JP4207307B2 - チャージアップ測定装置 - Google Patents

チャージアップ測定装置 Download PDF

Info

Publication number
JP4207307B2
JP4207307B2 JP11822199A JP11822199A JP4207307B2 JP 4207307 B2 JP4207307 B2 JP 4207307B2 JP 11822199 A JP11822199 A JP 11822199A JP 11822199 A JP11822199 A JP 11822199A JP 4207307 B2 JP4207307 B2 JP 4207307B2
Authority
JP
Japan
Prior art keywords
charge
ion beam
substrate
measuring device
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11822199A
Other languages
English (en)
Other versions
JP2000304899A (ja
JP2000304899A5 (ja
Inventor
滋樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Ion Equipment Co Ltd
Original Assignee
Nissin Ion Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Ion Equipment Co Ltd filed Critical Nissin Ion Equipment Co Ltd
Priority to JP11822199A priority Critical patent/JP4207307B2/ja
Priority to KR1020000021831A priority patent/KR100552523B1/ko
Priority to TW089107834A priority patent/TW460898B/zh
Priority to US09/558,231 priority patent/US6489792B1/en
Priority to CNB001188127A priority patent/CN1143376C/zh
Priority to GB0010189A priority patent/GB2349503B/en
Publication of JP2000304899A publication Critical patent/JP2000304899A/ja
Publication of JP2000304899A5 publication Critical patent/JP2000304899A5/ja
Application granted granted Critical
Publication of JP4207307B2 publication Critical patent/JP4207307B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、基板にイオンビームを照射してイオン注入等の処理を施すイオンビーム照射装置や、半導体基板にイオンビームを照射して当該半導体基板の表面にMOS形電界効果トランジスタ(MOSFET)を形成するイオン注入装置等に用いられるものであって、イオンビーム照射に伴う基板のチャージアップ(帯電現象)を測定する、より具体的には基板のチャージアップを模擬的に測定するチャージアップ測定装置に関する。
【0002】
【従来の技術】
半導体基板にイオン注入を行って、当該半導体基板の表面に半導体デバイス、例えば図8に示すようなMOS形電界効果トランジスタ10を形成することが従来から行われている。
【0003】
このMOS形電界効果トランジスタ10は、簡単に言えば、半導体基板(例えばシリコン基板)2の表面にゲート酸化膜4および素子分離用酸化膜5を所定パターンで形成し、更にゲート酸化膜4の表面にゲート電極6を形成し、更にゲート電極6をマスクとして用いてその両側にドーパント(添加不純物)イオンを注入して所定パターンの二つの不純物注入層8を形成するという行程で製造される。一方の不純物注入層8がソース、他方の不純物注入層8がドレインとなる。
【0004】
このMOS形電界効果トランジスタ10のゲート酸化膜4をゲート電極6と半導体基板2とで挟む部分はコンデンサ構造をしており、上記ドーパントイオン注入時に、それに伴って輸送される正電荷がゲート電極6に蓄積される。
【0005】
このようなMOS形電界効果トランジスタ10は、微細化する傾向にあり、微細化につれて、そのゲート酸化膜4は薄くなる。このゲート酸化膜4は、例えば酸化ケイ素から成り、MOS形電界効果トランジスタ10の寿命を決める上で重要な役割を果たしている。ゲート酸化膜4が薄くなると、その耐圧は小さくなる。例えば、ゲート酸化膜4の厚さは約50nmであり、その場合、イオン注入に伴ってゲート電極6に電荷が蓄積してその電圧が5V付近になると、ゲート酸化膜4を突き抜けて電流が流れ始める。このゲート酸化膜4を突き抜ける電荷量をできるだけ小さくすることが、ゲート酸化膜4の信頼性、ひいてはMOS形電界効果トランジスタ10の寿命を上げることにつながる。
【0006】
イオン注入装置では、上記のようなイオンによる正のチャージアップ(電荷蓄積)を抑制するために、通常は、被注入基板の上流側付近に、イオンビームに中和用の低エネルギー電子を供給する電子供給源を設けている。この電子供給源の一つに、低エネルギー電子を含むプラズマをイオンビームに供給するプラズマ供給源がある。
【0007】
このような電子供給源あるいはプラズマ供給源を設けても、電子が供給不足になると基板表面では正のチャージアップが起こり、電子が供給過多になると負のチャージアップが起こるので、電子の供給量制御を行うことが好ましい。そのためには、まず第1段階として、基板のチャージアップ状況を測定する必要がある。
【0008】
このようなチャージアップ測定技術の一つに、チャージアップ測定用のデバイスを基板表面に形成しておき、イオン注入後、当該デバイスの特性を調べて、後からチャージアップ状況を測定する技術がある。しかしこの技術では、注入済基板を真空容器から取り出して測定する必要があるので、チャージアップ状況を調べるのに、早くても数時間を要するという大きな課題がある。
【0009】
このような課題を解決するものとして、特開平10−40856号公報には、基板と似た状況に置かれた複数の測定用導体(ビームコレクタ)を高抵抗に接続しておいて、イオンビーム照射時の各測定用導体の電圧を測定することによって、基板のチャージアップ状況を模擬的に測定するチャージアップ測定装置が提案されている。
【0010】
【発明が解決しようとする課題】
イオンビーム中和用には、一般的に、低エネルギー電子が用いられる。具体的には、前記電子供給源やプラズマ供給源から中和用に放出させる電子は、エネルギー分布を持っているけれども、その殆どが例えば数eV程度の低エネルギー電子になるように設計されている。これは、電子が供給過多になると、基板表面は、電子のエネルギーに相当する電圧まで負にチャージアップするので、そのチャージアップ電圧を低く抑えるためである。従って、この数eV程度という低エネルギー電子の基板付近での軌道が、基板のチャージアップ緩和を決定すると言える。
【0011】
ところが、上記公報に記載のチャージアップ測定装置では、測定用導体の電圧が、測定しようとする基板表面のチャージアップ電圧に比べて高くなる可能性がある。なぜなら、基板表面に形成された例えば5V耐圧のMOS形電界効果トランジスタ10のチャージアップ電圧は、5V以上にはならない。それ以上になろうとすると、ゲート酸化膜4を電流が流れて電圧が下がるからである。しかし、上記測定用導体は、絶縁碍子で絶縁支持されているので、その電圧は5V以上の高い電圧になり得る。このような高い電圧の測定用導体が存在すると、前述した数eV程度という低エネルギー電子の軌道に影響を及ぼす。
【0012】
従って、測定用導体付近での電子の軌道と、測定しようとする基板表面付近での電子の軌道とに差が生じてしまうので、上記測定用導体の電圧は、基板表面でのチャージアップ状況を正確には反映しなくなる。従って、基板のチャージアップの測定精度が低下する。
【0013】
そこでこの発明は、このような点を更に改善して、基板のチャージアップを模擬的にしかも高精度で測定することのできるチャージアップ測定装置を提供することを主たる目的とする。
【0014】
【課題を解決するための手段】
この発明に係る第1のチャージアップ測定装置は、イオンビームと交差する面に配列されていてイオンビームを受ける複数の測定用導体と、この各測定用導体にそれぞれ接続された複数の双方向定電圧素子と、この各双方向定電圧素子を通して流れる電流の極性および大きさをそれぞれ測定する電流測定器とを備えることを特徴としている(請求項1)。
【0015】
上記構成によれば、イオンビームが完全に中和されていない場合、各測定用導体は、イオンビーム照射を受けて正または負にチャージアップし、その電圧が正または負に上昇する。しかし、双方向定電圧素子を用いているので、測定用導体の電圧が双方向定電圧素子の降伏電圧より小さいときは、双方向定電圧素子は阻止状態にあり電流測定器に電流は流れない。チャージアップ電圧が降伏電圧まで上昇した測定用導体があると、それに接続された双方向定電圧素子は導通状態になり、この双方向定電圧素子を通して、それに接続された電流測定器に、当該測定用導体のチャージアップに応じた極性および大きさの電流が流れる。電流測定器は、この電流の極性および大きさをそれぞれ測定する。従って、このような測定用導体を基板と似た状況に置くことによって、基板のチャージアップを模擬的に測定することができる。
【0016】
しかも、上記各測定用導体のチャージアップ電圧は、双方向定電圧素子の導通によって、双方向定電圧素子の降伏電圧以上には上昇しない。即ち、各測定用導体のチャージアップ電圧は、この降伏電圧以下に制限される。その結果、測定時に、測定用導体の電圧が低エネルギー電子の軌道に及ぼす影響を小さく抑えることができる。従って、基板のチャージアップを模擬的にしかも高精度で測定することができる。
【0017】
上記電流測定器の代わりに、各双方向定電圧素子を通して流れる正および負の電荷量をそれぞれ測定する電荷量測定器を設けても良い(請求項2)。これによって、基板のチャージアップを、通流電荷量によって模擬的にしかも高精度で測定することができる。
【0020】
【発明の実施の形態】
図1は、この発明に係るチャージアップ測定装置をイオンビーム照射装置に用いた一例を示す図である。図2は、図1中の測定用導体周りの拡大側面図である。
【0021】
このイオンビーム照射装置は、真空雰囲気中において、基板2にイオンビーム12を照射して、当該基板2にイオン注入、イオンビームエッチング等の処理を施すよう構成されている。基板2にイオン注入を行う場合は、この装置はイオン注入装置と呼ぶことができる。基板2は、例えば、前述したようなシリコン基板等の半導体基板である。
【0022】
イオンビーム12は、この例では、図示しない走査手段によってX方向(例えば水平方向)に走査される。基板2は、その全面にイオンビーム12を照射するために、図示しない走査手段によってX方向と実質的に直交するY方向(例えば垂直方向)に機械的に走査される。また、後述する測定用導体22にイオンビーム12を入射させるときは、基板2をイオンビーム12の軌道から退避させておく。
【0023】
基板2の上流側付近に、電子供給源の一例として、イオンビーム12にその電荷中和用の低エネルギー電子を含むプラズマ16を供給するプラズマ供給源14を設けている。このプラズマ供給源14は、プラズマフラッドガンとも呼ばれる。
【0024】
この例のチャージアップ測定装置20は、上記イオンビーム12と交差する面に配列されていてイオンビーム12を受ける複数の測定用導体22と、この各測定用導体22にそれぞれ接続された複数の双方向定電圧素子28と、この各双方向定電圧素子28を通して流れる電流Iの極性(換言すれば向き)および大きさをそれぞれ測定する複数の電流測定器30とを備えている。
【0025】
測定用導体22は、イオンビーム12の走査方向、即ち上記X方向に並設されている。各測定用導体22は、この例では短冊状をしており、かつ図2に示す例のように、支持体24の前面部に絶縁碍子26によって電気的に絶縁して支持されている。測定用導体22の数は、例えば8〜12個であるが、特定のものに限定されない。多くすれば、よりきめ細かな測定を行うことができる。
【0026】
この測定用導体22は、測定対象である基板2の近くに設けるのが好ましい。そのようにすれば、測定用導体22を基板2と似た状況に置くことができるので、即ち基板2に到達するイオンビーム12およびプラズマ16中の電子の状態と、測定用導体22に到達するそれらの状態とを、互いに近づけることができるので、基板2のチャージアップ測定をより正確に行うことができる。なお、支持体24として、例えば特開平4−22900号公報に記載されているような、イオンビームの平行度測定等のための多点ビームモニタを利用しても良い。
【0027】
各双方向定電圧素子28は、正負いずれの電圧に対しても定電圧特性を示す素子である。即ち、正負のいずれの電圧に対しても、一定の電圧(これを降伏電圧と呼ぶ)までは電流が殆ど流れず、当該降伏電圧を超えると電流が急激に流れ始めて当該降伏電圧以上には素子の両端の電圧が上昇しない特性を有する素子である。双方向定電圧素子28を用いるのは、基板2あるいは各測定用導体22は、前述したように、プラズマ供給源14からの電子の供給量の多少によって、正にチャージアップしたり負にチャージアップしたりするので、その両方を測定することができるようにするためである。
【0028】
この各双方向定電圧素子28には、正負いずれの電圧に対してもツェナ特性を示す双方向ツェナダイオードを用いるのが好ましい。双方向ツェナダイオードは、正負いずれの領域においても、非常に鋭い電流の立ち上がり特性を有しているからである。双方向ツェナダイオードの場合は、前記降伏電圧をツェナ電圧と呼ぶ。また、各双方向定電圧素子28には双方向のバリスタを用いても良いけれども、バリスタは容量成分が比較的大きく、急激な電圧変化で変位電流が流れる恐れがあるので、この理由からも、双方向ツェナダイオードを用いる方が好ましい。
【0029】
なお、上記各双方向定電圧素子28を、互いに逆向きに直列接続された二つの定電圧素子(例えばツェナダイオード)でそれぞれ構成しても良い。このような構成のものも、実質的に双方向定電圧素子である。
【0030】
各電流測定器30は、例えば電流計である。複数の電流測定器30を設ける代わりに、一つの電流測定器で各双方向定電圧素子28を通して流れる電流Iを切り換えて測定する構成を採用しても良い。
【0031】
このチャージアップ測定装置20によれば、イオンビーム12が完全に中和されていない場合、各測定用導体22は、イオンビーム照射を受けて正または負にチャージアップし、その電圧が正または負に上昇する。しかし、双方向定電圧素子28を用いているので、測定用導体22の電圧が双方向定電圧素子28の降伏電圧より小さいときは、双方向定電圧素子28は阻止状態にあり電流測定器30に電流は流れない。チャージアップ電圧が降伏電圧まで上昇した測定用導体22があると、それに接続された双方向定電圧素子28は導通状態になり、この双方向定電圧素子28を通して、それに接続された電流測定器30に、当該測定用導体22のチャージアップに応じた極性および大きさの電流Iが流れる。各電流測定器30は、この電流Iの極性および大きさをそれぞれ測定する。従って、このような測定用導体22を基板2と似た状況に置くことによって、基板2のチャージアップを模擬的に測定することができる。
【0032】
しかも、上記各測定用導体22のチャージアップ電圧は、双方向定電圧素子28の導通によって、双方向定電圧素子28の降伏電圧以上には上昇しない。即ち、各測定用導体22のチャージアップ電圧は、この降伏電圧以下に制限される。その結果、測定時に、測定用導体22の電圧が低エネルギー電子の軌道に及ぼす影響を小さく抑えることができる。従って、基板2のチャージアップを模擬的にしかも高精度で測定することができる。
【0033】
このチャージアップ測定装置20による測定結果の例を図5〜図7に示す。これらの例は、8個の並設された測定用導体22a〜22hを用いてその各々に流れる電流Iを測定した結果である。測定用導体22d、22eが中央に位置している。各電流Iの極性および大きさが、各測定用導体22a〜22hのチャージアップの極性および大きさを表している。ピーク位置が時間的に変化しているのは、イオンビーム12のX方向の走査による結果である。
【0034】
図5は、上記プラズマ供給源14を使用しない場合の例であり、全ての測定用導体22a〜22hにイオンビーム12の正電荷による正チャージアップが起きていることが分かる。
【0035】
図6は、上記プラズマ供給源14を使用したけれども、それから放出する電子量を最適化していない場合の例であり、端寄りの測定用導体22a、22h等に比較的大きな正チャージアップが起きていることが分かる。これは、プラズマ供給源14から放出した電子がイオンビーム12の端部にまで十分に届いていない結果であると考えられる。
【0036】
図7は、上記プラズマ供給源14から放出する電子量を最適化した場合の例であり、端寄りの測定用導体22a〜22cに僅かに負チャージアップが起きているだけで、全体的にうまくチャージアップが抑制されていることが分かる。
【0037】
上記各電流測定器30の代わりに、各双方向定電圧素子28を通して流れる正および負の電荷量Qをそれぞれ測定する複数の電荷量測定器32を設けても良い。
【0038】
各電荷量測定器32は、例えば、図3に示す例のように、正の電荷量Q1 を測定する電荷量測定器36aおよびダイオード34aと、負の電荷量Q2 を測定する電荷量測定器36bおよびダイオード34bとを互いに並列接続した構成をしている。各電荷量測定器36aおよび各電荷量測定器36bは、例えば、電流計および積分器から成る。
【0039】
複数の電荷量測定器32を設ける代わりに、一つの電荷量測定器で各双方向定電圧素子28を通して流れる電荷量Qを切り換えて測定する構成を採用しても良い。図3中の各電荷量測定器36aおよび36bについても同様である。
【0040】
このような電荷量測定器32を設けることによって、基板2のチャージアップを、電流の代わりに、通流電荷量によって模擬的にしかも高精度で測定することができる。
【0041】
上記基板2を半導体基板として、その表面に、イオン注入によって例えば図8に示したようなMOS形電界効果トランジスタ10を形成するイオン注入装置に上記チャージアップ測定装置20を用いる場合は、上記各双方向定電圧素子28の降伏電圧は、当該MOS形電界効果トランジスタ10のゲート酸化膜4の耐圧にほぼ等しくするのが好ましい。それによって、各測定用導体22の最大チャージアップ電圧を、基板表面のMOS形電界効果トランジスタ10の最大チャージアップ電圧にほぼ等しくすることができるので、そのチャージアップを模擬的に、しかもより高精度で測定することができる。これは、前述したように、MOS形電界効果トランジスタ10のチャージアップ電圧はそのゲート酸化膜4の耐圧以上には上昇しないのに対して、双方向定電圧素子28の導通によって各測定用導体22のチャージアップ電圧も降伏電圧以上に上昇しないので、より正確に基板2のチャージアップ状態を模擬することができるからである。
【0042】
また、上記と同じく半導体基板の表面にMOS形電界効果トランジスタ10を形成するイオン注入装置に上記チャージアップ測定装置20を用いる場合に、各双方向定電圧素子28の降伏電圧を上記のようにすると共に、電流測定器30ではなく上記のような電荷量測定器32を用いても良い。これによって、チャージアップによってMOS形電界効果トランジスタ10のゲート酸化膜4を突き抜ける電荷量を模擬的に高精度で測定することができる。その結果、基板表面のMOS形電界効果トランジスタ10のチャージアップ状況の測定だけでなく、次のような測定も可能になる。
【0043】
即ち、MOS形電界効果トランジスタ10のゲート酸化膜4は、通常は自己回復能力を有しているけれども、それを突き抜ける全電荷量が所定値(例えば10クーロン/cm2 )以上になると、この自己回復能力は失われて、ゲート酸化膜4は絶縁破壊される。即ち、MOS形電界効果トランジスタ10は絶縁破壊される。このゲート酸化膜4を突き抜ける電荷量を上記チャージアップ測定装置20は模擬的に高精度で測定することができるので、ゲート酸化膜4ひいてはMOS形電界効果トランジスタ10の通流電荷量による破壊モードを模擬的に測定することも可能になる。即ち、MOS形電界効果トランジスタ10が自己回復しない通流電荷量に対して、チャージアップによってどの程度の電荷量が流れたかということを、模擬的に測定することも可能になる。
【0044】
図4は、この発明に係るチャージアップ測定装置をイオンビーム照射装置に用いた他の例を示す図である。図1の例との相違点を主体に説明すると、この例では、上記各双方向定電圧素子28を通して流れる電流Iを、電流/電圧変換器38によって電圧に変換し、更にA/D変換器40によってディジタル信号に変換し、更に二つの積分器42によって正側および負側をそれぞれ積分して正の電荷量Q1 および負の電荷量Q2 をそれぞれ演算し、それらを二つの比較器44によって基準電荷量Q0 とそれぞれ比較してその結果をプラズマ供給源制御器46に与え、このプラズマ供給源制御器46によって上記プラズマ供給源14を制御する構成をしている。
【0045】
上記基準電荷量Q0 は、例えば基板2の表面に前述したようなMOS形電界効果トランジスタ10を形成するイオン注入装置の場合は、前述したように10クーロン/cm2 程度がゲート酸化膜4の非回復電荷量であるから、それに1より小さい(例えば0.1〜0.01程度の)安全係数を掛けた値を選べば良い。
【0046】
プラズマ供給源制御器46は、例えば、正の電荷量Q1 が基準電荷量Q0 を超える入力点すなわち測定用導体22が所定数以上あるときはプラズマ供給源14から放出させるプラズマ16の量を増加させ、負の電荷量Q2 が基準電荷量Q0 を超える入力点すなわち測定用導体22が所定数以上あるときはプラズマ供給源14から放出させるプラズマ16の量を減少させる制御を行う。これによって、プラズマ供給源14から放出させるプラズマ16ひいては電子の量を、チャージアップ抑制に最適化することができる。それによって、例えば、図7に示したような良好な結果を得ることができる。
【0047】
この図4の例では、各電流/電圧変換器38およびA/D変換器40が、図1に示した各電流測定器30に相当しており、各電流/電圧変換器38、A/D変換器40および積分器42が、図1に示した各電荷量測定器32に相当している。
【0048】
【発明の効果】
請求項1記載の発明によれば、チャージアップ電圧が双方向定電圧素子の降伏電圧まで上昇した測定用導体があると、それに接続された双方向定電圧素子は導通状態になり、この双方向定電圧素子を通して、それに接続された電流測定器に、当該測定用導体のチャージアップに応じた極性および大きさの電流が流れ、それを電流測定器で測定することができるので、基板のチャージアップを模擬的に測定することができる。
【0049】
しかも、上記各測定用導体のチャージアップ電圧は、双方向定電圧素子の導通によって、双方向定電圧素子の降伏電圧以上には上昇しないので、測定時に測定用導体の電圧が低エネルギー電子の軌道に及ぼす影響を小さく抑えることができる。従って、基板のチャージアップを模擬的にしかも高精度で測定することができる。
【0050】
請求項2記載の発明によれば、各双方向定電圧素子を通して流れる正および負の電荷量をそれぞれ測定する電荷量測定器を設けているので、基板のチャージアップを、通流電荷量によって模擬的にしかも高精度で測定することができる。
【図面の簡単な説明】
【図1】この発明に係るチャージアップ測定装置をイオンビーム照射装置に用いた一例を示す図である。
【図2】図1中の測定用導体周りの拡大側面図である。
【図3】電荷量測定器の一例を示す回路図である。
【図4】この発明に係るチャージアップ測定装置をイオンビーム照射装置に用いた他の例を示す図である。
【図5】図1に示したチャージアップ測定装置による測定結果の一例を示す図である。
【図6】図1に示したチャージアップ測定装置による測定結果の他の例を示す図である。
【図7】図1に示したチャージアップ測定装置による測定結果の更に他の例を示す図である。
【図8】半導体基板の表面に形成されたMOS形電界効果トランジスタの一例を拡大して示す概略断面図である。
【符号の説明】
2 基板(半導体基板)
10 MOS形電界効果トランジスタ
12 イオンビーム
14 プラズマ供給源
20 チャージアップ測定装置
22 測定用導体
28 双方向定電圧素子
30 電流測定器
32 電荷量測定器

Claims (2)

  1. 基板にイオンビームを照射するイオンビーム照射装置に用いられるものであって、前記イオンビームと交差する面に配列されていて前記イオンビームを受ける複数の測定用導体と、この各測定用導体にそれぞれ接続された複数の双方向定電圧素子と、この各双方向定電圧素子を通して流れる電流の極性および大きさをそれぞれ測定する電流測定器とを備えることを特徴とするチャージアップ測定装置。
  2. 基板にイオンビームを照射するイオンビーム照射装置に用いられるものであって、前記イオンビームと交差する面に配列されていて前記イオンビームを受ける複数の測定用導体と、この各測定用導体にそれぞれ接続された複数の双方向定電圧素子と、この各双方向定電圧素子を通して流れる正および負の電荷量をそれぞれ測定する電荷量測定器とを備えることを特徴とするチャージアップ測定装置。
JP11822199A 1999-04-26 1999-04-26 チャージアップ測定装置 Expired - Fee Related JP4207307B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11822199A JP4207307B2 (ja) 1999-04-26 1999-04-26 チャージアップ測定装置
KR1020000021831A KR100552523B1 (ko) 1999-04-26 2000-04-25 챠지업 측정장치
US09/558,231 US6489792B1 (en) 1999-04-26 2000-04-26 Charge-up measuring apparatus
CNB001188127A CN1143376C (zh) 1999-04-26 2000-04-26 充电测定装置
TW089107834A TW460898B (en) 1999-04-26 2000-04-26 Charge-up measuring apparatus
GB0010189A GB2349503B (en) 1999-04-26 2000-04-26 Charge-up measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11822199A JP4207307B2 (ja) 1999-04-26 1999-04-26 チャージアップ測定装置

Publications (3)

Publication Number Publication Date
JP2000304899A JP2000304899A (ja) 2000-11-02
JP2000304899A5 JP2000304899A5 (ja) 2007-03-22
JP4207307B2 true JP4207307B2 (ja) 2009-01-14

Family

ID=14731230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11822199A Expired - Fee Related JP4207307B2 (ja) 1999-04-26 1999-04-26 チャージアップ測定装置

Country Status (6)

Country Link
US (1) US6489792B1 (ja)
JP (1) JP4207307B2 (ja)
KR (1) KR100552523B1 (ja)
CN (1) CN1143376C (ja)
GB (1) GB2349503B (ja)
TW (1) TW460898B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414380B2 (ja) 2000-11-14 2003-06-09 日新電機株式会社 イオンビーム照射方法ならびに関連の方法および装置
US7476877B2 (en) * 2006-02-14 2009-01-13 Varian Semiconductor Equipment Associates, Inc. Wafer charge monitoring
KR100782370B1 (ko) * 2006-08-04 2007-12-07 삼성전자주식회사 지연 전기장을 이용한 이온 에너지 분포 분석기에 근거한이온 분석 시스템
US9558914B2 (en) * 2015-02-25 2017-01-31 Axcelis Technologies, Inc. Bipolar wafer charge monitor system and ion implantation system comprising same
JP7123663B2 (ja) * 2018-06-29 2022-08-23 株式会社東芝 製造ライン内の静電気測定方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895978A (en) * 1969-08-12 1975-07-22 Kogyo Gijutsuin Method of manufacturing transistors
US3969670A (en) * 1975-06-30 1976-07-13 International Business Machines Corporation Electron beam testing of integrated circuits
US4052229A (en) * 1976-06-25 1977-10-04 Intel Corporation Process for preparing a substrate for mos devices of different thresholds
US4473795A (en) * 1983-02-23 1984-09-25 International Business Machines Corporation System for resist defect measurement
US4536223A (en) * 1984-03-29 1985-08-20 Rca Corporation Method of lowering contact resistance of implanted contact regions
US4675530A (en) 1985-07-11 1987-06-23 Eaton Corporation Charge density detector for beam implantation
JPH01248452A (ja) 1988-03-29 1989-10-04 Nissin Electric Co Ltd イオンビーム中性化装置
DE3941280A1 (de) * 1989-12-14 1991-06-20 Basf Ag Polymergranulat mit verbesserter verarbeitbarkeit
JP2969788B2 (ja) 1990-05-17 1999-11-02 日新電機株式会社 イオンビームの平行度測定方法、走査波形整形方法およびイオン注入装置
JP2802825B2 (ja) * 1990-09-22 1998-09-24 大日本スクリーン製造 株式会社 半導体ウエハの電気測定装置
US5179279A (en) * 1991-01-25 1993-01-12 Rensselaer Polytechnic Institute Non-contact electrical pathway
DE69224506T2 (de) * 1991-11-27 1998-10-01 Hitachi Instruments Eng Elektronenstrahlgerät
JPH06349920A (ja) * 1993-06-08 1994-12-22 Dainippon Screen Mfg Co Ltd 半導体ウェハの電荷量測定方法
JPH0714898A (ja) * 1993-06-23 1995-01-17 Mitsubishi Electric Corp 半導体ウエハの試験解析装置および解析方法
US5659244A (en) * 1994-09-21 1997-08-19 Nec Corporation Electronic circuit tester and method of testing electronic circuit
US5519334A (en) * 1994-09-29 1996-05-21 Advanced Micro Devices, Inc. System and method for measuring charge traps within a dielectric layer formed on a semiconductor wafer
US5952837A (en) * 1995-07-18 1999-09-14 Mitsubishi Denki Kabushiki Kaisha Scanning photoinduced current analyzer capable of detecting photoinduced current in nonbiased specimen
US5844416A (en) * 1995-11-02 1998-12-01 Sandia Corporation Ion-beam apparatus and method for analyzing and controlling integrated circuits
JP3251875B2 (ja) * 1996-05-10 2002-01-28 株式会社東芝 荷電粒子ビーム露光装置
JP3430806B2 (ja) * 1996-07-25 2003-07-28 日新電機株式会社 イオン注入装置
JPH1196960A (ja) * 1997-09-24 1999-04-09 Sony Corp イオン注入装置
US5999465A (en) * 1998-09-30 1999-12-07 Advanced Micro Devices, Inc. Method and apparatus for determining the robustness of memory cells to alpha-particle/cosmic ray induced soft errors
US6232787B1 (en) * 1999-01-08 2001-05-15 Schlumberger Technologies, Inc. Microstructure defect detection

Also Published As

Publication number Publication date
JP2000304899A (ja) 2000-11-02
GB0010189D0 (en) 2000-06-14
CN1143376C (zh) 2004-03-24
CN1276625A (zh) 2000-12-13
US6489792B1 (en) 2002-12-03
KR20000071802A (ko) 2000-11-25
GB2349503B (en) 2003-10-15
TW460898B (en) 2001-10-21
KR100552523B1 (ko) 2006-02-14
GB2349503A (en) 2000-11-01

Similar Documents

Publication Publication Date Title
Comizzoli Uses of corona discharges in the semiconductor industry
EP0309956A2 (en) Method of testing semiconductor elements and apparatus for testing the same
EP0678909A1 (en) Monitoring of rf-plasma induced potential on a gate dielectric inside a plasma etcher
Larcher et al. A model of the stress induced leakage current in gate oxides
JP4207307B2 (ja) チャージアップ測定装置
Pennicard et al. Simulation results from double-sided 3-D detectors
TW200814278A (en) A test structure and method for detecting charge effects during semiconductor processing
KR20040025832A (ko) 기판의 대전전압계측장치 및 이온빔 조사장치
US5179433A (en) Breakdown evaluating test element
JPS5974644A (ja) 埋もれている固体物質における電位の測定方法
CN107430974B (zh) 双极性晶片电荷监测器系统及包含其的离子注入系统
US6651582B2 (en) Method and device for irradiating an ion beam, and related method and device thereof
CN103367330A (zh) 功率半导体器件的测试结构及其制造方法
Ninca et al. Understanding the humidity sensitivity of sensors with TCAD simulations
De Haas et al. Characteristics and radiation tolerance of a double-sided microstrip detector with polysilicon biasing resistors
Bharthuar Prototype evaluation of silicon sensors and other detector components suitable for future CMS Tracker
JP2000304899A5 (ja)
Bhattacharya et al. A study of electron damage effects during low voltage SEM metrology
Shvetsov-Shilovskiy et al. The influence of the device geometry on the partially depleted SOI transistors TID hardness
Brueske et al. Investigation of the insulator layers for segmented silicon sensors before and after X-ray irradiation
Boyer et al. Characterization of a Trench-Gated IGBT using the split CV Method
JPS6213619B2 (ja)
En et al. Effect of antenna structures on charging damage in PIII
Thomas et al. Electron beam irradiation effects in thick-oxide MOS capacitors
JPS6312144A (ja) 半導体素子の評価方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees