Eを体積弾性係数、γを燃料の密度、gを重力の加速度とすると、(E/γ)・gの平方根で表される。即ち、圧力波の伝播速度は体積弾性係数Eの平方根に比例し、密度γの平方根に反比例することになる。ところで体積弾性係数Eは燃料圧に比例し、燃料温に反比例する。一方、燃料の密度γも燃料圧に比例し、燃料温に反比例する。ところが燃料圧或いは燃料温が変化したときの体積弾性係数Eの変化率は密度γの変化率に比べてはるかに大きく、従って圧力波の伝播速度は体積弾性係数Eの変化の影響を強く受ける。従って圧力波の伝播速度は燃料圧が高くなるほど速くなり、燃料温が高くなるほど遅くなる。即ち、圧力波の伝播速度はレール圧が高くなるほど速くなる。
従ってレール圧が高くなるとノズル室34内の燃料圧の変動周期は短かくなり、このときノズル室34内の燃料圧はその変動パターンが図6(A)における横軸方向、即ちインターバル時間軸方向に収縮したような形で変動する。従って図6(A)に示されるようにレール圧が高くなると主燃料の変動量dQはその変動パターンがインターバル時間軸方向に収縮したような形で変動する。
図6(A)において○印で示されるレール圧80MPaを基準レール圧とし、この基準レール圧のときの主噴射の変動量dQの変動パターンを基準変動パターンとすると□印で示されるレール圧48MPaのときには、即ちレール圧が基準レール圧よりも低いときにはインターバル時間Ti=0を固定点として主噴射の変動量dQの変動パターン全体をインターバル時間軸方向に一様に収縮すると変動パターンの上下変動時期が基準変動パターンの上下変動時期に一致し、△印で示されるレール圧128MPaのときには、即ちレール圧が基準レール圧よりも高いときにはインターバル時間Ti=0を固定点として主噴射の変動量dQの変動パターン全体をインターバル時間軸方向に一様に伸長すると変動パターンの上下変動時期が基準変動パターンの上下変動時期に一致する。図6(B)はこのように変動パターンの上下変動周期が基準変動パターンの上下変動周期に一致するようにレール圧が48MPaのときの変動パターンを収縮させ、レール圧が128MPaの変動パターンを伸長させた場合を示している。
このように各レール圧における変動パターンを収縮又は伸長させると各変動パターンの変動周期を基準変動パターンの変動周期に重ね合わせることができる。一方、図6(B)に示されるように同一のインターバル時間Tiにおける主噴射の変動量dQはレール圧が高くなるほど大きくなる。従って各レール圧における変動パターンを共通の基準変動パターンに規格化するには各レール圧における変動パターンをレール圧に応じて図6(B)の縦軸方向、即ち主噴射の変動量dQの増大又は減少方向に収縮又は伸長する必要がある。図6(C)は各レール圧における変動パターンを共通の基準変動パターンに規格化するために主噴射の変動量dQの増大又は減少方向に収縮又は伸長した場合を示している。このように変動パターンをレール圧に応じてインターバル時間軸方向に収縮又は伸長し、レール圧に応じて主噴射の変動量の増大又は減少方向に収縮又は伸長すると図6(C)に示されるように各変動パターンを共通の基準変動パターンに規格化できることになる。
このように各変動パターンを共通の基準変動パターンに規格化できる場合には各レール圧における主噴射の変動量dQを共通の基準変動パターンから求めることができる。例えば図6(A)において80MPaを基準レール圧とし、レール圧がこの基準レール圧であるときの○印で示される変動パターンを共通の基準変動パターンとすると、レール圧が48MPaのときの□印で示される変動周期は共通の基準変動パターンの変動周期よりも長い。従ってレール圧が48MPaのときの主噴射の変動量dQを共通の基準変動パターンから求める場合にはこの変動量dQは図6(A)に示されるインターバル時間Tiの時間軸を収縮し、収縮された修正インターバル時間Tiに応じた共通の基準変動パターン上の変動量dQに一致する。このときの収縮の度合はレール圧が48MPaのときの変動パターンの変動周期を共通の基準変動パターンの変動周期に一致するように収縮したときの収縮率に一致する。
一方、図6(A)においてレール圧が128MPaのときの△印で示される変動周期は共通の基準変動パターンの変動周期よりも短かく、従ってレール圧が128MPaのときの主噴射の変動量dQを共通の基準変動パターンから求める場合にはこの変動量dQは図6(A)に示されるインターバル時間Tiの時間軸を伸長し、伸長された修正インターバル時間Tiに応じた共通の基準変動パターン上の変動量dQに一致する。このときの伸長の度合はレール圧が128MPaのときの変動パターンの変動周期を共通の基準変動パターンの変動周期に一致するように伸長したときの伸長率に一致する。
また、図6(B)を参照しつつ既に説明したように同一のインターバル時間Tiにおける主噴射の変動量dQはレール圧が高くなるほど大きくなる。従ってレール圧が80MPaのときの変動パターンを共通の基準変動パターンとすると、主噴射の変動量dQをこの共通の基準変動パターンから求める場合にはレール圧が48MPaの場合には共通の基準変動パターンから求められた変動量dQを減少補正し、レール圧が128MPaの場合には共通の基準変動パターンから求められた変動量dQを増大補正する。
一方、図7(A)はレール圧を48MPaに一定に維持した状態で主噴射の噴射量を5(mm3)、10(mm3)、20(mm3)、30(mm3)および40(mm3)としたときの主噴射の変動量dQを示している。インターバル時間Tiが同じであっても主噴射の噴射量が変化すると、即ち噴射期間が変化すると主噴射の変動量dQが変化する。この場合にも各レール圧における変動パターンを共通の基準変動パターンに規格化するには各レール圧における変動パターンをレール圧に応じて図7(A)の縦軸方向、即ち主噴射の変動量dQの増大又は減少方向に収縮又は伸長することが必要である。図7(B)は各レール圧における変動パターンを主噴射の噴射量dQの増大又は減少方向に収縮又は伸長して基準の変動パターンに重ね合わせた場合を示している。
このように例えば80MPaを基準レール圧とし、パイロット噴射量が2(mm3)で主噴射量が20(mm3)の場合を基準噴射量とし、レール圧が基準レール圧でありかつパイロット噴射量および主噴射量が基準噴射量であるときの主噴射の変動量dQの変動パターンを共通の基準変動パターンとしてこの共通の基準変動パターンを予めROM22に記憶しておくと、この記憶された共通の基準変動パターンからレール圧や主噴射量が種々に変化したときの主噴射の変動量を求めることができる。これが変動パターンに基づいて行われる噴射制御の基本的なやり方である。以下に説明するように本発明による実施例でもこのような共通の基準変動パターンを用いて噴射制御が行われる。
さて、ノズル室34内の燃料圧が変動すると主噴射量が変動するのは噴射圧が変動することが一因であるが、主噴射量の変動に対してはノズル室34内の燃料圧の変動に基づくニードル弁31の開弁時期やリフト量の変動も大きな影響を与える。この場合、ニードル弁31の開弁時期に影響を与えるのはニードル弁31が開弁する前のノズル室34内の燃料圧の変動であり、主噴射量の変動をもたらす噴射圧の変動はニードル弁31が開弁した後の噴射圧の変動、即ちニードル弁31が開弁した後のノズル室34内の燃料圧の変動である。
このように主噴射量の変動に対してはニードル弁31が開弁する前のノズル室34内の燃料圧の変動と、ニードル弁31が開弁した後のノズル室34内の燃料圧の変動とが影響を与えており、この場合ニードル弁31の開弁前後におけるこれらノズル室34内の燃料圧の変動は夫々独立して主噴射量の変動に影響を与える。従って主噴射の変動量はニードル弁31が開弁する前のノズル室34内の燃料圧の変動に基づく変動量と、ニードル弁31が開弁した後のノズル室34内の燃料圧の変動に基づく変動量との和となる。
そこでまず初めにニードル弁31が開弁する前のノズル室34内の燃料圧が主噴射量に与える影響について説明し、次いでニードル弁31が開弁した後のノズル室34内の燃料圧が主噴射量に与える影響について説明する。
即ち、主噴射を開始すべき指令に基づいて溢流制御弁40が開弁し、圧力制御室36内の燃料圧が徐々に低下してノズル室34と圧力制御室36との圧力差が一定圧以上になるとニードル弁31が開弁する。この場合、圧力制御室36内の燃料圧が徐々に低下しているときに圧力脈動によりノズル室34内の燃料圧が急激に上昇すると、或いは圧力制御室36内の燃料圧が急激に低下するとノズル室34と圧力制御室36との圧力差が一定値以上となり、斯くしてニードル弁31の開弁時期が早められることになる。これに対し、圧力制御室36内の燃料圧が徐々に低下しているときに圧力脈動によりノズル室34内の燃料圧が急激に下降すると、或いは圧力制御室36内の燃料圧が急激に上昇するとノズル室34と圧力制御室36との圧力差が一定値以上となるまでに時間を要するため、ニードル弁31の開弁時期が遅れることになる。
このようにニードル弁31の開弁時期はニードル弁31が開弁する前のノズル室34内の燃料圧の変動、或いは圧力制御室36内の燃料圧の変動により早められたり、或いは遅らされたりする。この場合、ニードル弁31の開弁時期が早まると主噴射量は増大し、ニードル弁31の開弁時期が遅れると主噴射量は減少する。従って圧力脈動の影響によりニードル弁31の開弁時期が変動するとそれに伴なって主噴射量が変動することになる。
図8はインターバル時間Ti(msec)とニードル弁31の開弁時期の変動量Δτ(μmsec)との関係を示している。また、図8はパイロット噴射量が2(mm3)の場合を示しており、□印はレール圧が48MPaのときを示しており、○印はレール圧が80MPaのときを示しており、△印はレール圧が128MPaのときを示している。
図8(A)は各レール圧におけるニードル弁31の開弁時期の変動量Δτの実際の値を示している。図8(B)はレール圧80MPaを基準レール圧とし、このときのニードル弁31の開弁時期の変動パターンを基準変動パターンとし、図8(A)に示すレール圧が48MPaおよび128MPaのときの変動パターンをこれら変動パターンの上下変動周期が基準変動パターンの上下変動周期に一致するようにインターバル時間軸方向に収縮又は伸長した場合を示している。
一方、図8(C)は図8(B)に示すレール圧が48MPaおよび128MPaのときの変動パターンをこれら変動パターンが基準変動パターンに重なり合うように縦方向、即ちニードル弁31の開弁時期の変動量Δτの増大又は減少方向に収縮又は伸長した場合を示している。このようにニードル弁31の開弁時期の変動量Δτの変動パターンは図8(C)に示されるように規格化できることがわかる。この基準変動パターンはROM22に記憶されており、この基準変動パターンに基づいてレール圧に応じた対応する燃料噴射弁3におけるニードル弁31の開弁時期の変動量Δτが算出される。
即ち、具体的に言うと、図8(C)に示される基準変動パターンに基づいて図8(A)に示されるレール圧に応じたニードル弁31の開弁時期の変動量Δτを求めるには、まず初めにインターバル時間Tiに図9(A)に示される時間軸ゲインIK1を乗算して修正インターバル時間Ti・IK1を求め、この修正インターバル時間Ti・IK1を用いて図8(C)に示される基準変動パターンから基準レール圧における開弁時間の変動量Δτを求め、次いでこの変動量Δτにレール圧に応じた図9(B)に示されるレール圧ゲインIK2を乗算することによって最終的な開弁時期の変動量Δτ(=基準レール圧における変動量Δτ・IK2)が求められる。
ここで図9(A)に示される時間軸ゲインIK1について説明すると、レール圧が基準レール圧80MPaよりも低いとき、例えば図8(A)において□印で示される48MPaのときには変動パターンの変動周期を基準変動パターンの変動周期に一致させるためにはインターバル時間軸を収縮させる必要があり、従ってレール圧が48MPaのときのインターバル時間Tiにおける変動量Δτは基準変動パターン上では基準変動パターンにおけるインターバル時間Tiよりも早い時期に表れる。即ち、基準変動パターンからレール圧が48MPaのときの変動量Δτを求めるには使用すべき修正インターバル時間Ti・IK1はレール圧が48MPaのときのインターバル時間Tiよりも短いインターバル時間とされ、従ってレール圧が低いときには図9(A)に示されるように時間軸ゲインIK1は1.0よりも小さくされる。
これに対し、レール圧の基準レール圧80MPaよりも高いとき、例えば図8(A)において△印で示される128MPaのときには変動パターンの変動周期を基準変動パターンの変動周期に一致させるためにはインターバル時間軸を伸長させる必要があり、従ってレール圧が128MPaのときのインターバル時間Tiにおける変動量Δτは基準変動パターン上では基準変動パターンにおけるインターバル時間Tiよりも遅い時期に表れる。即ち、基準変動パターンからレール圧が128MPaのときの変動量Δτを求めるには使用すべき修正インターバル時間Ti・IK1はレール圧が128MPaのときのインターバル時間Tiよりも長いインターバル時間とされ、従ってレール圧が高いときには図9(A)に示されるように時間軸ゲインIK1は1.0よりも大きくされる。即ち、時間軸ゲインIK1は図9(A)に示されるようにレール圧が高くなるにつれて大きくなる。
なお、レール圧が低くなるほど開弁時間の変動量Δτは増大する傾向にあるのでレール圧ゲインIK2はレール圧が低くなるほど増大する。
最終的な開弁時期の変動量Δτが求まったときにこの変動量Δτに基づいて例えば実際の開弁時期が目標値となるように開弁時期の指令値が補正される。例えば開弁時期の変動量Δτがプラスの場合には主噴射開始時期が変動量Δτだけ遅れるように主噴射の指令値が補正され、開弁時期の変動量Δτがマイナスの場合には主噴射開始時期が変動量Δτだけ早まるように開弁時期の指令値が補正される。
このように本発明による実施例では修正インターバル時間を求め、この修正インターバル時間を用いて基準変動パターンから基準となる開弁時期の変動量を求め、レール圧に基づいてレール圧ゲインを求め、基準となる開弁時期の変動量にレール圧ゲインを乗算することによって最終的な開弁時期の変動量Δτが算出される。従って変動量Δτを算出するには時間を要する。しかも噴射パターンが図3(B)に示されるような多噴射の場合には各先の噴射と後の噴射の全ての組合せについて後の噴射の変動量を求めなければならないために後の噴射の変動量を求めるのにかなりの時間を要することになる。
ところが或る修正インターバル時間のときに算出された最終的な開弁時期の変動量Δτが零のとき、又は零でなくとも零とみなせる程度の微少変動量のときには、その後同一の修正インターバル時間のときに算出される最終的な開弁時期の変動量Δτも同様に零、又は零とみなせる程度の微少変動量となる。従って本発明による一実施例では或る修正インターバル時間のときに算出された最終的な開弁時期の変動量Δτが零、又は零とみなせる程度の微少変動量のときには、その後同一の修正インターバル時間においては変動量Δτの算出作業が停止され、変動量Δτが零とされる。こうすることによって変動量Δτの算出に要する時間を短縮することができる。
また、図8(C)において修正インターバル時間がτT1とτT2との間の領域τZにあるときには変動量Δτが零、又は零とみなせる程度の微少変動量になることが予めわかっている。従って本発明による別の実施例では算出された修正インターバル時間が図8(C)に示される予め定められた領域τZ内にあるときには変動量Δτの算出作業が停止され、変動量Δτが零とされる。こうすることによってこの実施例においても変動量Δτの算出に要する時間を短縮することができる。
なお、ニードル弁31の開弁時期が単位時間変動したときの主噴射の変動量ΔQmはレール圧や主噴射量に応じて変化し、この主噴射の変動量ΔQmは予め実験により求められている。従ってニードル弁31の開弁時期がΔτ時間変動したときにはΔQmにΔτを乗算することによって主噴射の変動量dQm(=ΔQm・Δτ)を求めることができる。
これまでニードル弁31が開弁する前のノズル室34内の燃料圧の変動に基づく主噴射の変動量について説明してきたが、次にニードル弁31が開弁した後のノズル室34内の燃料圧の変動に基づく主噴射の変動量について説明する。
ニードル弁31の開弁時期の変動量および主噴射量全体の変動量は検出することができるがニードル弁31が開弁した後のノズル室34内の燃料圧の変動に基づく主噴射の変動量のみを検出することはできない。しかしながら上述したようにニードル弁31の開弁時期の変動に基づく主噴射の変動量dQmは算出することができる。従って本発明による実施例では主噴射量全体の変動量からニードル弁31の開弁時期の変動に基づく主噴射の変動量dQmを減算することによりニードル弁31が開弁した後のノズル室34内の燃料圧の変動に基づく主噴射の変動量dQtが求められる。
図10(A)および(B)はこの主噴射の変動量dQtについて夫々図7(A)および(B)と同様な図を示している。即ち、図10(A)はパイロット噴射量が2(mm3)でレール圧が基準レール圧80MPaに規格された場合を示しており、+印は主噴射量が5(mm3)のときを示しており、◇印は主噴射量が10(mm3)のときを示しており、△印は主噴射量が20(mm3)のときを示しており、○印は主噴射量が30(mm3)のときを示しており、□印は主噴射量が40(mm3)のときを示している。一方、10(B)はレール圧が基準レール圧80MPaであって主噴射量が20(mm3)のときの変動パターンを基準変動パターンとし、主噴射量が5(mm3)、10(mm3)、30(mm3)および40(mm3)のときの変動パターンをこれら変動パターンが基準変動パターンに重なり合うように縦方向、即ち主噴射の変動量dQtの増大又は減少方向に収縮又は伸長した場合を示している。
