図1は、本発明の一実施例である制御装置が適用されるハイブリッド車両の駆動装置の一部を構成する変速機構10を説明する骨子図である。図1において、変速機構10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された無段変速部としての差動部11と、その差動部11と駆動輪38との間の動力伝達経路で差動部11の出力回転部材としての伝達部材(伝動軸)18を介して直列に連結されている有段式の自動変速機として機能する自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この変速機構10は、例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪38との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)36および一対の車軸等を順次介して一対の駆動輪38へ伝達する(図7参照)。
このように、本実施例の変速機構10においてはエンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。なお、変速機構10はその軸心に対して対称的に構成されているため、図1の骨子図においてはその下側が省略されている。以下の各実施例についても同様である。
差動部11は、第1電動機M1と、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、伝達部材18と一体的に回転するように設けられている第2電動機M2とを備えている。なお、この第2電動機M2は伝達部材18から駆動輪38までの間の動力伝達経路を構成するいずれの部分に設けられてもよい。本実施例の第1電動機M1および第2電動機M2は発電機能をも有する所謂モータジェネレータであるが、第1電動機M1は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は走行用の駆動力源として駆動力を出力するためのモータ(電動機)機能を少なくとも備える。
動力分配機構16は、例えば「0.590」程度の所定のギヤ比ρ1を有するシングルピニオン型の第1遊星歯車装置24と、切換ブレーキB0とを主体的に備えている。この第1遊星歯車装置24は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を回転要素(要素)として備えている。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1とすると、上記ギヤ比ρ1はZS1/ZR1である。
この動力分配機構16においては、第1キャリヤCA1は入力軸14すなわちエンジン8に連結され、第1サンギヤS1は第1電動機M1に連結され、第1リングギヤR1は伝達部材18に連結されている。また、切換ブレーキB0は第1サンギヤS1とケース12との間に設けられている。その切換ブレーキB0が解放されるとすなわち解放状態へ切り換えられると、動力分配機構16は第1遊星歯車装置24の3要素である第1サンギヤS1、第1キャリヤCA1、第1リングギヤR1がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されるとともに、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が差動状態とされると差動部11も差動状態とされ、差動部11はその変速比γ0(入力軸14の回転速度/伝達部材18の回転速度)が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。
この状態で、上記切換ブレーキB0が係合されるとすなわち係合状態へ切り換えられると、動力分配機構16は差動作用をしないすなわち差動作用が不能な非差動状態とされる。具体的には、切換ブレーキB0が係合されて第1サンギヤS1がケース12に連結されると、動力分配機構16は第1サンギヤS1が非回転状態とさせられる連結状態すなわちロック状態とされて前記差動作用をしない非差動状態とされることから、差動部11も非差動状態とされる。また、第1リングギヤR1は第1キャリヤCA1よりも増速回転されるので、動力分配機構16は増速機構として機能するものであり、差動部11(動力分配機構16)は変速比γ0が「1」より小さい値例えば0.63程度に固定された増速変速機として機能する非無段変速状態例えば定変速状態すなわち有段変速状態とされる。
このように、本実施例では、上記切換ブレーキB0は、差動部11(動力分配機構16)の変速状態を差動状態すなわち非ロック状態(非連結状態)と非差動状態すなわちロック状態(連結状態)とに、すなわち差動部11(動力分配機構16)を電気的な差動装置として作動可能な差動状態例えば変速比が連続的変化可能な電気的な無段変速機として作動する無段変速作動可能な無段変速状態と、電気的な無段変速作動しない非無段変速状態例えば電気的な無段変速機として作動させず無段変速作動を非作動として変速比変化を一定にロックするロック状態すなわち単段の変速機として作動する電気的な無段変速作動しないすなわち電気的な無段変速作動不能な定変速状態(非差動状態)、換言すれば変速比γ0が1より小さい単段の変速機として作動する定変速状態とに選択的に切換える差動状態切換装置として機能している。上記非連結状態には、切換ブレーキB0が完全に解放されている状態以外に、切換ブレーキB0が半係合(スリップ)状態である場合も含めて良い。
自動変速部20は、ダブルピニオン型の第2遊星歯車装置26とシングルピニオン型の第3遊星歯車装置28とを備え、有段式の自動変速機として機能する。第2遊星歯車装置26は、第2サンギヤS2、互いに噛み合う一対の第2遊星歯車P2および第3遊星歯車P3、それら遊星歯車P2、P3を自転および公転可能に支持する第2キャリヤCA2、遊星歯車P2、P3を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.435」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置28は、第3サンギヤS3、第2遊星歯車装置26の第3遊星歯車P3と共通の部材で構成される第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.335」程度の所定のギヤ比ρ3を有している。また、第3遊星歯車P3と噛み合う第2リングギヤR2は第3リングギヤR3と共通化され、第2キャリヤCA2は第3キャリヤCA3とそれぞれ共通化されている。第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3とすると、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3である。
自動変速部20では、第3サンギヤS3は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第4クラッチC4を介して入力軸14すなわちエンジン8に選択的に連結され、第2キャリヤCA2および第3キャリヤCA3は第3クラッチC3を介して入力軸14(エンジン8)に選択的に連結されるとともに第2ブレーキB2を介してケース12に選択的に連結され、第2リングギヤR2および第3リングギヤR3は出力軸22に一体的に連結され、第2サンギヤS2は第1クラッチC1を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結されている。このように、自動変速部20は、差動部11を介した伝達部材18からの入力経路と差動部11を介さない入力経路とでエンジン8の出力を受け入れる。
前記第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4、切換ブレーキB0、第1ブレーキB1、および第2ブレーキB2(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結するためのものである。
以上のように構成された変速機構10において、特に、本実施例では動力分配機構16に切換ブレーキB0が備えられており、切換ブレーキB0が係合作動させられることによって、差動部11は前述した無段変速機として作動可能な無段変速状態に加え、一種類の変速比の単段の増速変速機として作動可能な非無段変速状態(定変速状態)を構成することが可能とされている。したがって、変速機構10では、切換ブレーキB0を係合作動させることで定変速状態とされた差動部11と自動変速部20とで有段式の自動変速機として作動する有段変速状態が構成され、切換ブレーキB0を係合作動させないことで無段変速状態とされた差動部11と自動変速部20とで電気的な無段変速機として作動する無段変速状態が構成される。言い換えれば、変速機構10は、切換ブレーキB0を係合作動させることで有段変速状態に切り換えられ、切換ブレーキB0を係合作動させないことで無段変速状態に切り換えられる。また、差動部11も有段変速状態と無段変速状態とに切り換え可能な変速機であると言える。
具体的には、差動部11が非無段変速状態とされて変速機構10が有段変速機として機能する場合には、切換ブレーキB0が係合させられ、且つ第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4、第1ブレーキB1、および第2ブレーキB2が選択的に係合作動させられることにより、例えば変速に関与する解放側の油圧式摩擦係合装置の解放と変速に関与する係合側の油圧式摩擦係合装置の係合とにより変速比が自動的に切り換えられるように、第1変速段(第1速ギヤ段)乃至第8変速段(第8速ギヤ段)のいずれか或いは後進変速段(後進ギヤ段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γT(=入力軸回転速度NIN/出力軸回転速度NOUT)が各変速段毎に得られるようになっている。この変速比γTは、差動部11の変速比γ0と自動変速部20の変速比γとに基づいて形成される変速機構10全体としてのトータル変速比(総合変速比)γTである。
例えば、差動部11の非無段変速状態では、図2の係合作動表に示されるように、第4クラッチC4、切換ブレーキB0、および第1ブレーキB1の係合により、変速比γ1が最大値例えば「4.071」程度である第1変速段が成立させられ、第2クラッチC2、切換ブレーキB0、および第1ブレーキB1の係合により、変速比γ2が第1変速段よりも小さい値例えば「2.560」程度である第2変速段が成立させられ、第3クラッチC3、切換ブレーキB0、および第1ブレーキB1の係合により、変速比γ3が第2変速段よりも小さい値例えば「1.770」程度である第3変速段が成立させられ、第2クラッチC2、第3クラッチC3、および切換ブレーキB0の係合により、変速比γ4が第3変速段よりも小さい値例えば「1.246」程度である第4変速段が成立させられ、第3クラッチC3、第4クラッチC4、および切換ブレーキB0の係合により、変速比γ5が第4変速段よりも小さい値「1.000」である第5変速段が成立させられ、第1クラッチC1、第3クラッチC3、および切換ブレーキB0の係合により、変速比γ6が第5変速段よりも小さい値例えば「0.796」程度である第6変速段が成立させられ、第1クラッチC1、第4クラッチC4、および切換ブレーキB0の係合により、変速比γ7が第6変速段よりも小さい値例えば「0.692」程度である第7変速段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ8が第7変速段よりも小さい値例えば「0.629」程度である第8変速段が成立させられる。また、第4クラッチC4、切換ブレーキB0、および第2ブレーキB2の係合により、変速比γRが第1変速段と第2変速段との間の値例えば「2.989」程度である後進変速段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば切換ブレーキB0のみが係合される。
図3は、無段変速部或いは第1変速部として機能する差動部11と有段変速部或いは第2変速部として機能する自動変速部20とから構成される変速機構10において、切換ブレーキB0が係合させられることによって達成される有段変速時の各変速段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表す共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、その上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度NEを示し、横線X3が伝達部材18の回転速度を示している。
また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する第1サンギヤS1、第1回転要素(第1要素)RE1に対応する第1キャリヤCA1、第3回転要素(第3要素)RE3に対応する第1リングギヤR1の相対回転速度を示すものであり、それらの間隔は第1遊星歯車装置24のギヤ比ρ1に応じて定められている。さらに、自動変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素(第4要素)RE4に対応する第3サンギヤS3を、第5回転要素(第5要素)RE5に対応し且つ相互に連結された第2キャリヤCA2および第3キャリヤCA3を、第6回転要素(第6要素)RE6に対応し且つ相互に連結された第2リングギヤR2および第3リングギヤR3を、第7回転要素(第7要素)RE7に対応する第2サンギヤS2をそれぞれ表し、それらの間隔は第2、第3遊星歯車装置26、28のギヤ比ρ2、ρ3に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ1に対応する間隔に設定される。また、自動変速部20では各第2、第3遊星歯車装置26、28毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
上記図3の共線図を用いて表現すれば、本実施例の変速機構10は、動力分配機構16(差動部11)において、第1遊星歯車装置24の第1回転要素RE1(第1キャリヤCA1)が入力軸14すなわちエンジン8に連結され、第2回転要素RE2(第1サンギヤS1)が第1電動機M1に連結されるとともに切換ブレーキB0を介してケース12に選択的に連結され、第3回転要素RE3(第1リングギヤR1)が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により第1サンギヤS1の回転速度と第1リングギヤR1の回転速度との関係が示される。
そして、図3に示すように、有段変速時には各変速段において、切換ブレーキB0の係合によって第1サンギヤS1の回転速度が零とされ、且つ第1キャリヤCA1の回転速度がエンジン回転速度NEとされるので、横軸X1と縦軸Y1との交点とエンジン回転速度NEを示す横軸X2と縦軸Y2との交点とを結ぶ直線L0と、縦軸Y3との交点で示される第1リングギヤR1の相対回転速度すなわち伝達部材18の相対回転速度は、エンジン回転速度NEよりも増速された回転で自動変速部20へ入力される。このように、切換ブレーキB0の係合によって動力分配機構16が増速機構として機能する。
また、自動変速部20において、第4回転要素RE4(第3サンギヤS3)は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第4クラッチC4を介して入力軸14すなわちエンジン8に選択的に連結され、第5回転要素RE5(第2キャリヤCA2、第3キャリヤCA3)は第3クラッチC3を介して入力軸14(エンジン8)に選択的に連結されるとともに第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6(第2リングギヤR2、第3リングギヤR3)は出力軸22に一体的に連結され、第7回転要素RE7(第2サンギヤS2)は第1クラッチC1を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結されている。
そして、図3に示すように、切換ブレーキB0が係合させられる有段変速時には自動変速部20において、第4クラッチC4と第1ブレーキB1とが係合させられることにより、第4回転要素RE4の回転速度を示す縦線Y4と横線X2との交点と第7回転要素RE7の回転速度を示す縦線Y7と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第1速(1st)の出力軸22の回転速度が示される。同様に、第2クラッチC2と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第2速(2nd)の出力軸22の回転速度が示される。また、第3クラッチC3と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第3速(3rd)の出力軸22の回転速度が示される。また、第2クラッチC2と第3クラッチC3とが係合させられることにより決まる斜めの直線L4と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第4速(4th)の出力軸22の回転速度が示される。また、第3クラッチC3と第4クラッチC4とが係合させられることにより決まる水平な直線L5と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第5速(5th)の出力軸22の回転速度が示される。また、第1クラッチC1と第3クラッチC3とが係合させられることにより決まる斜めの直線L6と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第6速(6th)の出力軸22の回転速度が示される。また、第1クラッチC1と第4クラッチC4とが係合させられることにより決まる斜めの直線L7と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第7速(7th)の出力軸22の回転速度が示される。また、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L8と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第8速(8th)の出力軸22の回転速度が示される。また、第4クラッチC4と第2ブレーキB2とが係合させられることにより決まる斜めの直線LRと、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で後進(Rev)の出力軸22の回転速度が示される。
また、差動部11が無段変速状態とされて変速機構10が無段変速機として機能する場合には、切換ブレーキB0が解放させられて差動部11が無段変速機として機能し、且つ差動部11に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つの変速段Mに対して自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、変速機構10のトータル変速比γTが無段階に得られるようになる。
このとき、変速機構10が無段変速機として機能するには、差動部11の無段変速状態において自動変速部20における回転要素の少なくとも1つが、エンジン8の所定回転に拘わらず回転が変化させられる伝達部材18からの入力を受ける必要がある。見方を変えれば、伝達部材18からの入力を受ける油圧式摩擦係合装置(第1クラッチC1、第2クラッチC2)が係合されず回転要素が伝達部材18からの入力を受けていない場合には、差動部11が無段変速状態とされても、変速機構10を無段変速機として機能させられない。つまり、自動変速部20は差動部11を介した伝達部材18からの入力経路と差動部11を介さない入力経路とでエンジン8の出力を受け入れることから、変速機構10を無段変速機として機能させる為には、差動部11が無段変速状態のときに、伝達部材18からの入力を受ける油圧式摩擦係合装置の係合により自動変速部20の変速段が成立させられる必要がある。
具体的には、図2、3に示すように、自動変速部20の第2変速段(2nd)、第4変速段(4th)、第8変速段(8th)では、伝達部材18からの入力を受ける第2クラッチC2が係合させられることにより第4回転要素RE4が伝達部材18からの入力を受け、第6変速段(6th)、第7変速段(7th)、第8変速段(8th)では、伝達部材18からの入力を受ける第1クラッチC1が係合させられることにより第7回転要素RE7が伝達部材18からの入力を受ける。つまり、第2変速段(2nd)、第4変速段(4th)、第6変速段(6th)、第7変速段(7th)、第8変速段(8th)は、伝達部材18からの入力を受ける第1クラッチC1および第2クラッチC2の少なくとも何れかの係合により成立する変速段である。よって、第2変速段(2nd)、第4変速段(4th)、第6変速段(6th)、第7変速段(7th)、第8変速段(8th)では、差動部11が無段変速状態とされて伝達部材18の回転速度が変化させられると、それら各変速段において無段的な変速比幅が得られて、トータル変速比(総合変速比)γTが無段階に得られる。
しかし、自動変速部20の第1変速段(1st)、第3変速段(3rd)、第5変速段(5th)、および後進変速段(Rev)では、第1クラッチC1および第2クラッチC2の何れも係合させられないため、各回転要素は伝達部材18からの入力を受けていない。見方を変えれば、自動変速部20の第1変速段(1st)、第3変速段(3rd)、第5変速段(5th)、および後進変速段(Rev)においては、第3クラッチC3および/または第4クラッチC4の係合により第4回転要素RE4および/または第5回転要素RE5はエンジン8からの入力を直接的に受け、および/または第1ブレーキB1或いは第2ブレーキB2の何れかの係合により第5回転要素RE5或いは第7回転要素RE7は回転が停止される。すなわち、自動変速部20の第1変速段(1st)、第3変速段(3rd)、第5変速段(5th)、および後進変速段(Rev)は、伝達部材18の回転変化の影響を受けない油圧式摩擦係合装置(第3クラッチC3、第4クラッチC4、第1ブレーキB1、第2ブレーキB2)の係合のみにより成立する変速段である。そのため、第1変速段(1st)、第3変速段(3rd)、第5変速段(5th)、および後進変速段(Rev)では、差動部11が無段変速状態とされて伝達部材18の回転速度が変化させられたとしても、変速比が変化させられない。
このように、差動部11が無段変速状態とされるときに、自動変速部20が第2変速段(2nd)、第4変速段(4th)、第6変速段(6th)、第7変速段(7th)、第8変速段(8th)のうちの何れかの変速段とされれば、変速機構10が無段変速機として機能させられ得る。
例えば、差動部11の無段変速状態では、図4の係合作動表に示されるように、切換ブレーキB0が常時解放されるとともに、第2クラッチC2および第1ブレーキB1の係合により差動部11の非無段変速状態における第2変速段に相当する第2変速段が成立させられ、第2クラッチC2および第3クラッチC3の係合により差動部11の非無段変速状態における第4変速段に相当する第4変速段が成立させられ、第1クラッチC1および第3クラッチC3の係合により差動部11の非無段変速状態における第6変速段に相当する第6変速段が成立させられ、第1クラッチC1および第4クラッチC4の係合により差動部11の非無段変速状態における第7変速段に相当する第7変速段が成立させられ、第1クラッチC1および第2クラッチC2の係合により差動部11の非無段変速状態における第8変速段に相当する第8変速段が成立させられる。また、第2クラッチC2および第2ブレーキB2の係合により第1後進変速段が成立させられ、第2クラッチC2および第1ブレーキB1の係合により第2後進変速段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えばクラッチC1〜C4、ブレーキB1、B2の全ての係合装置が解放される。
図5は、変速機構10において、切換ブレーキB0が解放される無段変速時の共線図であって、前記図3に相当するものである。図5において、切換ブレーキB0が解放される差動部11の無段変速状態では、第1電動機M1の反力を制御することによってその回転速度は、すなわち直線L0と縦線Y1との交点で示される第1サンギヤS1の回転速度は広範囲に制御され得ることから、直線L0は横線X2と縦線Y2との交点を回動中心として矢印に例示する範囲で回動させられるので、その直線L0と縦線Y3との交点で示される第1リングギヤR1すなわち伝達部材18の回転速度はエンジン回転速度NEを挟んで上下の範囲で変化させられる。
無段変速時の自動変速部20は、図5に示されるように、第2クラッチC2と第1ブレーキB1とが係合させられることにより、第4回転要素RE4の回転速度を示す縦線Y4と横線X3との交点と第7回転要素RE7の回転速度を示す縦線Y7と横線X1との交点とを通る斜めの直線L2と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第2速(2nd)の出力軸22の回転速度が示される。同様に、第2クラッチC2と第3クラッチC3とが係合させられることにより決まる斜めの直線L4と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第4速(4th)の出力軸22の回転速度が示される。また、第1クラッチC1と第3クラッチC3とが係合させられることにより決まる斜めの直線L6と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第6速(6th)の出力軸22の回転速度が示される。また、第1クラッチC1と第4クラッチC4とが係合させられることにより決まる斜めの直線L7と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第7速(7th)の出力軸22の回転速度が示される。また、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L8と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第8速(8th)の出力軸22の回転速度が示される。また、第2クラッチC2と第2ブレーキB2とが係合させられることにより決まる斜めの直線LR1と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第1後進速(Rev1)の出力軸22の回転速度が示される。また、上記第2速(2nd)と同じ係合の組合せとなる第2クラッチC2と第1ブレーキB1とが係合させられることにより決まる斜めの破線LR2と、出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第2後進(Rev2)の出力軸22の回転速度が示される。
そして、例えば、第2クラッチC2と第1ブレーキB1とが係合されたときに、直線L0が実線に示す位置に回動させられると、直線L2に示すように縦線Y6は上記第2速(2nd)の回転速度が示され、直線L0が破線に示す位置に回動させられると破線LR2に示すように縦線Y6は上記第2後進(Rev2)の回転速度が示される。つまり、第2クラッチC2と第1ブレーキB1とが係合されたときに、直線L0が実線と破線との間で回動させられると、縦線Y6の回転速度は直線L2と破線LR2との間で無段階に変化させられる。このとき、直線L0が実線である場合のように伝達部材18の回転速度が正の回転速度であると前進変速段である第2変速段が得られ、直線L0が破線である場合のように伝達部材18の回転速度が負の回転速度であると後進変速段である第2後進変速段が得られる。
また、第4変速段、第6変速段、第7変速段、第8変速段においても同様に、直線L0が回動させられることに伴って、縦線Y6の回転速度は無段階に変化させられる。この結果、差動部11が無段変速機として機能し、それに直列の自動変速部20が複数の変速段を有する有段変速機として機能することにより、自動変速部20の各変速段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて、各変速段は無段的な変速比幅が得られる。したがって、その各変速段の間が無段的に連続変化可能な変速比となって変速機構10全体としてのトータル変速比γTが無段階に得られるようになる。
また、図5からも明らかなように、第2後進変速段(Rev2)では、伝達部材18の回転速度すなわち自動変速部20へ入力される回転速度が第2変速段、第4変速段、第6変速段、第7変速段、第8変速段の前進変速段とは反対の負の回転速度とされるため、自動変速部20内の回転方向が前進走行時と後進走行時とで全て反対の方向とされ、一般に設計的に好ましくない状態とされる。しかし、この第2後進変速段は、第2変速段と同じ係合作動において伝達部材18の回転速度を負の回転速度にするだけで良い利点がある。
また、第1後進変速段(Rev1)では、伝達部材18の回転速度が前進変速段と同じ正の回転速度とされるため、前進走行時と後進走行時とで自動変速部20内の回転方向が同じ方向とされて、設計的に好ましくない状態が回避される。
図6は、本実施例の変速機構10を制御するための電子制御装置40に入力される信号及びその電子制御装置40から出力される信号を例示している。この電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、第1、第2電動機M1、M2に関するハイブリッド駆動制御、自動変速部20の変速制御等の駆動制御を実行するものである。
電子制御装置40には、図6に示すような各センサやスイッチなどから、エンジン水温TEMPWを表す信号、シフトポジションPSHを表す信号、エンジン8の回転速度であるエンジン回転速度NEを表す信号、ギヤ比列設定値を表す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動を表す信号、出力軸22の回転速度NOUTに対応する車速Vを表す信号、自動変速部20の作動油温を表す信号、サイドブレーキ操作を表す信号、フットブレーキ操作を表す信号、触媒温度を表す信号、運転者の出力要求量に対応するアクセルペダルの操作量であるアクセル開度Accを表す信号、カム角を表す信号、スノーモード設定を表す信号、車両の前後加速度Gを表す信号、オートクルーズ走行を表す信号、車両の重量(車重)を表す信号、各車輪の車輪速を表す信号、変速機構10を有段変速機として機能させるために差動部11(動力分配機構16)を有段変速状態(ロック状態)に切り換えるための有段スイッチ操作の有無を表す信号、変速機構10を無段変速機として機能させるために差動部11(動力分配機構16)を無段変速状態(差動状態)に切り換えるための無段スイッチ操作の有無を表す信号、第1電動機M1の回転速度NM1(以下、第1電動機回転速度NM1という)を表す信号、第2電動機M2の回転速度NM2(以下、第2電動機回転速度NM2という)を表す信号、蓄電装置60(図7参照)の充電容量(充電状態)SOCを表す信号などが、それぞれ供給される。
また、上記電子制御装置40からは、電子スロットル弁94のスロットル弁開度θTHを操作するスロットルアクチュエータへの駆動信号、燃料噴射装置96によるエンジン8への燃料供給量を制御する燃料供給量信号、点火装置98によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路42(図7参照)に含まれる電磁弁を作動させるバルブ指令信号、この油圧制御回路42の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
図7は、電子制御装置40による制御機能の要部を説明する機能ブロック線図である。図7において、有段変速制御手段54は、例えば記憶手段56に予め記憶された図8の実線および一点鎖線に示す変速線図(関係、変速マップ)から車速Vおよび自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、変速機構10の変速を実行すべきか否かを判断し、例えば自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。このとき、有段変速制御手段54は、例えば図2や図4に示す係合表に従って変速段が達成されるように、切換ブレーキB0を除いた自動変速部20の変速に関与する油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指令、油圧指令)を、すなわち自動変速部20の変速に関与する解放側係合装置を解放すると共に係合側係合装置を係合することによりクラッチツウクラッチ変速を実行させる指令を油圧制御回路42へ出力する。油圧制御回路42は、その指令に従って、解放側係合装置を解放すると共に係合側係合装置を係合して自動変速部20の変速が実行されるように、油圧制御回路42内の電磁弁を作動させてその変速に関与する油圧式摩擦係合装置の油圧アクチュエータを作動させる。
具体的には、有段変速制御手段54は、差動部11が無段変速状態とされるときには、伝達部材18からの入力を受ける自動変速部20の油圧式摩擦係合装置の係合により成立する変速段のみを用いて、例えば図4の係合作動表に示す第2変速段、第4変速段、第6変速段、第7変速段、第8変速段や第1、2後進変速段を用いて自動変速部20の変速を実行する。
つまり、有段変速制御手段54は、差動部11が無段変速状態とされるときには、自動変速部20で成立する変速段のうちの一部を用いて、すなわち自動変速部20で成立する変速段のうちの変速機構10全体として無段変速状態とされ得る変速段の一部乃至全部を用いて自動変速部20の変速を実行する。
また、有段変速制御手段54は、差動部11が非無段変速状態とされるときには、伝達部材18からの入力を受ける自動変速部20の油圧式摩擦係合装置の係合により成立する変速段と、エンジン8からの入力を受ける自動変速部20の油圧式摩擦係合装置の係合により成立する変速段とを用いて、例えば図2の係合作動表に示す第1変速段乃至第8変速段や後進変速段を用いて自動変速部20の変速を実行する。
ハイブリッド制御手段52は、無段変速制御手段として機能するものであり、変速機構10(差動部11)の無段変速状態においてエンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速において、運転者の出力要求量としてのアクセル開度Accや車速Vから車両の目標(要求)出力を算出し、その車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NEとエンジントルクTEとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。
ハイブリッド制御手段52は、その制御を動力性能や燃費向上などのために自動変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度NEと車速Vおよび自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段52は、エンジン回転速度NEとエンジン8の出力トルク(エンジントルク)TEとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められて例えば記憶手段56に記憶された図9の破線に示すようなエンジン8の最適燃費率曲線(燃費マップ、関係)に沿ってエンジン8が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力を発生するためのエンジントルクTEとエンジン回転速度NEとなるように、変速機構10のトータル変速比γTの目標値を定め、その目標値が得られるように自動変速部20の変速段を考慮して差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内例えば13〜0.5の範囲内で制御する。
このとき、ハイブリッド制御手段52は、第1電動機M1により発電された電気エネルギをインバータ58を通して蓄電装置60や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ58を通してその電気エネルギが第2電動機M2へ供給され、その第2電動機M2が駆動されて第2電動機M2から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。
また、ハイブリッド制御手段52は、スロットル制御のためにスロットルアクチュエータにより電子スロットル弁94を開閉制御させる他、燃料噴射制御のために燃料噴射装置96による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置98による点火時期を制御させる指令を単独で或いは組み合わせて、必要なエンジン出力を発生するようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。例えば、ハイブリッド制御手段52は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータを駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。
また、ハイブリッド制御手段52は、エンジン8の停止又はアイドル状態に拘わらず、差動部11の電気的CVT機能(差動作用)によってモータ走行させることができる。ハイブリッド制御手段52によるモータ走行は、一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT域すなわち低エンジントルクTE域、或いは車速Vの比較的低車速域すなわち低負荷域で実行される。よって、通常はモータ発進がエンジン発進に優先して実行されるが、例えば車両発進時にアクセルペダルが大きく踏込操作されて要求エンジントルクTEが大きくされるような車両状態によってはエンジン発進も通常実行される。
ハイブリッド制御手段52は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、差動部11の電気的CVT機能(差動作用)によって、第1電動機回転速度NM1を負の回転速度で制御例えば空転させて、差動部11の差動作用により必要に応じてエンジン回転速度NEを零乃至略零に維持する。
また、ハイブリッド制御手段52は、エンジン走行領域であっても、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置60からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪38にトルクを付与することにより、エンジン8の動力を補助するための所謂トルクアシストが可能である。よって、本実施例のエンジン走行には、エンジン走行+モータ走行も含むものとする。
また、ハイブリッド制御手段52は、車両の停止状態又は低車速状態に拘わらず、差動部11の電気的CVT機能によってエンジン8の運転状態を維持させられる。例えば、車両停止時に蓄電装置60の充電容量SOCが低下して第1電動機M1による発電が必要となった場合には、エンジン8の動力により第1電動機M1が発電させられてその第1電動機M1の回転速度が引き上げられ、車速Vで一意的に決められる第2電動機回転速度NM2が車両停止状態により零(略零)となっても動力分配機構16の差動作用によってエンジン回転速度NEが自律回転可能な回転速度以上に維持される。
また、ハイブリッド制御手段52は、車両の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1および/または第2電動機回転速度NM2を制御してエンジン回転速度NEを略一定に維持したり任意の回転速度に回転制御させられる。言い換えれば、ハイブリッド制御手段52は、エンジン回転速度NEを略一定に維持したり任意の回転速度に制御しつつ第1電動機回転速度NM1および/または第2電動機回転速度NM2を任意の回転速度に回転制御することができる。例えば、図3の共線図からもわかるようにハイブリッド制御手段52は車両走行中にエンジン回転速度NEを引き上げる場合には、車速V(駆動輪38)に拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。
切換制御手段50は、車両状態に基づいて切換ブレーキB0の係合/解放を切り換えることにより、変速機構10(差動部11)の無段変速状態と有段変速状態とを、すなわち差動状態とロック状態とを選択的に切り換える。例えば、切換制御手段50は、記憶手段56に予め記憶された前記図8の破線および二点鎖線に示す切換線図(切換マップ、関係)から車速Vおよび要求出力トルクTOUTで示される車両状態に基づいて、変速機構10(差動部11)の切り換えるべき変速状態を判断して、すなわち変速機構10を無段変速状態とする無段制御領域内であるか或いは変速機構10を有段変速状態とする有段制御領域内であるかを判定して、変速機構10を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える。
具体的には、切換制御手段50は、変速機構10を有段変速状態とする有段変速制御領域内であると判定した場合は、差動部11が固定の変速比γ0例えば変速比γ0が0.6程度の副変速機として機能させられるように切換ブレーキB0を係合させる指令を油圧制御回路42へ出力する。同時に、切換制御手段50は、ハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可すなわち禁止とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速を許可する。このときの有段変速制御手段54は、記憶手段56に予め記憶された例えば図8に示す有段用変速線図に従って自動変速部20を自動変速する。例えば記憶手段56に予め記憶された図2は、このときの変速において選択される油圧式摩擦係合装置すなわちC1、C2、C3、C4、B1、B2の作動の組み合わせを示している。すなわち、変速機構10全体すなわち差動部11および自動変速部20が所謂有段式自動変速機として機能し、図2に示す係合表に従って変速段が達成される。このように、切換制御手段50によって差動部11が有段変速状態に切り換えられて差動部11が副変速機として機能させられ、それに直列の自動変速部20が有段変速機として機能することにより、変速機構10全体が所謂有段式自動変速機として機能させられる。
反対に、切換制御手段50は、変速機構10を無段変速状態とする無段変速制御領域内であると判定した場合は、変速機構10全体として無段変速状態が得られるために差動部11を無段変速状態として無段変速可能とするように切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。同時に、切換制御手段50は、ハイブリッド制御手段52に対してハイブリッド制御を許可する信号を出力するとともに、有段変速制御手段54に対しては、予め設定された無段変速時の変速を許可する。このときの有段変速制御手段54は、記憶手段56に予め記憶された例えば図8に示す無段用変速線図に従って自動変速部20を自動変速する。例えば記憶手段56に予め記憶された図4は、このときの変速において選択される油圧式摩擦係合装置すなわちC1、C2、C3、C4、B1、B2の作動の組み合わせを示している。すなわち、変速機構10全体が所謂無段変速機として機能し、自動変速部20が図4に示す係合表に従って変速段が達成される。このように、切換制御手段50によって無段変速状態に切り換えられた差動部11が無段変速機として機能し、それに直列の自動変速部20が有段変速機として機能することにより、適切な大きさの駆動力が得られると同時に、自動変速部20の第2速、第4速、第6速、第7速、第8速の各変速段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各変速段は無段的な変速比幅が得られる。したがって、その各変速段の間が無段的に連続変化可能な変速比となって変速機構10全体として無段変速状態となりトータル変速比γTが無段階に得られるようになる。
ここで、前記図8について詳述すると、図8は自動変速部20の変速判断の基となる記憶手段56に予め記憶された変速線図(関係、変速マップ)であり、車速Vと駆動力関連値である要求出力トルクTOUTとをパラメータとする二次元座標で構成された変速線図の一例である。図8の実線はアップシフト線であり一点鎖線はダウンシフト線である。また、破線で囲まれた無段制御領域にて示される変速線図は差動部11が無段変速状態とされているときの自動変速部20の変速に用いられる無段用変速線図であり、破線で囲まれていない有段制御領域にて示される変速線図は差動部11が有段変速状態とされているときの自動変速部20の変速に用いられる有段用変速線図である。
また、図8の破線は切換制御手段50による有段制御領域と無段制御領域との判定のための判定車速V1および判定出力トルクT1を示している。つまり、図8の破線はハイブリッド車両の高速走行を判定するための予め設定された高速走行判定値である判定車速V1の連なりである高車速判定線と、ハイブリッド車両の駆動力に関連する駆動力関連値例えば自動変速部20の出力トルクTOUTが高出力となる高出力走行を判定するための予め設定された高出力走行判定値である判定出力トルクT1の連なりである高出力走行判定線とを示している。さらに、図8の破線に対して二点鎖線に示すように有段制御領域と無段制御領域との判定にヒステリシスが設けられている。つまり、この図8は判定車速V1および判定出力トルクT1を含む、車速Vと出力トルクTOUTとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための予め記憶された切換線図(切換マップ、関係)である。なお、この切換線図を含めて変速マップとして記憶手段56に予め記憶されてもよい。また、この切換線図は判定車速V1および判定出力トルクT1の少なくとも1つを含むものであってもよいし、車速Vおよび出力トルクTOUTの何れかをパラメータとする予め記憶された切換線であってもよい。
上記変速線図や切換線図等は、マップとしてではなく実際の車速Vと判定車速V1とを比較する判定式、出力トルクTOUTと判定出力トルクT1とを比較する判定式等として記憶されてもよい。例えば、この場合には、切換制御手段50は、車両状態例えば実際の車速Vが判定車速V1を越えたか否かを判定し、判定車速V1を越えたときには変速機構10を有段変速状態とする。また、切換制御手段50は、車両状態例えば自動変速部20の出力トルクTOUTが判定出力トルクT1を越えたか否かを判定し、判定出力トルクT1を越えたときには変速機構10を有段変速状態とする。
また、差動部11を電気的な無段変速機として作動させるための電動機等の電気系の制御機器の故障や機能低下時、例えば第1電動機M1における電気エネルギの発生からその電気エネルギが機械的エネルギに変換されるまでの電気パスに関連する機器の故障や機能低下、すなわち第1電動機M1、第2電動機M2、インバータ58、蓄電装置60、それらを接続する伝送路などの故障(フェイル)や、故障とか低温による機能低下が発生したような車両状態となる場合には、無段制御領域であっても車両走行を確保するために切換制御手段50は変速機構10を優先的に有段変速状態としてもよい。例えば、この場合には、切換制御手段50は、差動部11を電気的な無段変速機として作動させるための電動機等の電気系の制御機器の故障や機能低下が発生したか否かを判定し、その故障や機能低下が発生したときには変速機構10を有段変速状態とする。
前記駆動力関連値とは、車両の駆動力に1対1に対応するパラメータであって、駆動輪38での駆動トルク或いは駆動力のみならず、例えば自動変速部20の出力トルクTOUT、エンジントルクTE、車両加速度Gや、例えばアクセル開度Acc或いはスロットル弁開度θTH(或いは吸入空気量、空燃比、燃料噴射量)とエンジン回転速度NEとに基づいて算出されるエンジントルクTEなどの実際値や、アクセル開度Acc或いはスロットル弁開度θTH等に基づいて算出される要求(目標)エンジントルクTE、自動変速部20の要求(目標)出力トルクTOUT、要求駆動力等の推定値であってもよい。また、上記駆動トルクは出力トルクTOUT等からデフ比、駆動輪38の半径等を考慮して算出されてもよいし、例えばトルクセンサ等によって直接検出されてもよい。上記他の各トルク等も同様である。
また、前記判定車速V1は、例えば高速走行において変速機構10が無段変速状態とされるとかえって燃費が悪化するのを抑制するように、その高速走行において変速機構10が有段変速状態とされるように設定されている。また、前記判定トルクT1は、例えば車両の高出力走行において第1電動機M1の反力トルクをエンジン8の高出力域まで対応させないで第1電動機M1を小型化するために、第1電動機M1からの電気エネルギの最大出力を小さくして配設可能とされた第1電動機M1の特性に応じて設定されている。
図10は、エンジン回転速度NEとエンジントルクTEとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための境界線としてのエンジン出力線を有し、例えば記憶手段56に予め記憶された切換線図(切換マップ、関係)である。切換制御手段50は、図8の切換線図に替えてこの図10の切換線図からエンジン回転速度NEとエンジントルクTEとに基づいて、それらのエンジン回転速度NEとエンジントルクTEとで表される車両状態が無段制御領域内であるか或いは有段制御領域内であるかを判定してもよい。また、この図10は図8の破線を作るための概念図でもある。言い換えれば、図8の破線は図10の関係図(マップ)に基づいて車速Vと出力トルクTOUTとをパラメータとする二次元座標上に置き直された切換線でもある。
図8の関係に示されるように、出力トルクTOUTが予め設定された判定出力トルクT1以上の高トルク領域、或いは車速Vが予め設定された判定車速V1以上の高車速領域が、有段制御領域として設定されているので有段変速走行がエンジン8の比較的高トルクとなる高駆動トルク時、或いは車速の比較的高車速時において実行され、無段変速走行がエンジン8の比較的低トルクとなる低駆動トルク時、或いは車速の比較的低車速時すなわちエンジン8の常用出力域において実行されるようになっている。
同様に、図10の関係に示されるように、エンジントルクTEが予め設定された所定値TE1以上の高トルク領域、エンジン回転速度NEが予め設定された所定値NE1以上の高回転領域、或いはそれらエンジントルクTEおよびエンジン回転速度NEから算出されるエンジン出力が所定以上の高出力領域が、有段制御領域として設定されているので、有段変速走行がエンジン8の比較的高トルク、比較的高回転速度、或いは比較的高出力時において実行され、無段変速走行がエンジン8の比較的低トルク、比較的低回転速度、或いは比較的低出力時すなわちエンジン8の常用出力域において実行されるようになっている。図10における有段制御領域と無段制御領域との間の境界線は、高車速判定値の連なりである高車速判定線および高出力走行判定値の連なりである高出力走行判定線に対応している。
これによって、例えば、車両の低中速走行および低中出力走行では、変速機構10が無段変速状態とされて車両の燃費性能が確保される。また、実際の車速Vが前記判定車速V1を越えるような高速走行では、変速機構10が有段の変速機として作動する有段変速状態とされて専ら機械的な動力伝達経路でエンジン8の出力が駆動輪34へ伝達され、電気的な無段変速機として作動させる場合に発生する動力と電気エネルギとの間の変換損失が抑制されて燃費が向上させられる。
また、出力トルクTOUTなどの前記駆動力関連値が判定トルクT1を越えるような高出力走行では変速機構10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる領域が車両の低中速走行および低中出力走行となって、第1電動機M1が発生すべき電気的エネルギ換言すれば第1電動機M1が伝える電気的エネルギの最大値を小さくできて第1電動機M1或いはそれを含む車両の駆動装置が一層小型化される。
つまり、前記所定値TE1が第1電動機M1が反力トルクを受け持つことができるエンジントルクTEの切換判定値として予め設定されると、エンジントルクTEがその所定値TE1を超えるような高出力走行では、差動部11が有段変速状態とされるため、第1電動機M1は差動部11が無段変速状態とされているときのようにエンジントルクTEに対する反力トルクを受け持つ必要が無いので、第1電動機M1の大型化が防止されつつその耐久性の低下が抑制される。言い換えれば、本実施例の第1電動機M1は、その最大出力がエンジントルクTEの最大値に対して必要とされる反力トルク容量に比較して小さくされることで、すなわちその最大出力を上記所定値TE1を超えるようなエンジントルクTEに対する反力トルク容量に対応させないことで、小型化が実現されている。
尚、上記第1電動機M1の最大出力は、この第1電動機M1の使用環境に許容されるように実験的に求められて設定されている第1電動機M1の定格値である。また、上記エンジントルクTEの切換判定値は、第1電動機M1が反力トルクを受け持つことができるエンジントルクTEの最大値またはそれよりも所定値低い値であって、第1電動機M1の耐久性の低下が抑制されるように予め実験的に求められた値である。
また、他の考え方として、この高出力走行においては燃費に対する要求より運転者の駆動力に対する要求が重視されるので、無段変速状態より有段変速状態(定変速状態)に切り換えられるのである。これによって、ユーザは、例えば図11に示すような有段自動変速走行におけるアップシフトに伴うエンジン回転速度NEの変化すなわち変速に伴うリズミカルなエンジン回転速度NEの変化が楽しめる。
図12は複数種類のシフトポジションを人為的操作により切り換える切換装置46の一例を示す図である。この切換装置46は、例えば運転席の横に配設され、複数種類のシフトポジションを選択するために操作されるシフトレバー48を備えている。そのシフトレバー48は、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2のいずれの係合装置も係合されないような変速機構10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、変速機構10内の動力伝達経路が遮断された中立状態とする中立ポジション「N(ニュートラル)」、前進自動変速走行ポジション「D(ドライブ)」、または前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。
例えば、上記シフトレバー48の各シフトポジションへの手動操作に連動してそのシフトレバー48に機械的に連結された油圧制御回路42内のマニュアル弁が切り換えられて、図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」等が成立するように油圧制御回路42が機械的に切り換えられる。また、「D」または「M」ポジションにおける図2の係合作動表に示す1st乃至5thの各変速段は、油圧制御回路42内の電磁弁が電気的に切り換えられることにより成立させられる。
上記「P」乃至「M」ポジションに示す各シフトポジションにおいて、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2のいずれもが解放されるような自動変速部20内の動力伝達経路が遮断された車両を駆動不能とする第1クラッチC1および第2クラッチC2による動力伝達経路の動力伝達遮断状態へ切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2の少なくとも一方が係合されるような自動変速部20内の動力伝達経路が連結された車両を駆動可能とする第1クラッチC1および/または第2クラッチC2による動力伝達経路の動力伝達可能状態へ切換えを選択するための駆動ポジションでもある。
具体的には、シフトレバー48が「P」ポジション或いは「N」ポジションから「R」ポジションへ手動操作されることで、第2クラッチC2が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされ、シフトレバー48が「N」ポジションから「D」ポジションへ手動操作されることで、少なくとも第1クラッチC1が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされる。また、「D」ポジションは最高速走行ポジションでもあり、「M」ポジションにおける例えば「4」レンジ乃至「L」レンジはエンジンブレーキ効果が得られるエンジンブレーキレンジでもある。
上記「M」ポジションは、例えば車両の前後方向において上記「D」ポジションと同じ位置において車両の幅方向に隣接して設けられており、シフトレバー48が「M」ポジションへ操作されることにより、「D」レンジ乃至「L」レンジの何れかがシフトレバー48の操作に応じて変更される。具体的には、この「M」ポジションには、車両の前後方向にアップシフト位置「+」、およびダウンシフト位置「−」が設けられており、シフトレバー48がそれ等のアップシフト位置「+」またはダウンシフト位置「−」へ操作されると、「D」レンジ乃至「L」レンジの何れかが選択される。例えば、「M」ポジションにおいて選択される「D」レンジ乃至「L」レンジの5つの変速レンジは、変速機構10の自動変速制御が可能なトータル変速比γTの変化範囲における高速側(変速比が最小側)のトータル変速比γTが異なる複数種類の変速レンジであり、また自動変速部20の変速が可能な最高速側変速段が異なるように変速段(ギヤ段)の変速範囲を制限するものである。また、シフトレバー48はスプリング等の付勢手段により上記アップシフト位置「+」およびダウンシフト位置「−」から、「M」ポジションへ自動的に戻されるようになっている。また、切換装置46にはシフトレバー48の各シフトポジションを検出するためのシフトポジションセンサ49が備えられており、そのシフトレバー48のシフトポジションPSHを表す信号や「M」ポジションにおける操作回数等を電子制御装置40へ出力する。
例えば、「D」ポジションがシフトレバー48の操作により選択された場合には、図7に示す予め記憶された変速マップや切換マップに基づいて切換制御手段50により変速機構10の変速状態の自動切換制御が実行され、ハイブリッド制御手段52により動力分配機構16の無段変速制御が実行され、有段変速制御手段54により自動変速部20の自動変速制御が実行される。例えば、変速機構10が有段変速状態に切り換えられる有段変速走行時には変速機構10が例えば図2に示すような第1変速段乃至第8変速段の範囲で自動変速制御され、或いは変速機構10が無段変速状態に切り換えられる無段変速走行時には変速機構10が動力分配機構16の無段的な変速比幅と自動変速部20の第2変速段、第4変速段、第6変速段、第7変速段、第8変速段の範囲で自動変速制御される各ギヤ段とで得られる変速機構10の変速可能なトータル変速比γTの変化範囲内で自動変速制御される。この「D」ポジションは変速機構10の自動変速制御が実行される制御様式である自動変速走行モード(自動モード)を選択するシフトポジションでもある。
或いは、「M」ポジションがシフトレバー48の操作により選択された場合には、変速レンジの最高速側変速段或いは変速比を越えないように、切換制御手段50、ハイブリッド制御手段52、および有段変速制御手段54により変速機構10の各変速レンジで変速可能なトータル変速比γTの範囲で自動変速制御される。例えば、変速機構10が有段変速状態に切り換えられる有段変速走行時には変速機構10が各変速レンジで変速機構10が変速可能なトータル変速比γTの範囲で自動変速制御され、或いは変速機構10が無段変速状態に切り換えられる無段変速走行時には変速機構10が動力分配機構16の無段的な変速比幅と各変速レンジに応じた自動変速部20の変速可能な変速段の範囲で自動変速制御される各ギヤ段とで得られる変速機構10の各変速レンジで変速可能なトータル変速比γTの範囲で自動変速制御される。この「M」ポジションは変速機構10の手動変速制御が実行される制御様式である手動変速走行モード(手動モード)を選択するシフトポジションでもある。
このように、本実施例の変速機構10(差動部11、動力分配機構16)は無段変速状態(差動状態)と非無段変速状態(ロック状態、非差動状態)とに選択的に切換え可能であって、前記切換制御手段50により車両状態に基づいて差動部11の切り換えるべき変速状態が判断され、差動部11が無段変速状態と非無段変速状態とのいずれかに選択的に切り換えられる。
例えば、図8の関係に示されるように、無段変速走行中にアクセルペダルの踏み込み操作によって要求出力トルクTOUTが判定トルクT1を越えるようなときには、切換制御手段50により変速機構10が有段変速状態へ切り換えられる。この有段変速状態への切換え時には、切換ブレーキB0が係合されて第1電動機回転速度NM1が零とされることから、言い換えれば無段変速状態に比較して差動部11の変速比γ0が小さくなることから、車速Vに拘束される伝達部材18の回転速度が変化しない場合にはエンジン回転速度NEが一時的に低下する可能性がある。そうすると、アクセルペダルの踏み込み操作であるのに、エンジン回転速度NEが低下するとユーザにとって違和感が発生する可能性がある。
また、例えば、図8の関係に示されるように、有段変速走行中にアクセルペダルの戻し操作によって出力トルクTOUTが判定トルクT1以下となるようなときには、切換制御手段50により変速機構10が無段変速状態へ切り換えられる。この無段変速状態への切換え時には、切換ブレーキB0が解放されて第1電動機M1がエンジントルクに応じた反力トルクを受け持つ為に回転状態とされることから、言い換えれば非無段変速状態に比較して差動部11の変速比γ0が大きくなることから、車速Vに拘束される伝達部材18の回転速度が変化しない場合にはエンジン回転速度NEが一時的に上昇する可能性がある。そうすると、アクセルペダルの戻し操作であるのに、エンジン回転速度NEが上昇するとユーザにとって違和感が発生する可能性がある。
そこで、差動部11の無段変速状態と非無段変速状態との切換え時には、その切換えに伴うエンジン回転速度NEの変化によってユーザにとって違和感が発生することが抑制される為に、車速Vに拘束される伝達部材18の回転速度を変化させてエンジン回転速度NEを変化させるように、その切換えと同時に自動変速部20の変速を行う。見方を換えれば、ユーザにとって違和感が発生しないように差動部11の無段変速状態と非無段変速状態との切換え前後におけるエンジン回転速度NEの変化の応答性を向上させる為に、差動部11の無段変速状態と非無段変速状態との切換え時に自動変速部20の変速を同時に行う。
具体的には、切換判断判定手段62は、前記切換制御手段50により車両状態に基づいて差動部11の無段変速状態と非無段変速状態との切換えが判断されたか否かを判定する。例えば、切換判断判定手段62は、切換制御手段50による差動部11の無段変速状態から非無段変速状態への切換え判断がなされたか否かを判定する。また、切換判断判定手段62は、切換制御手段50による差動部11の非無段変速状態から無段変速状態への切換え判断がなされたか否かを判定する。
前記有段変速制御手段54は、上記切換判断判定手段62により切換制御手段50による差動部11の無段変速状態と非無段変速状態との切換え判断がなされたと判定された場合には、自動変速部20の切り換えるべき変速段を判断し、その変速段が得られるように切換制御手段50によるその切換えと同時に自動変速部20の変速を実行する自動変速制御手段として機能する。ここでの無段変速状態と非無段変速状態との切換えと同時に自動変速部20の変速を実行するとは、無段変速状態と非無段変速状態との切換え判断から実際にその切換えが実行されて切換えが完了するまでの切換え区間と同時併行的に自動変速部20の変速を実行すると言うことである。つまり、無段変速状態と非無段変速状態との切換え判断から実際に切換えが完了するまでの間の自動変速部20の変速は、全て切換えと同時に行われているものとする。尚、自動変速部20の変速開始から変速終了までが、無段変速状態と非無段変速状態との切換え判断から実際に切換えが完了するまでの間に入らず、一部が重複している程度でも自動変速部20の変速が切換えと同時に行われているものと表現する。
例えば、有段変速制御手段54は、切換判断判定手段62により切換制御手段50による差動部11の無段変速状態から非無段変速状態への切換え判断が判定されたときには、その切換え前後でエンジン回転速度NEが上昇するような自動変速部20の切り換えるべき変速段を判断し、その変速段が得られるように自動変速部20のダウンシフトを実行する。よって、アクセルペダルの踏み込み操作によって差動部11が非無段変速状態とされるときに、アクセルペダルの踏み込み操作に拘わらずエンジン回転速度が低下してユーザにとって違和感が発生することが、自動変速部20のダウンシフトに伴うエンジン回転速度NEの上昇によって抑制される。つまり、アクセルペダルの踏み込み操作による差動部11の非無段変速状態への切換え時には、その非無段変速状態への切換えと同時にダウンシフトさせることによってエンジン回転速度NEが上昇させられるので、ユーザにとって違和感の発生が抑制されつつ無段変速部の非無段変速状態への切換えが可能となる。
また、切換ブレーキ回転同期判定手段64は、切換制御手段50により差動部11の無段変速状態から非無段変速状態への切換えが判断されたときには、その切換えと同時に有段変速制御手段54により自動変速部20のダウンシフトが実行されることから、そのダウンシフトに伴って切換ブレーキB0が同期回転速度に至ったか否かを、例えば第1電動機回転速度NM1が零回転と判定される為の予め定められた回転速度となったか否かにより判定する。そして、切換制御手段50は、その切換ブレーキ回転同期判定手段64により切換ブレーキB0が同期回転速度に至ったと判定された場合には、切換ブレーキB0を係合させる指令を油圧制御回路42へ出力する。このように、非無段変速状態への切換えと同時にダウンシフトさせることによって、切換ブレーキB0の係合(ロック)時の回転速度差が小さくされてその切換えに伴うエンジン回転速度の低下が抑制されることから、結果としてその切換え前後において自動変速部のダウンシフトに伴ってエンジン回転速度が上昇させられるので、ユーザにとって違和感の発生が抑制されつつ差動部の非差動状態への切換えが可能となる。つまり、差動部11の非無段変速状態への切換え時には、その切換えに伴ってエンジン回転速度NEが一時的に低下することが抑制されて、アクセルペダルの踏み込み操作に伴ってエンジン回転速度NEが上昇させられるので、その切換え前後におけるエンジン回転速度変化の応答性が向上させられる。
また、例えば、有段変速制御手段54は、切換判断判定手段62により切換制御手段50による差動部11の非無段変速状態から無段変速状態への切換え判断が判定されたときには、その切換え前後でエンジン回転速度NEが低下するような自動変速部20の切り換えるべき変速段を判断し、その変速段が得られるように自動変速部20のアップシフトを実行する。よって、アクセルペダルの戻し操作によって差動部11が無段変速状態とされるときに、アクセルペダルの戻し操作に拘わらずエンジン回転速度が上昇してユーザにとって違和感が発生することが、自動変速部20のアップシフトに伴うエンジン回転速度NEの低下によって抑制される。つまり、アクセルペダルの戻し操作による差動部11の無段変速状態への切換え時には、その無段変速状態への切換えと同時にアップシフトさせることによってエンジン回転速度NEが低下させられるので、ユーザにとって違和感の発生が抑制されつつ無段変速部の無段変速状態への切換えが可能となる。
また、切換制御手段50は、差動部11の非無段変速状態から無段変速状態への切換えを判定したときには、その切換えと同時に有段変速制御手段54による自動変速部20のアップシフトが実行されることから、そのアップシフトに伴うエンジン回転速度NEの低下が維持されるように切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。このように、差動部11の無段変速状態への切換え時には、その切換えに伴ってエンジン回転速度NEが一時的に上昇することが抑制されて、アクセルペダルの戻し操作に伴ってエンジン回転速度NEが低下させられるので、その切換え前後におけるエンジン回転速度変化の応答性が向上させられる。
また、切換制御手段50により差動部11の無段変速状態と非無段変速状態との切換えが判断されたときの自動変速部20の切り換えるべき変速段は、図8に示すように予め定められて記憶されていても良い。
例えば、有段変速制御手段54は、差動部11が無段変速状態とされるときには、図8において破線で囲まれた無段制御領域にて示されるような無段時の変速線図から、例えば図4の係合作動表に示す第2変速段、第4変速段、第6変速段、第7変速段、第8変速段を用いて自動変速部20の変速が実行されるように予め定められた無段用変速線図から、車両状態に基づいて自動変速部20の変速段を判断し、図4の係合作動表に従ってその変速段が達成されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指令、油圧指令)を油圧制御回路42へ出力する。
また、有段変速制御手段54は、差動部11が非無段変速状態とされるときには、図8において破線で囲まれていない有段制御領域にて示されるような有段時の変速線図から、例えば図2の係合作動表に示す第1変速段乃至第8変速段を用いて自動変速部20の変速が実行されるように予め定められた有段用変速線図から、車両状態に基づいて自動変速部20の変速段を判断し、図2の係合作動表に従ってその変速段が達成されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合および/または解放させる指令を油圧制御回路42へ出力する。
そして、有段変速制御手段54は、切換制御手段50により差動部11の無段変速状態と非無段変速状態との切換えが判断されたときには、図8の変速線図と切換線図とから車両状態に基づいて自動変速部20の変速段を判断し、その変速段が達成されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合および/または解放させる指令を油圧制御回路42へ出力する。例えば、自動変速部20の第2変速段での無段変速走行時に有段変速走行への切換えが判断された場合には第1変速段へのダウンシフトが判断されたり、自動変速部20の第4変速段での無段変速走行時に有段変速走行への切換えが判断された場合には第2変速段へのダウンシフトが判断される。また、自動変速部20の第1変速段での有段変速走行時に無段変速走行への切換えが判断された場合には第2変速段へのアップシフトが判断されたり、自動変速部20の第2変速段での有段変速走行時に無段変速走行への切換えが判断された場合には第4変速段へのアップシフトが判断される。
図13は、電子制御装置40の制御作動の要部すなわち変速機構10が無段変速状態から有段変速状態へ切り換えられるときの制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
また、図14は、図13のフローチャートに示す制御作動を説明するタイムチャートであり、アクセルペダルの踏み込み操作により変速機構10が無段変速状態から有段変速状態へ切り換えられるときの制御作動を示している。
先ず、前記切換判断判定手段62に対応するステップ(以下、ステップを省略する)S1において、車両状態に基づいて切換制御手段50による差動部11の無段変速状態から非無段変速状態(有段変速状態)への切換え判断がなされたか否かが判定される。
図14のt1時点は、無段変速走行中にアクセルペダルの踏み込み操作によって要求出力トルクTOUTが判定トルクT1を越えたことにより、変速機構10(差動部11、動力分配機構16)の有段変速状態(ロック状態)への切換え判断が判定されたことを示している。
上記S1の判断が否定される場合は本ルーチンは終了させられるが、肯定される場合は前記有段変速制御手段54に対応するS2において、差動部11の無段変速状態から有段変速状態への切換え前後でエンジン回転速度NEが上昇するような自動変速部20の切り換えるべき変速段が判断される。例えば、図8の変速線図と切換線図とから車両状態に基づいて自動変速部20の切り換えるべき変速段が判断される。
上記S2に続いて同じく有段変速制御手段54に対応するS3において、そのS2にて判断された変速段が得られるように自動変速部20のダウンシフトを実行する指令が油圧制御回路42へ出力される。
図14のt1時点は、自動変速部20の切り換えるべき低車速ギヤ段が判断され、すなわちダウンシフトが実行される為の自動変速部20の切り換えるべき変速段が判断され、そのダウンシフトを実行する指令が油圧制御回路42へ出力されたことを示している。また、t1時点乃至t5時点は、アクセルペダルの踏み込み操作に伴って、エンジン回転速度NEが上昇させられていることを示している。特に、t2時点乃至t4時点は、自動変速部20のダウンシフトに伴うエンジン回転速度NEの上昇が加えられている。
上記S3に続いて前記切換ブレーキ回転同期判定手段64に対応するS4において、S3にて実行されたダウンシフトに伴って切換ブレーキB0が同期回転速度に至ったか否かが、例えば第1電動機回転速度NM1が零回転と判定される為の予め定められた回転速度となったか否かにより判定される。
上記S4の判断が否定される場合は肯定されるまで繰り返し実行されるが、肯定される場合は前記切換制御手段50に対応するS5において、切換ブレーキB0を係合させる指令が油圧制御回路42へ出力される。
図14のt3時点は、切換ブレーキB0の同期回転速度が判断され、t4時点にて切換ブレーキB0の係合(ロック)が完了されたことを示している。このように、t1時点からt4時点までの切換ブレーキB0の係合(ロック)による無段変速状態から有段変速状態への切り換え時には、自動変速部20のダウンシフトが同時に実行されている。なお、t3時点乃至t4時点の区間では、切換ブレーキB0の係合による切換動作が実質的に実行されており、これを狭義の無段変速状態から有段変速状態への切換えと考えることもできる。この場合には、その切換えに先立ってダウンシフト(t1時点)が実行されることになる。
上述のように、本実施例によれば、切換ブレーキB0により、例えば差動部11が無段変速状態と非無段変速状態とに切り換えられることから、電気的に変速比が変更させられる変速機の燃費改善効果と機械的に動力を伝達する歯車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られる。
例えば、車両の低中速走行および低中出力走行となるようなエンジンの常用出力域において差動部11が無段変速状態とされると、車両の燃費性能が確保される。また、高速走行において差動部11が非無段変速状態とされると、専ら機械的な動力伝達経路でエンジン8の出力が駆動輪へ伝達されて、電気的に変速比が変更させられる変速機として作動させる場合に発生する動力と電気エネルギとの間の変換損失が抑制されるので、燃費が向上させられる。また例えば、高出力走行において差動部11が非無段変速状態とされると、電気的に変速比が変更させられる変速機として作動させる領域が車両の低中速走行および低中出力走行となって、第1電動機M1が発生すべき電気的エネルギ換言すれば第1電動機M1が伝える電気的エネルギの最大値を小さくできるので、第1電動機M1やその電気的エネルギが伝達される第2電動機M2、或いはそれを含む変速機構10が一層小型化される。
また、差動部11の無段変速状態と非無段変速状態との切換え時には、その切換えと同時に有段変速制御手段54により自動変速部20の変速が行われるので、自動変速部20の変速に伴いエンジン回転速度NEを変化させることが可能な為、差動部11の無段変速状態と非無段変速状態との切換えに伴うエンジン回転速度NEの変化によってユーザにとって違和感が発生することが抑制され得る。見方を換えれば、自動変速部20の変速に伴いエンジン回転速度NEを変化させることが可能な為、ユーザにとって違和感が発生しないように差動部11の無段変速状態と非無段変速状態との切換え前後におけるエンジン回転速度NE変化の応答性が向上させられる。
また、本実施例によれば、差動部11の無段変速状態から非無段変速状態への切換えのときには、その切換え前後でエンジン回転速度NEが上昇するように有段変速制御手段54により自動変速部20のダウンシフトが行われるので、アクセルペダルの踏み込み操作による高出力走行において差動部11が非無段変速状態とされてエンジン回転速度NEが車速Vに拘束されることによりアクセルペダルの踏み込み操作に拘わらずエンジン回転速度NEが低下してユーザにとって違和感が発生する可能性があることが、自動変速部20のダウンシフトに伴うエンジン回転速度NEの上昇によって抑制される。つまり、アクセルペダルの踏み込み操作による差動部11の非無段変速状態への切換え時には、その非無段変速状態への切換えと同時にダウンシフトさせることによってその切換えに伴うエンジン回転速度NE変化が抑制されることから、結果としてその切換え前後において自動変速部20のダウンシフトに伴ってエンジン回転速度NEが上昇させられるので、ユーザにとって違和感の発生が抑制されつつ差動部11の非無段変速状態への切換えが可能となる。
また、本実施例によれば、有段変速制御手段54は、差動部11の非無段変速状態のときには、伝達部材18からの入力を受ける油圧式摩擦係合装置の係合により成立する変速段と、エンジン8からの入力を受ける油圧式摩擦係合装置の係合により成立する変速段とを用いて、有段変速部11の変速を実行するので、言い換えれば、差動部11の無段変速状態において自動変速部20の変速に用いることはできない変速段を含めて、すなわち伝達部材18の回転速度が入力される油圧式摩擦係合装置の係合により成立せず且つエンジン8からの入力を受ける油圧式摩擦係合装置の係合により成立する変速段を含めて、差動部11の非無段変速状態における自動変速部20の変速に用いられ得るので、自動変速部20がより多段に構成され得る。
また、動力分配機構16が、第1キャリヤCA1、第1サンギヤS1、第1リングギヤR1を3要素とするシングルピニオン型の第1遊星歯車装置24によって簡単に且つ動力分配機構16の軸方向寸法が小さく構成される利点がある。さらに、動力分配機構16には第1サンギヤS1をトランスミッションケース12に連結する切換ブレーキB0が設けられているので、切換制御手段50により変速機構10(差動部11)の無段変速状態と有段変速状態とが簡単に制御される。
また、動力分配機構16、切換ブレーキB0の係合により非差動状態とされて変速比が1より小さい増速変速機として構成され得るので、自動変速部20の一部であるかの如く機能する。
また、本実施例によれば、1つの遊星歯車装置によって動力分配機構16が簡単に構成されることによりその軸方向寸法が小さくされて、変速機構10全体として軸方向寸法が短縮される。また、差動部11の非無段変速状態では前進8速の多段変速が、差動部11と自動変速部20とが有する3組の遊星歯車装置、4つのクラッチC、および3つのブレーキBによって得られるため、変速機構10全体として軸方向寸法が短縮され得る。
次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
図15は本発明の他の実施例における変速機構70の構成を説明する骨子図であって、図1に相当する図である。図16は変速機構70が有段変速作動させられるときの変速段と油圧式摩擦係合装置の作動の組み合わせとの関係を説明する係合作動表であって、図2に相当する図である。図17は変速機構70が有段変速作動させられるときの各変速段の相対的回転速度を説明する共線図であって、図3に相当する図である。図18は変速機構70が無段変速作動させられるときの変速段と油圧式摩擦係合装置の作動の組み合わせとの関係を説明する係合作動表であって、図4に相当する図である。図19は変速機構70が無段変速作動させられるときの各変速段の相対的回転速度を説明する共線図であって、図5に相当する図である。
変速機構70は、前述の実施例と同様に第1電動機M1、動力分配機構76、および第2電動機M2を備えている差動部71と、その差動部71と出力軸22との間で伝達部材18を介して直列に連結されている前進8段の自動変速部80とを備えている。この変速機構70は、変速機構10と同様に、例えばエンジン8と一対の駆動輪38との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)36および一対の車軸等を順次介して一対の駆動輪38へ伝達する。
動力分配機構76は、例えば「0.394」程度の所定のギヤ比ρ1を有するダブルピニオン型の第1遊星歯車装置84と、切換ブレーキB0とを主体的に備えている。この第1遊星歯車装置84は、第1サンギヤS1、互いに噛み合う第1−1遊星歯車P1および第1−2遊星歯車P1’、それら第1−1遊星歯車P1および第1−2遊星歯車P1’を自転および公転可能に支持する第1キャリヤCA1、第1−1遊星歯車P1および第1−2遊星歯車P1’を介して第1サンギヤS1と噛み合う第1リングギヤR1を回転要素(要素)として備えている。
この動力分配機構76においては、第1リングギヤR1は入力軸14すなわちエンジン8に連結され、第1サンギヤS1は第1電動機M1に連結され、第1キャリヤCA1は伝達部材18に連結されている。また、切換ブレーキB0は第1サンギヤS1とケース12との間に設けられている。その切換ブレーキB0が解放されると、動力分配機構76は第1遊星歯車装置84の3要素である第1サンギヤS1、第1キャリヤCA1、第1リングギヤR1がそれぞれ相互に相対回転可能とされて差動状態とされることから、前記動力分配機構16と同様に、差動部71(動力分配機構76)は変速比γ0が連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。
この状態で、上記切換ブレーキB0が係合されると、動力分配機構16と同様に、動力分配機構76は非差動状態とされる。具体的には、切換ブレーキB0が係合されて第1サンギヤS1がケース12に連結されると、動力分配機構76は第1サンギヤS1が非回転状態とさせられるロック状態(非差動状態)とされることから、差動部71も非差動状態とされる。また、第1キャリヤCA1は第1リングギヤR1よりも増速回転されるので、動力分配機構76は増速機構として機能するものであり、差動部71(動力分配機構76)は変速比γ0が「1」より小さい値例えば0.61程度に固定された増速変速機として機能する非無段変速状態例えば定変速状態すなわち有段変速状態とされる。
このように、本実施例でも、上記切換ブレーキB0は、差動部71(動力分配機構76)を、変速比が連続的変化可能な電気的な無段変速機として作動する無段変速作動可能な無段変速状態と、変速比γ0が1より小さい単段の変速機として作動する定変速状態とに選択的に切換える差動状態切換装置として機能している。
自動変速部80は、例えば「0.447」程度の所定のギヤ比ρ2を有するダブルピニオン型の第2遊星歯車装置86と例えば「0.300」程度の所定のギヤ比ρ3を有するシングルピニオン型の第3遊星歯車装置88とを備えている。この自動変速部80は、前記自動変速部20とは第2遊星歯車装置および第3遊星歯車装置の各ギヤ比ρ2、ρ3が相違するのみで、その他の構成、およびエンジン8や伝達部材18等との連結状態は同じであるので、その同じ部分についての説明は省略する。
以上のように構成された変速機構70において、前述の実施例と同様に、本実施例でも動力分配機構76に切換ブレーキB0が備えられており、切換ブレーキB0が係合作動させられることによって、差動部71は前述した無段変速機として作動可能な無段変速状態に加え、一種類の変速比の単段の増速変速機として作動可能な非無段変速状態(定変速状態)を構成することが可能とされている。したがって、変速機構70では、切換ブレーキB0を係合作動させることで定変速状態とされた差動部71と自動変速部80とで有段式の自動変速機として作動する有段変速状態が構成され、切換ブレーキB0を係合作動させないことで無段変速状態とされた差動部71と自動変速部80とで電気的な無段変速機として作動する無段変速状態が構成される。言い換えれば、変速機構70は、切換ブレーキB0を係合作動させることで有段変速状態に切り換えられ、切換ブレーキB0を係合作動させないことで無段変速状態に切り換えられる。また、差動部71も有段変速状態と無段変速状態とに切り換え可能な変速機であると言える。
具体的には、差動部71が非無段変速状態とされて変速機構70が有段変速機として機能する場合には、前述の実施例と同様に、切換ブレーキB0が係合させられ、且つ第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4、第1ブレーキB1、および第2ブレーキB2が選択的に係合作動させられることにより、第1変速段乃至第8変速段のいずれか或いは後進変速段或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γが各変速段毎に得られるようになっている。
例えば、差動部71の非無段変速状態では、図16の係合作動表に示されるように、第1変速段乃至第8変速段、後進変速段、およびニュートラルのいずれかが選択的に成立させられる。この図16は、前記図2の係合作動表と比較して、各変速段における変速比(変速比ステップを含む)が相違するのみで、各変速段におけるクラッチC、ブレーキBの係合作動は同じであるので、その同じ部分についての説明は省略する。図16の各変速段におけるクラッチC、ブレーキBの係合により、変速比γ1が最大値例えば「4.500」程度である第1変速段が成立させられ、変速比γ2が第1変速段よりも小さい値例えば「2.727」程度である第2変速段が成立させられ、変速比γ3が第2変速段よりも小さい値例えば「1.808」程度である第3変速段が成立させられ、変速比γ4が第3変速段よりも小さい値例えば「1.242」程度である第4変速段が成立させられ、変速比γ5が第4変速段よりも小さい値「1.000」である第5変速段が成立させられ、変速比γ6が第5変速段よりも小さい値例えば「0.775」程度である第6変速段が成立させられ、変速比γ7が第6変速段よりも小さい値例えば「0.664」程度である第7変速段が成立させられ、変速比γ8が第7変速段よりも小さい値例えば「0.606」程度である第8変速段が成立させられる。また、変速比γRが第1変速段と第2変速段との間の値例えば「3.333」程度である後進変速段が成立させられる。
図17は、無段変速部或いは第1変速部として機能する差動部71と有段変速部或いは第2変速部として機能する自動変速部80とから構成される変速機構70において、切換ブレーキB0が係合させられることによって達成される有段変速時の各変速段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表す共線図を示している。この図17の共線図は、各遊星歯車装置84、86、88のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、その上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度NEを示し、横線X3が伝達部材18の回転速度を示している。
また、差動部71を構成する動力分配機構76の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する第1サンギヤS1、第1回転要素(第1要素)RE1に対応する第1リングギヤR1、第3回転要素(第3要素)RE3に対応する第1キャリヤCA1の相対回転速度を示すものであり、それらの間隔は第1遊星歯車装置84のギヤ比ρ1に応じて定められている。さらに、自動変速部80の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素(第4要素)RE4に対応する第3サンギヤS3を、第5回転要素(第5要素)RE5に対応し且つ相互に連結された第2キャリヤCA2および第3キャリヤCA3を、第6回転要素(第6要素)RE6に対応し且つ相互に連結された第2リングギヤR2および第3リングギヤR3を、第7回転要素(第7要素)RE7に対応する第2サンギヤS2をそれぞれ表し、それらの間隔は第2、第3遊星歯車装置86、88のギヤ比ρ2、ρ3に応じてそれぞれ定められている。
上記図17の共線図を用いて表現すれば、本実施例の変速機構70は、動力分配機構76(差動部71)において、第1遊星歯車装置84の第1回転要素RE1(第1リングギヤR1)が入力軸14すなわちエンジン8に連結され、第2回転要素RE2(第1サンギヤS1)が第1電動機M1に連結されるとともに切換ブレーキB0を介してケース12に選択的に連結され、第3回転要素RE3(第1キャリヤCA1)が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部80へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により第1サンギヤS1の回転速度と第1キャリヤCA1の回転速度との関係が示される。
そして、図17に示すように、有段変速時には各変速段において、切換ブレーキB0の係合によって第1サンギヤS1の回転速度が零とされ、且つ第1リングギヤR1の回転速度がエンジン回転速度NEとされるので、横軸X1と縦軸Y1との交点とエンジン回転速度NEを示す横軸X2と縦軸Y2との交点とを結ぶ直線L0と、縦軸Y3との交点で示される第1キャリヤCA1の相対回転速度すなわち伝達部材18の相対回転速度は、エンジン回転速度NEよりも増速された回転で自動変速部80へ入力される。このように、切換ブレーキB0の係合によって動力分配機構76が増速機構として機能する。
また、自動変速部80における第4回転要素RE4乃至第7回転要素RE7の各回転要素とエンジン8や伝達部材18等との連結状態は、前記図3の自動変速部20と同じであるので、その説明を省略する。
そして、図17に示すように、切換ブレーキB0が係合させられる有段変速時には自動変速部80において、クラッチC、ブレーキBの係合により、各変速段における出力軸22の回転速度が示される。この図17は、図3の共線図とは、各変速段におけるクラッチC、ブレーキBの係合作動や第6回転要素RE6の回転速度(縦線Y6)で示される出力軸22の回転速度は同じであるので、その説明を省略する。
また、差動部71が無段変速状態とされて変速機構70が無段変速機として機能する場合には、前述の実施例と同様に、切換ブレーキB0が解放させられて差動部71が無段変速機として機能し、且つ差動部71に直列の自動変速部80が有段変速機として機能することにより、自動変速部80の少なくとも1つの変速段Mに対して自動変速部80に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、差動部71の変速比γ0と自動変速部80の変速比γとに基づいて形成される変速機構70全体としてのトータル変速比γTが無段階に得られるようになる。
このとき、変速機構70が無段変速機として機能するには、前述の実施例と同様に、差動部71の無段変速状態において自動変速部80における回転要素の少なくとも1つが、無段変速状態ではエンジン8の所定回転に拘わらず回転が変化させられる伝達部材18からの入力を受ける必要がある。
具体的には、図16、17に示すように、自動変速部80の第2変速段(2nd)、第4変速段(4th)、第8変速段(8th)では、伝達部材18からの入力を受ける第2クラッチC2が係合させられることにより第4回転要素RE4が伝達部材18からの入力を受け、第6変速段(6th)、第7変速段(7th)、第8変速段(8th)では、伝達部材18からの入力を受ける第1クラッチC1が係合させられることにより第7回転要素RE7が伝達部材18からの入力を受ける。つまり、第2変速段(2nd)、第4変速段(4th)、第6変速段(6th)、第7変速段(7th)、第8変速段(8th)は、伝達部材18からの入力を受ける第1クラッチC1および第2クラッチC2の少なくとも何れかの係合により成立する変速段である。よって、第2変速段(2nd)、第4変速段(4th)、第6変速段(6th)、第7変速段(7th)、第8変速段(8th)では、差動部71が無段変速状態とされて伝達部材18の回転速度が変化させられると、それら各変速段において無段的な変速比幅が得られて、トータル変速比(総合変速比)γTが無段階に得られる。
しかし、自動変速部80の第1変速段(1st)、第3変速段(3rd)、第5変速段(5th)、および後進変速段(Rev)では、第1クラッチC1および第2クラッチC2の何れも係合させられないため、各回転要素は伝達部材18からの入力を受けていない。見方を変えれば、自動変速部80の第1変速段(1st)、第3変速段(3rd)、第5変速段(5th)、および後進変速段(Rev)においては、第3クラッチC3および/または第4クラッチC4の係合により第4回転要素RE4および/または第5回転要素RE5はエンジン8からの入力を直接的に受け、および/または第1ブレーキB1或いは第2ブレーキB2の何れかの係合により第5回転要素RE5或いは第7回転要素RE7は回転が停止される。すなわち、自動変速部20の第1変速段(1st)、第3変速段(3rd)、第5変速段(5th)、および後進変速段(Rev)は、伝達部材18の回転変化の影響を受けない油圧式摩擦係合装置(第3クラッチC3、第4クラッチC4、第1ブレーキB1、第2ブレーキB2)の係合のみにより成立する変速段である。そのため、第1変速段(1st)、第3変速段(3rd)、第5変速段(5th)、および後進変速段(Rev)では、差動部71が無段変速状態とされて伝達部材18の回転速度が変化させられたとしても、変速比が変化させられない。
このように、差動部71が無段変速状態とされるときに、自動変速部80が第2変速段(2nd)、第4変速段(4th)、第6変速段(6th)、第7変速段(7th)、第8変速段(8th)のうちの何れかの変速段とされれば、変速機構70が無段変速機として機能させられ得る。
例えば、差動部71の無段変速状態では、図18の係合作動表に示されるように、第2変速段、第4変速段、第6変速段、第7変速段、第8変速段、第1後進変速段、第2後進変速段、およびニュートラルのいずれかが選択的に成立させられる。この図18は、前記図4の係合作動表と比較して、各変速段におけるクラッチC、ブレーキBの係合作動は同じであるので、その説明は省略する。
図19は、変速機構70において、切換ブレーキB0が解放される無段変速時の共線図であって、前記図17に相当するものである。図19において、切換ブレーキB0が解放される差動部71の無段変速状態では、第1電動機M1の反力を制御することによってその回転速度は、すなわち直線L0と縦線Y1との交点で示される第1サンギヤS1の回転速度は広範囲に制御され得ることから、直線L0は横線X2と縦線Y2との交点を回動中心として矢印に例示する範囲で回動させられるので、その直線L0と縦線Y3との交点で示される第1キャリヤCA1すなわち伝達部材18の回転速度はエンジン回転速度NEを挟んで上下の範囲で変化させられる。
無段変速時の自動変速部80は、図19に示されるように、クラッチC、ブレーキBの係合により、各変速段における出力軸22の回転速度が示される。この図19は、図5の共線図とは、各変速段におけるクラッチC、ブレーキBの係合作動や第6回転要素RE6の回転速度(縦線Y6)で示される出力軸22の回転速度は同じであるので、その説明を省略する。
そして、前述の実施例と同様に、差動部71が無段変速機として機能し、それに直列の自動変速部80が複数の変速段を有する有段変速機として機能することにより、自動変速部80の各変速段に対しその自動変速部80に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて、各変速段は無段的な変速比幅が得られる。したがって、その各変速段の間が無段的に連続変化可能な変速比となって変速機構70全体としてのトータル変速比γTが無段階に得られるようになる。
また、図19からも明らかなように、第2後進変速段(Rev2)では、伝達部材18の回転速度すなわち自動変速部80へ入力される回転速度が第2変速段、第4変速段、第6変速段、第7変速段、第8変速段の前進変速段とは反対の負の回転速度とされるため、自動変速部80内の回転方向が前進走行時と後進走行時とで全て反対の方向とされ、一般に設計的に好ましくない状態とされる。しかし、この第2後進変速段は、第2変速段と同じ係合作動において伝達部材18の回転速度を負の回転速度にするだけで良い利点がある。
また、第1後進変速段(Rev1)では、伝達部材18の回転速度が前進変速段と同じ正の回転速度とされるため、前進走行時と後進走行時とで自動変速部80内の回転方向が同じ方向とされて、設計的に好ましくない状態が回避される。
本実施例の変速機構70においても、無段変速部或いは第1変速部として機能する差動部71と、有段変速部或いは第2変速部として機能する自動変速部80とから構成されるので、前述の実施例と同様の効果が得られる。