JP4196207B2 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
JP4196207B2
JP4196207B2 JP2004168743A JP2004168743A JP4196207B2 JP 4196207 B2 JP4196207 B2 JP 4196207B2 JP 2004168743 A JP2004168743 A JP 2004168743A JP 2004168743 A JP2004168743 A JP 2004168743A JP 4196207 B2 JP4196207 B2 JP 4196207B2
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
battery
compound
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004168743A
Other languages
English (en)
Other versions
JP2004319517A5 (ja
JP2004319517A (ja
Inventor
次郎 塚原
雅之 根来
光利 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2004168743A priority Critical patent/JP4196207B2/ja
Publication of JP2004319517A publication Critical patent/JP2004319517A/ja
Publication of JP2004319517A5 publication Critical patent/JP2004319517A5/ja
Application granted granted Critical
Publication of JP4196207B2 publication Critical patent/JP4196207B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は高電圧、高容量かつ充放電サイクル特性に優れる非水電解液二次電池に関するものである。
リチウムを利用する非水電解液二次電池(リチウム二次電池)はリチウムを可逆的に吸蔵放出可能な材料を含む正極および負極、リチウム塩を含む非水電解液、およびこれらを適切に保持、隔離する部材から構成される。リチウムが軽量かつ極めて卑な電位を有するため、リチウムまたはリチウム合金を負極とする二次電池は高電圧、高容量という優れた特徴を有する反面、デンドライトが析出し短絡しやすいという欠点も有していた。負極に炭素材料を有する電池は、長期にわたって充放電を繰り返した際の容量の低下の度合いが小さいというサイクル特性の向上は認められるものの、リチウム金属を負極に用いた電池程の高容量にはほど遠い。一方、非晶質の酸化物もしくはカルコゲン化合物を負極材料に用いた場合、リチウムの吸蔵量が飛躍的に増大し極めて容量の高い優れた二次電池が得られる。しかしながらこの電池では長期にわたって充放電を繰り返すと、容量の低下がみられるという問題があった。長期にわたって充放電を繰り返した際の充放電特性(サイクル特性)を改良する試みは、様々な観点から検討されている。電解液に特定の化合物を添加してサイクル特性を向上させる試みも多数検討され、例えば、特許文献1、特許文献2、特許文献3にはアミン類を添加する事が、特許文献4にはリチウムに対する配位性基を有する化合物を添加する事が記載されているが、サイクル性の改良効果は十分とは言い難く、更なる向上が望まれていた。
特開平6−84523号 特開平6−84524号 特開平6−333595号 特開平5−234618号
本発明の課題は、リチウム二次電池のサイクル性を向上させることであり、特に、非晶質の酸化物もしくはカルコゲン化合物を負極材料に用いたリチウム二次電池のサイクル性を向上させることである。
本発明は、容器内に、正極、負極、そして非水電解液が充填されてなるリチウム二次電池であって、該負極が、周期表1、2、13、14、15族原子から選ばれる三種以上の原子を含む主として非晶質の酸化物であり、前記酸化物が下記一般式:

SnMpMqM

[式中、MはSi、Ge、Pb、P、BおよびAlからなる群より選ばれる少なくとも一種の元素を、MはLi、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群より選ばれる少なくとも一種の元素を、MはOの元素を表す。p、qは各々0.1以上で2以下の数値を、rは1以上で6以下の数値を表す]

で表される化合物を含有する負極であり、非水電解液が、リチウム塩と非水溶媒を含有し、そしてトルエン、p−キシレン、クメン、メシチレン、1,2,4,5−テトラメチルベンゼン、1,2,3,4−テトラヒドロナフタレン、9,10−ジヒドロアントラセン、ジフェニルメタン、ジベンジル、インダン、インデン、4−ベンジルピリジン、アセナフテンの化合物(添加剤化合物)のいずれかを電解液1kg中に1g乃至50gの範囲の量にて含有することを特徴とする非水電解液二次電池にある。
本発明の非水電解液二次電池は、容量が高く、充放電繰り返しによる放電容量の低下が少ない。
本発明の好ましい態様を以下に掲げるが、本発明はこれらに限定されるものではない。
1)該負極が下記一般式で表される化合物を含有すること。

SnM3pM5qM7r

[式中、M3はSi、Ge、Pb、P、B、Alから選ばれる少なくとも一種の元素を、M5はLi、Na、K、Rb、Cs、Mg、Ca、Sr、Baから選ばれる少なくとも一種の元素を、M7はO、Sから選ばれる少なくとも一種の元素を表す。p、qは各々0.1以上2以下の数値を、rは1以上6以下の数値を表す]。
2)上記一般式におけるM7が酸素である。
リチウム二次電池では充電時、正極はリチウムイオンと電子を放出することにより電位が上昇し、負極はリチウムイオンと電子を吸蔵することにより電位が下降し、電気エネルギーが蓄えられる。放電時は上記の逆反応により電気エネルギーが放出される。一連の電気化学反応は可逆的である事が理想であるが、現実には充放電の繰り返しによって電池内部での不可逆的な化学変化が避けられないため、容量低下など電池性能の劣化が起きる。本発明者らは、かかる電池性能の劣化の主要因は正極上で電解液溶媒が酸化分解し、該分解物が正極上に徐々に堆積するなどして電池内部での望ましい電気化学反応を阻害するためではないかと推測した。というのも、リチウム含有遷移金属酸化物を活物質として含む正極は電位の上昇にともなって酸化的となり、活性酸素等の強酸化剤を発生し易くなるものと考えられるからである。電解液溶媒の酸化分解を防ぐ目的で種々の化合物を添加してその効果を調べた結果、本発明の添加剤化合物が極めて有効であることを見出し本発明をなすに至った。
本発明の添加剤化合物がなぜサイクル性を向上しているのかという理由については推測の域を出ないが、アリール基に隣接する炭素上の水素原子がラジカルとして引き抜かれ易い事から考えて、本発明の添加剤化合物が、正極で発生した活性酸素と優先的に反応することにより、電解液溶媒の分解を防止しているものと思われる。
次に本発明の添加剤化合物の化学式を示す。
Figure 0004196207
Figure 0004196207
Figure 0004196207
上記の添加剤化合物は試薬として入手可能である。代表的な試薬メーカーもしくは代理店としては和光純薬工業(株)、東京化成工業(株)、シグマ−アルドリッチジャパン(株)等が挙げられる。
本発明で使用する添加剤化合物の添加方法、添加量について説明する。添加剤化合物は電解液に添加することが好ましい。添加量の典型的な値としては電解液1kg中1g乃至50gである。好ましくは電解液1kg中5gないし20gである。
以下、本発明の非水電解液二次電池の製造方法について説明する。本発明の非水電解液二次電池は、正負の電極シートをセパレーターと共に巻回したもの(巻回群)を電池缶に挿入し、缶と電極を電気的に接続し、電解液を注入した後封口して作成する。また、必要に応じて各種の部材(封口板、リード板、ガスケット、外装材等)が用いられる。
正(負)の電極シートは正(負)極の合剤を集電体の上に塗布、乾燥、圧縮する事により作成することができる。合剤の調製は正極(あるいは負極)材料および導電剤を混合し、結着剤(樹脂粉体のサスペンジョンまたはエマルジョン状のもの)、および分散媒を加えて混練混合し、引続いて、ミキサー、ホモジナイザー、ディゾルバー、プラネタリミキサー、ペイントシェイカー、サンドミル等の攪拌混合機、分散機で分散して行うことができる。分散媒としては水もしくは有機溶媒が用いられるが、水が好ましい。このほか、適宜分散剤、充填剤、イオン導電剤、圧力増強剤等の添加剤を添加しても良い。塗布は種々の方法で行うことが出来るが、例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法を挙げることが出来る。ブレード法、ナイフ法及びエクストルージョン法が好ましい。塗布は、0.1〜100m/分の速度で実施されることが好ましい。この際、合剤ペーストの液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることが出来る。その塗布層の厚み、長さや巾は、電池の大きさにより決められる。典型的な塗布層の厚みは乾燥後圧縮された状態で10〜1000μmである。塗布後の電極シートは、熱風、真空、赤外線、遠赤外線、電子線及び低湿風の作用により乾燥、脱水される。これらの方法は単独あるいは組み合わせて用いることが出来る。乾燥温度は80〜350℃の範囲が好ましく、特に100〜250℃の範囲が好ましい。乾燥後の含有量は2000ppm以下が好ましく、500ppm以下がより好ましい。電極シートの圧縮は、一般に採用されているプレス方法を用いることが出来るが、特に金型プレス法やカレンダープレス法が好ましい。プレス圧は、特に限定されないが、10kg/cm2〜3t/cm2が好ましい。カレンダープレス法のプレス速度は、0.1〜50m/分が好ましい。プレス温度は、室温〜200℃が好ましい。
本発明で用いられる正極材料はリチウム含有遷移金属酸化物であることが好ましい。好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種の遷移金属元素とリチウムを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。より好ましくは、V、Cr、Mn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属元素とリチウムを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。なお主として存在する遷移金属に対し30モルパーセント未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。さらに好ましいリチウム含有遷移金属酸化物は、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCob1-bz、LixCobFe1-b2、LixMn24、LixMncCo2-C4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.7〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3)である。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-bz (x=0.7〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3)があげられる。なお、xの値は充放電開始前の値であり、充放電により増減する。
本発明の負極材料は周期表1,2,13,14,15族原子から選ばれる三種以上の原子を含む、主として非晶質のカルコゲン化合物または酸化物である。ここで言う主として非晶質とはCuKα線を用いたX線回折法で2θ値で20°から40°に頂点を有するブロードな散乱帯を有する物であり、結晶性の回折線を有してもよい。好ましくは2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の500倍以下であることが好ましく、さらに好ましくは100倍以下であり、特に好ましくは5倍以下であり、最も好ましくは結晶性の回折線を有しないことである。
本発明で用いられる好ましい負極材料は下記一般式で表される。

12pM4qM6r

式中、M1、M2は相異なりSi、Ge、Sn、Pb、P、B、Al、Sbから選ばれる少なくとも一種であり、好ましくはSi、Ge、Sn、P、B、Alであり、特に好ましくはSi、Sn、P、B、Alである。M4はLi、Na、K、Rb、Cs、Mg、Ca、Sr、Baから選ばれる少なくとも一種であり、好ましくはK、Cs、Mg、Caで、特に好ましくはCs、Mgである。M6はO、S、Teから選ばれる少なくとも一種であり、好ましくはO、Sであり、特に好ましくはOである。p、qは各々0.001〜10であり、好ましくは0.01〜5であり、特に好ましくは0.1〜2である。rは1〜50であり、好ましくは1〜26であり、特に好ましくは1〜6である。M1、M2の価数は特に限定されることはなく、単独価数であっても、各価数の混合物であっても良い。またM1、M2、M4の比はM2およびM4がM1に対して0.001〜10モル当量の範囲において連続的に変化させることができ、それに応じM6の量(上記一般式におけるrの値)も連続的に変化する。
上記に挙げた化合物の中でも、下記一般式で表されるSnを主体とする非晶質酸化物もしくは硫化物が好ましい。

SnM3pM5qM7r

式中、M3はSi、Ge、Pb、P、B、Alから選ばれる少なくとも一種であり、好ましくはSi、Ge、P、B、Alであり、特に好ましくはSi、P、B、Alである。M5はLi、Na、K、Rb、Cs、Mg、Ca、Sr、Baから選ばれる少なくとも一種であり、好ましくはCs、Mgで、特に好ましくはMgである。M7はO、Sから選ばれる少なくとも一種であり、Oが好ましい。p、qは各々0.01〜5であり、好ましくは0.1〜2である。rは1〜20であり、好ましくは1〜6である。当然の事ながら各条件の好ましいもの同士の組み合わせが最も好ましい。
本発明において、特に優れた効果を得ることができるのはSnの価数が2価で存在する化合物である。Snの価数は化学滴定操作によって求めることができる。例えばPhysics and Chemistry of Glasses Vol.8 No.4(1967)の165頁に記載の方法で分析することができる。また、Snの固体核磁気共鳴(NMR)測定によるナイトシフトから決定することも可能である。例えば、幅広測定において金属Sn(0価のSn)はSn(CH34に対して7000ppm付近と極端に低磁場にピークが出現するのに対し、SnO(=2価)では100ppm付近、SnO2(=4価)では−600ppm付近に出現する。このように同じ配位子を有する場合、ナイトシフトが中心金属であるSnの価数に大きく依存するので119Sn−NMR測定で求められたピーク位置で価数の決定が可能となる。
本発明の負極材料には微量の不純物元素を意図的に混入しても良い。不純物元素としては例えば、遷移金属(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、ランタノイド系金属、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg)や周期表17族元素(F、Cl)などが挙げられる。また電子伝導性をあげる各種化合物(例えば、Sb、In、Nbの化合物)のドーパントを含んでも良い。
本発明の負極材料の例を以下に示すが、本発明はこれらに限定されるものではない。SnAl0.40.50.50.13.65、SnAl0.40.50.5Na0.23.7、SnAl0.40.30.5Rb0.23.4、SnAl0.40.50.5Cs0.13.65、SnAl0.40.50.50.1Ge0.053.85、SnAl0.40.50.50.1Mg0.1Ge0.023.83、SnAl0.40.40.43.2、SnAl0.30.50.22.7、SnAl0.30.50.22.7、SnAl0.40.50.3Ba0.08Mg0.083.26、SnAl0.40.40.4Ba0.083.28、SnAl0.40.50.53.6、SnAl0.40.50.5Mg0.13.7
SnAl0.50.40.5Mg0.10.23.65、SnB0.50.5Li0.1Mg0.10.23.05、SnB0.50.50.1Mg0.10.23.05、SnB0.50.50.05Mg0.050.13.03、SnB0.50.50.05Mg0.10.23.03、SnAl0.40.50.5Cs0.1Mg0.10.23.65、SnB0.50.5Cs0.05Mg0.050.13.03、SnB0.50.5Mg0.10.13.05、SnB0.50.5Mg0.10.23、SnB0.50.5Mg0.10.063.07、SnB0.50.5Mg0.10.143.03、SnPBa0.083.58、SnPK0.13.55、SnPK0.05Mg0.053.58、SnPCs0.13.55、SnPBa0.080.083.54、SnPK0.1Mg0.10.23.55、SnPK0.05Mg0.050.13.53、SnPCs0.1Mg0.10.23.55、SnPCs0.05Mg0.050.13.53
Sn1.1Al0.40.20.6Ba0.080.083.54、Sn1.1Al0.40.20.6Li0.10.1Ba0.10.13.65、Sn1.1Al0.40.40.4Ba0.083.34、Sn1.1Al0.4PCs0.054.23、Sn1.1Al0.4PK0.054.23、Sn1.2Al0.50.30.4Cs0.23.5、Sn1.2Al0.40.20.6Ba0.083.68、Sn1.2Al0.40.20.6Ba0.080.083.64、Sn1.2Al0.40.20.6Mg0.04Ba0.043.68、Sn1.2Al0.40.30.5Ba0.083.58、Sn1.3Al0.30.30.4Na0.23.3、Sn1.3Al0.20.40.4Ca0.23.4、Sn1.3Al0.40.40.4Ba0.23.6、Sn1.4Al0.4PK0.24.6、Sn1.4Al0.2Ba0.1PK0.24.45、Sn1.4Al0.2Ba0.2PK0.24.6、Sn1.4Al0.4Ba0.2PK0.2Ba0.10.24.9、Sn1.4Al0.4PK0.34.65、Sn1.5Al0.2PK0.24.4、Sn1.5Al0.4PK0.14.65、Sn1.5Al0.4PCs0.054.63、Sn1.5Al0.4PCs0.05Mg0.10.24.63
SnSi0.5Al0.10.20.1Ca0.43.1、SnSi0.4Al0.20.42.7、SnSi0.5Al0.20.10.1Mg0.12.8、SnSi0.6Al0.20.22.8、SnSi0.5Al0.30.40.23.55、SnSi0.5Al0.30.40.54.30、SnSi0.6Al0.10.10.33.25、SnSi0.6Al0.10.10.1Ba0.22.95、SnSi0.6Al0.10.10.1Ca0.22.95、SnSi0.6Al0.40.2Mg0.13.2、SnSi0.6Al0.10.30.13.05、SnSi0.6Al0.2Mg0.22.7、SnSi0.6Al0.2Ca0.22.7、SnSi0.6Al0.20.23、SnSi0.60.20.23、SnSi0.8Al0.22.9、SnSi0.8Al0.30.20.23.85、SnSi0.80.22.9、SnSi0.8Ba0.22.8、SnSi0.8Mg0.22.8、SnSi0.8Ca0.22.8、SnSi0.80.23.1
Sn0.9Mn0.30.40.4Ca0.1Rb0.12.95、Sn0.9Fe0.30.40.4Ca0.1Rb0.12.95、Sn0.8Pb0.2Ca0.10.93.35、Sn0.3Ge0.7Ba0.10.93.35、Sn0.9Mn0.1Mg0.10.93.35、Sn0.2Mn0.8Mg0.10.93.35、Sn0.7Pb0.3Ca0.10.93.35、Sn0.2Ge0.8Ba0.10.93.35
本発明の負極材料は焼成法または溶接法にて合成することができる。例えば焼成法について詳細に説明するとM1化合物、M2化合物とM4化合物(M1、M2は相異なりSi、Ge、Sn、Pb、P、B、Al、Sb、M4はMg、Ca、Sr、Ba)を混合し、焼成すればよい。
Sn化合物としては、たとえばSnO、SnO2、Sn23、Sn34、Sn713・H2O、Sn815、水酸化第一錫、オキシ水酸化第二錫、亜錫酸、蓚酸第一錫、燐酸第一錫、オルト錫酸、メタ錫酸、パラ錫酸、弗化第一錫、弗化第二錫、塩化第一錫、塩化第二錫、ピロリン酸第一錫、リン化錫、硫化第一錫、硫化第二錫、等を挙げることができる。Si化合物としてはたとえばSiO2、SiO、テトラメチルシラン、テトラエチルシラン等の有機珪素化合物、テトラメトキシシラン、テトラエトキシシラン等のアルコキシシラン化合物、トリクロロハイドロシラン等のハイドロシラン化合物を挙げることができる。Ge化合物としてはたとえばGeO2、GeO、ゲルマニウムテトラメトキシド、ゲルマニウムテトラエトキシド等のアルコキシゲルマニウム化合物等を挙げることができる。Pb化合物としてはたとえばPbO2、PbO、Pb23、Pb34、硝酸鉛、炭酸鉛、蟻酸鉛、酢酸鉛、四酢酸鉛、酒石酸鉛、鉛ジエトキシド、鉛ジ(イソプロポキシド)等を挙げることができる。P化合物としてはたとえば五酸化リン、オキシ塩化リン、五塩化リン、三塩化リン、三臭化リン、トリメチルリン酸、トリエチルリン酸、トリプロピルリン酸、ピロリン酸第一錫、リン酸ホウ素等を挙げることができる。B化合物としてはたとえば三二酸化ホウ素、三塩化ホウ素、三臭化ホウ素、炭化ホウ素、ほう酸、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリプロピル、ほう酸トリブチル、リン化ホウ素、リン酸ホウ素等を挙げることができる。Al化合物としてはたとえば酸化アルミニウム(α−アルミナ、β−アルミナ)、ケイ酸アルミニウム、アルミニウムトリ−iso−プロポキシド、亜テルル酸アルミニウム、塩化アルミニウム、ホウ化アルミニウム、リン化アルミニウム、リン酸アルミニウム、乳酸アルミニウム、ほう酸アルミニウム、硫化アルミニウム、硫酸アルミニウム、ホウ化アルミニウム等を挙げることができる。Sb化合物としてはたとえば三酸化二アンチモン、トリフェニルアンチモン等を挙げることができる。Mg、Ca、Sr、Ba化合物としては、各々の酸化塩、水酸化塩、炭酸塩、リン酸塩、硫酸塩、硝酸塩等を挙げることができる。
焼成条件としては、昇温速度が毎分4℃以上、200℃以下であることが好ましい。好ましい焼成温度は300℃以上、1500℃以下である。好ましい焼成時間は10分以上、50時間以下である。降温速度は毎分2℃以上、200℃以下であることが好ましい。本発明における昇温速度とは「焼成温度(℃表示)の50%」から「焼成温度(℃表示)の80%」に達するまでの温度上昇の平均速度であり、本発明における降温速度とは「焼成温度(℃表示)の80%」から「焼成温度(℃表示)の50%」に達するまでの温度降下の平均速度である。降温は焼成炉中で冷却してもよくまた焼成炉外に取り出して、例えば水中に投入して冷却してもよい。またセラミックスプロセッシング(技報堂出版 1987)217頁記載のgun法、Hammer−Anvil法・slap法・ガスアトマイズ法・プラズマスプレー法・遠心急冷法・melt drag法などの超急冷法を用いることもできる。またニューガラスハンドブック(丸善 1991)172頁記載の単ローラー法、双ローラー法を用いて冷却してもよい。焼成中に溶融する材料の場合には、焼成中に原料を供給しつつ焼成物を連続的に取り出してもよい。焼成中に溶融する材料の場合には融液を攪拌することが好ましい。
焼成ガス雰囲気は好ましくは酸素含有率が5体積%以下の雰囲気であり、さらに好ましくは不活性ガス雰囲気である。不活性ガスとしては例えば窒素、アルゴン、ヘリウム、クリプトン、キセノン等が挙げられる。上記焼成されて得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の重量差から算出できる。
本発明の負極材料は粉砕、分級して所定の粒子サイズに整えられる。粉砕、分級には良く知られた粉砕機や分級機(例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩など)が用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。分級方法としては特に限定はなく、篩、風力分級機、水ひなどを必要に応じて用いることができる。平均粒子サイズは0.1〜60μmが好ましく、1.0〜30μmが特に好ましく、2.0〜20μmがさらに好ましい。
本発明で使用される導電剤は、構成された電池において化学変化を起こさない電子伝導性材料であれば何でもよい。具体例としては、鱗状黒鉛、燐片状黒鉛、土状黒鉛等の天然黒鉛、石油コークス、石炭コークス、セルロース類、糖類、メソフェーズピッチ等の高温焼成体、気相成長黒鉛等の人工黒鉛等のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック等のカーボンブラック類、アスファルトピッチ、コールタール、活性炭、メソフェーズピッチ、ポリアセン等の炭素材料、金属繊維等の導電性繊維類、銅、ニッケル、アルミニウム、銀等の金属粉類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物等を挙げる事ができる。これらの中では、グラファイトやカーボンブラックが好ましい。これらは単独で用いても良いし、混合物として用いても良い。導電剤の合剤層への添加量は、負極材料または正極材料に対し6〜50重量%であることが好ましい。特に6〜30重量%であることが好ましい。カーボンブラックやグラファイトでは、6〜20重量%であることが特に好ましい。
本発明では電極合剤を保持するために結着剤を用いる。結着剤の例としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマー等が挙げられる。好ましい結着剤としては、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸Na、ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン−マイレン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンを挙げることが出来る。特にポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが挙げられる。これらの結着剤は単独または混合して用いる事が出来る。結着剤の添加量が少ないと電極合剤の保持力・凝集力が弱い。多すぎると電極体積が増加し電極単位体積あるいは単位重量あたりの容量が減少する。このような理由で結着剤の添加量は1〜30重量%が好ましく、特に2〜10重量%が好ましい。
充填剤は、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30重量%が好ましい。イオン導電剤は、無機及び有機の固体電解質として知られている物を用いることができ、詳細は電解液の項に記載されている。圧力増強剤は、後述の内圧を上げる化合物であり、炭酸塩が代表例である。
本発明で使用できる集電体は正極はアルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金であり、負極は銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金である。集電体の形態は箔、エキスパンドメタル、パンチングメタル、もしくは金網である。特に、正極にはアルミニウム箔、負極には銅箔が好ましい。
本発明で使用できるセパレータは、イオン透過度が大きく、所定の機械的強度を持ち、絶縁性の薄膜であれば良く、材質として、オフィレン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、形態として、不織布、織布、微孔性フィルムが用いられる。特に、材質として、ポリプロピレン、ポリエチレン、ポリプロピレンとポリエチレンの混合体、ポリプロピレンとテフロンの混合体、ポリエチレンとテフロンの混合体が好ましく、形態として微孔性フィルムであるものが好ましい。特に、孔径が0.01〜1μm、厚みが5〜50μmの微孔性フィルムが好ましい。
電解液は一般に支持塩と溶媒から構成される。リチウム二次電池における支持塩はリチウム塩が主として用いられる。本発明で使用出来るリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiAlCl4、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどのLi塩を挙げることが出来、これらの一種または二種以上を混合して使用することができる。なかでもLiBF4及び/あるいはLiPF6を溶解したものが好ましい。支持塩の濃度は、特に限定されないが、電解液1リットル当たり0.2〜3モルが好ましい。
本発明で使用できる溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、ジオキサン、アセトニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を挙げることができ、これらの一種または二種以上を混合して使用する。これらのなかでは、カーボネート系の溶媒が好ましく、環状カーボネートと非環状カーボネートを混合して用いるのが特に好ましい。環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネートが好ましい。また、非環状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートが好ましい。本発明で使用できる電解液としては、エチレンカーボネート、プロピレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネートあるいはジエチルカーボネートを適宜混合した電解液にLiCF3SO3、LiClO4、LiBF4および/またはLiPF6を含む電解液が好ましい。特にプロピレンカーボネートもしくはエチレンカーボネートの少なくとも一方とジメチルカーボネートもしくはジエチルカーボネートの少なくとも一方の混合溶媒に、LiCF3SO3、LiClO4、もしくはLiBF4の中から選ばれた少なくとも一種の塩とLiPF6を含む電解液が好ましい。これらの電解液を電池内に添加する量は特に限定されず、正極材料や負極材料の量や電池のサイズに応じて用いることができる。
また、電解液の他に次の様な固体電解質も併用することができる。固体電解質としては、無機固体電解質と有機固体電解質に分けられる。無機固体電解質には、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知れらている。なかでも、Li3N、LiI、Li5NI2、Li3N−LiI−LiOH、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4-(1-x)Li4SiO4、Li2SiS3、硫化リン化合物などが有効である。有機固体電解質では、ポリエチレンオキサイド誘導体か該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体あるいは該誘導体を含むポリマー、イオン解離基を含むポリマー、イオン解離基を含むポリマーと上記非プロトン性電解液の混合物、リン酸エステルポリマー、非プロトン性極性溶媒を含有させた高分子マトリックス材料が有効である。さらに、ポリアクリロニトリルを電解液に添加する方法もある。また、無機と有機固体電解質を併用する方法も知られている。
また、放電や充放電特性を改良する目的で、他の化合物を電解質に添加しても良い。例えば、ピリジン、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN,N’−置換イミダリジノン、エチレングリコールジアルキルエーテル、第四級アンモニウム塩、ポリエチレングリコール、ピロール、2−メトキシエタノール、AlCl3、導電性ポリマー電極活物質のモノマー、トリエチレンホスホルアミド、トリアルキルホスフィン、モルホリン、カルボニル基を持つアリール化合物、12−クラウン−4のようなクラウンエーテル類、ヘキサメチルホスホリックトリアミドと4−アルキルモルホリン、二環性の三級アミン、オイル、四級ホスホニウム塩、三級スルホニウム塩などを挙げることができる。
また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを電解液に含ませることができる。また、高温保存に適正を持たせるために電解液に炭酸ガスを含ませることができる。
電解液は、全量を1回で注入してもよいが、2回以上に分けて注入することが好ましい。2回以上に分けて注入する場合、それぞれの液は同じ組成でも、違う組成(例えば、非水溶媒あるいは非水溶媒によりリチウム塩を溶解した溶液を注入した後、前記溶媒より粘度の高い非水溶媒あるいは非水溶媒にリチウム塩を溶解した液を注入)でも良い。また、電解液の注入時間の短縮等のために、電池缶を減圧したり、電池缶に遠心力や超音波をかけることを行ってもよい。
本発明で使用できる電池缶および電池蓋は材質としてニッケルメッキを施した鉄鋼板、ステンレス鋼板(SUS304、SUS304L、SUS304N、SUS316、SUS430、SUS444等)、ニッケルメッキを施したステンレス鋼板(同上)、アルミニウムまたはその合金、ニッケル、チタン、銅であり、形状として、真円形筒状、楕円形筒状、正方形筒状、長方形筒状である。特に、外装缶が負極端子を兼ねる場合は、ステンレス鋼板、ニッケルメッキを施した鉄鋼板が好ましく、外装缶が正極端子を兼ねる場合は、ステンレス鋼板、アルミニウムまたはその合金が好ましい。電池缶の形状はボタン、コイン、シート、シリンダー、角などのいずれでも良い。電池缶の内圧上昇の対策として封口板に安全弁を用いることができる。この他、電池缶やガスケット等の部材に切り込みを入れる方法も利用することが出来る。この他、従来から知られている種々の安全素子(例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子等)を備えつけても良い。
本発明で使用するリード板には、電気伝導性をもつ金属(例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウム等)やそれらの合金を用いることが出来る。電池蓋、電池缶、電極シート、リード板の溶接法は、公知の方法(例、直流または交流の電気溶接、レーザー溶接、超音波溶接)を用いることが出来る。封口用シール剤は、アスファルト等の従来から知られている化合物や混合物を用いることが出来る。
本発明で使用できるガスケットは、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ポリアミドであり、耐有機溶媒性及び低水分透過性から、オレフィン系ポリマーが好ましく、特にプロピレン主体のポリマーが好ましい。さらに、プロピレンとエチレンのブロック共重合ポリマーであることが好ましい。
本発明の電池は必要に応じて外装材で被覆される。外装材としては、熱収縮チューブ、粘着テープ、金属フィルム、紙、布、塗料、プラスチックケース等がある。また、外装の少なくとも一部に熱で変色する部分を設け、使用中の熱履歴がわかるようにしても良い。
本発明の電池は必要に応じて複数本を直列及び/または並列に組み電池パックに収納される。電池パックには正温度係数抵抗体、温度ヒューズ、ヒューズ及び/または電流遮断素子等の安全素子の他、安全回路(各電池及び/または組電池全体の電圧、温度、電流等をモニターし、必要なら電流を遮断する機能を有す回路)を設けても良い。また電池パックには、組電池全体の正極及び負極端子以外に、各電池の正極及び負極端子、組電池全体及び各電池の温度検出端子、組電池全体の電流検出端子等を外部端子として設けることもできる。また電池パックには、電圧変換回路(DC−DCコンバータ等)を内蔵しても良い。また各電池の接続は、リード板を溶接することで固定しても良いし、ソケット等で容易に着脱できるように固定しても良い。さらには、電池パックに電池残存容量、充電の有無、使用回数等の表示機能を設けても良い。
本発明の電池は様々な機器に使用される。特に、ビデオムービー、モニター内蔵携帯型ビデオデッキ、モニター内蔵ムービーカメラ、コンパクトカメラ、一眼レフカメラ、レンズ付きフィルム、ノート型パソコン、ノート型ワープロ、電子手帳、携帯電話、コードレス電話、ヒゲソリ、電動工具、電動ミキサー、自動車等に使用されることが好ましい。
以下に具体例をあげ、本発明をさらに詳しく説明するが、発明の趣旨を超えない限り、本発明は実施例に限定されるものではない。
[実施例]
〔正極合剤ペーストの作成〕
正極材料:LiCoO2(炭酸リチウムと四酸化三コバルトと3:2のモル比で混合したものをアルミナるつぼにいれ、空気中、毎分2℃で750℃に昇温し4時間仮焼した後、さらに毎分2℃の速度で900℃に昇温しその温度で8時間焼成し解砕したもの。中心粒子サイズ5μm、洗浄品50gを100mlの水に分散したときの分散液の電導度は0.6mS/m、pHは10.1、窒素吸着法による比表面積は0.42m2/g)を200gとアセチレンブラック10gとを、ホモジナイザーで混合し、続いて結着剤として2−エチルヘキシルアクリレートとアクリル酸とアクリロニトリルの共重合体の水分散物(固形分濃度50重量%)を8g、濃度2重量%のカルボキシメチルセルロース水溶液を60g加え混練混合し、さらに水を50g加え、ホモジナイザーで攪拌混合し、正極合剤ペーストを作成した。
〔負極合剤ペーストの作成〕
負極材料:SnGe0.10.50.58Mg0.10.13.35(一酸化錫6.7g、ピロリン酸錫10.3g、三酸化二硼素1.7g、炭酸カリウム0.7g、酸化マグネシウム0.4g、二酸化ゲルマニウム1.0gを乾式混合し、アルミナ製るつぼに入れ、アルゴン雰囲気下15℃/分で1000℃まで昇温し、1100℃で12時間焼成した後、10℃/分で室温にまで降温し焼成炉より取り出したものを集め、ジェットミル粉砕したもの、平均粒径4.5μm、CuKα線を用いたX線回折法において2θ値で28°付近に頂点を有するブロードなピークを有する物であり、2θ値で40°以上70°以下には結晶性の回折線は見られなかった。)を200g、導電剤(人造黒鉛)30gとホモジナイザーで混合し、さらに結着剤として濃度2重量%カルボキシメチルセルロース水溶液50g、ポリフッ化ビニリデン10gとを加え混合したものと水を30g加えさらに混練混合し、負極合剤ペーストを作成した。
〔正極および負極電極シートの作成〕
上記で作成した正極合剤ペーストをブレードコーターで厚さ30μmのアルミニウム箔集電体の両面に、塗布量400g/m2、圧縮後のシートの厚みが280μmになるように塗布し、乾燥した後、ローラープレス機で圧縮成型し所定の大きさに裁断し、帯状の正極シートを作成した。さらにドライボックス(露点;−50℃以下の乾燥空気)中で遠赤外線ヒーターにて充分脱水乾燥し、正極シートを作成した。同様に、負極合剤ペーストを20μmの銅箔集電体に塗布し、上記正極シート作成と同様の方法で、塗布量70g/m2、圧縮後のシートの厚みが90μmである負極シートを作成した。
〔電解液調製〕
アルゴン雰囲気で、200ccの細口のポリプロピレン容器に65.3gの炭酸ジエチルをいれ、これに液温が30℃を超えないように注意しながら、22.2gの炭酸エチレンを少量ずつ溶解した。次に、0.4gのLiBF4、12.1gのLiPF6を液温が30℃を超えないように注意しながら、それぞれ順番に、上記ポリプロピレン容器に少量ずつ溶解した。得られた電解液(電解液1)は比重1.135で無色透明の液体であった。水分は18ppm(京都電子製商品名MKC−210型カールフィシャー水分測定装置で測定)、遊離酸分は24ppm(ブロムチモールブルーを指示薬とし、0.1規定NaOH水溶液を用いて中和滴定して測定)であった。さらにこの電解液1に表1に記載の化合物を所定濃度になるようにそれぞれ溶解させ電解液2から18を調製した。
表1 電解液
────────────────────────────────────
電解液番号 添 加 剤 添加濃度(重量%)
────────────────────────────────────
1 なし −
2 例示化合物(1) 1
3 例示化合物(3) 1
4 例示化合物(5) 1
5 例示化合物(7) 1
6 例示化合物(9) 1
7 例示化合物(12) 1
8 例示化合物(13) 1
9 例示化合物(14) 1
10 例示化合物(15) 1
11 例示化合物(16) 1
12 例示化合物(17) 1
13 例示化合物(19) 1
14 例示化合物(20) 1
15 例示化合物(12) 0.2
16 例示化合物(12) 0.5
17 例示化合物(12) 2
18 例示化合物(12) 5
────────────────────────────────────
〔シリンダー電池の作成〕
正極シート、微孔性ポリプロピレンフィルム製セパレーター、負極シートおよびセパレーターの順に積層し、これを渦巻き状に巻回した。この巻回体を負極端子を兼ねるニッケルメッキを施した鉄製の有底円筒型電池缶に収納したものを18個用意した。各々の電池缶内に電解液1から18をそれぞれ注入し、正極端子を有する電池蓋をガスケットを介してかしめて円筒型電池(1から18)を作成した。
[参考例]
負極材料として黒鉛粉末を用いる以外は実施例1と同様の方法で円筒型電池(電池番号1aから10a)を作成した。
上記の方法で作成した電池について、電流密度4.8mA/cm2、充電終止電圧4.1V、放電終止電圧2.8Vの条件で充放電を繰り返し、各サイクルにおける放電容量を求めた。表2と表3には作成した電池の相対容量(各電池の1サイクルめの容量を電池1の容量で規格化したもの)およびサイクル性(各電池の1サイクルめの放電容量に対する300サイクルめの放電容量の割合)を示した。
表2 作成した非水二次電池の性能
────────────────────────────────────
電解液番号 添 加 剤 添加濃度(重量%) 相対容量 サイクル性
────────────────────────────────────
1 なし − 1 0.65
2 例示化合物(1) 1 0.99 0.74
3 例示化合物(3) 1 1.01 0.78
4 例示化合物(5) 1 1.00 0.73
5 例示化合物(7) 1 1.00 0.73
6 例示化合物(9) 1 1.01 0.75
7 例示化合物(12) 1 0.99 0.85
8 例示化合物(13) 1 0.99 0.84
9 例示化合物(14) 1 1.00 0.80
10 例示化合物(15) 1 0.99 0.81
11 例示化合物(16) 1 1.02 0.81
12 例示化合物(17) 1 0.99 0.83
13 例示化合物(19) 1 1.01 0.74
14 例示化合物(20) 1 1.00 0.85
15 例示化合物(12) 0.2 1.00 0.71
16 例示化合物(12) 0.5 0.99 0.75
17 例示化合物(12) 2 0.98 0.82
18 例示化合物(12) 5 0.97 0.80
────────────────────────────────────
表3 作成した非水二次電池の性能
────────────────────────────────────
電解液番号 添 加 剤 添加濃度(重量%) 相対容量 サイクル性
────────────────────────────────────
1a なし − 0.83 0.70
2a 例示化合物(1) 1 0.84 0.73
3a 例示化合物(3) 1 0.82 0.70
4a 例示化合物(5) 1 0.83 0.73
5a 例示化合物(7) 1 0.83 0.72
6a 例示化合物(9) 1 0.84 0.73
7a 例示化合物(12) 1 0.84 0.71
8a 例示化合物(13) 1 0.83 0.70
9a 例示化合物(14) 1 0.83 0.71
10a 例示化合物(15) 1 0.82 0.71
────────────────────────────────────
表2と表3より、本発明の添加剤化合物を添加した場合サイクル性を向上することがわかる。中でも例示化合物12、13、14、15、16、17、19、20を添加した場合その効果が著しい。例示化合物(12)について添加量の効果を見ると添加濃度が1重量パーセントの場合がサイクル性が良く好ましい。負極材料として黒鉛を用いた場合は初めから容量が小さい。
実施例に使用したシリンダー型電池の断面図を示す。
符号の説明
1 ポリプロピレン製ガスケット
2 負極端子を兼ねる負極缶(電池缶)
3 セパレーター
4 負極シート
5 正極シート
6 非水電解液
7 防爆弁体
8 正極端子を兼ねる電池蓋
9 PTC端子
10 内部フタ体
11 リング

Claims (5)

  1. 容器内に、正極、負極、そして非水電解液が充填されてなるリチウム二次電池であって、該負極が、周期表1、2、13、14、15族原子から選ばれる三種以上の原子を含む主として非晶質の酸化物であり、前記酸化物が下記一般式:

    SnMpMqM

    [式中、MはSi、Ge、Pb、P、BおよびAlからなる群より選ばれる少なくとも一種の元素を、MはLi、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群より選ばれる少なくとも一種の元素を、MはOの元素を表す。p、qは各々0.1以上で2以下の数値を、rは1以上で6以下の数値を表す]

    で表される化合物を含有する負極であり、非水電解液が、リチウム塩と非水溶媒を含有し、そしてトルエン、p−キシレン、クメン、メシチレン、1,2,4,5−テトラメチルベンゼン、1,2,3,4−テトラヒドロナフタレン、9,10−ジヒドロアントラセン、ジフェニルメタン、ジベンジル、インダン、インデン、4−ベンジルピリジン、アセナフテンの化合物のいずれかを電解液1kg中に1g乃至50gの範囲の量にて含有することを特徴とする非水電解液二次電池。
  2. 正極がリチウム含有遷移金属酸化物を含む請求項1に記載の非水電解液二次電池。
  3. リチウム遷移金属酸化物がV、Cr、Mn、Fe、Co及びNiからなる群より選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である請求項2に記載の非水電解液二次電池。
  4. 非水溶媒が環状カーボネートと鎖状カーボネートを含む請求項1乃至3のうちのいずれかの項に記載の非水電解液二次電池。
  5. リチウム塩がLiPF及び/またはLiBFを含む請求項1乃至4のいずれかの項に記載の非水電解液二次電池。
JP2004168743A 2004-06-07 2004-06-07 非水電解液二次電池 Expired - Fee Related JP4196207B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168743A JP4196207B2 (ja) 2004-06-07 2004-06-07 非水電解液二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168743A JP4196207B2 (ja) 2004-06-07 2004-06-07 非水電解液二次電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002143602A Division JP3671936B2 (ja) 2002-05-17 2002-05-17 非水電解液二次電池

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2006063554A Division JP2006216564A (ja) 2006-03-09 2006-03-09 非水電解液二次電池及び非水電解液
JP2006266255A Division JP4210956B2 (ja) 2006-09-29 2006-09-29 非水電解液二次電池
JP2007310522A Division JP4340984B2 (ja) 2007-11-30 2007-11-30 非水電解液二次電池

Publications (3)

Publication Number Publication Date
JP2004319517A JP2004319517A (ja) 2004-11-11
JP2004319517A5 JP2004319517A5 (ja) 2006-05-11
JP4196207B2 true JP4196207B2 (ja) 2008-12-17

Family

ID=33475720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168743A Expired - Fee Related JP4196207B2 (ja) 2004-06-07 2004-06-07 非水電解液二次電池

Country Status (1)

Country Link
JP (1) JP4196207B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077320A1 (ja) 2011-11-22 2013-05-30 Jx日鉱日石エネルギー株式会社 有機系電解質および有機系電解質蓄電池
JPWO2013094603A1 (ja) * 2011-12-22 2015-04-27 Jx日鉱日石エネルギー株式会社 有機系電解質および有機系電解質蓄電池
CN104025364B (zh) * 2011-12-22 2017-03-08 吉坤日矿日石能源株式会社 有机电解质和有机电解质蓄电池
CA2866365A1 (en) * 2012-03-06 2013-09-12 Jx Nippon Oil & Energy Corporation Electrolyte for li storage battery and li storage battery

Also Published As

Publication number Publication date
JP2004319517A (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
JP3756232B2 (ja) 非水電解質二次電池
JP4066465B2 (ja) 非水電解質二次電池
JP4038826B2 (ja) 非水電解液二次電池および製造法
JP3417228B2 (ja) 非水電解液及びリチウム二次電池
JP3661301B2 (ja) リチウム二次電池用非水電解液及び非水電解液二次電池
JP2008004557A (ja) リチウム二次電池用非水電解液
JP2005294274A (ja) 非水二次電池用電解液ならびに非水電解液二次電池
JP3787923B2 (ja) 非水電解液二次電池
JPH09223516A (ja) 非水電解液二次電池
JP3937482B2 (ja) 非水電解液二次電池
JP4285407B2 (ja) リチウム二次電池用非水電解液及び非水電解液二次電池
JP2009117372A (ja) 非水電解液二次電池
JP4352469B2 (ja) 非水電解液二次電池
JP4096368B2 (ja) 非水電解質二次電池
JP4289324B2 (ja) リチウム二次電池用非水電解液及びリチウム二次電池
JP3417411B2 (ja) 非水電解液及びリチウム二次電池
JP3641873B2 (ja) 非水電解液二次電池
JP4196207B2 (ja) 非水電解液二次電池
JP2004006382A (ja) リチウム二次電池用非水電解液及びリチウム二次電池
JP3671936B2 (ja) 非水電解液二次電池
JP4210956B2 (ja) 非水電解液二次電池
JP4966718B2 (ja) 二次電池用非水電解液
JP2004319517A5 (ja)
JP4023484B2 (ja) 非水電解液二次電池
JP2005108862A (ja) リチウム二次電池用非水電解液及び非水電解液二次電池

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees