JP4267982B2 - 光導波路付き配線基板 - Google Patents

光導波路付き配線基板 Download PDF

Info

Publication number
JP4267982B2
JP4267982B2 JP2003306994A JP2003306994A JP4267982B2 JP 4267982 B2 JP4267982 B2 JP 4267982B2 JP 2003306994 A JP2003306994 A JP 2003306994A JP 2003306994 A JP2003306994 A JP 2003306994A JP 4267982 B2 JP4267982 B2 JP 4267982B2
Authority
JP
Japan
Prior art keywords
optical waveguide
relaxation layer
wiring
optical
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003306994A
Other languages
English (en)
Other versions
JP2005077644A (ja
Inventor
猛 大野
正樹 大野
敏文 小嶋
俊和 堀尾
彩子 川村
俊克 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003306994A priority Critical patent/JP4267982B2/ja
Publication of JP2005077644A publication Critical patent/JP2005077644A/ja
Application granted granted Critical
Publication of JP4267982B2 publication Critical patent/JP4267982B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、表面付近に光導波路を有する光導波路付き配線基板に関する。
信号伝送速度や信号処理速度を高めるため、配線基板の電気配線に例えば高周波信号を流す試みが行われている。しかし、電気配線に高周波信号を流した場合、その付近にノイズや電磁波が発生するため、周囲で誤動作などを招くおそれがある。かかる問題を解決するため、電気配線またはその一部を光配線に置き換えた光導波路付き配線基板が検討されている。
例えば、基板上に十分な密着強度でシロキサンポリマからなる光導波路を形成するため、基板と光導波路との間に同様のポリマからなるバッファ層を配置した光導波路基板が提案されている(例えば、特許文献1参照)。
また、長期間使用した際でもクラックの発生を防ぐため、基板上に応力緩和層を介して、下部クラッド層、コア、および上部クラッド層を形成した高分子光導波路も提案されている(例えば、特許文献2参照)。
特開2002−341162号公報 (第1〜7頁、図1) 特開2001−264562号公報 (第1〜6頁、図1)
前記光導波路基板や高分子光導波路によれば、基板上に光導波路を形成する際、かかる光導波路に応力が残りにくい点において、信頼性を有する。
しかしながら、例えば基板の表面上に形成した光導波路の上に光素子や動作素子を搭載する場合、かかる光導波路を形成する上部クラッド層と上記素子との間における応力が残留する。このため、上部クラッド層にクラックが生じたり、上記光素子の搭載すべき位置がずれて、光導波路との間における光信号の授受が不安定になり得る、という問題があった。
本発明は、以上において説明した背景技術の問題点を解決し、絶縁性基板とその表面上方に配置する光導波路との間における応力の緩和を一層向上し、信頼性の高い光導波路付き配線基板を提供する、ことを課題とする。
本発明は、上記課題を解決するため、絶縁性基板とその表面上方に配置する光導波路との間における応力を、かかる光導波路の上下においてそれぞれ緩和する、ことに着想して成されたものである。
即ち、本発明の光導波路付き配線基板(請求項1)は、表面を有する絶縁性基板と、かかる絶縁性基板の表面上方に配置され且つ熱膨張率が上記絶縁性基板の熱膨張率よりも高い光導波路と、上記絶縁性基板の表面と光導波路との間およびかかる光導波路の上方に形成され、且つ熱膨張率が上記絶縁性基板と上記光導波路との中間である下緩和層および上緩和層と、を含み、前記下緩和層および上緩和層の何れか一方の表面上に、光素子および該光素子に導通する動作素子が実装され、上記下緩和層には、上記動作素子と導通するビア導体が貫通している、ことを特徴とする。
尚、上記絶縁性基板は、例えば熱膨張率が約15ppm/K以下のセラミックまたは樹脂からなる。また、上記光導波路は、例えばクラッドおよびこれに内蔵されるコアの2重構造体で、熱膨張率が約60〜120ppm/Kのアクリル系、エポキシ系、またはポリシラン系樹脂からなる。
更に、上・下緩和層は、例えばワニスをスピンコートし更に硬化したもの、具体的にはドライフィルムを貼り付けてプレス硬化したもので、熱膨張率が約20〜65ppm/Kである。
また、本発明には、前記上緩和層は、前記光導波路の両端に位置する反射ミラー面の上方の位置に一対の透孔を形成しており、かかる一対の透孔の上方で且つ上緩和層の表面上に前記光素子がそれぞれ実装されている、光導波路付き配線基板(請求項2)も含まれる。
上記光素子は、光電変換素子の発光素子および受光素子であって、例えばSiやGaAsなどからなり、その熱膨張率は、約6ppm/K以下である。
付言すれば、前記上緩和層は、前記光導波路の両端に位置する反射ミラー面の上方の位置に一対の透孔を形成しており、かかる一対の透孔の上方で且つ上緩和層の表面上に、前記絶縁性基板の熱膨張率よりも低い熱膨張率である光素子がそれぞれ実装されている、光導波路付き配線基板も含まれ得る。
更に、本発明には、前記光素子に隣接し且つ前記光導波路と反対側の前記上緩和層の表面上に当該光素子と導通する前記動作素子が実装されている、光導波路付き配線基板(請求項3)も含まれる。
尚、上記動作素子は、これと導通する光素子に対し、電気信号から所定の光信号への変換指令、あるいは、光信号から所定の電気信号への変換指令を出して動作せしめるもので、例えば上記指令を形成する動作回路などを内蔵するICチップなどの電子部品が用いられる。また、互いに導通する動作素子と光素子とは、両者同数の形態に限ら、複数の光素子に対して個別に異なる指令を出し得る1つの動作素子を用いる形態としても良い。
前記光導波路付き配線基板(請求項1)によれば、光導波路と絶縁性基板との間および当該光導波路の上方に両者の熱膨張率の中間の熱膨張率を有する下緩和層および上緩和層が個別に配置される。このため、熱膨張しにくい絶縁性基板と熱膨張し易い光導波路の間は基より、かかる光導波路と上緩和層との間における応力を低減して緩和することができる。従って、温度変化を伴う環境下で長期間にわたり使用する場合や、光導波路の上方に熱膨張率の低い光素子や動作素子を実装する場合でも、光導波路の変形やクラックなどを防止できるため、安定した光信号の授受が可能となり、信頼性の高い光導波路付き配線基板とすることが可能となる。
また、前記光導波路付き配線基板(請求項2)によれば、絶縁性基板と光導波路との間に両者の熱膨張率の中間の熱膨張率である下緩和層が位置し、且つ光導波路と光素子との間に両者の熱膨張率の中間の熱膨張率である上緩和層が位置しているため、厚み方向において段階的な熱膨張構造となる。従って、温度変化を伴う環境下において長期間使用しても、光導波路に応力が加わりにくなるため、変形やクラックなどを防止でき、安定した光信号の授受が可能となる。
更に、前記光導波路付き配線基板(請求項3)によれば、光導波路の上方に光素子と共にこれを動作せしめる動作素子が実装されるため、光素子および光導波路を介して光信号の伝送を確実に行える。また、動作素子の熱膨張率が前記絶縁性基板のそれと同等であっても、光導波路に対して応力を加えにくくできる。
以下において、本発明を実施するための形態について説明する。
図1は、本発明における1形態の光導波路付き配線基板K1の断面を示す。
かかる光導波路付き配線基板K1は、図1に示すように、平坦な表面2を有する絶縁性基板1、かかる表面2の上方に配置され且つ熱膨張率が絶縁性基板1よりも高い光導波路C、かかる光導波路Cと上記絶縁性基板1と間に形成される下緩和層11、および上記光導波路Cの上方に形成される上緩和層26を備える。かかる下緩和層11および上緩和層26の熱膨張率は、上記絶縁性基板1と光導波路Cとの中間である。
図1に示すように、絶縁性基板1は、熱膨張率が約6ppm/Kのガラス−セラミック、熱膨張率が約7ppm/Kのアルミナ、または熱膨張率が約4.5ppm/Kの窒化アルミニウム(AlN)からなるセラミック層S1〜S4を積層したものである。かかる絶縁性基板1の表面2、裏面3、およびセラミック層S1〜S4の間には、Agなどからなる所定パターンの配線層6〜8などが形成されている。尚、裏面3の配線層10は、接続端子(表面電極)である。
また、配線層6〜10は、セラミック層S1〜S4を貫通するAgなどからなるビア導体vを介して接続されている。尚、セラミック層S1〜S4の厚みは、約0.2mm、配線層6などの厚みは、約15μmである。また、絶縁性基板1は、4枚のグリーンシートやその表面に印刷などにより所定パターンで形成した導電性ペーストなどを用いて、公知の製造方法で形成したものである。
図1に示すように、光導波路Cは、断面矩形のクラッド20と、かかるクラッド20に内蔵された断面正方形を呈する複数のコア22との2重構造体であり、左右の両端には45度の反射ミラー面24が対称に形成されている。かかるクラッド20およびコア22は、熱膨張率が約70〜90ppm/Kのアクリル系樹脂(例えばPMMA)、熱膨張率が約60〜70ppm/Kのエポキシ系樹脂、または熱膨張率が約100〜120ppm/Kのポリシラン系樹脂からなり、光の屈折率においてクラッド20は、コア22よりも約0.3〜5%低い。
尚、コア22の一辺は、約50μmである。また、反射ミラー面24は、光の反射が可能な範囲で、30〜60度の傾斜角が適宜選定される。
図1に示すように、絶縁性基板1の表面2上には、厚みが約40μmの下緩和層11が形成され、かかる下緩和層11の表面12に上記光導波路Cが形成されている。かかる光導波路Cを除いた表面12上には、接続端子の配線4と、接続配線5とが形成され、配線4と前記絶縁性基板1の配線層6との間は、かかる下緩和層11を貫通するビア導体vを介して接続されている。光導波路Cは、下緩和層11の表面12に直に接着するか、かかる表面12に立設する図示しない複数の金属ピンを貫通させることで位置固定されている。
図1に示すように、両端の反射ミラー面24付近を除く光導波路Cの上方には、厚みが約40μmの上緩和層26が形成されている。下緩和層11および上緩和層26は、例えばエポキシ系またはエポキシアクリレート系樹脂やワニスをスピンコートして硬化したものであり、それらの熱膨張率は、絶縁性基板1と光導波路Cとの中間(約20〜65ppm/K)である。
図1に示すように、左側の配線4と接続配線5の一端とに、ハンダhを介してICチップ(動作素子)14aの接続端子13,15を接続することで、かかるICチップ14aを緩和層11の表面12上に実装している。また、接続配線5の他端にハンダhを介して発光素子(光素子)16の接続端子17を接続することで、かかる発光素子16を表面12上に実装している。尚、発光素子16の図示しない発光部は、光導波路Cの左端の反射ミラー面24の真上に位置している。
図1に示すように、右側の配線4と接続配線5の一端とに、ハンダhを介してICチップ(動作素子)14bの接続端子13,15を接続することで、かかるICチップ14bを緩和層11の表面12上に実装している。また、接続配線5の他端にハンダhを介して受光素子(光素子)18の接続端子19を接続することで、かかる受光素子18を表面12上に実装している。尚、受光素子18の図示しない受光部は、光導波路Cの右端の反射ミラー面24の真上に位置している。
ICチップ14a,14bは、配線4やビア導体vなどを介して、絶縁性基板1内から所要の電力を予め供給されている。図1で左側のICチップ14aは、所定の動作を指示する電気信号を、接続配線5、ハンダh、および接続端子17を介して、発光素子16に伝送する。そして、図1中の矢印で示すように、発光素子16から発光された光信号は、左側の反射ミラー面24に反射して光導波路Cのコア22中をその周面に多重反射しつつ右方向に伝送される。かかる光信号は、コア22中から右側の反射ミラー面24に反射して、受光素子18に伝送され、電気信号に変換された後、接続配線5などを経て右側のICチップ14bに伝送される。この結果、ICチップ14a,14b間の信号伝送を、上記経路で且つ光信号を介して高速度で行うことができる。
尚、図1において、ICチップ14a,14bおよび発光素子16と受光素子18とを、それぞれ左右反対に配置(実装)することで、上記と反対の経路で光信号を介したICチップ14a,14b間の信号伝送を高速度行うこともできる。
また、図1において、ICチップ14a,14bの奥行き方向に隣接して新たなICチップ14b,14aを前記同様に配置(実装)し、且つ発光素子16および受光素子18の奥行き方向に隣接して新たな受光素子18および発光素子16を前記同様に配置しても良い。かかる複数組のICチップ14a,14b、発光素子16、および受光素子18と、光導波路Cの複数のコア22とにより、図1で左右の双方から電気信号を光信号を介して反対側に高速度で伝送可能となる。
以上のような光信号を伝送する光導波路Cを用いる高速度の信号伝送を、温度変化を伴う環境下で長期間にわたり行っても、かかる光導波路Cと絶縁性基板1との間に下緩和層11が位置し、且つ当該光導波路Cの上方に上緩和層26が位置しているため、光導波路Cに加わる応力が確実に緩和される。即ち、熱膨張し易い光導波路Cは、熱膨張しにくい絶縁性基板1との間の下緩和層11により受ける応力を低減されるだけでなく、それらと反対側の上緩和層26によっても受ける応力が相殺されて低減される。このため、光導波路Cのクラッド20やコア22に変形や割れが生じにくくなり、安定した光信号の伝送が可能となるため、信頼性の高い光導波路付き配線基板K1となる。
尚、光導波路付き配線基板K1は、その絶縁性基板1の裏面3に設けた配線層10を介して、図示しないマザーボードなどのプリント基板上に実装される。
図2は、前記配線基板K1の変形形態である光導波路付き配線基板K2の断面を示す。かかる配線基板K2は、図2に示すように、絶縁性基板30と、その表面(第1主面)42aに形成された下緩和層46と、その表面46aの中央付近に形成された光導波路Cと、かかる光導波路Cの両端部を除く上方に形成された上緩和層26と、を備えている。
図2に示すように、絶縁性基板30は、熱膨張率が約15ppm/Kの例えばエポキシ系樹脂とガラスクロスの複合材料とからなるコア基板31、その表面32上方に形成した絶縁層38,42、およびコア基板31の裏面33に形成したソルダーレジスト層(絶縁層)39を含んでいる。コア基板31は、厚みが約0.8mmで、その表面32と裏面33との間を貫通する複数のスルーホール34には、ほぼ円筒形で銅メッキ膜からなるスルーホール導体35が個別に形成され、かかるスルーホール導体35の内側に充填樹脂36が形成されている。
図2に示すように、コア基板31の表面32には、銅メッキ膜からなり且つ所定パターンを有する配線層40が形成され、前記スルーホール導体35の上端と導通している。また、絶縁層38,42間には、上記同様の配線層44が、絶縁層42と緩和層46との間には、上記同様の配線層48が形成されている。更に、配線層40,44,48間は、絶縁層38,42に形成したフィルドビア導体v(以下、ビア導体vとする)を介して導通されている。尚、絶縁層38,42の厚みは約40μmであり、配線層40などの厚みは約15μmである。
一方、図2に示すように、コア基板31の裏面33には、銅メッキ膜からなる所定パターンの配線層41が形成され、かかる配線層41は、前記スルーホール導体35の下端と接続されている。かかる配線層41と裏面33の下方には、厚みが約30μmのソルダーレジスト層39が形成され、その表面(第2主面)49に開口する開口部43の底面には、上記配線層41から延びた配線45が位置する。かかる配線(接続端子)45は、その表面にNiメッキおよびAuメッキが被覆され、図示しないマザーボードなどのプリント基板との接続に活用される。
下緩和層46は、厚みが約40μmで、エポキシ系の樹脂フィルムを貼り付けるか、ワニスをスピンコートした後で硬化させたもので、図2に示すように、かかる下緩和層46の表面46a上の左右の両端部には、銅メッキ膜からなる接続端子の配線47が形成され、上記配線層48とフィルドビア導体vを介して導通されている。左右の各配線47に隣接する表面46a上には、銅メッキ膜からなる前記同様の接続配線5がそれぞれ形成されている。
また、図2に示すように、下緩和層46の表面46aの中央付近には、前記同様の光導波路Cが配置されている。かかる光導波路Cの反射ミラー面24を含む両端部を除いた上方には、前記同様の上緩和層26が形成されている。尚、下緩和層46、配線47、接続配線5、および前記絶縁性基板30は、公知のセミアデティブ法、サブトラクティブ法、フォトリソグラフィ技術などで形成される。
図2に示すように、左側の配線47と接続配線5の一端とに、ハンダhを介してICチップ(動作素子)14aの接続端子13,15を接続することで、かかるICチップ14aを緩和層46の表面46a上に実装している。また、接続配線5の他端にハンダhを介して発光素子(光素子)16の接続端子17を接続することで、かかる発光素子16を表面46a上に実装している。尚、発光素子16の発光部は、光導波路Cの左端の反射ミラー面24の真上に位置している。
図2に示すように、右側の配線47と接続配線5の一端とに、ハンダhを介してICチップ(動作素子)14bの接続端子13,15を接続することで、かかるICチップ14bを緩和層46の表面上46aに実装している。また、接続配線5の他端にハンダhを介して受光素子(光素子)18の接続端子19を接続することで、かかる受光素子18を表面46a上に実装している。尚、受光素子18の受光部は、光導波路Cの右端の反射ミラー面24の真上に位置している。
上記ICチップ14aおよび発光素子16とICチップ14bおよび受光素子18とは、互いに隣接し且つ光導波路Cを含めて平面視で直線状に配列される。
ICチップ14a,14bは、配線47やビア導体vなどを介して、絶縁性基板30内から所要の電力を予め供給されている。図2で左側のICチップ14aは、所定の動作を指示する電気信号を、接続配線5、ハンダh、および接続端子17を介して、発光素子16に伝送する。そして、図2中の矢印で示すように、発光素子16から発光された光信号は、左側の反射ミラー面24に反射して光導波路Cのコア22中をその周面に多重反射しつつ右方向に伝送される。かかる光信号は、コア22中から右側の反射ミラー面24に反射して、受光素子18に伝送され、電気信号に変換された後、接続配線5などを経て右側のICチップ14bに伝送される。この結果、ICチップ14a,14b間の信号伝送を、上記経路で光信号を介して高速度で行うことができる。
尚、図2においても、ICチップ14a,14bおよび発光素子16と受光素子18とを、左右反対に配置(実装)することで、上記と反対の経路で光信号を介たしICチップ14a,14b間の信号伝送を高速度で行うこともできる。
また、図2においても、ICチップ14a,14bの奥行き方向に隣接して新たなICチップ14b,14aを前記同様に配置し、且つ発光素子16および受光素子18の奥行き方向に隣接して新たな受光素子18および発光素子16を前記同様に配置しても良い。かかる複数組のICチップ14a,14b、発光素子16、および受光素子18と、光導波路Cの複数のコア22とにより、図2にても左右の双方から電気信号を光信号を介して反対側に高速度で伝送可能となる。
以上のような光信号を伝送する光導波路Cを用いる高速度の信号伝送を、温度変化を伴う環境下で長期間行っても、かかる光導波路Cと絶縁性基板30との間に下緩和層46が位置し、且つ当該光導波路Cの上方に上緩和層26が位置しているため、光導波路Cに加わる応力が確実に緩和される。即ち、熱膨張率の高い光導波路Cは、熱膨張率の低い絶縁性基板30との間の下緩和層46で受ける応力を低減されるだけでなく、それらと反対側の上緩和層26によっも受ける応力を相殺して低減される。従って、光導波路Cのクラッド20やコア22に変形や割れが生じにくくなり、安定した光信号の伝送が可能となるため、信頼性の高い光導波路付き配線基板K2となる。
図3は、異なる形態の光導波路付き配線基板K3の断面を示す。かかる配線基板K3は、図3に示すように、前記同様の絶縁性基板1と、その表面2上に形成した下緩和層50と、その表面51上の中央付近に配置した前記同様の光導波路Cと、かかる光導波路Cおよび下緩和層50の左右の表面51の上方に形成した上緩和層52と、を備えている。上緩和層52の表面53上方には、ICチップ(動作素子)56,60と発光素子64および受光素子67とが実装されている。
下緩和層50も前記下緩和層11などと同様の厚みおよび特性を有する。上緩和層52は、下緩和層50よりも厚肉で、図3に示すように、光導波路Cの側面および上面を覆い、光導波路Cの反射ミラー面24の真上付近に一対の透孔54,55を形成している。かかる上緩和層52も前記同様の特性を有する。
図3に示すように、上緩和層52の表面53上の両端付近には、Cuなどからなる前記同様の配線4がそれぞれ形成され、上・下緩和層52,50を貫通するビア導体vを介して、絶縁性基板1の配線層6と接続されている。上記表面53上における左右の両端付近には、配線4に隣接し且つ透孔54,55との間に前記同様の接続配線5がそれぞれ形成されている。
図3に示すように、左側の配線4と接続配線5の一端とに、図示しないハンダを介してICチップ(動作素子)56の接続端子57,58を接続することで、かかるICチップ56を上緩和層52の表面53上に実装している。また、接続配線5の他端にハンダを介して発光素子(光素子)64の接続端子65を接続し、且つ表面53上に突出する支持片66に先端部を支持することによって、かかる発光素子64を表面53上に実装している。
尚、上記発光素子64は、Si(熱膨張率:約3.6ppm/K)またはGaAs(熱膨張率:約6.0ppm/K)からなり、ICチップ56も同様である。また、発光素子64の図示しない発光部は、光導波路Cの左端の反射ミラー面24および透孔54の真上に位置している。
図3に示すように、右側の配線4と接続配線5の一端とに、図示しないハンダを介してICチップ(動作素子)60の接続端子61,62を接続することで、かかるICチップ60を上緩和層52の表面53上に実装している。また、接続配線5の他端にハンダを介して受光素子(光素子)67の接続端子69を接続し、且つ表面53上に突出する支持片68に先端部を支持することで、かかる受光素子67を表面53上に実装している。尚、受光素子67の図示しない受光部は、光導波路Cの右端の反射ミラー面24および透孔55の真上に位置している。
尚、上記受光素子67も、Si(熱膨張率:約3.6ppm/K)またはGaAs(熱膨張率:約6.0ppm/K)からなり、ICチップ60も同様である。また、光導波路Cのクラッド20が断面長方形で且つその中に複数のコア22が平行に内蔵されている場合、透孔54,55は、かかる複数のコア22と直交する平面視で長方形の形態とするほか、各コア22の反射ミラー面24ごとにほぼ正方形とした複数個の形態としても良い。
ICチップ56,60は、配線4やビア導体vなどを介して、絶縁性基板1内から所要の電力を予め供給されている。図3で左側のICチップ56は、所定の動作を指示する電気信号を、接続配線5、ハンダ、および接続端子65を介して、発光素子64に伝送する。
そして、図3中の矢印で示すように、発光素子64から発光された光信号は、透孔54を経て、左側の反射ミラー面24に反射して光導波路Cのコア22中をその周面に多重反射しつつ右方向に伝送される。かかる光信号は、コア22中から右側の反射ミラー面24に反射し、透孔55を経て受光素子67に伝送され、電気信号に変換された後、接続配線5などを経て右側のICチップ60に伝送される。従って、ICチップ56,60間の信号伝送を、上記経路における光信号を介して高速度で行える。
尚、図3において、ICチップ56,60および発光素子64と受光素子67とを、それぞれ左右反対に配置(実装)することで、上記と反対の経路で光信号を介したICチップ56,60間の信号伝送を高速度行うこともできる。
また、図3において、ICチップ56,60の奥行き方向に隣接して新たなICチップ60,56を前記同様に配置(実装)し、且つ発光素子64および受光素子67の奥行き方向に隣接して新たな受光素子67および発光素子64を前記同様に配置しても良い。かかる複数組のICチップ56,60、発光素子64、および受光素子67と、光導波路Cの複数のコア22とにより、図3にて左右の双方から電気信号を光信号を介して反対側に高速度で伝送可能となる。
以上のような光導波路付き配線基板K3によれば、最も高い熱膨張率の光導波路Cに隣接して中間的な熱膨張率の下緩和層50および上緩和層52が位置し、且つこれらを介して最も熱膨張率が低い絶縁性基板1や発光素子64および受光素子67などが配置された厚み方向において段階的な熱膨張構造となっている。このため、温度変化を伴う環境下で長期間使用しても、光導波路Cには応力が加わりにくくなると共に、発光素子64および受光素子67の実装時およびその後にても実装位置ずれが生じにくなる。また、光導波路Cは、上緩和層52に覆われているため、そのクラッド20やコア22が吸水しにくくなり、その屈折率が安定する。従って、光導波路Cのクラッド20やコア22に変形や割れが生じにくくなり、安定した光信号の伝送が可能となるため、信頼性が一層高まる。
ここで、前記光導波路付き配線基板K3の製造方法について説明する。
予め、複数枚のグリーンシートおよびその表面などに印刷にて導電性ペーストのパターンなどを形成し、これらを積層し且つ焼成することで、図4の部分断面図で示すように、絶縁性基板1を製作しておく。
次に、図5に示すように、絶縁性基板1の表面2上に、エポキシ系樹脂フィルムの貼り付け、またはワニスをスピンコートし且つ硬化することで、熱膨張率が約20〜65ppm/Kで且つ前記厚みの下緩和層50を形成する。
次いで、図6に示すように、下緩和層50の表面51上に光導波路Cを形成する。即ち、クラッド20およびコア22からなる複合樹脂材を表面51に配置し、その両端を光路変換構造とすることで、両端に反射ミラー面24を対称に有する光導波路C(厚み約150μm)を表面51上に形成できる。
更に、図7に示すように、下緩和層50の表面51上および光導波路Cの上に、エポキシアクリレート系のワニスをスピンコートすることにより、熱膨張率が約40〜50ppm/Kで且つ前記厚みの上緩和層52を形成する。尚、上緩和層52の厚みは、表面51上で約200μm、光導波路C上で約40μmである。
次に、図8に示すように、上緩和層52における光導波路Cの一対の反射ミラー面24の真上付近に、公知のフォトリソグラフィ技術によって透孔54,55を形成する。併せて、上緩和層52および下緩和層50の両端付近に、レーザ加工によりスルーホールを形成し、その内壁に無電解銅メッキおよび電解銅メッキを施して、図8に示すように、前記配線層6に接続するビア導体vを形成する。
次いで、図9に示すように、透孔54,55の開口部に隣接して、公知のフォトリソグラフィ技術などにより、所要本数の接続配線5および所要数の配線4を形成する。また、これらと反対側の透孔54,55の開口部には、上緩和層52と同様な樹脂からなる支持片66,68が上記同様の技術によって突設される。
そして、図10に示すように、右側の配線4と接続配線5の一端とに、ハンダ(図示せず)を介してICチップ(動作素子)60の接続端子61,62を接続することで、かかるICチップ60を上緩和層52の表面53上に実装する。
また、接続配線5の他端にハンダを介して受光素子(光素子)67の接続端子69を接続し、且つ支持片68に先端部を支持することで、かかる受光素子67を表面53上に実装する。この際、受光素子67の受光部(図示せず)は、光導波路Cの右端の反射ミラー面24および透孔55の真上に位置している。
更に、図10に示すように、左側の配線4と接続配線5の一端とに、ハンダを介してICチップ(動作素子)56の接続端子57,58を接続することで、かかるICチップ56を上緩和層52の表面53上に実装する。また、接続配線5の他端にハンダを介して発光素子(光素子)64の接続端子65を接続し、且つ支持片66に先端部を支持することで、かかる発光素子64を表面53上に実装する。この際、発光素子64の発光部(図示せず)は、光導波路Cの左端の反射ミラー面24および透孔54の真上に位置している。
この結果、前記図3で示した光導波路付き配線基板K3を得ることができる。
尚、絶縁性基板1を前記樹脂からなる絶縁性基板30に置き換えて、以上のような各工程を経ることにより、全体がほぼ樹脂からなる上記配線基板K3と同様の光導波路付き配線基板を得ることも可能である。
本発明は、以上において説明した各形態に限定されるものではない。
例えば、前記光導波路Cは、断面正方形のクラッド20とその内側に断面正方形の1本のコア22とからなる形態としても良い。
また、光導波路は、マルチモードの前記光導波路Cのほか、シングルモードとしも良い。
更に、前記光導波路Cの素材は、前記アクリル樹脂などのほか、シロキサンポリマやフッ素ポリイミドとしても良い。
また、前記光導波路Cは、両端の前記反射ミラー面24を省略した直角の端面とし、かかる両端面に近接して鏡面の傾斜した反射ミラー面を有する断面三角形の反射材を配置しても良い。
更に、前記配線層6などやビア導体vは、前記AgやCuに限らず、W、Mo、Ag−Cu、Cu−Wなどの金属または合金としても良い。
加えて、前記絶縁性基板30を形成する前記ガラスクロスに替えて、樹脂繊維やその他の材料を適用しても良い。
本発明の光導波路付き配線基板の1形態を示す断面図。 上記光導波路付き配線基板の変形形態を示す断面図。 異なる形態の光導波路付き配線基板を示す断面図。 上記光導波路付き配線基板の製造工程を示す部分断面図。 図4に続く製造工程を示す部分断面図。 図5に続く製造工程を示す部分断面図。 図6に続く製造工程を示す部分断面図。 図7に続く製造工程を示す部分断面図。 図8に続く製造工程を示す部分断面図。 図9に続く製造工程を示す部分断面図。
符号の説明
1,30…………………………絶縁性基板
2,42a………………………表面
11,46,50………………下緩和層
14a,14b,56,60…ICチップ(動作素子)
16,64………………………発光素子(光素子)
18,67………………………受光素子(光素子)
24………………………………反射ミラー面
26,52………………………上緩和層
53………………………………上緩和層の表面
54,55………………………透孔
…………………………………ビア導体
C…………………………………光導波路
K1〜K3………………………光導波路付き配線基板

Claims (3)

  1. 表面を有する絶縁性基板と、
    上記絶縁性基板の表面上方に配置され且つ熱膨張率が上記絶縁性基板の熱膨張率よりも高い光導波路と、
    上記絶縁性基板の表面と光導波路との間およびかかる光導波路の上方に形成され、且つ熱膨張率が上記絶縁性基板と上記光導波路との中間である下緩和層および上緩和層と、を含み、
    上記下緩和層および上緩和層の何れか一方の表面上に、光素子および該光素子に導通する動作素子が実装され
    上記下緩和層には、上記動作素子と導通するビア導体が貫通している、
    ことを特徴とする光導波路付き配線基板。
  2. 前記上緩和層は、前記光導波路の両端に位置する反射ミラー面の上方の位置に一対の透孔を形成しており、かかる一対の透孔の上方で且つ上緩和層の表面上に前記光素子がそれぞれ実装されている、
    請求項1に記載の光導波路付き配線基板。
  3. 前記光素子に隣接し且つ前記光導波路と反対側の前記上緩和層の表面上に当該光素子と導通する前記動作素子が実装されている、
    請求項2に記載の光導波路付き配線基板。
JP2003306994A 2003-08-29 2003-08-29 光導波路付き配線基板 Expired - Fee Related JP4267982B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306994A JP4267982B2 (ja) 2003-08-29 2003-08-29 光導波路付き配線基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306994A JP4267982B2 (ja) 2003-08-29 2003-08-29 光導波路付き配線基板

Publications (2)

Publication Number Publication Date
JP2005077644A JP2005077644A (ja) 2005-03-24
JP4267982B2 true JP4267982B2 (ja) 2009-05-27

Family

ID=34409921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306994A Expired - Fee Related JP4267982B2 (ja) 2003-08-29 2003-08-29 光導波路付き配線基板

Country Status (1)

Country Link
JP (1) JP4267982B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718312B2 (ja) * 2005-12-02 2011-07-06 京セラ株式会社 光導波路部材、光配線基板、光配線モジュール、光導波路部材製造方法、および光配線基板製造方法
JP4668049B2 (ja) * 2005-12-02 2011-04-13 京セラ株式会社 光配線モジュール
JP2008166798A (ja) * 2006-12-31 2008-07-17 Rohm & Haas Electronic Materials Llc 光学的機能を有するプリント回路板の形成方法
KR100872574B1 (ko) * 2007-07-04 2008-12-08 삼성전기주식회사 다층 인쇄회로기판 및 그 제조방법
JP2009175662A (ja) * 2007-12-27 2009-08-06 Fujitsu Component Ltd 光導波路保持部材及び光トランシーバ
JP5094636B2 (ja) * 2008-08-25 2012-12-12 新光電気工業株式会社 光電気配線用パッケージ
JP2019191277A (ja) 2018-04-20 2019-10-31 富士通株式会社 光導波路基板、光導波路基板の製造方法、光導波路基板のリペア方法及び光機器
CN111586981B (zh) * 2020-05-28 2023-05-23 深圳市博敏电子有限公司 一种集成耦合印制板的设计和制作方法
CN116960002B (zh) * 2023-09-21 2023-11-24 盛合晶微半导体(江阴)有限公司 光电集成式半导体封装结构及其制备方法

Also Published As

Publication number Publication date
JP2005077644A (ja) 2005-03-24

Similar Documents

Publication Publication Date Title
JP4624162B2 (ja) 光電気配線基板
KR100720854B1 (ko) 광·전기배선기판, 실장기판 및 광전기배선기판의 제조방법
JP5313849B2 (ja) 光導波路装置及びその製造方法
KR102116143B1 (ko) 광전기 혼재 기판 및 그 제조 방법
US8989531B2 (en) Optical-electrical wiring board and optical module
JP2009302438A (ja) 光半導体装置
JP2000081524A (ja) 光送受信システム
US7313294B2 (en) Structure with embedded opto-electric components
JP4267982B2 (ja) 光導波路付き配線基板
WO2014196252A1 (ja) 光電気混載基板
KR102012050B1 (ko) 광전기 혼재 기판 및 그 제조 방법
JP5248795B2 (ja) 光電気混載パッケージ及びその製造方法、光素子付き光電気混載パッケージ、光電気混載モジュール
JP6084027B2 (ja) 光導波路装置及びその製造方法
JP2001007403A (ja) 並列伝送型光モジュールおよびその製造方法
JP2002107560A (ja) 実装用基板
JP4764669B2 (ja) 光パッケージ、光素子付き光パッケージ及び光導波路モジュール
JP2003227951A (ja) 光導波装置、その製造方法、およびそれを用いた光電気混載基板
JP2002182049A (ja) 実装用基板及びそれの製造方法並びにその実装用基板を用いたデバイスの搭載構造
JP5318978B2 (ja) 光電気混載パッケージ及びその製造方法、光素子付き光電気混載パッケージ、光電気混載モジュール
JP2001183556A (ja) マルチチップモジュール基板及びマルチチップモジュール
JP5302177B2 (ja) 光導波路基板および光電気混載装置
JP5409441B2 (ja) 光伝送基板および光モジュール
KR100736641B1 (ko) 전기 광 회로기판 및 그 제조방법
JP2005115190A (ja) 光電気複合配線基板、積層光導波路構造体
KR101059642B1 (ko) 광도파로를 갖는 인쇄회로기판 및 그 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees