JP4209253B2 - フッ素添加カーボン膜の形成方法 - Google Patents
フッ素添加カーボン膜の形成方法 Download PDFInfo
- Publication number
- JP4209253B2 JP4209253B2 JP2003144613A JP2003144613A JP4209253B2 JP 4209253 B2 JP4209253 B2 JP 4209253B2 JP 2003144613 A JP2003144613 A JP 2003144613A JP 2003144613 A JP2003144613 A JP 2003144613A JP 4209253 B2 JP4209253 B2 JP 4209253B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- carbon film
- added carbon
- substrate
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 73
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 title description 4
- 238000012545 processing Methods 0.000 claims description 132
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 109
- 229910052799 carbon Inorganic materials 0.000 claims description 109
- 239000000758 substrate Substances 0.000 claims description 63
- 230000005540 biological transmission Effects 0.000 claims description 26
- 238000004381 surface treatment Methods 0.000 claims description 21
- 239000004020 conductor Substances 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 32
- 239000004065 semiconductor Substances 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 10
- 238000005192 partition Methods 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910020177 SiOF Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02118—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
- H01L21/0212—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
- C23C16/0245—Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/02312—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
- H01L21/02315—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/312—Organic layers, e.g. photoresist
- H01L21/3127—Layers comprising fluoro (hydro)carbon compounds, e.g. polytetrafluoroethylene
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の属する技術分野】
本名発明は、絶縁膜の形成方法に係り、特にはフッ素添加カーボン膜の形成方法に関する。
【0002】
【従来の技術】
近年の半導体装置の高性能化に伴い、半導体装置の配線間の浮遊容量を低減して半導体装置の動作速度を高速化することが試みられている。配線間の浮遊容量を低減するには、例えば半導体装置の配線間に形成される層間絶縁膜に、誘電率の低い材料を用いる方法がとられている。
【0003】
前記した層間絶縁膜には、比誘電率が4程度であるシリコン酸化膜(SiO2膜)が用いられてきたが、近年は比誘電率が3〜3.5程度のフッ素添加シリコン酸化膜(SiOF膜)を用いることで、半導体装置の高速化が図られてきた。
【0004】
しかし、前記したSiOF膜では比誘電率を低下させることに限界があり、比誘電率3以下を達成するのは困難であった。
【0005】
比誘電率が低い、いわゆる低誘電率層間絶縁膜には様々な候補材料があるが、比誘電率が低く、かつ半導体装置に用いるに耐えうる機械的強度を持つことが必要条件である。そこで、十分な機械的強度を持ち、かつ比誘電率が2.5程度、もしくはそれ以下にすることが可能であるフッ素添加カーボン膜(CF膜)が着目され、次世代の低誘電率層間絶縁膜としてとして半導体装置に用いる試みが行われてきた。
【0006】
【特許文献1】
WO99/35684号公報
【0007】
【発明が解決しようとする課題】
しかし、前記したフッ素添加カーボン膜を半導体装置の層間絶縁膜として用いる場合、フッ素添加カーボン膜と当該フッ素添加カーボン膜の下地との密着力が弱いという問題があった。
【0008】
図1(A)〜(C)には、シリコン窒化膜(SiN膜)上にフッ素添加カーボン膜を形成する場合の例を示す。フッ素添加カーボン膜を半導体装置の層間絶縁膜として用いる場合、当該半導体装置の配線層であるCu層のキャップ層であるSiN膜の上にフッ素添加カーボン膜を成膜する場合が多い。
【0009】
図1(A)を参照するに、図示しない被処理基板上に、SiN膜101が形成されている。また、前記SiN膜101上には、前記SiN膜101と比べて非常に薄く、例えば水分、有機物、自然酸化膜などからなる付着層102が形成されている。前記付着層102は、例えば、前記SiN膜101が形成された後に被処理基板を大気に曝すなどして形成されてしまうことが多い。
【0010】
次に図1(B)において、例えばプラズマCVD(化学気相堆積)法などによってフッ素添加カーボン膜103を形成する。
【0011】
しかし、前記したように、SiN膜101上には付着層102が存在するため、図1(C)に示すように、前記フッ素添加カーボン膜103が前記付着層102と共に前記SiN膜101より剥離してしまう、もしくは前記フッ素添加カーボン膜103が前記付着層102より剥離してしまう場合が生じる。
【0012】
また、前記フッ素添加カーボン膜103の形成直後には前記したような剥離が生じない場合でも、例えば半導体装置の製造工程には、熱応力がかかる熱処理工程や、さらにはせん断応力などがかかるCMP(化学機械研磨)の工程などにおいてフッ素添加カーボン膜が剥離してしまう場合があり、このような要求を満足する、下地膜とフッ素添加カーボン膜との十分な密着力を確保するのが困難であった。
【0013】
また、密着力を確保するために前記付着層102を除去する場合、例えばプラズマ処理装置によるスパッタエッチングで除去する方法がある。しかし、スパッタエッチングのイオン衝撃によって、フッ素添加カーボン膜の下地膜となる前記SiN膜101がダメージをうけてしまうという問題があった。
【0014】
そこで、本発明では上記の課題を解決したフッ素添加カーボン膜の形成方法を提供することを目的としている。
【0015】
本名発明の具体的な課題は、フッ素添加カーボン膜の下地膜にダメージを与える事無く、フッ素添加カーボン膜と前記下地膜との密着力を良好にする、フッ素添加カーボン膜の形成方法を提供することである。
【0016】
【課題を解決するための手段】
本発明は上記の課題を解決するために、
請求項1に記載したように、
被処理基板上にフッ素添加カーボン膜を形成するフッ素添加カーボン膜の形成方法であって、
基板処理装置によって希ガスをプラズマ励起し、プラズマ励起された前記希ガスによって前記被処理基板の表面に付着した付着層を除去するための表面処理を行う第1の工程と、
前記付着層が除去された表面を有する前記被処理基板上にフッ素添加カーボン膜を形成する第2の工程を含み、
前記基板処理装置は、
前記被処理基板に対面するように設けられたマイクロ波透過窓を有し、前記マイクロ波透過窓上に設けられた、マイクロ波電源が電気的に接続されたマイクロ波アンテナから、前記被処理基板上のプロセス空間に、前記マイクロ波窓を介してマイクロ波を導入し、前記希ガスを含むプラズマガスをプラズマ励起し、
前記プロセス空間は、導電材料構造物により前記マイクロ波透過窓に面する第1の空間と、前記被処理基板に面する第2の空間に分割され、前記第2の空間にフッ素添加カーボン膜を形成する原料となる処理ガスが供給されて、前記基板処理装置で前記第2の工程が行われ、
前記導電材料構造物は、前記処理ガスを前記第2の空間に供給する処理ガス供給部であり、
前記処理ガス供給部は処理容器内に形成されたプラズマを通過させる複数の開口部と、処理ガス通路と、前記処理ガス通路から前記処理容器内に連通した複数の処理ガス供給穴とを備えたことを特徴とするフッ素添加カーボン膜の形成方法により、また、
請求項2に記載したように、
前記第1の工程を前記被処理基板の表面にダメージを与えないように行うことを特徴とする請求項1記載のフッ素添加カーボン膜の形成方法により、また、
請求項3に記載したように、
前記基板処理装置は、
外壁により画成され、前記被処理基板を保持する保持台を備えた処理容器と、
前記処理容器を排気する排気口とを有し、
前記マイクロ波透過窓は前記処理容器上に設置され、前記プラズマガスを供給するプラズマガス供給部が、前記処理容器と前記マイクロ波透過窓の間に挿入されて、前記外壁の一部を形成することを特徴とする請求項1または2記載のフッ素添加カーボン膜の形成方法により、また、
請求項4に記載したように、
前記マイクロ波アンテナは同軸導波管により給電され、開口部を有するアンテナ本体と、前記アンテナ本体上に前記開口部を覆うように設けられた複数のスロットを有するマイクロ波放射面と、前記アンテナ本体と前記マイクロ波放射面との間に設けられた誘電体よりなることを特徴とした、請求項1〜3のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法により、また、
請求項5に記載したように、
前記希ガスはArを含むことを特徴とする請求項1〜4のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法により、また、
請求項6に記載したように、
前記希ガスはKrを含むことを特徴とする請求項1〜4のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法により、また、
請求項7に記載したように、
前記希ガスはXeを含むことを特徴とする請求項1〜4のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法により、また、
請求項8に記載したように、
前記第1の工程と前記第2の工程は、前記基板処理装置において、連続的に行われることを特徴とする請求項1〜7のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法により、また、
請求項9に記載したように、
前記第2の工程は前記第1の工程の後に実行され、前記第1の工程は、前記基板処理装置の前記処理ガスの供給を遮断した状態で実施されることを特徴とする請求項8記載のフッ素添加カーボン膜の形成方法により、解決する。
[作用]
本発明によれば、プラズマ処理装置によって、被処理基板の表面処理を行うことにより、当該表面処理後に形成されるフッ素添加カーボン膜と被処理基板表面との密着力を向上させることが可能となる。
【0017】
また、前記プラズマ処理装置は、高密度かつ低電子温度のマイクロ波プラズマを用いているため、被処理基板表面にダメージを与える事無く、前記表面処理を行う事が可能となる。
【0018】
【発明の実施の形態】
[原理]
まず、本発明によるフッ素添加カーボン膜の形成方法によって、当該フッ素添加カーボン膜が形成される下地膜と、当該フッ素添加カーボン膜の密着力が改善される原理を、図2(A)〜(C)にもとづき、説明する。
【0019】
フッ素添加カーボン膜は、半導体装置の配線層の間に形成される層間絶縁膜として用いられ、例えば半導体装置の配線層であるCu層のキャップ層であるシリコン窒化膜(SiN膜)上に形成されることが多い。
【0020】
まず、図2(A)を参照するに、図示しない被処理基板上に、フッ素添加カーボン膜の下地膜となるSiN膜(シリコン窒化膜)201が形成されている。前記SiN膜201上には、例えば水分、有機物、自然酸化膜などからなる付着層202が形成されている。前記付着層202は、典型的には0.1〜1nm程度のごく薄い層である。
【0021】
前記付着層202は、例えば前記SiN膜202を、水分や有機物の存在する大気に曝すなどすると形成されてしまうことが多い。通常、前記SiN膜201を形成する装置と、前記SiN膜201上にフッ素添加カーボン膜を形成する装置は異なるので、前記SiN膜201が形成された被処理基板を、大気中を介して搬送する必要が有るため、前記したような付着層の形成を防止するのは非常に困難である。
【0022】
そこで、本発明では、図2(B)に示すように、希ガスをマイクロ波プラズマ励起したイオン、ラジカルなどの反応種203によって、前記SiN膜201上の前記付着層202を除去する下地膜の表面処理を行う。また、その際はプラズマの電子温度が高く、前記反応種中のイオンのエネルギが高いと、前記SiN膜201にイオンが衝突するエネルギが大きくなり、前記SiN膜201にダメージを与えてしまう場合がある。そのために、下地膜である前記SiN膜201にダメージを与えず、かつ前記付着層202を除去することが必要であり、本発明においては、後述するマイクロ波プラズマを用いたプラズマ処理装置にて、低い電子温度となるマイクロ波プラズマにより処理して、前記SiN膜201にダメージを与えずに処理することが可能になっている。
【0023】
図2(B)の工程で前記付着層202を除去した後には、図2(C)に示すように、フッ素添加カーボン膜204を形成する。前記したように、図2(B)の工程において、前記SiN膜201と前記フッ素添加カーボン膜204の密着力を低下させる原因となる付着層202が除去されているため、前記SiN膜201と前記フッ素添加カーボン膜204は良好な密着力を保持することが可能となる。
【0024】
次に、本発明の実施の形態について、図面に基づき、説明する。
[第1実施例]
図3には、本発明の第1実施例によるフッ素添加カーボン膜の形成方法のフローチャートを示す。図3を参照するに、本発明によるフッ素添加カーボン膜形成方法では、まずステップ100(図中S100と表記、以下同様)において処理が開始されると、ステップ200において、前記したように被処理基板に形成された、フッ素添加カーボン膜の下地膜の表面処理を行って、下地膜の表面に形成された付着層の除去を行う。
【0025】
次に、ステップ300において、付着層が除去された下地膜上に、フッ素添加カーボン膜を形成して、ステップ400にて処理を終了する。
【0026】
前記したように、本発明のフッ素添加カーボン膜の形成方法では、大別して、下地膜の表面の付着層を除去する表面処理工程Pと、フッ素添加カーボン膜を形成する成膜工程Dからなる。
【0027】
次に、前記表面処理工程Pおよび前記成膜工程Dを実施するプラズマ処理装置について説明する。
[第2実施例]
まず、前記表面処理工程P、および前記成膜工程Dを行うプラズマ処理装置10を、図4(A),(B)、図5に基づき、説明する。
【0028】
まず、図4(A)を参照するに、前記プラズマ処理装置10は処理容器11と、前記処理容器11内に設けられ、被処理基板12を静電チャックにより保持する好ましくは熱間等方圧加圧法(HIP)により形成されたAlNもしくはAl2O3よりなる保持台13とを有する。
【0029】
前記処理容器11内は、略円筒状の内部隔壁15によって前記保持台13の中心に近い中心部の空間と、前記内部隔壁15と前記処理容器の間に形成される空間11Cに分割される。また、前記した中心部の空間は、後述する処理ガス供給構造24の格子状のガス通路24Aによって、前記保持台13に近い側の空間11Bと、前記空間11Bに当該処理ガス供給構造24を隔てて対向する空間11Aに大別される。
【0030】
前記処理容器11内を形成する前記空間11A,11B,および11Cは、前記保持台13を囲むように等間隔に、すなわち前記保持台13上の被処理基板12に対して略軸対称な関係で少なくとも二箇所、好ましくは三箇所以上に形成された排気ポート11Dを介して真空ポンプなどの排気手段により、排気・減圧される。
【0031】
前記処理容器11は好ましくはAlを含有するオーステナイトステンレス鋼よりなり、内壁面には酸化処理により酸化アルミニウムよりなる保護膜が形成されている。また前記処理容器11の外壁のうち前記被処理基板12に対応する部分にはマイクロ波を透過するマイクロ波透過窓17が設置され、また前記マイクロ波透過窓17と前記処理容器11の間には、プラズマガスを導入するプラズマガス導入リング14が挿入されて、それぞれ前記処理容器11の外壁を画成している。
【0032】
前記マイクロ波透過窓17はその周縁部に段差形状を有し、当該段差形状部が前記プラズマガス導入リング14に設けられた段差形状と係合し、さらにシールリング16Aによって前記処理空間11内の気密が保持される構造となっている。
【0033】
前記プラズマガス導入リングにはプラズマガス導入口14Aよりプラズマガスが導入され、略環状に形成されたガス溝14B中を拡散する。前記ガス溝14B中のプラズマガスは、前記ガス溝14Bに連通する複数のプラズマガス穴14Cから、さらに前記プラズマガス導入リング14に取り付けられた前記内部隔壁15に形成されたプラズマガス供給穴15Bを介して前記空間11Aに供給される。
【0034】
前記内部隔壁15は略円筒状の導電体、例えばステンレス合金からなり、前記内部隔壁15の外側、すなわち前記処理容器11の外壁に対向する面にはヒータ15Bが設置されて前記内部隔壁15を加熱することが可能となっている。さらに前記内部隔壁15は電気的に前記プラズマガス導入リング14に接続されて当該プラズマガス導入リング14を介して接地される構造となっている。
【0035】
また、前記マイクロ波透過窓17は、HIP法により形成された緻密なAl2O3よりなる。かかるHIP法により形成されたAl2O3のマイクロ波透過窓17は、Y2O3を焼結助剤として使って形成され、気孔率が0.03%以下で実質的に気孔やピンホールを含んでおらず、30W/m・Kに達する、AlNには及ばないものの、セラミックとしては非常に大きな熱伝導率を有する。
【0036】
前記マイクロ波透過窓17上には、前記マイクロ波透過窓17に密接し図4(B)に示す多数のスロット18a,18bを形成されたディスク状のスロット板18と、前記スロット板18を保持するディスク状のアンテナ本体22と、前記スロット板18と前記アンテナ本体22との間に挟持されたAl2O3、SiO2あるいはSi3N4の低損失誘電体材料よりなる遅相板19とにより構成されたラジアルラインスロットアンテナ30が設けられている。
【0037】
前記ラジアルスロットラインアンテナ30は前記処理容器11上に前記プラズマガス導入リング14を介して装着されており、前記ラジアルラインスロットアンテナ30には同軸導波管21を介して外部のマイクロ波源(図示せず)より周波数が2.45GHzあるいは8.3GHzのマイクロ波が供給される。
【0038】
供給されたマイクロ波は前記スロット板18上のスロット18a,18bから前記マイクロ波透過窓17を介して前記処理容器11中に放射され、前記マイクロ波透過窓17直下の空間11Aにおいて、前記プラズマガス供給穴15Aから供給されたプラズマガス中にプラズマを励起する。励起されたプラズマは前記処理容器11に設けられた例えば石英、サファイアなどからなる測定窓25より観察または発光の分光などの測定が可能な構造となっている。
【0039】
前記ラジアルラインスロットアンテナ30と前記プラズマガス導入リングの間はシールリング16Bによって密封されており、前記ラジアルラインスロットアンテナ30と前記マイクロ波透過窓17との密着性を向上させるため、前記スロット板18と前記マイクロ波透過窓17との間に形成された隙間を真空ポンプ(図示せず)で減圧することにより、大気圧によって前記ラジアルラインスロットアンテナ30を前記マイクロ波透過窓17にしっかりと押し付けることが可能になる。
【0040】
前記同軸導波管21Aのうち、外側の導波管21Aは前記ディスク状のアンテナ本体22に接続され、中心導体21Bは、前記遅波板19に形成された開口部を介して前記スロット板18に接続されている。そこで前記同軸導波管21Aに供給されたマイクロ波は、前記アンテナ本体22とスロット板18との間を径方向に進行しながら、前記スロット18a,18bより放射される。
【0041】
図4(B)は前記スロット板18上に形成されたスロット18a,18bを示す。
【0042】
図4(B)を参照するに、前記スロット18aは同心円状に配列されており、各々のスロット18aに対応して、これに直行するスロット18bが同じく同心円状に形成されている。前記スロット18a,18bは、前記スロット板18の半径方向に、前記遅相板19により圧縮されたマイクロ波の波長に対応した間隔で形成されており、その結果マイクロ波は前記スロット板18から略平面波となって放射される。その際、前記スロット18aおよび18bを相互の直交する関係で形成しているため、このようにして放射されたマイクロ波は、二つの直交する偏波成分を含む円偏波を形成する。
【0043】
さらに図4(A)のプラズマ処理装置10では、前記アンテナ本体22上に、冷却水通路20Aを形成された冷却ブロック20が形成されており、前記冷却ブロック20を前記冷却水通路20A中の冷却水により冷却することにより、前記マイクロ波透過窓17に蓄積された熱を、前記ラジアルラインスロットアンテナ30を介して吸収する。前記冷却水通路20Aは前記冷却ブロック20上においてスパイラル状に形成されており、好ましくはH2ガスをバブリングすることで溶存酸素を排除して且つ酸化還元電位を制御した冷却水が通される。
【0044】
また、図4(A)のプラズマ処理装置10では、前記処理容器11中、前記マイクロ波透過窓17と前記保持台13上の被処理基板12との間に、導体からなり、処理ガス導入路23に支持されて起立するように設置された処理ガス供給構造24が設置されている。前記処理ガス導入路23には、前記処理容器11の外壁に設けられた処理ガス注入口(図示せず)より処理ガスが導入される構造となっている。
【0045】
前記処理ガス供給構造24は、処理ガス導入路23に連通する格子状の処理ガス通路24Aを有し、さらに前記処理ガス通路24Aから前記空間11Bに連通する多数の処理ガス供給穴24Bより処理ガスを前記空間11Bに供給し、前記空間11Bにおいて、所望の均一な基板処理がなされる。
【0046】
図5は、図4(A)の処理ガス供給構造24の構成を示す底面図である。
【0047】
図5を参照するに、前記処理ガス供給構造24は例えばMgを含んだAl合金やAl添加ステンレススチール等の導電体より構成されており、格子状の前記処理ガス通路24Aは前記処理ガス導入路23に接続されて処理ガスを供給され、下面形成された多数の前記処理ガス供給穴24Bから処理ガスを前記空間11Bに均一に放出する。また、前記処理ガス導入路23は導体よりなり、前記処理ガス供給機構24は電気的に前記処理ガス導入路23に接続されて当該処理ガス導入路23を介して接地される構造となっている。
【0048】
また、前記処理ガス供給構造24には、隣接する処理ガス通路24Aの間にプラズマやガスを通過させる開口部24Cが形成されている。前記処理ガス供給構造24をMg含有Al合金により形成する場合には、表面に弗化物膜を形成しておくのが好ましい。また前記処理ガス供給構造24をAl添加ステンレススチールにより形成する場合には、表面に酸化アルミニウムの不動態膜を形成しておくのが望ましい。本発明によるプラズマ処理装置10では、励起されるプラズマ中の電子温度が低いためプラズマの入射エネルギが小さく、かかる処理ガス供給構造24がスパッタリングされて被処理基板12に金属汚染が生じる問題が回避される。
【0049】
前記格子状の処理ガス通路24Aおよび処理ガス供給穴24Bは図5に破線で示した被処理基板12よりもやや大きい領域をカバーするように設けられている。かかる処理ガス供給構造24を前記マイクロ波透過窓17と被処理基板12との間に設けることにより、前記処理ガスをプラズマ励起し、かかるプラズマ励起された処理ガスにより、均一に処理することが可能になる。
【0050】
前記処理ガス供給構造24を金属等の導体により形成する場合には、前記格子状処理ガス通路24A相互の間隔を前記マイクロ波の波長よりも短く設定することにより、前記処理ガス供給構造24はマイクロ波の短絡面を形成する。
【0051】
この場合にはプラズマのマイクロ波励起は前記空間11A中においてのみ生じ、前記被処理基板12の表面を含む空間11Bにおいては前記励起空間11Aから拡散してきたプラズマにより、処理ガスが活性化される。また、プラズマ着火時に前記被処理基板12が直接マイクロ波に曝されるのを防ぐことが出来るので、マイクロ波による基板の損傷も防ぐことが出来る。
【0052】
本実施例によるプラズマ処理装置10では、処理ガス供給構造24を使うことにより処理ガスの供給が一様に制御されるため、処理ガスの被処理基板12表面における過剰解離の問題を解消することができ、被処理基板12の表面にアスペクト比の大きい構造が形成されている場合でも、所望の基板処理を、かかる高アスペクト構造の奥にまで実施することが可能である。すなわち、プラズマ処理装置10は、設計ルールの異なる多数の世代の半導体装置の製造に有効である。
[第3実施例]
次に、前記プラズマ装置10を用いた具体的なフッ素添加カーボン膜の形成方法に関して、図6のフローチャートに示す。図6は、図2(A)〜(C)および図3に示したフッ素添加カーボン膜の形成方法を、具体的に示したものである。
【0053】
図6を参照するに、本発明によるフッ素添加カーボン膜の形成方法は、前記したように、被処理基板の表面処理工程Pおよび表面処理後の被処理基板表面にフッ素添加カーボン膜の成膜を行う成膜工程Dからなる。
【0054】
まず、ステップ500にて処理が開始されると、ステップ510において、第1のプラズマガスとして、前記プラズマガス供給リング14から、Arガスが、400sccm導入される。
【0055】
次に、ステップ520において、前記ラジアルラインスロットアンテナ30から、前記マイクロ波導入窓17を介して前記処理容器11内にマイクロ波が導入されて、マイクロ波プラズマが励起される。その際に、マイクロ波は、前記ラジアルラインスロットアンテナ30を用いているため、前記スロット板18から略平面波となって放射され、さらに二つの直行する偏波成分を含む円偏波を形成するため、高密度で、かつ電子温度が低いプラズマを励起することが可能となる。
【0056】
そのため、ステップ530において、基板表面処理に必要なArイオンを含む反応種が十分に生成され、おもにArイオンによるスパッタリングによって前記SiN層201上の前記付着層202を除去することが可能になる。さらに電子温度が低いために当該Arイオンが前記SiN膜201に衝突するエネルギーが低く抑えられるため、前記SiN膜201にダメージを与えることが無い。このように、例えばSiN膜などのフッ素添加カーボン膜の下地膜にダメージを与えないためには、イオンのエネルギが6eV程度以下となるような低い電子温度のプラズマが必要とされる。
【0057】
本ステップにおいては、マイクロ波パワー1800W,Ar流量400sccm、圧力133Pa(1Torr)で20秒間処理を行うことにより、前記SiN膜201にダメージを与えることなく、当該SiN膜201上の水分や有機物、自然酸化膜などの前記付着層202を除去することが可能となる。この場合のArイオンのエネルギは5.6eVであり、SiN膜にダメージを与えることがない。
【0058】
次に、ステップ540でマイクロ波導入と、プラズマガス供給を停止して表面処理工程Pを終了する。
【0059】
次に、表面処理を終了して清浄になった前記SiN膜201上に、フッ素添加カーボン膜を形成する成膜工程Dを開始する。
【0060】
ステップ550において成膜工程Dが開始されると、まず、第2のプラズマガスとして、ArとH2がそれぞれ600sccm、40sccm、前記プラズマガス供給リング14から前記処理容器11内に導入される。
【0061】
次に、ステップ560でマイクロ波を導入して、前記ステップ520に前記したようにプラズマを励起した後、ステップ570において、前記処理ガス供給構造24から、処理ガスであるフロロカーボン系のガス、例えばC4F8を30sccm導入して、フッ素添加カーボン膜の成膜が開始される。
【0062】
ステップ580では、Ar流量600sccm、H2流量40sccm、C4F8流量30sccm、マイクロ波パワー2000Wにて、成膜処理を行うことにより、成膜速度340nm/minで、前記SiN膜201上に、誘電率2.1程度のフッ素添加カーボン膜204を形成する。その際、前記したように、高密度かつ低電子温度のマイクロ波プラズマを用いることによって、誘電率の低い、膜質の良好なフッ素添加カーボン膜を形成することが可能となる。
【0063】
次に、ステップ590でプラズマガス、処理ガスおよびマイクロ波の導入を停止し、ステップ600で処理を終了する。
【0064】
前記したように、フッ素添加カーボン膜が形成される下地膜となる前記SiN膜201上から、前記付着層202が除去されているため、ステップ590において形成されるフッ素添加カーボン膜204と前記SiN膜201の密着性は良好となり、さらに前記したようにフッ素添加カーボン膜の下地にはダメージの影響がない。
【0065】
前記の理由により、本発明によるフッ素添加カーボン膜の形成方法により形成されたフッ素添加カーボン膜は、半導体装置の製造工程における熱処理工程やCMP工程に耐えうる密着力を確保し、低誘電率層間絶縁膜として半導体装置に用いることが可能となる。
【0066】
また、本発明において、前記ステップ510でArを導入しているが、プラズマ励起した場合にさらにイオンのエネルギを低く抑えることが可能な、KrやXeを用いてもよい。例えば、本実施例においてArの換わりにKrを用いた場合、イオンエネルギが3.9eV、Xeを用いた場合では2.9eVに抑えることが可能であり、SiN膜へのダメージを抑えるのにさらに有効である。
【0067】
また、本発明によってフッ素添加カーボン膜との密着性が改善される下地膜は、SiN膜(シリコン窒化膜)に限らない。下地膜として、例えば、Si,SiO2,SiON,SiOC,SiCO(H),W,WN,Ta,TaN,Ti,TiN,Cu,Al、その他スピンコート法で形成される絶縁膜(SOD膜)などの絶縁膜や、金属膜、金属窒化膜、金属酸化膜などを用いて、当該下地膜の上にフッ素添加カーボン膜を形成する場合においても、本実施例と同様に下地膜にダメージを受けることなく、フッ素添加カーボン膜と下地膜の密着力を向上させることが可能である。
[第4実施例]
また、図6に示したフッ素添加カーボン膜の形成方法は、次に図7に示すように変更しても、第3実施例に示した場合と同様の効果を奏する。
【0068】
図7は、本発明の第4実施例よるフッ素添加カーボン膜の形成方法を示すフローチャートである。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0069】
本実施例のステップ500〜530およびステップ570〜600までは、図6に示した場合と同一である。
【0070】
本実施例においては、ステップ560Aにおいて、プラズマガスの切替を行っている。これは、前のステップ530において、前記付着層202を除去する表面処理が終了すると、次のフッ素添加カーボン膜の成膜処理のため、前記第1のプラズマガスから前記第2のプラズマガスに切り替える処理を行っていることを示している。
【0071】
具体的には、前のステップ530において第1のプラズマガスとしてArを400sccm供給していた状態から、第2のプラズマガスとしてArと共にH2を導入するようにし、ArとH2の流量をそれぞれ、600sccm、40sccmとしている。その後、連続的にフッ素添加カーボン膜の成膜へと移行している。
【0072】
このように、プラズマを励起したままでガスを切り替えることにより、連続的に、表面処理工程Pから成膜工程Dへと移行することが可能であり、基板処理時間を短縮して効率的にフッ素添加カーボン膜の形成を行う事が可能となる。
【0073】
本実施例においても、フッ素添加カーボン膜の下地膜にダメージを与えることなく、かつ当該下地膜と密着力が良好なフッ素添加カーボン膜を形成することが可能となる。
[第5実施例]
次に、本発明によるフッ素添加カーボン膜の形成方法により、下地膜とフッ素添加カーボン膜との密着力が向上した結果を以下に説明する。
【0074】
まず、図8にはフッ素添加カーボン膜の密着力の測定方法を示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。例えば、図2(C)に前記した、被処理基板上のSiN膜上に形成されたフッ素添加カーボン膜の密着力を測定する場合、まず図8に示すように、前記フッ素添加カーボン膜204上に、所定の接着剤で試験棒205を固定する。そして、被処理基板を固定した状態で、前記試験棒205に、被処理基板から離れる方向の加重を加えてフッ素添加カーボン膜204が剥離した時の加重を密着力とした。
【0075】
図9には、図8に示した密着力測定方法によって測定したフッ素添加カーボン膜と下地膜の密着力の測定結果を示す。実験は、図6に示した本発明によるフッ素添加カーボン膜の形成方法によって形成した場合と、図6におけるステップ500〜550の工程を行わなかった場合、すなわち下地膜の表面処理を行わなかった場合について行い、それらの結果を比較した。
【0076】
また、実験は前記2通りの場合について、Si基板上に形成されたSiN膜上にフッ素添加カーボン膜の形成を行った場合と、Si基板上に直接フッ素添加カーボン膜を形成した場合について、それぞれ行った。
【0077】
図9を参照するに、SiN膜上にフッ素添加カーボン膜を形成する場合およびSi基板上に直接フッ素添加カーボン膜を形成する場合のそれぞれの場合において、図6のステップ500〜550に示した表面処理を行うことにより、フッ素添加カーボン膜と下地の密着力が大幅に改善されていることがわかる。
【0078】
例えば、SiN膜上にフッ素添加カーボン膜を形成する場合、SiN膜の表面処理を行わない場合は密着力が32MPaであるのに対して、表面処理を行うと、密着力が48MPaと向上していることがわかる。
【0079】
これは、前記したようにフッ素添加カーボン膜の下地上の水分や有機物、自然酸化膜などが除去されることによってフッ素添加カーボン膜とSiN膜の密着力が向上するためと考えられる。
【0080】
また、下地膜はSiN膜やSiに限らず、例えば他の絶縁膜、酸化膜、窒化膜、酸窒化膜、金属膜、金属酸化膜、金属窒化膜などを下地膜に用いた場合も、下地膜がダメージを受けることなく、フッ素添加カーボン膜と下地膜の密着力を向上させることが可能となる。
【0081】
以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
【0082】
【発明の効果】
本発明によれば、プラズマ処理装置によって、被処理基板の表面処理を行うことにより、当該表面処理後に形成されるフッ素添加カーボン膜と被処理基板表面との密着力を向上させることが可能となった。
【0083】
また、前記プラズマ処理装置は、高密度かつ低電子温度のマイクロ波プラズマを用いているため、被処理基板表面にダメージを与える事無く、前記表面処理を行う事が可能となった。
【図面の簡単な説明】
【図1】(A)〜(C)は、フッ素添加カーボン膜が剥離する状態を示した図である。
【図2】(A)〜(C)は、本発明によるフッ素添加カーボン膜の形成方法を、模擬的に示した図である。
【図3】本発明によるフッ素添加カーボン膜の形成方法を示したフローチャート(その1)である。
【図4】(A),(B)は、本発明によるフッ素添加カーボン膜の形成方法を実施するプラズマ処理装置の概略図である。
【図5】図4のプラズマ処理装置で用いる処理ガス供給構造の底面図である。
【図6】本発明によるフッ素添加カーボン膜の形成方法を示したフローチャート(その2)である。
【図7】本発明によるフッ素添加カーボン膜の形成方法を示したフローチャート(その3)である。
【図8】フッ素添加カーボン膜の密着力の測定方法を模擬的に示した図である。
【図9】フッ素添加カーボン膜の密着力の測定結果を示した図である。
【符号の説明】
10 プラズマ処理装置
11 処理容器
11D 排気ポート
11A,11B,11C 空間
12 被処理基板
13 保持台
14 プラズマガス導入リング
14A プラズマガス導入口
14B ガス溝
14C プラズマガス穴
15 内部隔壁
15A プラズマガス供給穴
15B ヒータ
16A,16B シールリング
17 マイクロ波透過窓
18 スロット板
18a,18b スロット
19 遅相板
20 冷却水ブロック
20A 冷却水通路
21,110A 同軸導波管
21A 外側導波管
21B 内側給電線
22,110B アンテナ本体
23 処理ガス導入路
24 処理ガス供給構造
24A 処理ガス通路
24B 処理ガス教習穴
24C 開口部
25 測定窓
30 ラジアルラインスロットアンテナ
101,201 シリコン窒化膜
102,202 付着層
103,204 フッ素添加カーボン膜
203 反応種
Claims (9)
- 被処理基板上にフッ素添加カーボン膜を形成するフッ素添加カーボン膜の形成方法であって、
基板処理装置によって希ガスをプラズマ励起し、プラズマ励起された前記希ガスによって前記被処理基板の表面に付着した付着層を除去するための表面処理を行う第1の工程と、
前記付着層が除去された表面を有する前記被処理基板上にフッ素添加カーボン膜を形成する第2の工程を含み、
前記基板処理装置は、
前記被処理基板に対面するように設けられたマイクロ波透過窓を有し、前記マイクロ波透過窓上に設けられた、マイクロ波電源が電気的に接続されたマイクロ波アンテナから、前記被処理基板上のプロセス空間に、前記マイクロ波窓を介してマイクロ波を導入し、前記希ガスを含むプラズマガスをプラズマ励起し、
前記プロセス空間は、導電材料構造物により前記マイクロ波透過窓に面する第1の空間と、前記被処理基板に面する第2の空間に分割され、前記第2の空間にフッ素添加カーボン膜を形成する原料となる処理ガスが供給されて、前記基板処理装置で前記第2の工程が行われ、
前記導電材料構造物は、前記処理ガスを前記第2の空間に供給する処理ガス供給部であり、
前記処理ガス供給部は処理容器内に形成されたプラズマを通過させる複数の開口部と、処理ガス通路と、前記処理ガス通路から前記処理容器内に連通した複数の処理ガス供給穴とを備えたことを特徴とするフッ素添加カーボン膜の形成方法。 - 前記第1の工程を前記被処理基板の表面にダメージを与えないように行うことを特徴とする請求項1記載のフッ素添加カーボン膜の形成方法。
- 前記基板処理装置は、
外壁により画成され、前記被処理基板を保持する保持台を備えた処理容器と、
前記処理容器を排気する排気口とを有し、
前記マイクロ波透過窓は前記処理容器上に設置され、前記プラズマガスを供給するプラズマガス供給部が、前記処理容器と前記マイクロ波透過窓の間に挿入されて、前記外壁の一部を形成することを特徴とする請求項1または2記載のフッ素添加カーボン膜の形成方法。 - 前記マイクロ波アンテナは同軸導波管により給電され、開口部を有するアンテナ本体と、前記アンテナ本体上に前記開口部を覆うように設けられた複数のスロットを有するマイクロ波放射面と、前記アンテナ本体と前記マイクロ波放射面との間に設けられた誘電体よりなることを特徴とした、請求項1〜3のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法。
- 前記希ガスはArを含むことを特徴とする請求項1〜4のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法。
- 前記希ガスはKrを含むことを特徴とする請求項1〜4のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法。
- 前記希ガスはXeを含むことを特徴とする請求項1〜4のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法。
- 前記第1の工程と前記第2の工程は、前記基板処理装置において、連続的に行われることを特徴とする請求項1〜7のうち、いずれか1項記載のフッ素添加カーボン膜の形成方法。
- 前記第2の工程は前記第1の工程の後に実行され、前記第1の工程は、前記基板処理装置の前記処理ガスの供給を遮断した状態で実施されることを特徴とする請求項8記載のフッ素添加カーボン膜の形成方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003144613A JP4209253B2 (ja) | 2003-05-22 | 2003-05-22 | フッ素添加カーボン膜の形成方法 |
PCT/JP2004/006749 WO2004105114A1 (ja) | 2003-05-22 | 2004-05-19 | フッ素添加カーボン膜の形成方法 |
CNB2004800141644A CN100447961C (zh) | 2003-05-22 | 2004-05-19 | 氟化碳膜的形成方法 |
EP04733935A EP1626439B1 (en) | 2003-05-22 | 2004-05-19 | Method of forming fluorinated carbon film |
US10/558,080 US7538012B2 (en) | 2003-05-22 | 2004-05-19 | Fluorine-containing carbon film forming method |
TW093114513A TWI249790B (en) | 2003-05-22 | 2004-05-21 | Method of forming fluorinated carbon film |
IL172092A IL172092A0 (en) | 2003-05-22 | 2005-11-22 | Method for forming fluorinated carbon film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003144613A JP4209253B2 (ja) | 2003-05-22 | 2003-05-22 | フッ素添加カーボン膜の形成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004349458A JP2004349458A (ja) | 2004-12-09 |
JP4209253B2 true JP4209253B2 (ja) | 2009-01-14 |
Family
ID=33475212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003144613A Expired - Fee Related JP4209253B2 (ja) | 2003-05-22 | 2003-05-22 | フッ素添加カーボン膜の形成方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7538012B2 (ja) |
EP (1) | EP1626439B1 (ja) |
JP (1) | JP4209253B2 (ja) |
CN (1) | CN100447961C (ja) |
IL (1) | IL172092A0 (ja) |
TW (1) | TWI249790B (ja) |
WO (1) | WO2004105114A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4256763B2 (ja) * | 2003-11-19 | 2009-04-22 | 東京エレクトロン株式会社 | プラズマ処理方法及びプラズマ処理装置 |
US9659769B1 (en) | 2004-10-22 | 2017-05-23 | Novellus Systems, Inc. | Tensile dielectric films using UV curing |
US8889233B1 (en) | 2005-04-26 | 2014-11-18 | Novellus Systems, Inc. | Method for reducing stress in porous dielectric films |
US8980769B1 (en) | 2005-04-26 | 2015-03-17 | Novellus Systems, Inc. | Multi-station sequential curing of dielectric films |
US10037905B2 (en) * | 2009-11-12 | 2018-07-31 | Novellus Systems, Inc. | UV and reducing treatment for K recovery and surface clean in semiconductor processing |
JP2008210930A (ja) * | 2007-02-26 | 2008-09-11 | Elpida Memory Inc | 半導体装置の製造方法 |
US9050623B1 (en) | 2008-09-12 | 2015-06-09 | Novellus Systems, Inc. | Progressive UV cure |
JP5807511B2 (ja) * | 2011-10-27 | 2015-11-10 | 東京エレクトロン株式会社 | 成膜装置及びその運用方法 |
JP5772508B2 (ja) * | 2011-10-27 | 2015-09-02 | 東京エレクトロン株式会社 | 成膜装置及びその運用方法 |
JP6593635B2 (ja) * | 2014-12-24 | 2019-10-23 | 株式会社ジェイテクト | 樹脂製部材の製造方法 |
US10381235B2 (en) * | 2016-05-29 | 2019-08-13 | Tokyo Electron Limited | Method of selective silicon nitride etching |
US9847221B1 (en) | 2016-09-29 | 2017-12-19 | Lam Research Corporation | Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing |
KR102603741B1 (ko) * | 2021-10-21 | 2023-11-17 | 주식회사 원익큐엔씨 | 불화 대상물의 불화 가공 방법 및 이에 의해 불화 가공된 부품 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3513811B2 (ja) * | 1988-08-11 | 2004-03-31 | 株式会社半導体エネルギー研究所 | 炭素または炭素を主成分とする被膜の形成方法 |
US6428894B1 (en) | 1997-06-04 | 2002-08-06 | International Business Machines Corporation | Tunable and removable plasma deposited antireflective coatings |
JP3429171B2 (ja) * | 1997-11-20 | 2003-07-22 | 東京エレクトロン株式会社 | プラズマ処理方法及び半導体デバイスの製造方法 |
TW413848B (en) * | 1998-01-10 | 2000-12-01 | Tokyo Electron Ltd | Semiconductor device with insulation film made of fluorine added-carbon film and method of manufacturing the same |
WO2000019507A1 (fr) | 1998-09-28 | 2000-04-06 | Tokyo Electron Limited | Depot de film assiste par plasma |
JP4361625B2 (ja) * | 1998-10-05 | 2009-11-11 | 東京エレクトロン株式会社 | 半導体装置及びその製造方法 |
JP2000208622A (ja) | 1999-01-12 | 2000-07-28 | Tokyo Electron Ltd | 半導体装置及びその製造方法 |
JP2002164330A (ja) | 2000-07-24 | 2002-06-07 | Canon Inc | 遮光膜で被覆された透過窓を有するプラズマ処理装置 |
US6677549B2 (en) | 2000-07-24 | 2004-01-13 | Canon Kabushiki Kaisha | Plasma processing apparatus having permeable window covered with light shielding film |
-
2003
- 2003-05-22 JP JP2003144613A patent/JP4209253B2/ja not_active Expired - Fee Related
-
2004
- 2004-05-19 US US10/558,080 patent/US7538012B2/en not_active Expired - Fee Related
- 2004-05-19 EP EP04733935A patent/EP1626439B1/en not_active Expired - Lifetime
- 2004-05-19 WO PCT/JP2004/006749 patent/WO2004105114A1/ja active Application Filing
- 2004-05-19 CN CNB2004800141644A patent/CN100447961C/zh not_active Expired - Fee Related
- 2004-05-21 TW TW093114513A patent/TWI249790B/zh not_active IP Right Cessation
-
2005
- 2005-11-22 IL IL172092A patent/IL172092A0/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN1795546A (zh) | 2006-06-28 |
IL172092A0 (en) | 2009-02-11 |
CN100447961C (zh) | 2008-12-31 |
EP1626439A4 (en) | 2008-04-16 |
JP2004349458A (ja) | 2004-12-09 |
US7538012B2 (en) | 2009-05-26 |
US20070020940A1 (en) | 2007-01-25 |
WO2004105114A1 (ja) | 2004-12-02 |
TWI249790B (en) | 2006-02-21 |
EP1626439B1 (en) | 2011-09-14 |
EP1626439A1 (en) | 2006-02-15 |
TW200512829A (en) | 2005-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4256763B2 (ja) | プラズマ処理方法及びプラズマ処理装置 | |
US7803705B2 (en) | Manufacturing method of semiconductor device and film deposition system | |
US8119518B2 (en) | Noble metal barrier for fluorine-doped carbon films | |
US20050178333A1 (en) | System and method of CVD chamber cleaning | |
JP4524354B2 (ja) | マイクロ波プラズマ処理装置、それに用いる誘電体窓部材および誘電体窓部材の製造方法 | |
JP2004172397A (ja) | プラズマ処理装置およびプラズマ処理方法 | |
JP4209253B2 (ja) | フッ素添加カーボン膜の形成方法 | |
JPH07335626A (ja) | プラズマ処理装置およびプラズマ処理方法 | |
KR100477402B1 (ko) | 플라즈마 박막 증착 방법 | |
TWI362703B (ja) | ||
JP2004363558A (ja) | 半導体装置の製造方法およびプラズマエッチング装置のクリーニング方法 | |
JP2003037105A (ja) | プラズマ処理装置及び方法 | |
KR100733440B1 (ko) | 불소 첨가 카본막의 형성 방법 | |
JP2019102508A (ja) | ボロン系膜の形成方法および形成装置 | |
JP5925898B2 (ja) | フルオロカーボン用の金属カーバイドバリア層を形成する方法 | |
JP2004296512A (ja) | プラズマ処理装置のクリーニング方法 | |
JP2019062045A (ja) | ボロン系膜の平坦化方法およびボロン系膜の形成方法 | |
JP2009295992A (ja) | 半導体装置の製造方法、半導体装置 | |
JP2012069549A (ja) | 半導体装置とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080606 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080905 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081022 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141031 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |