JP4270872B2 - インピーダンスをモニターするシステム並びに方法 - Google Patents
インピーダンスをモニターするシステム並びに方法 Download PDFInfo
- Publication number
- JP4270872B2 JP4270872B2 JP2002573689A JP2002573689A JP4270872B2 JP 4270872 B2 JP4270872 B2 JP 4270872B2 JP 2002573689 A JP2002573689 A JP 2002573689A JP 2002573689 A JP2002573689 A JP 2002573689A JP 4270872 B2 JP4270872 B2 JP 4270872B2
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- frequency
- upper electrode
- impedance
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 54
- 238000012544 monitoring process Methods 0.000 title description 9
- 239000000523 sample Substances 0.000 claims description 77
- 238000012545 processing Methods 0.000 claims description 14
- 238000013480 data collection Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 description 21
- 239000007789 gas Substances 0.000 description 16
- 238000002847 impedance measurement Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 10
- 230000007935 neutral effect Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000004886 process control Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000003913 materials processing Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2617—Measuring dielectric properties, e.g. constants
- G01R27/2635—Sample holders, electrodes or excitation arrangements, e.g. sensors or measuring cells
- G01R27/2641—Sample holders, electrodes or excitation arrangements, e.g. sensors or measuring cells of plate type, i.e. with the sample sandwiched in the middle
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
- H01J37/32183—Matching circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32935—Monitoring and controlling tubes by information coming from the object and/or discharge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0046—Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
- G01R19/0061—Measuring currents of particle-beams, currents from electron multipliers, photocurrents, ion currents; Measuring in plasmas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Plasma Technology (AREA)
Description
システム14の高周波インピーダンス測定回路をCCシステムイ10と関連付けされた低周波回路から分離することにより、CCシステムイのプラズマインピーダンスが正確に測定されることができる。本発明において、この必要な分離は、ハイパスフイルター130により高電圧の低周波信号(並びにプラズマ40との相互作用により発生されるこの信号の調和成分)をCCシステムイ10からブロックしながら、下側電極(チャック)56をハイパスフイルター276を介して接地し、かつ、測定(プローブ)信号を高周波RF電源150から上側電極に通すことにより、なされる。プラズマは、測定周波数(例えば、150MHzないし600MHzの範囲)よりもかなり低い周波数(例えば、13.5MHzないし60MHz)で、発生されて維持されるので、この分離する回路(isolating circuit)は、非常に高い容量性インピーダンスを有するようにふるまい、かくして、プラズマ40に悪影響を与えないであろう。
Z=j(ωL−1/ωC)+R
ここで、ωは、角周波数であり、Cは、全直列容量であり、Lは、直列インダクタンスであり、Rは、抵抗であり、そして、j=(−1)1/2である。例えば、容量Cは、主にプラズマシース容量によるものであり、直径が200mmのワークピースを処理可能なシステムイに対してはCsheath≒ε0A/ds≒200pfにより近似される。Aは、平行プレート(即ち、電極50,56)の面積であり、また、ds=λD(2V0/T)1/2は、プラズマシースの厚さである。ここで、λDは、デバイ距離である。プラズマのインダクタンスは、L≒ωpe -2Co-1≒250pHにより適当に近似される。ここで、ωpeは、ωpe 2 =(ene/ε0m)により規定されるプラズマ周波数であり、Co=ε0A/dは、真空容量であり、そして,dは、平行プレート電極間の距離である。また、eは、電子の電荷であり、neは、電子数密度であり、そして、ε0は、自由空間の誘電率である。
X=[3.78 108x250 10-12−1/(3.78 108x200 10-12)]
=(0.1−13.2)Ω
前記CCシステムイのリアクタンスは、ほぼ純粋に容量性である。実際のCCシステムイにおいて、直列容量は、一般に、リアクタンスをさらに大きく、例えば、100Ωにする。この値は、CCシステムイの抵抗R〜1Ωよりもかなり大きい。これは、インピーダンスが非常に高い周波数、即ち、ωm=3.78x109 rad/sec(600MHz)、ここで、リアクタンスは。
=(0.95−1.32)=0.37Ω
となり、これは、ほとんど共振である、ことが測定されるのであれば、異なるであろう。この場合には、電圧と電流とは、位相がほとんど同じであり、ほとんど実数である。一般的に、周波数ωmのプローブ信号で、X=(ωmL−1/ωmC) R、CCシステムイがより正確に測定され得る。
RF電源66がターンオンされ、また、ガスが、チャンバ20の内部領域30中に導入されると、プラズマ40が、上側電極50と下側電極56との間のスペース60内に形成される。このときに、高周波回路は、プラズマ抵抗Rpと、プラズマインピーダンスLpと、シース容量Csと、システムイ抵抗Rcとを含む。かくして、測定されるインピーダンスは、以下のようになる。
上記式(1)並びに(2)は、プラズマインピーダンスZplasmaをコールドCCシステムイのインピーダンスから分離するのに使用される。システムイ抵抗Rcは、基板100からの抵抗を含み、これは、エッチングもしくは堆積のようなプラズマ処理の間に減少させ得る。一方、プラズマインピーダンスは、RF電力、ガス圧力、ガス流、プラズマの化学性、並びに上側電極50と下側電極56との間のスペースのような幾何学的パラメータに依存する。
ここで、ωmは、与えられる周波数、そして、γは、電子−中性粒子(electron−neutral)ωpである。後者のパラメータは、上側電極50に印加されるRF電力の大きさと、スペース60内のガス圧力とに依存する。複素プラズマインピーダンスZplasmaと、これらプラズマパラメータとの間のマッピングが、発生されて、プロセス制御コンピュータ270により処理される。
図4並びにこれのフローチャート600、及び図1を参照して、本発明の第1の実施の形態に係わる単一周波数のサンプリングとインピーダンス測定システム14を使用したCCシステムイ10でのプラズマ40のインピーダンスの測定方法が以下に説明される。この第1の実施の形態において、高周波RF電源150は、例えば、150MHzもしくは300MHzの単一周波数を発生できることのみで必要である。
Im{Zplasma}=Im{Zsys}−Im{Znp}−Im{Zsheath}≒ωmLp (7
b)
更に、更なる問が、プラズマインダクタンスLpとプラズマ抵抗Rpとを電子密度と電子―中性粒子衝突周波数とに関係付けることが必要である。
Rp≒Lpγ (8b)
ここで、両方の関係は、次のテキストから得られた。Principles of Plasma Discharges and Materials Processing, Lieberman & Lichtenburg, John Wiley and Sons, 1994, pgs. 327-386。
本発明の第2の実施の形態において、高周波RF源150は、例えば、約100MHzから300MHzまでの範囲に渡った複数の周波数で信号を発生することができる。この第2の実施の形態では、複数の周波数でスキャンされるプローブ信号が、単一の周波数でのプローブ信号で果たされることができるよりも、より正確にシステムインピーダンスを測定するのに使用されている。特に、プローブ周波数は、リアクテブインピーダンス小さくなる幾何学的共鳴によりスキャンされ得る。かくして、システムインピーダンス〈即ち、システム抵抗〉の実数部分の測定が、この第2の実施の形態では可能である。
Claims (25)
- 上側電極と下側電極とを有し、前記上部電極および下部電極の少なくとも一方にプラズマ発生RF信号が結合されるときに、前記上部電極と下部電極との間にプラズマを形成することの可能な容量結合型プラズマ反応炉システムでのインピーダンスを測定するための装置であって、
a)前記上側電極と電気的に接続され、前記プラズマ発生RF信号より高い周波数を有する電気的プローブ信号を発生させることが可能な高周波RF電源と、
b)前記上側電極と高周波RF電源との間に配設され、電気的プローブ信号の少なくとも100MHzの周波数の高周波成分を前記上側電極へと通し、前記プラズマ発生RF信号から前記高周波RF電源を分離するための第1のハイパスフイルターと、
c)前記高周波RF電源とハイパスフイルターとの間に配設され、前記プローブ信号の電流と電圧とを測定する電流―電圧プローブとを具備する装置。 - 前記電流―電圧プローブに電気的に接続された増幅器を更に具備する請求項1の装置。
- 前記増幅器に電気的に接続されたデータ収集ユニットを更に具備する請求項2の装置。
- 前記下側電極に電気的に接続されると共に接地された第2のハイパスフイルターを更に具備する請求項1の装置。
- 前記増幅器は、ロックイン増幅器である請求項2の装置。
- 前記データ収集ユニットは、アナログーデジタルコンバータである請求項3の装置。
- 前記高周波RF電源と電流―電圧プローブとは、同軸ラインにより接続されており、また、前記電流―電圧プローブは、前記同軸ラインに形成されている請求項1の装置。
- 前記高周波RF電源は、複数の異なる周波数を有する電気信号を発生することが可能である請求項1の装置。
- 前記プラズマ発生RF信号を生成するように構成された、前記高周波RF電源とは別の上側電極用のRF電源と、
接地された周波数特定路とを更に具備し、この接地された周波数特定路は、電気的プローブ信号の高周波成分に対して設置された低インピーダンス路として機能するが、上側電極用のRF電源により与えられる電力に対して高インピーダンス路として機能する、請求項1の装置。 - 前記データ収集ユニットに電気的に接続されたコンピュータを更に具備する請求項1の装置。
- 前記コンピュータは、また、容量結合型プラズマ反応炉システムにも電気的に接続されている請求項10の装置。
- 上側電極と下側電極とを有する容量結合型プラズマ反応炉システムでのインピーダンスを測定するための方法であって、
a)上側電極と下側電極との間にプラズマを形成しないで、上側電極に、前記プラズマ反応炉システムに印加されるプラズマ発生RF信号より高い周波数を有するプラズマ高周波プローブ信号を、少なくとも100MHzの周波数の高周波成分を前記上側電極へと通し、前記プラズマ発生RF信号から前記プラズマ高周波プローブ信号を分離するための第1のハイパスフイルターを通じて、上側電極に接続された電気ラインを介して伝送する工程と、
b)前記電気ラインで、プローブ信号の第1の電流と第1の電圧とを測定する工程と、
c)前記第1の電流と第1の電圧とから、プラズマが存在していないときのインピーダンスZnpを算出する工程と、
d)前記プラズマ発生信号を使用して、前記上側電極と下側電極との間にプラズマを形成する工程と、
e)プラズマの存在のもとでシステムインピーダンスZsysを算出する工程とを具備する方法。 - 前記算出する工程(e)は、前記電気ラインを通る上側電極へのプローブ信号の第2の電流と第2の電圧とを測定することを含む請求項12の方法。
- シースインピーダンスZ sheath の決定のために、前記電気ラインを通る上側電極へのプラズマ発生信号の基本RF周波数での電圧である第3の電圧を測定することを更に具備する請求項13の方法。
- シース厚さdsとシースインピーダンスZsheathとを決定することを更に具備する請求項14の方法。
- プラズマ電子密度Neと電子―中性粒子衝突周波数γとを算出することを更に具備する請求項15の方法。
- 前記工程(b)は、上側電極から伝送される低周波数電気信号をブロックする工程を有する請求項12の方法。
- 前記工程(b)は、前記電気ラインに直接に形成された電流―電圧プローブを使用してなされる請求項12の方法。
- ハイパスフイルターを前記下側電極に電気的に接続すると共に接地することを更に具備する請求項12の方法。
- 前記工程(b)は、前記プローブ信号を変調し、ロックイン増幅器により前記変調されたプローブ信号に同調された前記プローブ信号を検出することを更に含む請求項19の方法。
- 前記工程(b)は、前記第1の電流と第1の電圧とをデータ収集ユニットに伝送して、これに第1の電流と第1の電圧とをストアさせる工程を更に含む請求項12の方法。
- 前記工程(b)は、プラズマを発生させるのに使用される基本RF周波数の高調波間となるようにプローブ周波数を選定する工程を含む請求項12の方法。
- 前記プラズマ電子密度Neと電子―中性粒子衝突周波数γとを算出する工程の結果に基づいて、前記プラズマの特性を変えるための前記プラズマ処理システムの少なくとも1つの制御パラメータを調節することを更に具備する請求項16の方法。
- プローブ信号の周波数の範囲にわたって第1の電流と第1の電圧とを測定することと、
プローブ信号の周波数の範囲内のプラズマインピーダンスZpのための最小値を選定することとを更に具備する請求項12の方法。 - 前記選定する工程に基づいて、前記プラズマの特性を変えるための前記プラズマ処理システムの少なくとも1つの制御パラメータを調節することを更に具備する請求項24の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27610601P | 2001-03-16 | 2001-03-16 | |
PCT/US2002/005112 WO2002075332A1 (en) | 2001-03-16 | 2002-03-14 | Impedance monitoring system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004534351A JP2004534351A (ja) | 2004-11-11 |
JP4270872B2 true JP4270872B2 (ja) | 2009-06-03 |
Family
ID=23055187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002573689A Expired - Fee Related JP4270872B2 (ja) | 2001-03-16 | 2002-03-14 | インピーダンスをモニターするシステム並びに方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7019543B2 (ja) |
JP (1) | JP4270872B2 (ja) |
WO (1) | WO2002075332A1 (ja) |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6770166B1 (en) * | 2001-06-29 | 2004-08-03 | Lam Research Corp. | Apparatus and method for radio frequency de-coupling and bias voltage control in a plasma reactor |
US6919689B2 (en) * | 2002-09-26 | 2005-07-19 | Lam Research Corporation | Method for toolmatching and troubleshooting a plasma processing system |
US6873114B2 (en) * | 2002-09-26 | 2005-03-29 | Lam Research Corporation | Method for toolmatching and troubleshooting a plasma processing system |
EP1546827A1 (en) * | 2002-09-30 | 2005-06-29 | Tokyo Electron Limited | Method and apparatus for the monitoring and control of a semiconductor manufacturing process |
DE10259190B3 (de) * | 2002-12-18 | 2004-05-13 | Heidelberger Druckmaschinen Ag | Vorrichtung und Verfahren zum Unterscheiden von flachen Objekten |
US7216067B2 (en) * | 2002-12-31 | 2007-05-08 | Tokyo Electron Limited | Non-linear test load and method of calibrating a plasma system |
US7115210B2 (en) * | 2004-02-02 | 2006-10-03 | International Business Machines Corporation | Measurement to determine plasma leakage |
US7794663B2 (en) * | 2004-02-19 | 2010-09-14 | Axcelis Technologies, Inc. | Method and system for detection of solid materials in a plasma using an electromagnetic circuit |
US7326872B2 (en) * | 2004-04-28 | 2008-02-05 | Applied Materials, Inc. | Multi-frequency dynamic dummy load and method for testing plasma reactor multi-frequency impedance match networks |
US7105075B2 (en) * | 2004-07-02 | 2006-09-12 | Advanced Energy Industries, Inc. | DC power supply utilizing real time estimation of dynamic impedance |
US7871830B2 (en) * | 2005-01-19 | 2011-01-18 | Pivotal Systems Corporation | End point detection method for plasma etching of semiconductor wafers with low exposed area |
TWI298909B (en) * | 2005-04-12 | 2008-07-11 | Nat Univ Tsing Hua | An inductively-coupled plasma etch apparatus and a feedback control method thereof |
US7477711B2 (en) * | 2005-05-19 | 2009-01-13 | Mks Instruments, Inc. | Synchronous undersampling for high-frequency voltage and current measurements |
US7449637B2 (en) * | 2005-09-01 | 2008-11-11 | Barth Jon E | Pulse current sensor |
US7235978B2 (en) * | 2005-09-07 | 2007-06-26 | Matsushita Electric Industrial Co., Ltd. | Device for measuring impedance of electronic component |
US7799237B2 (en) * | 2006-05-25 | 2010-09-21 | Sony Corporation | Method and apparatus for etching a structure in a plasma chamber |
US7286948B1 (en) * | 2006-06-16 | 2007-10-23 | Applied Materials, Inc. | Method for determining plasma characteristics |
US20080084650A1 (en) * | 2006-10-04 | 2008-04-10 | Applied Materials, Inc. | Apparatus and method for substrate clamping in a plasma chamber |
TWI424524B (zh) * | 2006-10-04 | 2014-01-21 | Applied Materials Inc | 電漿腔室中用於基板夾持之設備與方法 |
JP4989276B2 (ja) * | 2007-03-30 | 2012-08-01 | 東京エレクトロン株式会社 | 測定システム |
US8373425B2 (en) * | 2007-04-06 | 2013-02-12 | Hypertherm, Inc. | Plasma insensitive height sensing |
CN101970166B (zh) * | 2007-12-13 | 2013-05-08 | 朗姆研究公司 | 等离子体无约束传感器及其方法 |
US7970562B2 (en) * | 2008-05-07 | 2011-06-28 | Advanced Energy Industries, Inc. | System, method, and apparatus for monitoring power |
US8901935B2 (en) * | 2009-11-19 | 2014-12-02 | Lam Research Corporation | Methods and apparatus for detecting the confinement state of plasma in a plasma processing system |
JP2013511814A (ja) * | 2009-11-19 | 2013-04-04 | ラム リサーチ コーポレーション | プラズマ処理システムを制御するための方法および装置 |
US8501631B2 (en) * | 2009-11-19 | 2013-08-06 | Lam Research Corporation | Plasma processing system control based on RF voltage |
JP5782824B2 (ja) * | 2011-05-18 | 2015-09-24 | 三菱電機株式会社 | 高周波特性測定装置 |
KR101295794B1 (ko) * | 2011-05-31 | 2013-08-09 | 세메스 주식회사 | 기판 처리 장치 |
US20130071581A1 (en) * | 2011-09-20 | 2013-03-21 | Jonghoon Baek | Plasma monitoring and minimizing stray capacitance |
DE102012000557A1 (de) * | 2012-01-16 | 2013-07-18 | Micronas Gmbh | Überwachungseinrichtung und Verfahren zur Überwachung eines Leitungsabschnittes mit einer Überwachungseinrichtung |
US9502216B2 (en) * | 2013-01-31 | 2016-11-22 | Lam Research Corporation | Using modeling to determine wafer bias associated with a plasma system |
US9368329B2 (en) | 2012-02-22 | 2016-06-14 | Lam Research Corporation | Methods and apparatus for synchronizing RF pulses in a plasma processing system |
US9114666B2 (en) | 2012-02-22 | 2015-08-25 | Lam Research Corporation | Methods and apparatus for controlling plasma in a plasma processing system |
US10128090B2 (en) | 2012-02-22 | 2018-11-13 | Lam Research Corporation | RF impedance model based fault detection |
US9171699B2 (en) * | 2012-02-22 | 2015-10-27 | Lam Research Corporation | Impedance-based adjustment of power and frequency |
US9462672B2 (en) | 2012-02-22 | 2016-10-04 | Lam Research Corporation | Adjustment of power and frequency based on three or more states |
US10325759B2 (en) | 2012-02-22 | 2019-06-18 | Lam Research Corporation | Multiple control modes |
US9390893B2 (en) | 2012-02-22 | 2016-07-12 | Lam Research Corporation | Sub-pulsing during a state |
US9842725B2 (en) | 2013-01-31 | 2017-12-12 | Lam Research Corporation | Using modeling to determine ion energy associated with a plasma system |
US9295148B2 (en) | 2012-12-14 | 2016-03-22 | Lam Research Corporation | Computation of statistics for statistical data decimation |
US9197196B2 (en) | 2012-02-22 | 2015-11-24 | Lam Research Corporation | State-based adjustment of power and frequency |
US9320126B2 (en) | 2012-12-17 | 2016-04-19 | Lam Research Corporation | Determining a value of a variable on an RF transmission model |
US10157729B2 (en) | 2012-02-22 | 2018-12-18 | Lam Research Corporation | Soft pulsing |
US9535100B2 (en) | 2012-05-14 | 2017-01-03 | Bwxt Nuclear Operations Group, Inc. | Beam imaging sensor and method for using same |
US9383460B2 (en) | 2012-05-14 | 2016-07-05 | Bwxt Nuclear Operations Group, Inc. | Beam imaging sensor |
US9673069B2 (en) * | 2012-07-20 | 2017-06-06 | Applied Materials, Inc. | High frequency filter for improved RF bias signal stability |
US9408288B2 (en) | 2012-09-14 | 2016-08-02 | Lam Research Corporation | Edge ramping |
US9779196B2 (en) | 2013-01-31 | 2017-10-03 | Lam Research Corporation | Segmenting a model within a plasma system |
US9620337B2 (en) | 2013-01-31 | 2017-04-11 | Lam Research Corporation | Determining a malfunctioning device in a plasma system |
US9107284B2 (en) | 2013-03-13 | 2015-08-11 | Lam Research Corporation | Chamber matching using voltage control mode |
US9119283B2 (en) | 2013-03-14 | 2015-08-25 | Lam Research Corporation | Chamber matching for power control mode |
CN103257278A (zh) * | 2013-04-24 | 2013-08-21 | 兰州空间技术物理研究所 | 一种介质材料电导率测试装置及方法 |
US9720022B2 (en) | 2015-05-19 | 2017-08-01 | Lam Research Corporation | Systems and methods for providing characteristics of an impedance matching model for use with matching networks |
US9460894B2 (en) * | 2013-06-28 | 2016-10-04 | Lam Research Corporation | Controlling ion energy within a plasma chamber |
US9502221B2 (en) | 2013-07-26 | 2016-11-22 | Lam Research Corporation | Etch rate modeling and use thereof with multiple parameters for in-chamber and chamber-to-chamber matching |
US9594105B2 (en) | 2014-01-10 | 2017-03-14 | Lam Research Corporation | Cable power loss determination for virtual metrology |
US10950421B2 (en) | 2014-04-21 | 2021-03-16 | Lam Research Corporation | Using modeling for identifying a location of a fault in an RF transmission system for a plasma system |
US9851389B2 (en) | 2014-10-21 | 2017-12-26 | Lam Research Corporation | Identifying components associated with a fault in a plasma system |
US9536749B2 (en) | 2014-12-15 | 2017-01-03 | Lam Research Corporation | Ion energy control by RF pulse shape |
WO2017066658A1 (en) * | 2015-10-16 | 2017-04-20 | Massachusetts Institute Of Technology | Non-intrusive monitoring |
US20170127506A1 (en) * | 2016-01-23 | 2017-05-04 | Hamid Reza Ghomi Marzdashty | Generation of dielectric barrier discharge plasma using a modulated voltage |
US11166762B2 (en) * | 2016-06-28 | 2021-11-09 | Chiscan Holdings, L.L.C. | Non-thermal plasma generator for detection and treatment of maladies |
US11432732B2 (en) | 2016-06-28 | 2022-09-06 | Chiscan Holdings, Llc | System and method of measuring millimeter wave of cold atmospheric pressure plasma |
CN106199285B (zh) * | 2016-08-20 | 2023-05-16 | 福州大学 | 任意交流载波下的电容特性测量设备及其测量方法 |
CZ2017613A3 (cs) * | 2017-10-04 | 2018-10-24 | Univerzita PalackĂ©ho v Olomouci | Způsob měření impedance deponované vrstvy ve výbojovém plazmatu a zařízení k provádění tohoto způsobu |
US10510512B2 (en) * | 2018-01-25 | 2019-12-17 | Tokyo Electron Limited | Methods and systems for controlling plasma performance |
US10304663B1 (en) * | 2018-07-19 | 2019-05-28 | Lam Research Corporation | RF generator for generating a modulated frequency or an inter-modulated frequency |
CN109870612A (zh) * | 2019-01-23 | 2019-06-11 | 杭州川源科技有限公司 | 一种电阻测试设备 |
SE544676C2 (en) | 2020-04-06 | 2022-10-11 | Ionautics Ab | Method for monitoring process conditions of, and method for controlling, a plasma pvd process |
JP2022044209A (ja) * | 2020-09-07 | 2022-03-17 | 東京エレクトロン株式会社 | プラズマ処理装置及びプラズマ処理方法 |
DE102022105284B4 (de) * | 2022-03-07 | 2024-05-08 | TRUMPF Werkzeugmaschinen SE + Co. KG | Maschinelle Handhabungsvorrichtung und Verfahren zum Handhaben eines elektrisch leitfähigen Blechwerkstücks sowie maschinelle Anordnung für die Blechbearbeitung |
CN116697875B (zh) * | 2023-08-07 | 2023-10-13 | 湖南大学 | 一种基于电学特性的热泵霜监测系统及其化霜方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2463975A1 (fr) * | 1979-08-22 | 1981-02-27 | Onera (Off Nat Aerospatiale) | Procede et appareil pour la gravure chimique par voie seche des circuits integres |
FR2633399B1 (fr) * | 1988-06-24 | 1990-08-31 | Commissariat Energie Atomique | Procede et dispositif de determination de l'impedance d'une decharge dans un reacteur a plasma associe a une boite d'accord et application a la regulation de l'impedance ou du flux ionique dans ce reacteur |
DE3923661A1 (de) * | 1989-07-18 | 1991-01-24 | Leybold Ag | Schaltungsanordnung fuer die anpassung der impedanz einer plasmastrecke an einen hochfrequenzgenerator |
JP3149272B2 (ja) * | 1991-12-10 | 2001-03-26 | 幸子 岡崎 | 大気圧グロー放電プラズマのモニター方法 |
US5576629A (en) * | 1994-10-24 | 1996-11-19 | Fourth State Technology, Inc. | Plasma monitoring and control method and system |
US6036878A (en) * | 1996-02-02 | 2000-03-14 | Applied Materials, Inc. | Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna |
US6174450B1 (en) * | 1997-04-16 | 2001-01-16 | Lam Research Corporation | Methods and apparatus for controlling ion energy and plasma density in a plasma processing system |
US6027601A (en) * | 1997-07-01 | 2000-02-22 | Applied Materials, Inc | Automatic frequency tuning of an RF plasma source of an inductively coupled plasma reactor |
KR100560886B1 (ko) * | 1997-09-17 | 2006-03-13 | 동경 엘렉트론 주식회사 | 가스 플라즈마 프로세스를 감시 및 제어하기 위한 시스템및 방법 |
JP3497091B2 (ja) * | 1998-07-23 | 2004-02-16 | 名古屋大学長 | プラズマ生成用高周波パワーの制御方法、およびプラズマ発生装置 |
US7288942B2 (en) * | 2003-10-02 | 2007-10-30 | Naoyuki Sato | Plasma potential measuring method and apparatus, and plasma potential measuring probe |
-
2002
- 2002-03-14 JP JP2002573689A patent/JP4270872B2/ja not_active Expired - Fee Related
- 2002-03-14 WO PCT/US2002/005112 patent/WO2002075332A1/en active Application Filing
- 2002-03-14 US US10/469,986 patent/US7019543B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2002075332A1 (en) | 2002-09-26 |
JP2004534351A (ja) | 2004-11-11 |
US20040135590A1 (en) | 2004-07-15 |
US7019543B2 (en) | 2006-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4270872B2 (ja) | インピーダンスをモニターするシステム並びに方法 | |
JP3977114B2 (ja) | プラズマ処理装置 | |
JP3665265B2 (ja) | プラズマ処理装置 | |
US9911577B2 (en) | Arrangement for plasma processing system control based on RF voltage | |
JP2872954B2 (ja) | 絶対プラズマパラメータを決定する方法およびその装置 | |
US8241457B2 (en) | Plasma processing system, plasma measurement system, plasma measurement method, and plasma control system | |
JP5150053B2 (ja) | プラズマ処理装置 | |
KR20100004065A (ko) | 플라즈마처리장치 및 플라즈마처리방법 | |
KR100749169B1 (ko) | 플라즈마처리장치 | |
JP2011014579A (ja) | プラズマ処理装置及びプラズマ処理方法 | |
KR100937164B1 (ko) | 공정 모니터링 장치와 그 방법 | |
JPH06215893A (ja) | 高周波励起プラズマの計測装置 | |
US20040134614A1 (en) | Apparatus and method of improving impedance matching between an rf signal and a multi- segmented electrode | |
Law et al. | Remote-coupled sensing of plasma harmonics and process end-point detection | |
US20230305045A1 (en) | System and method for non-invasive sensing of radio-frequency current spectra flowing in a plasma processing chamber | |
US20230335382A1 (en) | Non-invasive measurement of plasma systems | |
US11488802B2 (en) | Semiconductor device for condition-controlled radio frequency system | |
KR101994036B1 (ko) | 플라즈마 측정 장치 | |
TW202416337A (zh) | 原位電場偵測方法及設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090127 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150306 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |