JP4273820B2 - 単結晶引き上げ方法 - Google Patents

単結晶引き上げ方法 Download PDF

Info

Publication number
JP4273820B2
JP4273820B2 JP2003112408A JP2003112408A JP4273820B2 JP 4273820 B2 JP4273820 B2 JP 4273820B2 JP 2003112408 A JP2003112408 A JP 2003112408A JP 2003112408 A JP2003112408 A JP 2003112408A JP 4273820 B2 JP4273820 B2 JP 4273820B2
Authority
JP
Japan
Prior art keywords
seed crystal
single crystal
diameter
heat generating
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003112408A
Other languages
English (en)
Other versions
JP2004315298A (ja
Inventor
英樹 渡邉
宮本  勇
俊幸 藤原
修一 稲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2003112408A priority Critical patent/JP4273820B2/ja
Priority to US10/820,885 priority patent/US7063743B2/en
Publication of JP2004315298A publication Critical patent/JP2004315298A/ja
Application granted granted Critical
Publication of JP4273820B2 publication Critical patent/JP4273820B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は単結晶引き上げ方法に関し、より詳細にはチョクラルスキー法(以下、CZ法と記す)に代表される引き上げ法により、シリコン等からなる単結晶を引き上げる際に使用される単結晶引き上げ方法に関する。
【0002】
【従来の技術】
現在、大規模集積回路(LSI)等の回路素子形成用基板の製造に使用されているシリコン単結晶の大部分は、CZ法により引き上げられている。引き上げ単結晶を無転位化する方法としては、結晶の直径を数mm程度にまで細くすることで無転位化を図る、ダッシュネック法と呼ばれる方法が一般的に用いられている。近年、引き上げ単結晶の大口径化に伴い、単結晶重量が大きくなってきており、細いネック部に掛かる荷重がシリコンの引張強度を超え、単結晶の引き上げ中に結晶が落下する虞れが大きくなってきている。
【0003】
上記虞れに対処するため、移動可能な補助加熱手段を用いて種結晶を予熱し、種結晶を溶融液に接触させる際の熱ショックによる導入転位を抑制し、ネック部を形成することなく引き上げ単結晶を無転位化する方法(特許文献1参照)や、ダッシュネック法による無転位化作業時にネック部を補助加熱手段を用いて加熱することにより、ネック部の温度分布を制御してネック部に作用する熱応力を軽減し、通常よりも太い直径のネック部でも引き上げ単結晶を無転位化できる方法(特許文献1参照)が開発されている。
【0004】
また、本件出願人は、坩堝に充填された溶融液の直上に位置した状態の種結晶を取り囲むように位置させ得る発熱部と、該発熱部を単結晶の通過領域より退避させる移動機構とを含んで構成された補助加熱手段を備えた単結晶引き上げ装置を先に提案している(特許文献2参照)。
【0005】
図5は、補助加熱手段を備えた従来の単結晶引き上げ装置を模式的に示した断面図である。また、図6(a)、(b)は、従来の単結晶引き上げ装置における補助加熱手段を構成する発熱部の形態を模式的に示した斜視図及び平面図である。
【0006】
図中21は、坩堝を示しており、坩堝21は、有底円筒形状をした石英製坩堝21aと、この石英製坩堝21aの外側に嵌合された、同じく有底円筒形状をした黒鉛製坩堝21bとから構成されており、坩堝21は、図中の矢印A方向に所定の速度で回転する支持軸28に支持されている。この坩堝21の外側には、抵抗加熱式のメインヒ−タ22、メインヒータ22の外側には保温筒27が同心円状に配置されており、坩堝21内には、このメインヒータ22により溶融される結晶用原料である溶融液23が充填されるようになっている。また、坩堝21の中心軸上には、引き上げ棒あるいはワイヤー等からなる引き上げ軸24が吊設されており、この引き上げ軸24の先に、保持具24aを介して種結晶35が取り付けられるようになっている。
【0007】
また、図中25は整流治具を示しており、整流治具25の本体部25aは逆円錐台側面形状を有すると共に、引き上げられた単結晶36を取り囲むように位置し、本体部25aの下端部が坩堝21内に充填される溶融液23面の上方近傍に位置させ得るように配設されている。
【0008】
また、図中26は補助加熱手段を示しており、補助加熱手段26の発熱部26aは、図6(a)、(b)に示すように、種結晶35の水平方向に関する外周長さの半分以上を取り囲むと共に種結晶35から退避するための開口部26bを有し、溶融液23の直上に位置した状態の種結晶35を取り囲み得るように配設されている。発熱部26aには、発熱部26aに電力を供給するとともに、発熱部25aを下降又は上昇させる際の角度を決定するための電極25cが接続されている。またネック部36a形成後、メインボディ部36cを形成する際に発熱部25aを単結晶36の通過領域より退避させるための移動機構(図示せず)が装備されており、発熱部26a、電極26b、及び移動機構を含んで補助加熱手段26が構成されている。なお発熱部26aにおける発熱領域を図6(b)中にハッチで示している。移動機構を除くこれらの部材は、圧力の制御が可能な水冷式のチャンバ29内に納められている。
【0009】
上記した単結晶引き上げ装置を用いて単結晶36を引き上げる方法を、図7に基づいて説明する。図7(a)〜(e)は、単結晶を引き上げる各工程のうちの一部の工程における、種結晶の近傍を模式的に示した部分拡大正面図である。
【0010】
図7には示していないが、まずチャンバ29内を減圧した後、不活性ガスを導入してチャンバ29内を減圧の不活性ガス雰囲気とし、その後メインヒータ22により結晶用原料を溶融させ、しばらく放置して溶融液23中のガスを十分に放出させる。
【0011】
次に、支持軸28と同一軸心で逆方向に所定の速度で引き上げ軸24を回転させながら、保持具24aに取り付けられた種結晶35を降下させて、種結晶35の予熱を行う(図7(a))。次に、種結晶35を降下させ、種結晶35の先端部35aを溶融液23に浸漬する(図7(b))。
次に補助加熱手段26によって種結晶35と溶融液23との界面を加熱しながら、種結晶35をさらに降下させて溶融液23に漬け込む(図7(c))。
【0012】
次に、所定の引き上げ速度で種結晶35を引き上げ、この種結晶35の下部にこれと略同様の直径のネック部36aを形成する。このとき補助加熱手段26の発熱部26aによりネック部36aと溶融液23との界面を加熱し、ネック部36aの温度分布に起因する熱応力を軽減させ、ネック部36aを無転位化させる(無転位化工程、図7(d))。
【0013】
次に、移動手段(図示せず)を駆動させて発熱部26aをネック部36aから退避させ、その後引き上げ軸24の引き上げ速度(以下、単に引き上げ速度とも記す)を落としてネック部36aを所定の径まで成長させ、ショルダー36bを形成する(ショルダー形成工程)。その後、一定の速度で引き上げ軸24を引き上げることにより、一定の径、所定長さのメインボディ36cを形成する(メインボディ形成工程、図7(e))。
その後、図7には示していないが、最後に急激な温度変化により単結晶36に高密度の転位が導入されないように、単結晶36の直径を徐々に絞って単結晶36全体の温度を徐々に降下させ、終端コーンを形成する。その後、単結晶36を溶融液23から切り離し、冷却して単結晶36の引き上げを完了させる。
【0014】
【特許文献1】
特開平11−189488号公報
【特許文献2】
特開2000−137986号公報
【0015】
【発明が解決しようとする課題】
上記した従来の単結晶引き上げ装置においては、補助加熱手段26の発熱部26aにより種結晶35と溶融液23との界面を加熱することにより、着液時の熱ショックが軽減され、着液時の導入転位数を減少させることができ、また、ネック部36aを加熱することによりネック部36aの径方向の温度勾配が小さくなり、熱応力が軽減され、ネック部36aでの転位除去能力が増大され、引き上げる単結晶の無転位化を図ることができるとしている。
【0016】
しかしながら、発熱部26aが平面視U字形状の抵抗加熱ヒータから構成されており、その発熱領域が種結晶35の水平方向に関する外周長さの50〜70%に設定されているので、発熱部26aからの熱が種結晶35との間の空隙から上方へ放射されやすく、種結晶35やネック部36aの鉛直方向の温度分布を小さくすることがやや困難で、その結果、熱応力が発生して、転位が導入される虞れも残っていたという課題があった。
【0017】
本発明は上記課題に鑑みなされたものであって、補助加熱手段を用いて種結晶及び/又はネック部を加熱して単結晶を引き上げる場合に、前記種結晶及び/又は前記ネック部の鉛直方向の温度勾配を極力小さくして、熱応力の発生を抑制し、転位の導入を阻止して、引き上げる単結晶の無転位化率をさらに向上させることのできる単結晶引き上げ方法を提供することを目的としている。
【0018】
【課題を解決するための手段及びその効果】
上記目的を達成するために本発明に係る単結晶引き上げ方法(1)は、溶融液が充填される坩堝、該坩堝の周辺に位置するヒータ、及び前記溶融液の直上に位置した状態の直径が8〜14mmの種結晶を取り囲むように位置させ得る発熱部と、該発熱部を単結晶の通過領域より退避させる移動機構とを含んで構成された補助加熱手段等を備えた単結晶引き上げ装置を用いて直径300mm以上の単結晶を引き上げる方法であって、前記種結晶の鉛直方向と平行に対面する前記発熱部と前記種結晶との間の空隙を覆う被覆部が前記発熱部から延設されている補助加熱手段を用いて前記種結晶を1380〜1420℃まで加熱して該種結晶を溶融液に浸漬させた後、直径7〜12mmのネック部を形成して単結晶を引き上げることを特徴としている。
【0019】
上記単結晶引き上げ方法(1)によれば、前記被覆部が前記発熱部から延設されている補助加熱手段を用いて前記種結晶を1380〜1420℃まで加熱して前記種結晶を溶融液に浸漬させた後、直径7〜12mmのネック部を形成して単結晶を引き上げるので、前記溶融液への着液前に前記種結晶の先端部を十分に加熱することができ、径方向の温度勾配を小さくすることができ、着液時の熱ショックによる転位の導入を阻止することができ、さらに前記被覆部により前記発熱部上方への放熱が抑制され、前記発熱部と前記種結晶との間における鉛直方向の熱分布を均一化させることができ、前記種結晶の鉛直方向の温度分布を小さくすることができる。その結果、前記種結晶の先端の成長界面の形状を下に凸形状とすることができ、熱応力が軽減され、転位の導入を阻止することができ、引き上げる単結晶の無転位化率を一層向上させることができる。また、前記種結晶からネック部が形成される場合でも、上記同様の効果を得ることができ、前記ネック部での転位除去能力を増大させることができ、転位を伝播させることなく直径300mm以上の単結晶を引き上げることができる。
【0020】
また本発明に係る単結晶引き上げ方法(2)は、上記単結晶引き上げ方法(1)において、前記被覆部保温部又は発熱部として機能させることを特徴としている。
【0021】
上記単結晶引き上げ方法(2)によれば、前記被覆部前記保温部として機能させることにより、前記被覆部から外部への放熱を抑制することができ、前記発熱部と前記種結晶との間における保温特性を向上させることができる。また、前記被覆部前記発熱部として機能させることにより、前記発熱部と前記種結晶との間における鉛直方向の熱分布をより一層均一化させることができる。
【0022】
また本発明に係る単結晶引き上げ方法(3)は、上記単結晶引き上げ方法(1)又は(2)において、前記被覆部前記種結晶を通過させるための第1の開口部を設け、該第1の開口部の直径前記種結晶の直径の1.25〜3.0倍の範囲で設定ることを特徴としている。
【0023】
上記単結晶引き上げ方法(3)によれば、前記第1の開口部の直径前記種結晶の直径の1.25〜3.0倍の範囲で設定るので、前記第1の開口部と前記種結晶との間の空隙から上方への放熱を抑制することができ、前記発熱部と前記被覆部とで覆われる前記種結晶や、該種結晶から形成されるネック部の鉛直方向の温度勾配を小さくすることができる。したがって、前記種結晶や前記ネック部の先端面の成長界面の形状を下に凸形状とすることができ、転位の伝播を抑制することができ、前記転位を効率よく排除することができる。
【0024】
なお、前記第1の開口部の直径が、前記種結晶の直径の3.0倍より大きくなると、前記第1の開口部と前記種結晶との間の空隙から上方への放熱が大きくなるため、前記種結晶や前記ネック部の鉛直方向の温度勾配が大きくなり、前記成長界面の形状を下に凸形状とすることが困難となり、転位の伝播を十分に抑制することができず、転位が導入されやすくなり、好ましくない。
また、前記第1の開口部の直径が、前記種結晶の直径の1.25倍より小さくなると、前記開口部において前記被覆部と前記種結晶とが接触する恐れがあり、好ましくない。
【0025】
また本発明に係る単結晶引き上げ方法(4)は、上記単結晶引き上げ方法(1)〜(3)のいずれかにおいて、前記発熱部及び前記被覆部前記種結晶の通過領域から退避させるための第2の開口部を設け、該第2の開口部の幅前記種結晶の直径の1.25〜3.0倍の範囲で設定ることを特徴としている。
【0026】
上記単結晶引き上げ方法(4)によれば、前記第2の開口部の幅前記種結晶の直径の1.25〜3.0倍の範囲で設定るので、前記第2の開口部から側方への放熱を抑制することができ、前記種結晶や該種結晶から形成されるネック部の水平方向(径方向)の温度勾配を小さくすることができる。したがって、前記種結晶や前記ネック部での熱応力が軽減され、転位の導入を効果的に阻止することができる。
【0027】
なお前記第2の開口部の幅が前記種結晶の直径の3.0倍より大きくなると、前記第2の開口部からの放熱が大きくなり、径方向の温度勾配が大きくなるため、前記種結晶及び前記ネック部での転位除去能力が低下し、新たな転位を誘発する熱応力の発生によって無転位化を図ることが困難となり、好ましくない。
また、前記第2の開口部の幅が前記種結晶の直径の1.25倍より小さくなると、前記種結晶からの退避時に前記開口部と前記種結晶とが接触する恐れがあり、好ましくない。
【0030】
【発明の実施の形態】
以下、本発明に係る単結晶引き上げ方法の実施の形態を図面に基づいて説明する。尚、図5に示した従来の単結晶引き上げ装置と同一の機能を有する構成部品については同一の符号を付してその説明を省略することとする。
本実施の形態に係る単結晶引き上げ方法は、12インチ(約300mm)以上の大口径、いわゆる大重量単結晶の引き上げを前提としている。
【0031】
図1は、実施の形態に係る単結晶引き上げ方法に用いる装置の要部を模式的に示した断面図であり、図2は、この装置における補助加熱手段の要部を模式的に示した図であり、(a)は平面図、(b)は正面図、(c)は(a)におけるC−C線断面図である。
【0032】
図中16は補助加熱手段を示しており、補助加熱手段16は、図2に示すように、溶融液23の直上に位置した状態の種結晶35を取り囲むように位置させ得る略円筒形状の発熱部16aと、発熱部16aの上端から内側斜め上方に延設された略円錐台側面形状の被覆部16dと、この発熱部16aに電力を供給するとともに、発熱部16aを下降又は上昇させる際の角度を決定するための電極16cと、ネック部36a形成後、メインボディ部36c(図4)を形成する際に被覆部16dが設けられた発熱部16aを単結晶36(図4)の通過領域より退避させるための移動機構(図示せず)とを含んで構成されている。
【0033】
発熱部16aと被覆部16dとには、種結晶35から退避させるための側面開口部16bが設けられている。また、略円錐台側面形状からなる被覆部16dの上面には、種結晶35やネック部36aを通過させるための上面開口部16eが設けられており、上面開口部16eと側面開口部16bとがつながるように形成されている。
【0034】
上面開口部16eの直径Dは、使用される種結晶35の直径の1.25〜3.0倍の範囲で設定される。また、側面開口部16bの幅Wも、使用される種結晶35の直径の1.25〜3.0倍の範囲で設定される。被覆部16dは、発熱部としてではなく保温部として機能するようになっている。
【0035】
補助加熱手段16の少なくとも発熱部16aと被覆部16dとは、炭素材及び炭素材の表面にコ−ティングされた炭化珪素材から形成されており、移動機構も炭素材及び炭素材の表面にコ−ティングされた炭化珪素材から形成されていることがより望ましく、このように補助加熱手段16を炭素材及び炭素材の表面にコ−ティングされた炭化珪素材から形成することにより、発熱部16aや被覆部16dが高温になっても、発熱部16aや被覆部16dから不純物が発生して引き上げられる単結晶36に悪影響を与えるといった事態の発生を阻止することができる。
【0036】
発熱部16a下端と溶融液23面とのギャップGは、溶融液23と発熱部16aとが接触しない程度でかつ種結晶35の先端部35aを着液前に効率よく高温化できる距離、例えば5〜30mmの範囲に設定し得るようになっている。ギャップGが5mm未満になると溶融液23との接触の恐れがあり、好ましくなく、また、ギャップGが30mmを越えると固液界面での転位の除去に必要な温度勾配の減少を実現しにくくなり、好ましくない。
【0037】
なお上記実施の形態に係る補助加熱手段16の被覆部16dは保温部として構成されているが、別の実施の形態に係る補助加熱手段では、被覆部が発熱部として構成されていてもよい。被覆部が発熱部として構成されることにより、発熱部16aと種結晶35との間の鉛直方向の熱分布をより均一化させることができ、発熱部16aと被覆部とにより覆われる種結晶35やネック部36aの鉛直方向の温度分布を一層均一化させることができる。
【0038】
また上記実施の形態では、被覆部16dとして、発熱部16aの上端から内側斜め上方に延設させた略円錐台側面形状のものを採用した場合について説明したが、被覆部16dの配設位置や形状は、上記実施の形態に限定されるものではなく、例えば、図3に示すように、発熱部16aの上部内壁から水平方向に保温部又は発熱部として延設されて被覆部16dが形成されていてもよく、要は種結晶35やネック部36aの鉛直方向の温度分布の均一化を図ることができるように、発熱部16aと種結晶35との間の空隙を覆うことができる形状の被覆部を発熱部から延設するようにすればよい。
【0039】
次に、上記実施の形態に係る単結晶引き上げ装置を用いた単結晶引き上げ方法について説明する。図4(a)〜(e)は、実施の形態に係る単結晶引き上げ方法の各工程のうちの、一部の工程を実施する際の、種結晶35の近傍を模式的に示した部分拡大正面図である。
以下に説明する工程以前の工程は、「従来の技術」の項で説明した方法と同様の方法で行う。
【0040】
支持軸28(図5)と同一軸心で逆方向に所定の速度で引き上げ軸24(図1)を回転させながら、保持具24a(図1)に取り付けられた種結晶35を溶融液23の直上まで降下させ、種結晶35の予熱を行い、種結晶35の先端部35aの温度を上昇させる(図4(a))。
【0041】
種結晶35の直径を小さくすることにより、先端部35aの熱容量が減少し、種結晶35を溶融液23に着液させる際の温度変化が容易となり、着液時の径方向の温度分布が小さくなり、作用する熱応力が軽減され、着液時の導入転位数を減少させることができるが、種結晶35の直径Dが8mm未満であると、12インチ程度の直径で300kgを超える重量の単結晶36を安定して支持するのが難しくなる。他方、種結晶35の直径Dが14mmを超えると、単結晶36を支持するのには十分であるが、種結晶35の径が大きすぎて補助加熱手段16を用いての均一加熱が困難となり、種結晶35に発生する熱応力が増大して転位を除去することが困難になる。従って、種結晶35の直径は8〜14mmの範囲で設定することが好ましい。
【0042】
前記予熱時間を5〜60分程度とることにより、種結晶35の先端部35aの温度が上昇し、1200〜1300℃程度の温度となる。着液前予熱時の溶融液23と種結晶35の先端部35aとの距離は、1〜30mmの範囲で設定することが好ましく、種結晶35を出来る限り溶融液23表面温度に近づけるために、より好ましくは5mm以下の距離に設定する。
【0043】
前記予熱の後、さらに種結晶35の先端部35aを補助加熱手段16の発熱部16aを用いて加熱し、先端部35aの温度を1380〜1420℃まで上昇させておく。種結晶35の先端部35aの温度が1380℃以上であれば、種結晶35を降下させて先端部35aを溶融液23に接触させる過程において、熱応力に起因する転位の発生を著しく抑制することができる。
【0044】
但し、種結晶35の先端部35aの温度が1420℃を超えると、種結晶35が補助加熱手段16に近い部分から溶融し始め、種結晶35を降下させて先端部35aを溶融液23に接触させる過程において、溶融液23の温度が予想よりも高い場合や、溶融液23の表面の温度変動が大きい場合に、溶断してしまう可能性もでてくる。
【0045】
次に、種結晶35を降下させ、種結晶35の先端部35aを溶融液23に着液させる(図4(b))。この着液時において、種結晶35の先端部35aは、溶融液23との温度差が小さくなっているので、温度差に起因して種結晶35中に発生する熱応力は小さい。そのため種結晶35として無転位のものを使用した場合には転位が導入されることはほとんどない。また、単結晶36の引き上げ中に有転位化した場合の単結晶36の再溶融後など、種結晶35に若干の転位を含む場合の再引き上げ時に、種結晶35を溶融液23へ再度接触させても転位が増殖、伸展することがない。
【0046】
次に、種結晶35の先端に結晶を成長させていくが、このとき後述するメインボディ36cの形成速度よりも速い速度で引き上げ軸24を引き上げ、単結晶36の成長界面(ネック部36aの先端面)の形状を下に凸形状としてネック部36aを形成する(図4(c))。本実施の形態に係る装置では、径が太くても転位除去可能なネック部36aを形成することができる。それは、育成中のネック部36aへの発熱部15aからの輻射量が増大するため、ネック部36a結晶内の熱分布を平面化し、熱応力が軽減されることにより、ネック部36aでの転位除去能力が増大するからである。
【0047】
ネック部6aの直径は7〜12mmが好ましく、12mmより大きいとネック部36aの育成中に平面的な熱分布が得られにくいため、熱応力が大きくなり、転位除去能力が低下してしまう。したがって、直径が8〜12mmの種結晶35を用いる場合には、種結晶35と同径のネック部36aを形成すればよく、また直径12mmを越える大きさの種結晶35を用いる場合には、ネック部36aが12mm以下となるように縮径させればよい。
【0048】
万一、種結晶35の溶融により完全に無転位化を図ることができずに転位が僅かに残った場合でも、ネック部36aの熱応力が低減されてネック部36aの形成中に転位が除去され、ネック部36a下部より成長させる単結晶36が確実に無転位化されるため、ネック部36aを引き上げる際には、補助加熱手段16を用いてネック部36a近傍を引き続き加熱することが望ましい。
【0049】
次に、補助加熱手段16への電力供給を停止し、発熱部16aをネック部36aの周囲から退避させた後、単結晶36を所定の径(12インチ程度)まで成長させて、ショルダー36bを形成する。この後、所定の引き上げ速度で単結晶36を引き上げて、メインボディ36cを形成する(図4(d)、(e))。
【0050】
その後は、「従来の技術」の項で説明した方法と略同様の方法により単結晶36を引き上げ、溶融液23から切り離して冷却させることにより単結晶36の引上げを完了する。
【0051】
なお、上記実施の形態では、CZ法に本発明を適用した場合について説明したが、本発明は何らCZ法への適用に限定されるものではなく、例えば磁場を印加するMCZ法にも同様に適用可能である。
また、上記実施の形態では、種結晶35が略円柱形状である場合について説明したが、別の実施の形態では種結晶が多角柱形状であっても良く、この場合もネック部36aの直径が7〜12mmの範囲になるようにすれば良い。
【0052】
また、上記実施の形態に係る単結晶引き上げ装置を用いて、種結晶35及びネック部36aのいずれにも発熱部16aによる加熱により輻射量が増大される場合の単結晶引き上げ方法についてのみ、ここでは説明しているが、種結晶35への輻射量だけを増大させて、ネック部36aを形成せずに単結晶36を引き上げることや、ネック部36aへの輻射量だけを増大させて、ネック部36aでの転位除去能力の増大を図ることにより、単結晶36を引き上げることができることは、言うまでもない。
【0053】
【実施例及び比較例】
以下、実施例及び比較例に係る単結晶引き上げ装置及び単結晶引き上げ方法を説明する。以下、その条件を記載する。
[実施例1〜20及び比較例1〜3に共通する条件]
結晶用原料の仕込み量 : 260kg
チャンバー29内の雰囲気 : Ar雰囲気
Arの流量 : 160リットル/分
炉内圧力 : 4×10 〜8×10 Pa
坩堝21の直径 : 813mm
引き上げる単結晶36の形状
直径 : 約300mm(約12インチ)
長さ : 約200mm
種結晶35の形状
直径 : 8、12、15、18mm
引き上げ回数 : 各条件×10回
【0054】
[比較例1〜3の条件]
比較例1〜3の場合、従来の加熱補助手段26(発熱部26aに被覆部が延設されておらず、発熱部26aにおける発熱領域が、種結晶35の水平方向に関する外周長さの50%のもの)を備えた単結晶引き上げ装置(図6)を用い、直径の異なる種結晶35を使用し、種結晶35と略同径のネック部36aを形成して単結晶36の引き上げを行った。
【0055】
[実施例1〜20の条件]
実施例1〜20の場合、図1に示した実施の形態に係る単結晶引き上げ装置を用い、直径の異なる種結晶35を使用し、種結晶35に対応させて被覆部16dの上面開口部16e径と、側面開口部16b幅とを変化させて、種結晶35と略同径のネック部36aを形成して単結晶36の引き上げを行った。なお、保温部材からなる被覆部16dと、発熱部材からなる被覆部とを各条件ごとに使用した。
【0056】
[試験方法(実施例1〜20及び比較例1〜3に共通)]
発熱部16aの下端と溶融液23とのギャップGを一定にして、種結晶35を溶融液23に着液した際に適温となるように発熱部16a又は発熱部16aと発熱部としての被覆部とを加熱する。その後、種結晶35を溶融液23上面から5mm程度上に位置させ、30分間予熱後着液させる。
安定後、種結晶35とほぼ同径のネック部36aを150mm育成し、ネック部36aより発熱部16aを退避させて、その後増径させてメインボディ36cを200mm育成し、この育成範囲で単結晶が有転位化し結晶軸の軸切れを生じなかった場合を無転位(DF:Dislocation Free)とした。
その後単結晶36を溶融液23中へ溶かし込み、溶融液23量を同一にして次サンプルの育成を開始した。
【0057】
下記の表1に、個別条件とそれぞれの場合の単結晶36のDF(Dislocation Free)率とを示している。なお、ここでの開口径比率は、種結晶35の直径に対する上面開口部16eの直径の比率を示し、開口幅比率は、種結晶35の幅(直径)に対する側面開口部16bの幅の比率を示している。
【表1】
Figure 0004273820
【0058】
表1に示した比較例1〜3の結果から明らかなように、従来型の平面視U字形状の発熱部26aを備えた比較例1〜3は、使用する種結晶35の径が大きくなると共にDF率が低下した。300kgの大重量結晶を安定に保持可能な直径8mmでのDF率は60%であった。また、直径14mmの種結晶を用いた比較例3ではDF率が0%となり、種結晶の直径が14mm以上になると、引き上げる単結晶を無転位化させることができなかった。
【0059】
実施例1〜4の結果から明らかなように、開口径比率及び開口幅比率が共に1.25に設定された場合、いずれの場合もDF率は100%となり良好であった。
また、実施例5〜8の結果から明らかなように、開口径比率が3.00、開口幅比率が1.25に設定された場合、種結晶35の径が8mmであれば、被覆部を保温部、発熱部のどちらにしてもDF率は100%となった(実施例5、6)。一方、種結晶35の径が14mmになると、発熱部としての被覆部とした場合(実施例8)では、DF率は100%であったが、保温部としての被覆部16dとした場合(実施例7)は、DF率は90%となった。これは、開口径比率を高めた分、上面開口部16eから上方への放熱が増え、保温部による保温効果が少し低下したためと考えられる。
【0060】
また、実施例9〜12の結果から明らかなように、開口径比率が4.00、開口幅比率が1.25に設定された場合、種結晶35の径が8mmであれば、被覆部を保温部、発熱部のいずれにしてもDF率は100%となり良好であった(実施例9、10)。一方、種結晶35の径が14mmで、発熱部としての被覆部とした場合(実施例12)、DF率は70%まで低下し、また保温部としての被覆部16dとした場合(実施例11)、DF率が50%にまで低下した。これは、開口径比率をさらに高めた分、上面開口部16eから上方への放熱がさらに増え、被覆部16dよる放熱抑制効果が小さくなったためと考えられる。また開口径比率を4.00まで高めると発熱部としての被覆部としても、種結晶35の鉛直方向の温度勾配を小さくすることができなくなった。
【0061】
また、実施例13〜16の結果から明らかなように、開口径比率が3.00、開口幅比率が3.00に設定された場合、種結晶35の径が8mmであれば、保温部としての被覆部16d(実施例13)、発熱部としての被覆部(実施14)のいずれであってもDF率は100%となり良好であった。また、種結晶35の径が14mmで、発熱部としての被覆部とした場合(実施例16)、DF率は100%であったが、保温部としての被覆部16dとした場合(実施例15)、DF率は90%となった。これは、開口径比率と開口幅比率とを高めた分、上面開口部16eから上方、側面開口部16bから側方への放熱が増え、保温部としての被覆部16dでは、その保温効果を十分発揮できなかったためと考えられる。
【0062】
また、実施例17〜20の結果から明らかなように、開口径比率が3.00、開口幅比率が4.00に設定された場合、種結晶35の径が8mmで、発熱部としての被覆部とした場合(実施例18)、DF率は90%となり、比較的良好であったものの、保温部としての被覆部16dとした場合(実施例17)、DF率は60%に低下した。また、種結晶35の径が14mmで、保温部としての被覆部16dとした場合(実施例19)、DF率は20%まで低下し、発熱部としての被覆部とした場合(実施例20)、DF率が50%にまで低下した。これは、開口径比率と開口幅比率をさらに高めた分、上面開口部16eから上方へ、また側面開口部16bから側方への放熱がさらに増え、被覆部による放熱抑制効果が小さくなったためと考えられる。また、開口径比率を4.00まで高めると発熱部としての被覆部としても、種結晶35の鉛直方向の温度勾配を小さくすることができなくなった。
【0063】
以上実施例1〜20と比較例1〜3とにおける結果から
▲1▼発熱部16aと種結晶35との間の空隙に被覆部16dを設けることによって、種結晶35やネック部36aでの鉛直方向の温度勾配が小さくなり、熱応力が軽減されることにより、転位除去能力を増大させることができ、被覆部が設けられていない比較例1〜3と比べて、径の大きな種結晶を用いた場合でも引き上げられる単結晶の無転位化率を向上できることが確認された。
▲2▼種結晶35の直径に対応して、適切な上面開口部16e径及び側面開口部16b幅を設定することにより、引き上げられる単結晶の無転位化率を向上させることが可能であることが確認された。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る単結晶引き上げ装置の要部を模式的に示した部分断面図である。
【図2】実施の形態に係る発熱部の形態を模式的に示した図であり、(a)は平面図、(b)は正面図、(c)は(a)におけるC−C線断面図である。
【図3】別の実施の形態に係る発熱部の形態を模式的に示した図であり、(a)は平面図、(b)は正面図、(c)は(a)におけるC−C線断面図である。
【図4】(a)〜(e)は、実施の形態に係る単結晶引き上げ装置を用いた単結晶引き上げ工程のうちの、一部を実施する際の、種結晶の近傍を模式的に示した部分拡大正面図である。
【図5】従来の単結晶引き上げ装置の要部を模式的に示した部分断面図である。
【図6】従来の発熱部の形態を模式的に示した図であり、(a)は斜視図、(b)は平面図である。
【図7】(a)〜(e)は、従来の単結晶引き上げ装置を用いた単結晶引き上げ工程のうちの、一部を実施する際の、種結晶の近傍を模式的に示した部分拡大正面図である。
【符号の説明】
16、16A、26 補助加熱手段
16a、26a 発熱部
16b 側面開口部
16d、16d 被覆部
16e 上面開口部
21 坩堝
22 メインヒータ
23 溶融液
35 種結晶
36 単結晶

Claims (4)

  1. 溶融液が充填される坩堝、該坩堝の周辺に位置するヒータ、及び前記溶融液の直上に位置した状態の直径が8〜14mmの種結晶を取り囲むように位置させ得る発熱部と、該発熱部を単結晶の通過領域より退避させる移動機構とを含んで構成された補助加熱手段等を備えた単結晶引き上げ装置を用いて直径300mm以上の単結晶を引き上げる方法であって、
    前記種結晶の鉛直方向と平行に対面する前記発熱部と前記種結晶との間の空隙を覆う被覆部が前記発熱部から延設されている補助加熱手段を用いて前記種結晶を1380〜1420℃まで加熱して該種結晶を溶融液に浸漬させた後、直径7〜12mmのネック部を形成して単結晶を引き上げることを特徴とする単結晶引き上げ方法。
  2. 前記被覆部を保温部又は発熱部として機能させることを特徴とする請求項1記載の単結晶引き上げ方法。
  3. 前記被覆部に前記種結晶を通過させるための第1の開口部を設け、該第1の開口部の直径を前記種結晶の直径の1.25〜3.0倍の範囲で設定することを特徴とする請求項1又は請求項2記載の単結晶引き上げ方法。
  4. 前記発熱部及び前記被覆部に前記種結晶の通過領域から退避させるための第2の開口部を設け、該第2の開口部の幅を前記種結晶の直径の1.25〜3.0倍の範囲で設定することを特徴とする請求項1〜3のいずれかの項に記載の単結晶引き上げ方法。
JP2003112408A 2003-04-11 2003-04-17 単結晶引き上げ方法 Expired - Lifetime JP4273820B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003112408A JP4273820B2 (ja) 2003-04-17 2003-04-17 単結晶引き上げ方法
US10/820,885 US7063743B2 (en) 2003-04-11 2004-04-09 Apparatus and method for pulling single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112408A JP4273820B2 (ja) 2003-04-17 2003-04-17 単結晶引き上げ方法

Publications (2)

Publication Number Publication Date
JP2004315298A JP2004315298A (ja) 2004-11-11
JP4273820B2 true JP4273820B2 (ja) 2009-06-03

Family

ID=33472619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112408A Expired - Lifetime JP4273820B2 (ja) 2003-04-11 2003-04-17 単結晶引き上げ方法

Country Status (1)

Country Link
JP (1) JP4273820B2 (ja)

Also Published As

Publication number Publication date
JP2004315298A (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
JP5413354B2 (ja) シリコン単結晶引き上げ装置及びシリコン単結晶の製造方法
JP3065076B1 (ja) 単結晶引き上げ方法及び単結晶引き上げ装置
JP2009114054A (ja) 酸素濃度特性が改善した半導体単結晶の製造方法
JPH10101482A (ja) 単結晶シリコンの製造装置および製造方法
US20030047130A1 (en) Process for eliminating neck dislocations during czochralski crystal growth
KR100717237B1 (ko) 균일한 열 이력을 갖는 단결정 실리콘을 제조하는 방법
JP3267225B2 (ja) 単結晶引き上げ方法、及び単結晶引き上げ装置
JP4917519B2 (ja) シリコン単結晶の製造方法
JP2973917B2 (ja) 単結晶引き上げ方法
US6755910B2 (en) Method for pulling single crystal
EP1538242B1 (en) Heater for crystal formation, apparatus for forming crystal and method for forming crystal
JP3050120B2 (ja) 単結晶引き上げ用種結晶及び該種結晶を用いた単結晶引き上げ方法
JPH09249486A (ja) 単結晶引き上げ方法
JP3016126B2 (ja) 単結晶の引き上げ方法
JP4273820B2 (ja) 単結晶引き上げ方法
JP3129187B2 (ja) 単結晶製造装置および単結晶製造方法
JP4389465B2 (ja) 単結晶引き上げ方法
WO1999037833A1 (fr) Appareil de tirage de cristal unique
JP2016204231A (ja) シリコン単結晶の製造方法
JP3721977B2 (ja) 単結晶引き上げ方法
JP2004292288A (ja) シリコン単結晶原料の溶解方法
KR100581045B1 (ko) 실리콘 단결정 제조방법
JP4055351B2 (ja) 結晶成長方法
KR20240039036A (ko) 단결정 실리콘 로드를 제조하기 위한 디바이스 및 방법
JPH09249489A (ja) 種結晶保持具及び該種結晶保持具を用いた単結晶の引き上げ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Ref document number: 4273820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term