主噴射の変動量dQtを図10(A)に示す状態まで規格化するにはまず初めに図6(A)に示される変動量と同様にレール圧に応じて異なっている主噴射の変動量dQtの変動周期が基準レール圧、例えば80MPaの変動周期に重なるように各レール圧におけるインターバル時間Tiが収縮又は伸長される。次いで図6(B)に示される変動量と同様にレール圧に応じて異なっている主噴射の変動量dQtが基準レール圧、例えば80MPaにおける変動パターンに規格される。図10(A)はこのようにして規格されたパイロット噴射量が2(mm3)でレール圧が基準レール圧80MPaのときの種々の主噴射量についての主噴射の変動量dQtを示している。次いでこの主噴射の変動量dQtは上述したように図10(B)に示す如く主噴射量が20(mm3)のときの変動パターンを基準変動パターンとして規格される。この基準変動パターンは予めROM22内に記憶されており、記憶されているこの基準変動パターンに基づいて主噴射の変動量dQtが算出される。
即ち、レール圧に応じたニードル弁31の開弁時期の変動量Δτを求めるには、まず初めにインターバル時間Tiに図11(A)に示される時間軸ゲインFK1を乗算して修正インターバル時間Ti・FK1を求め、この修正インターバル時間Ti・FK1を用いて図10(B)に示される基準変動パターンから基準レール圧80MPaおよび基準主噴射量20(mm3)における主噴射の変動量dQtを求め、次いでこの主噴射の変動量dQtに主噴射量に応じた図11(C)に示される噴射量ゲインFK3を乗算することによって図10(A)に示される主噴射量に応じた主噴射の変動量dQtを求め、次いでこの主噴射の変動量dQtにレール圧に応じた図11(B)に示されるレール圧ゲインFK2を乗算することによって最終的な主噴射の変動量dQt(=基準変動パターンから求められた主噴射の変動量dQt・FK1・FK2)が求められる。
ここで図11(A)に示される時間軸ゲインFK1は図9(A)に示される時間軸ゲインIK1と全く同一であり、また図11(B)に示されるレール圧ゲインFK2は図11(B)に示されるようにレール圧が高くなるほど大きくなる。また、噴射量ゲインFK3は図11(C)に示されるように主噴射量が増大するにつれて増大するが主噴射量が或る噴射量を越えると急激に低下してほぼ一定値となる。ここで各噴射量ゲインFK3が図11(C)に示されるような変化をすることについて図12を参照しつつ簡単に説明する。なお、図12はニードル弁31が最大リフトMAXまで開弁する型式の燃料噴射弁を用いた場合を示しているが、ニードル弁31が最大リフトMAXまで開弁しない型式の燃料噴射弁を用いることもできることは言うまでもない。
図12は噴射指令パルスとニードル弁31のリフト量との関係を示しており、図12の(I),(II),(III),(IV)は噴射指令パルス長を変えた場合を示している。また
、実線で示されるニードル弁31のリフト量はノズル室34内の燃料圧が目標燃料圧に維持されているときを示している。ノズル室34内の燃料圧が目標燃料圧に維持されているときには図12の(I),(II),(III)に示されるように噴射指令パルス長が長くなるにつれてニードル弁31のリフト量が増大し、噴射指令パルス長が更に長くされると図12の(IV)に示されるようにニードル弁31は最大リフトMAXとなる。
一方、ニードル弁31が開弁した後において圧力脈動によりノズル室34内の燃料圧が例えば目標燃料圧よりも高くなっていたとすると、高い燃料圧がニードル弁31に対しニードル弁31の開弁方向に作用する。その結果、図12の(I)〜(IV)において破線で示されるようにニードル弁31のリフト量は実線で示されるリフト量に対し上方に次第に離れ、図12の(I)〜(III)に示されるようにニードル弁31が最大リフトMAXまで開弁しない場合にはニードル弁31の最大のリフト量は実線で示される場合よりも高くなる。ニードル弁31が最大のリフト量になるとその後ニードル弁31は実線で示す場合とほぼ同じ速度で下降する。
図12の(I)〜(III)に示されるようにニードル弁31が最大リフトMAXまで開弁しない場合には噴射指令パルス長が長くなるほど、即ち主噴射量が増大するほどニードル弁31の最大リフト量が高くなり、噴射期間が長くなる。従って圧力脈動によりノズル室34内の燃料圧が増大したときには主噴射量が多いときほど主噴射量の変動量、この場合には主噴射量の増大量が増大する。従って図11(C)に示されるように噴射量ゲインFK3は主噴射量が増大するにつれて高くなる。
一方、図12の(IV)に示されるようにニードル弁31が最大リフトMAXまで開弁した場合、ニードル弁31が最大リフトMAXから閉弁するときのリフト量変化は実線で示される場合も破線で示される場合も同じになる。従ってニードル弁31が最大リフトMAXまで開弁したときには噴射期間は変化しない。一方、このとき図12の(IV)の破線からわかるようにニードル弁31が開弁するときには実線で示す場合に比べて早期に最大リフトMAXに達し、ニードル弁31の開弁時の主噴射量が増大する。この主噴射の増大量は図12の(III)で示されるようにニードル弁31が最大リフトMAX近くまで開弁する場合に比べると少なく、しかもこの主噴射の増大量は噴射指令パルス長が長くなっても、即ち主噴射量が増大しても変化しない。従って図11(C)に示されるようにニードル弁31が最大リフトMAXまで開弁する主噴射量になると噴射量ゲインFK3は急激に低下し、ニードル弁31が最大リフトMAXまで開弁する主噴射量よりも主噴射量が多い領域では噴射量ゲインFK3は比較的小さな一定値となる。
さて、本発明による実施例では修正インターバル時間を求め、この修正インターバル時間を用いて基準変動パターンから基準となる主噴射の変動量を求め、レール圧に基づいてレール圧ゲインを求め、主噴射量に基づいて噴射量ゲインを求め、基準となる開弁時期の変動量にレール圧ゲインおよび噴射量ゲインを乗算することによって最終的な主噴射の変動量dQtが算出される。従って変動量dQtを算出するには時間を要する。しかも噴射パターンが図3(B)に示されるような多噴射の場合には前述したように各先の噴射と後の噴射の全ての組合せについて後の噴射の変動量を求めなければならないために後の噴射の変動量を求めるのにかなりの時間を要することになる。
ところが或る修正インターバル時間のときに算出された最終的な主噴射の変動量dQtが零のとき、又は零でなくとも零とみなせる程度の微少変動量のときには、その後同一の修正インターバル時間のときに算出される最終的な主噴射の変動量dQtも同様に零、又は零とみなせる程度の微少変動量となる。従って本発明による一実施例では或る修正インターバル時間のときに算出された最終的な主噴射の変動量dQtが零、又は零とみなせる程度の微少変動量のときには、その後同一の修正インターバル時間においては変動量dQtの算出作業が停止され、変動量dQtが零とされる。こうすることによって変動量dQtの算出に要する時間を短縮することができる。
また、図10(B)において修正インターバル時間がQT1とQT2との間の領域QZ1、又はQT3とQT4との間の領域QZ2にあるときには変動量dQtが零、又は零とみなせる程度の微少変動量になることが予めわかっている。従って本発明による別の実施例では算出された修正インターバル時間が図10(B)に示される予め定められた領域QZ1又はQZ2内にあるときには変動量dQtの算出作業が停止され、変動量dQtが零とされる。こうすることによってこの実施例においても変動量dQtの算出に要する時間を短縮することができる。
次に図13に示される燃料噴射制御ルーチンについて説明する。
図13を参照するとまず初めにステップ100において図4(A)に示すマップから全噴射量QTが算出される。次いでステップ101では図4(B)に示すマップから主噴射量QMが算出される。次いでステップ102では全噴射量QTから主噴射量QMを減算することによってパイロット噴射量QPが算出される。次いでステップ103では図5(A)に示すマップから主噴射開始時期θMが算出される。次いでステップ104では図5(B)に示すマップからインターバル時間TIが算出される。次いでステップ105では主噴射開始時期θMとインターバル時間TIからパイロット噴射開始時期θPが算出される。
次いでステップ106では図9(A)からレール圧に応じた時間軸ゲインIK1が求められる。次いでステップ107では時間軸ゲインIK1をインターバル時間TIに乗算することにより修正インターバル時間Tiが算出される。次いでステップ108ではこの修正インターバル時間Tiを用いて開弁時期の変動量Δτが算出される。次いでステップ109では図11(A)からレール圧に応じた時間軸ゲインFK1が算出される。次いでステップ110では時間軸ゲインFK1をインターバル時間TIに乗算することにより修正インターバル時間Tiが算出される。次いでステップ111ではこの修正インターバル時間Tiを用いて主噴射の変動量dQtが算出される。
次いでステップ112ではステップ108において求められた最終的な開弁時期の変動量Δτおよびステップ111において求められた最終的な主噴射の変動量dQtに基づいて実際の主噴射量が目標値となるように主噴射に対する噴射指令パルス長が補正される。即ち、例えば変動量dQtがプラスの場合にはステップ101において算出された主噴射量QMから変動量dQtが減算され、対応する燃料噴射弁3からの噴射量を減算された主噴射量(QM−dQt)とするのに必要な噴射指令パルス長が算出される。
これに対し、変動量dQtがマイナスであれば主噴射量QMに変動量dQtが加算され、対応する燃料噴射弁3からの噴射量を加算された主噴射量(QM+dQt)とするのに必要な噴射指令パルス長が算出される。次いでこのようにして算出された噴射指令パルス長に最終的な開弁時期の変動量Δτが加算されて最終的な噴射指令パルス長が求められる。このようにして実際の主噴射量が目標値QTに制御される。次いでステップ113ではパイロット噴射および主噴射の噴射処理が行われる。
次に図13のステップ108において実行される開弁時期の変動量Δτを算出するためのルーチンの第1実施例について図14を参照しつつ説明する。
図14を参照するとまず初めにステップ200において現在の修正インターバル時間Tiが、以前に変動量Δτが零か又は零とみなせる微少変動量になったときの修正インターバル時間XTiと同じであるか否かが判別される。現在の修正インターバル時間Tiが修正インターバル時間XTiと同じであればステップ206に進んで変動量Δτが零とされる。これに対し現在の修正インターバル時間Tiが修正インターバル時間XTiと同じでなければステップ201に進む。
ステップ201では基準レール圧を80MPa、基準となるパイロット噴射量QPを2(mm3)とすると、即ち図8(C)において○印で示される開弁時期の変動量Δτを基準変動量とすると修正インターバル時間Tiに応じた開弁時期の基準変動量が算出される。次いでステップ202では図9(B)からレール圧に応じたレール圧ゲインIK2が算出される。次いでステップ203ではステップ201において算出された開弁時期の基準変動量Δτにレール圧ゲインIK2を乗算することによって最終的な開弁時期の変動量Δτが算出される。
次いでステップ204では最終的な変動量Δτの絶対値が、零とみなせる微少変動量Xτ、例えば5μmsecよりも小さいか否かが判断される。|Δτ|<Xτのときにはステップ205に進んで現在の修正インターバル時間Tiが修正インターバル時間XTiとされる。即ち、この実施例では修正インターバル時間Tiが修正インターバル時間XTiと同じになると変動量Δτの算出作業は停止され、変動量Δτが零とされる。
次に図13のステップ108において実行される開弁時期の変動量Δτを算出するためのルーチンの第2実施例について図15を参照しつつ説明する。
図15を参照するとまず初めにステップ300において現在の修正インターバル時間Tiが、以前に変動量Δτが零か又は零とみなせる微少変動量になったときの修正インターバル時間XTiと同じであるか否かが判別される。現在の修正インターバル時間Tiが修正インターバル時間XTiと同じであればステップ307に進んで変動量Δτが零とされる。これに対し現在の修正インターバル時間Tiが修正インターバル時間XTiと同じでなければステップ301に進む。
ステップ301では基準レール圧を80MPa、基準となるパイロット噴射量QPを2(mm3)とすると、即ち図8(C)において○印で示される開弁時期の変動量Δτを基準変動量とすると修正インターバル時間Tiに応じた開弁時期の基準変動量が算出される。次いでステップ302では図9(B)からレール圧に応じたレール圧ゲインIK2が算出される。次いでステップ303ではステップ301において算出された開弁時期の基準変動量Δτにレール圧ゲインIK2を乗算することによって最終的な開弁時期の変動量Δτが算出される。次いでステップ304では開弁時期の変動量Δτから主噴射の変動量dQmが算出される。
次いでステップ305では主噴射の変動量dQmの絶対値が、零とみなせる微少変動量XQ、例えば0.5mm3/ストロークよりも小さいか否かが判断される。|dQm|<XQのときにはステップ205に進んで現在の修正インターバル時間Tiが修正インターバル時間XTiとされる。即ち、この実施例では開弁時期の変動量Δτを主噴射の変動量dQmに置き換えて置き換えられた主噴射の変動量dQmが微少変動量よりも小さいか否かが判別され、更にこの実施例でも第1実施例と同様に修正インターバル時間Tiが修正インターバル時間XTiと同じになると変動量Δτの算出作業は停止され、変動量Δτが零とされる。
次に図13のステップ108において実行される開弁時期の変動量Δτを算出するためのルーチンの第3実施例について図16を参照しつつ説明する。
図16を参照するとまず初めにステップ400において現在の修正インターバル時間Tiが、変動量Δτを零か又は零とみなせる図8(C)の領域τZ内にあるか否か、即ちτT1<Ti<τT2であるか否かが判別される。現在の修正インターバル時間Tiが領域τZ内にあるときにはステップ404に進んで変動量Δτが零とされる。これに対し現在の修正インターバル時間Tiが領域τZ内にないときにはステップ401に進む。
ステップ401では基準レール圧を80MPa、基準となるパイロット噴射量QPを2(mm3)とすると、即ち図8(C)において○印で示される開弁時期の変動量Δτを基準変動量とすると修正インターバル時間Tiに応じた開弁時期の基準変動量が算出される。次いでステップ402では図9(B)からレール圧に応じたレール圧ゲインIK2が算出される。次いでステップ403ではステップ401において算出された開弁時期の基準変動量Δτにレール圧ゲインIK2を乗算することによって最終的な開弁時期の変動量Δτが算出される。
即ち、この実施例では修正インターバル時間Tiが領域τZ内にあるときには変動量Δτの算出作業は停止され、変動量Δτが零とされる。
次に図13のステップ111において実行される主噴射の変動量dQtを算出するためのルーチンの第1実施例について図17を参照しつつ説明する。
図17を参照するとまず初めにステップ500において現在の修正インターバル時間Tiが、以前に変動量dQtが零か又は零とみなせる微少変動量になったときの修正インターバル時間YTiと同じであるか否かが判別される。現在の修正インターバル時間Tiが修正インターバル時間YTiと同じであればステップ507に進んで変動量dQtが零とされる。これに対し現在の修正インターバル時間Tiが修正インターバル時間YTiと同じでなければステップ501に進む。
ステップ501では基準レール圧を80MPa、基準となる主噴射量QMを20(mm3)、基準となるパイロット噴射量QPを2(mm3)とすると、即ち図10(B)において△印で示される変動量を基準変動量dQtとすると、修正インターバル時間Tiに応じた基準変動量dQtが算出される。次いでステップ502では図11(B)からレール圧に応じたレール圧ゲインFK2が算出され、次いでステップ503では図11(C)から主噴射量に応じた噴射量ゲインFK3が算出される。次いでステップ504ではステップ501において算出された基準変動量dQtにレール圧ゲインFK2および噴射量ゲインFK3を乗算することによって最終的な主噴射の変動量dQtが算出される。
次いでステップ505では最終的な変動量dQtの絶対値が、零とみなせる微少変動量YQ、例えば0.5mm3/ストロークよりも小さいか否かが判断される。|dQt|<YQのときにはステップ506に進んで現在の修正インターバル時間Tiが修正インターバル時間YTiとされる。即ち、この実施例では修正インターバル時間Tiが修正インターバル時間YTiと同じになると変動量dQtの算出作業は停止され、変動量dQtが零とされる。
次に図13のステップ111において実行される主噴射の変動量dQtを算出するためのルーチンの第2実施例について図18を参照しつつ説明する。
図18を参照するとまず初めにステップ600において現在の修正インターバル時間Tiが、変動量dQtを零か又は零とみなせる図10(B)の領域QZ1内にあるか否か、即ちQT1<Ti<QT2であるか否かが判別される。現在の修正インターバル時間Tiが領域QZ1内にあるときにはステップ606に進んで変動量dQtが零とされる。これに対し現在の修正インターバル時間Tiが領域QZ1内にないときにはステップ601に進む。
ステップ601では現在の修正インターバル時間Tiが、変動量dQtを零か又は零とみなせる図10(B)の領域QZ2内にあるか否か、即ちQT3<Ti<QT4であるか否かが判別される。現在の修正インターバル時間Tiが領域QZ2内にあるときにはステップ606に進んで変動量dQtが零とされる。これに対し現在の修正インターバル時間Tiが領域QZ2内にないときにはステップ602に進む。
ステップ602では基準レール圧を80MPa、基準となる主噴射量QMを20(mm3)、基準となるパイロット噴射量QPを2(mm3)とすると、即ち図10(B)において△印で示される変動量を基準変動量dQtとすると、修正インターバル時間Tiに応じた基準変動量dQtが算出される。次いでステップ603では図11(B)からレール圧に応じたレール圧ゲインFK2が算出され、次いでステップ604では図11(C)から主噴射量に応じた噴射量ゲインFK3が算出される。次いでステップ605ではステップ602において算出された基準変動量dQtにレール圧ゲインFK2および噴射量ゲインFK3を乗算することによって最終的な主噴射の変動量dQtが算出される。
即ち、この実施例では修正インターバル時間Tiが領域QZ1又はQZ2内にあるときには変動量dQtの算出作業は停止され、変動量dQtが零とされる。
なお、図13のステップ108において開弁時期の変動量Δτから主噴射の変動量dQmを算出し、この算出された主噴射の変動量dQmとステップ111において求められた最終的な主噴射の変動量dQtに基づいて実際の主噴射量が目標値となるように主噴射に対する噴射指令パルス長を補正することもできる。
また、主噴射の変動量dQmと最終的な主噴射の変動量dQtから主噴射の変動量の総和(dQm+dQt)を求め、或る修正インターバル時間のときに算出された最終的な主噴射の変動量の総和(dQm+dQt)が零、又は零とみなせる程度の微少変動量のときには、その後同一の修正インターバル時間においては主噴射の変動量の算出作業を停止し、主噴射の変動量dQtを零とすることもできる。
図1は圧縮着火式内燃機関の全体図である。 燃料噴射弁の先端部を示す側面断面図である。 噴射パターンを示す図である。 噴射量のマップを示す図である。 主噴射時期等のマップを示す図である。 主噴射の変動量を示す図である。 主噴射の変動量を示す図である。 ニードル弁の開弁時期の変動量を示す図である。 時間軸ゲインIK1およびレール圧ゲインIK2を示す図である。 主噴射の変動量を示す図である。 時間軸ゲインFK1、レール圧ゲインFK2および噴射量ゲインFK3を示す図である。 噴射指令パルスとニードル弁のリフト量を示す図である。 燃料噴射制御を示すフローチャートである。 ニードル弁の開弁時期の変動量Δτを算出するための第1実施例を示すフローチャートである。 ニードル弁の開弁時期の変動量Δτを算出するための第2実施例を示すフローチャートである。 ニードル弁の開弁時期の変動量Δτを算出するための第3実施例を示すフローチャートである。 主噴射の変動量dQtを算出するための第1実施例を示すフローチャートである。 主噴射の変動量dQtを算出するための第2実施例を示すフローチャートである。
符号の説明
2 燃焼室
3 燃料噴射弁
12 燃料供給管
13 コモンレール
31 ニードル弁
32 サック室
34 ノズル室
36 圧力制御室

Claims (13)

  1. コモンレールと、コモンレールに連結された燃料噴射弁とを具備し、各燃料噴射弁から機関の一サイクル中に先の噴射と後の噴射の少なくとも二回の燃料噴射が行われ、先の噴射が行われてから後の噴射が行われるまでのインターバル時間によって後の噴射の目標値に対する変動量が変化する内燃機関の噴射制御装置において、レール圧が予め定められた基準レール圧のときに上記インターバル時間の増大に伴い基準の変動パターンに沿って変化する後の噴射の基準変動量が記憶されており、レール圧が基準レール圧でないときに上記基準変動量から後の噴射の変動量を求める際にはインターバル時間としてレール圧に応じ修正された修正インターバル時間が用いられ、該修正インターバル時間を用いて上記基準変動量から求められる後の噴射の変動量が予め定められた微少変動量よりも小さくなると判断されるときには後の噴射の変動量の算出作業を停止して後の噴射の変動量が零とされる内燃機関の燃料噴射装置。
  2. インターバル時間を修正するためにレール圧の関数である時間軸ゲインが記憶されており、該インターバル時間に該時間軸ゲインを乗算することによって修正インターバル時間が求められる請求項1に記載の内燃機関の燃料噴射装置。
  3. 修正インターバル時間を用いて基準変動量から後の噴射の変動量を算出したときに該変動量が上記微少変動量よりも小さいときにはその後同一の修正インターバル時間となる噴射状態のときには後の噴射の変動量の算出作業を停止して後の噴射の変動量が零とされる請求項1に記載の内燃機関の燃料噴射装置。
  4. 上記後の噴射の変動量が燃料噴射弁のニードル弁の開弁時期の変動量である請求項3に記載の内燃機関の燃料噴射装置。
  5. 上記後の噴射の変動量が燃料噴射弁のニードル弁の開弁時期の変動量に基づき算出された後の噴射の噴射量の変動量である請求項3に記載の内燃機関の燃料噴射装置。
  6. 上記後の噴射の変動量が後の噴射の噴射量の変動量である請求項3に記載の内燃機関の燃料噴射装置。
  7. 修正インターバル時間を用いて基準変動量から後の噴射の変動量を算出したときに該変動量が上記微少変動量よりも小さくなる修正インターバル時間の領域が予め記憶されており、修正インターバル時間が該領域内であるときには後の噴射の変動量の算出作業を停止して後の噴射の変動量が零とされる請求項1に記載の内燃機関の燃料噴射装置。
  8. 上記後の噴射の変動量が燃料噴射弁のニードル弁の開弁時期の変動量である請求項7に記載の内燃機関の燃料噴射装置。
  9. 上記後の噴射の変動量が後の噴射の噴射量の変動量である請求項7に記載の内燃機関の燃料噴射装置。
  10. 上記時間軸ゲインに加え、レール圧が基準レール圧でないときの後の噴射の変動量を上記基準変動量から求める際に基準変動量に乗算されるレール圧ゲインがレール圧の関数の形で記憶されており、上記時間軸ゲインおよびレール圧ゲインを用いて上記基準変動量から後の噴射の変動量が求められ、この変動量を用いて後の噴射の噴射量が目標値に制御される請求項1に記載の内燃機関の燃料噴射装置。
  11. 上記後の噴射の変動量が後の噴射の噴射量の変動量であり、レール圧が基準レール圧でないときの後の噴射の噴射量の変動量を上記基準変動量から求める際に基準変動量に乗算される噴射量ゲインが記憶されており、上記時間軸ゲインおよびレール圧ゲインに加え該噴射量ゲインを用いて上記基準変動量から後の噴射の噴射量の変動量が求められる請求項10に記載の内燃機関の燃料噴射装置。
  12. 上記基準変動量が燃料噴射弁のニードル弁の開弁時期の基準変動量と、後の噴射の噴射量の変動量全体からニードル弁の開弁時期の変動による噴射量の変動量を減算することにより得られる後の噴射の噴射量の基準変動量とからなる請求項1に記載の内燃機関の燃料噴射装置。
  13. ニードル弁の開弁時期の基準変動量から求められたニードル弁の開弁時期の変動量と、後の噴射の噴射量の基準変動量から求められた後の噴射の噴射量の変動量の双方により後の噴射の噴射指令パルス長が補正される請求項12に記載の内燃機関の燃料噴射装置。
JP2005030207A 2005-02-07 2005-02-07 内燃機関の燃料噴射装置 Active JP4274131B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030207A JP4274131B2 (ja) 2005-02-07 2005-02-07 内燃機関の燃料噴射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005030207A JP4274131B2 (ja) 2005-02-07 2005-02-07 内燃機関の燃料噴射装置

Publications (2)

Publication Number Publication Date
JP2006214402A JP2006214402A (ja) 2006-08-17
JP4274131B2 true JP4274131B2 (ja) 2009-06-03

Family

ID=36977819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030207A Active JP4274131B2 (ja) 2005-02-07 2005-02-07 内燃機関の燃料噴射装置

Country Status (1)

Country Link
JP (1) JP4274131B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526647A (ja) * 2011-09-20 2014-10-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の少なくとも1つの噴射弁の噴射特性を評価する方法及び内燃機関のための動作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042933B4 (de) 2008-10-17 2016-06-16 Hyundai Motor Company Verfahren und Vorrichtung zum Dosieren von in einen Brennraum eines Verbrennungsmotors einzuspritzendem Kraftstoff

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526647A (ja) * 2011-09-20 2014-10-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の少なくとも1つの噴射弁の噴射特性を評価する方法及び内燃機関のための動作方法
US9458809B2 (en) 2011-09-20 2016-10-04 Robert Bosch Gmbh Method for assessing an injection behaviour of at least one injection valve in an internal combustion engine and operating method for an internal combustion engine

Also Published As

Publication number Publication date
JP2006214402A (ja) 2006-08-17

Similar Documents

Publication Publication Date Title
JP3941761B2 (ja) 内燃機関の燃料噴射装置
JP3960283B2 (ja) 内燃機関の燃料噴射装置
US7021278B2 (en) Fuel injection system
JP4333709B2 (ja) 筒内噴射式内燃機関の制御装置
JP4407731B2 (ja) 燃料噴射制御装置
JP4737315B2 (ja) 燃料噴射状態検出装置
JP3972881B2 (ja) 内燃機関の燃料噴射制御装置
JP4483908B2 (ja) 燃料噴射制御装置
JP3695213B2 (ja) コモンレール式燃料噴射装置
JP5316525B2 (ja) セタン価推定装置
JP4996580B2 (ja) 燃料噴射装置
JP4605038B2 (ja) 燃料噴射装置
JP6156397B2 (ja) 内燃機関
JP4274131B2 (ja) 内燃機関の燃料噴射装置
JP2006258056A (ja) 内燃機関の燃料噴射装置
JP6087726B2 (ja) 燃料噴射特性検出装置
JP4020048B2 (ja) 内燃機関の燃料噴射装置
JP4269913B2 (ja) 蓄圧式燃料噴射装置
JPH10205383A (ja) ディーゼルエンジンの燃料噴射装置
JP4274130B2 (ja) 内燃機関の燃料噴射装置
JP2006219982A (ja) 内燃機関の燃料噴射装置
JP2833209B2 (ja) 内燃機関の燃料噴射量制御装置
JP2833210B2 (ja) 内燃機関の燃料噴射量制御装置
JP2009092075A (ja) 筒内噴射式内燃機関の制御装置
JP2882124B2 (ja) 内燃機関の燃料噴射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R151 Written notification of patent or utility model registration

Ref document number: 4274131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5