JP2005108862A - リチウム二次電池用非水電解液及び非水電解液二次電池 - Google Patents
リチウム二次電池用非水電解液及び非水電解液二次電池 Download PDFInfo
- Publication number
- JP2005108862A JP2005108862A JP2005007507A JP2005007507A JP2005108862A JP 2005108862 A JP2005108862 A JP 2005108862A JP 2005007507 A JP2005007507 A JP 2005007507A JP 2005007507 A JP2005007507 A JP 2005007507A JP 2005108862 A JP2005108862 A JP 2005108862A
- Authority
- JP
- Japan
- Prior art keywords
- group
- secondary battery
- lithium
- salt
- nonaqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
【課題】 放電容量が大きく、優れた充放電サイクル特性を有する非水電解液二次電池を得ることのできるリチウム二次電池用非水電解液及び非水電解液二次電池を提供すること。
【解決手段】 非水溶媒とリチウム塩とを含む非水電解液であって、該電解液中に、一般式(1)
【化1】
(式中、R1〜R5は互いに同一でも異なってもよく、各々水素原子、アルキル基、シクロアルキル基、アルコキシ基、アルケニル基、アルキニル基、アラルキル基、アリール基等である。なお、R1〜R5は互いに結合して環を形成してもよく、この環は置換基を有してもよい。Xは酸素、硫黄、窒素原子のいずれかを表す。nは0又は1の整数を表す。)
で表される化合物の少なくとも1種を、電解液溶媒に対して0.001〜0.1モル/l含有することを特徴とするリチウム二次電池用非水電解液、及びそれを用いた非水電解液二次電池である。
【選択図】 なし
【解決手段】 非水溶媒とリチウム塩とを含む非水電解液であって、該電解液中に、一般式(1)
【化1】
(式中、R1〜R5は互いに同一でも異なってもよく、各々水素原子、アルキル基、シクロアルキル基、アルコキシ基、アルケニル基、アルキニル基、アラルキル基、アリール基等である。なお、R1〜R5は互いに結合して環を形成してもよく、この環は置換基を有してもよい。Xは酸素、硫黄、窒素原子のいずれかを表す。nは0又は1の整数を表す。)
で表される化合物の少なくとも1種を、電解液溶媒に対して0.001〜0.1モル/l含有することを特徴とするリチウム二次電池用非水電解液、及びそれを用いた非水電解液二次電池である。
【選択図】 なし
Description
本発明は、リチウム二次電池用非水電解液及び非水電解液二次電池に関するものであり、優れた充放電特性を有し、さらには充放電繰り返しによる放電容量の劣化の少ない非水電解液二次電池を得ることができるリチウム二次電池用非水電解液及びそれを用いた及び非水電解液二次電池に関する。
非水電解液二次電池用負極材料としては、リチウム金属やリチウム合金が代表的であるが、それらを用いると充放電中にリチウム金属が樹枝状に成長したいわゆるデンドライトが発生し、内部ショートの原因あるいはデンドライト自体の持つ高い活性のため、発火などの危険をはらんでいた。これに対し、リチウムを可逆的に挿入・放出可能な焼成炭素質材料が実用化されるようになってきた。この炭素質材料の欠点は、密度が比較的小さいため、体積当たりの容量が低いこと、及びそれ自体が導電性を持つので、過充電や急速充電の際に炭素質材料の上にリチウム金属が析出する場合があることである。
上記欠点を改良する目的で平均放電電圧が3〜3.6V級の高放電電位を持つ非水電解液二次電池を達成するものとしては、負極材料にSn、V、Si、B、Zrなどの酸化物、及び、それらの複合酸化物を用いることが提案されている(特許文献1〜6)。これらSn、V、Si、B、Zrなどの酸化物、及び、それらの複合酸化物は、ある種のリチウムを含む遷移金属化合物の正極と組み合わせることにより、平均放電電圧が3〜3.6V級で放電容量が大きく、又、実用領域でのデンドライト発生がほとんどなく極めて安全性が高い非水電解液二次電池を与えるが、さらなる充放電サイクル特性の向上が望まれていた。
一方、非水二次電池の充放電サイクル特性を電解液の組成を変更することにより改良しようとする試みが行われ、例えば特許文献7には、電解液溶媒として不飽和環状炭酸エステルを用いることが提案されている。しかしながらこれらの技術を用いても、負極材料にリチウム金属やリチウム合金、炭素材料を用いた場合には、高放電容量と優れたサイクル特性の両立できるレベルには至っていない。
本発明の課題は、放電容量が大きく、優れた充放電サイクル特性を有する非水電解液二次電池を得ることのできるリチウム二次電池用非水電解液及び非水電解液二次電池を提供することにある。
本発明の課題は、非水溶媒とリチウム塩とを含む非水電解液であって、該電解液中に、一般式(1)
で表される化合物の少なくとも1種を、電解液溶媒に対して0.001〜0.1モル/l含有することを特徴とするリチウム二次電池用非水電解液によって達成された。
本発明のリチウム二次電池用非水電解液を用いることにより、優れた充放電特性を有し、さらには充放電の繰り返しによっても放電容量の劣化の少ない非水電解液二次電池を得ることができる。
本発明の好ましい形態を以下に揚げるが、本発明はこれらに限定されるものではない。
(1)非水溶媒とリチウム塩とを含む非水電解液であって、該電解液中に、一般式(1)
(1)非水溶媒とリチウム塩とを含む非水電解液であって、該電解液中に、一般式(1)
で表される化合物の少なくとも1種を、電解液溶媒に対して0.001〜0.1モル/l含有することを特徴とするリチウム二次電池用非水電解液。
(2)一般式(1)で表される化合物のXが酸素原子である項1に記載のリチウム二次電池用非水電解液。
(3)一般式(1)で表される化合物の含有量が、電解液に含有される支持塩に対して0.001〜10重量%である項1又は2に記載のリチウム二次電池用非水電解液。
(4)支持塩が、少なくともLiBF4及び/又はLiPF6である項3に記載のリチウム二次電池用非水電解液。
(5)リチウムを可逆的に吸蔵放出可能な材料を含む正極と負極、非水溶媒とリチウム塩とを含む非水電解液、及びセパレーターからなる非水電解液二次電池において、電池内に一般式(1)
本発明においては、電池内に少なくとも1種の一般式(1)で表される化合物を含有せしめることにより、非水電解液二次電池の高容量を損なうことなく充放電サイクル特性を向上させることができる。
以下、一般式(1)の化合物について詳しく説明する。一般式(1)においてXは酸素、硫黄、窒素原子のいずれかを表す。Xが酸素原子あるいは硫黄原子の場合nは0であり、Xが窒素原子の場合nは1である。
R1、R2、R3、R4およびR5は互いに同一でも異なってもよく、各々水素原子、アルキル基(例えば、メチル、エチル、プロピル、ドデシル)シクロアルキル基(例えば、シクロプロピル、シクロヘキシル)、アルコキシ基(例えば、メトキシ、エトキシ、2ーメトキシエトキシ)、アルケニル基(例えば、ビニル、アリル、シクロヘキセニル)、アルキニル基(例えば、エチニル、2−プロペニル、ヘキサデシニル)、アラルキル基(例えば、ベンジル、ジフェニルメチル、ナフチルメチル)、アリール基(例えば、フェニル、ナフチル、アンスリル)、ハロゲン原子(例えば、塩素原子、臭素原子、フッソ原子)、シアノ基、ニトロ基、ヒドロキシ基、ホルミル基、アリールオキシ基(例えば、フェノキシ)、アルキルチオ基(例えば、メチルチオ、オクチルチオ2−フェノキシオクチルチオ)、アリールチオ基(例えば、フェニルチオ)、アシルオキシ基(例えば、アセトキシ)、スルホニルオキシ基(例えば、メタンスルホニルオキシ、ベンゼンスルホニルオキシ)、アミノ基、アルキルアミノ基(例えば、メチルアミノ、ブチルアミノ)、アリールアミノ基(例えば、フェニルアミノ)、カルボンアミド基(例えば、アセチルアミノ、プロパノイルアミノ)、スルホンアミド基(例えば、メタンスルホンアミド、ベンゼンスルホンアミド)、オキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ)、オキシスルホニルアミノ基(例えば、エトキシスルホニルアミノ)、ウレイド基(例えば、フェニルウレイド、メチルウレイド)、アシル基(例えば、アセチル、ベンゾイル、ピバロイル)、オキシカルボニル基(例えば、メトキシカルボニル)、カルバモイル基(例えば、N−エチルカルバモイル、N−ベンジルカルバモイル)、スルホニル基(例えば、メタンスルホニル、ベンゼンスルホニル)、スルフィニル基(例えば、メタンスルフィニル)、オキシスルホニル基(例えば、メトキシスルホニル)またはスルファモイル基(N−エチルスルファモイル)、カルボン酸基またはその塩、スルホン酸基またはその塩、ホスホン酸基またはその塩、複素環基が挙げられる。
なお、本明細書における各基は、特に断りのない限り、置換可能な場合、置換基で置換されてもよい。また、R1、R2、R3、R4およびR5は互いに結合して環を形成してもよく、この環は置換基を有してもよい。
以下に一般式(1)で表される化合物の具体例を示すが、本発明の範囲はこれらのみに限定されるものではない。
R1、R2、R3、R4およびR5は互いに同一でも異なってもよく、各々水素原子、アルキル基(例えば、メチル、エチル、プロピル、ドデシル)シクロアルキル基(例えば、シクロプロピル、シクロヘキシル)、アルコキシ基(例えば、メトキシ、エトキシ、2ーメトキシエトキシ)、アルケニル基(例えば、ビニル、アリル、シクロヘキセニル)、アルキニル基(例えば、エチニル、2−プロペニル、ヘキサデシニル)、アラルキル基(例えば、ベンジル、ジフェニルメチル、ナフチルメチル)、アリール基(例えば、フェニル、ナフチル、アンスリル)、ハロゲン原子(例えば、塩素原子、臭素原子、フッソ原子)、シアノ基、ニトロ基、ヒドロキシ基、ホルミル基、アリールオキシ基(例えば、フェノキシ)、アルキルチオ基(例えば、メチルチオ、オクチルチオ2−フェノキシオクチルチオ)、アリールチオ基(例えば、フェニルチオ)、アシルオキシ基(例えば、アセトキシ)、スルホニルオキシ基(例えば、メタンスルホニルオキシ、ベンゼンスルホニルオキシ)、アミノ基、アルキルアミノ基(例えば、メチルアミノ、ブチルアミノ)、アリールアミノ基(例えば、フェニルアミノ)、カルボンアミド基(例えば、アセチルアミノ、プロパノイルアミノ)、スルホンアミド基(例えば、メタンスルホンアミド、ベンゼンスルホンアミド)、オキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ)、オキシスルホニルアミノ基(例えば、エトキシスルホニルアミノ)、ウレイド基(例えば、フェニルウレイド、メチルウレイド)、アシル基(例えば、アセチル、ベンゾイル、ピバロイル)、オキシカルボニル基(例えば、メトキシカルボニル)、カルバモイル基(例えば、N−エチルカルバモイル、N−ベンジルカルバモイル)、スルホニル基(例えば、メタンスルホニル、ベンゼンスルホニル)、スルフィニル基(例えば、メタンスルフィニル)、オキシスルホニル基(例えば、メトキシスルホニル)またはスルファモイル基(N−エチルスルファモイル)、カルボン酸基またはその塩、スルホン酸基またはその塩、ホスホン酸基またはその塩、複素環基が挙げられる。
なお、本明細書における各基は、特に断りのない限り、置換可能な場合、置換基で置換されてもよい。また、R1、R2、R3、R4およびR5は互いに結合して環を形成してもよく、この環は置換基を有してもよい。
以下に一般式(1)で表される化合物の具体例を示すが、本発明の範囲はこれらのみに限定されるものではない。
本発明の一般式(1)の化合物は電池内のいずれに含有されていてもよい。好ましくは、電極活物質内あるいは電解液内である。電極に含有される場合、一般式(1)の化合物の含有量は、電極の活物質に対し、0.01〜5重量%が好ましく、0.1〜2重量%が更に好ましい。電解液に含有される場合、一般式(1)の化合物の含有量は、電解液溶媒に対し、0.0001〜0.1モル/lが好ましく、0.001〜0.1モル/lが更に好ましい。電解液に含有される支持塩に対する一般式(1)の化合物の含有量としては、0.001〜10重量%が好ましく、0.01〜5重量%が更に好ましい。
電解液は、一般に、溶媒と、その溶媒に溶解する支持塩から構成され、リチウム塩(アニオンとリチウムカチオン)が好ましい。本発明で使用できる電解液の溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、ジオキサン、アセトニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を挙げることができ、これらの一種または二種以上を混合して使用する。
なかでは、カーボネート系の溶媒が好ましく、環状カーボネート及び/または非環状カーボネートを含ませたものが好ましい。環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネートが好ましい。また、非環状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートを含ませることが好ましい。
なかでは、カーボネート系の溶媒が好ましく、環状カーボネート及び/または非環状カーボネートを含ませたものが好ましい。環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネートが好ましい。また、非環状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートを含ませることが好ましい。
本発明で使用できるこれらの溶媒に溶解するリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiAlCl4 、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどのLi塩を挙げることができ、これらの一種または二種以上を混合して使用することができる。なかでもLiBF4及び/あるいはLiPF6を溶解したものが好ましい。支持塩の濃度は、特に限定されないが、電解液1リットル当たり0.2〜3モルが好ましい。
本発明で使用できる電解液としては、エチレンカーボネート、プロピレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネートあるいはジエチルカーボネートを適宜混合した電解液にLiCF3SO3、LiClO4、LiBF4および/あるいはLiPF6を含む電解液が好ましい。特にエチレンカーボネートと、ジエチルカーボネート及び又はジメチルカーボネートとの混合溶媒に、LiBF4および/またはLiPF6を含ませた電解液が好ましい。これら電解液を電池内に添加する量は、特に限定されないが、正極活物質や負極材料の量や電池のサイズによって必要量用いることができる。
以下、本発明の非水電解液二次電池を作るための他の材料と製造方法について詳述する。
本発明の非水電解液二次電池に用いられる正・負極は、正極合剤あるいは負極合剤を集電体上に塗設して作ることができる。正極あるいは負極合剤には、それぞれ正極活物質あるいは負極材料のほか、それぞれに導電剤、結着剤、分散剤、フィラー、イオン導電剤、圧力増強剤や各種添加剤を含むことができる。
本発明の非水電解液二次電池に用いられる正・負極は、正極合剤あるいは負極合剤を集電体上に塗設して作ることができる。正極あるいは負極合剤には、それぞれ正極活物質あるいは負極材料のほか、それぞれに導電剤、結着剤、分散剤、フィラー、イオン導電剤、圧力増強剤や各種添加剤を含むことができる。
本発明で用いられる負極材料は、電池組み込み時に主として非晶質であることが好ましい。ここでいう「主として非晶質」とは、CuKα線を用いたX線回折法で2θ値で20°から40°に頂点を有するブロードな散乱帯を有する物であり、結晶性の回折線を有してもよい。好ましくは2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の500倍以下であることが好ましく、さらに好ましくは100倍以下であり、特に好ましくは5倍以下であり、最も好ましくは 結晶性の回折線を有さないことである。
本発明で用いられる負極材料は、下記一般式(2)で表されることが好ましい。
M1M2pM4qM6r (2)
式(2)中、M1、M2は、相異なりSi、Ge、Sn、Pb、P、B、Al、Sbから選ばれる少なくとも一種であり、好ましくはSi、Ge、Sn、P、B、Alであり、特に好ましくはSi、Sn、P、B、Alである。M4は、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Baから選ばれる少なくとも一種であり、好ましくはK、Cs、Mg、Caで、特に好ましくはCs、Mgである。M6は、O、S、Teから選ばれる少なくとも一種であり、好ましくはO、Sであり、特に好ましくはOである。
p、qは、各々0.001〜10であり、好ましくは0.01〜5であり、特に好ましくは0.01〜2である。rは、1.00〜50であり、好ましくは1.00〜26であり、特に好ましくは1.02〜6である。
M1、M2の価数は、特に限定されることはなく、単独価数であっても、各価数の混合物であっても良い。またM1、M2、M4の比は、M2およびM4がM1に対して0.001〜10モル当量の範囲において連続的に変化させることができ、それに応じM6の量(一般式(2)において、rの値)も連続的に変化する。
M1M2pM4qM6r (2)
式(2)中、M1、M2は、相異なりSi、Ge、Sn、Pb、P、B、Al、Sbから選ばれる少なくとも一種であり、好ましくはSi、Ge、Sn、P、B、Alであり、特に好ましくはSi、Sn、P、B、Alである。M4は、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Baから選ばれる少なくとも一種であり、好ましくはK、Cs、Mg、Caで、特に好ましくはCs、Mgである。M6は、O、S、Teから選ばれる少なくとも一種であり、好ましくはO、Sであり、特に好ましくはOである。
p、qは、各々0.001〜10であり、好ましくは0.01〜5であり、特に好ましくは0.01〜2である。rは、1.00〜50であり、好ましくは1.00〜26であり、特に好ましくは1.02〜6である。
M1、M2の価数は、特に限定されることはなく、単独価数であっても、各価数の混合物であっても良い。またM1、M2、M4の比は、M2およびM4がM1に対して0.001〜10モル当量の範囲において連続的に変化させることができ、それに応じM6の量(一般式(2)において、rの値)も連続的に変化する。
上記に挙げた化合物の中でも、本発明においてはM1がSnである場合が好ましく、一般式(3)で表される。
SnM3pM5qM7r (3)
式(3)中、M3は、Si、Ge、Pb、P、B、Alから選ばれる少なくとも一種であり、好ましくはSi、Ge、P、B、Alであり、特に好ましくはSi、P、B、Alである。M5は、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Baから選ばれる少なくとも一種であり、好ましくはCs、Mgで、特に好ましくはMgである。M7は、O、Sから選ばれる少なくとも一種であり、好ましくはOである。
p、qは、各々0.001〜10であり、好ましくは0.01〜5であり、さらに好ましくは0.01〜1.5であり、特に好ましくは0.7〜1.5である。rは、1.00〜50であり、好ましくは1.00〜26であり、特に好ましくは1.02〜6である。
SnM3pM5qM7r (3)
式(3)中、M3は、Si、Ge、Pb、P、B、Alから選ばれる少なくとも一種であり、好ましくはSi、Ge、P、B、Alであり、特に好ましくはSi、P、B、Alである。M5は、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Baから選ばれる少なくとも一種であり、好ましくはCs、Mgで、特に好ましくはMgである。M7は、O、Sから選ばれる少なくとも一種であり、好ましくはOである。
p、qは、各々0.001〜10であり、好ましくは0.01〜5であり、さらに好ましくは0.01〜1.5であり、特に好ましくは0.7〜1.5である。rは、1.00〜50であり、好ましくは1.00〜26であり、特に好ましくは1.02〜6である。
本発明の負極材料の例を以下に示すが、本発明はこれらに限定されるものではない。
SnAl0.4 B0.5 P0.5 K0.1 O3.65、SnAl0.4 B0.5 P0.5 Na0.2 O3.7 、SnAl0.4 B0.3 P0.5 Rb0.2 O3.4 、SnAl0.4 B0.5 P0.5 Cs0.1 O3.65、SnAl0.4 B0.5 P0.5 K0.1 Ge0.05O3.85、SnAl0.4B0.5 P0.5 K0.1 Mg0.1 Ge0.02O3.83、SnAl0.4 B0.4 P0.4 O3.2、SnAl0.3 B0.5 P0.2 O2.7 、SnAl0.3 B0.5 P0.2 O2.7 、SnAl0.4 B0.5 P0.3 Ba0.08Mg0.08O3.26、SnAl0.4 B0.4 P0.4 Ba0.08O3.28、SnAl0.4 B0.5 P0.5 O3.6 、SnAl0.4 B0.5 P0.5 Mg0.1 O3.7 。
SnAl0.4 B0.5 P0.5 K0.1 O3.65、SnAl0.4 B0.5 P0.5 Na0.2 O3.7 、SnAl0.4 B0.3 P0.5 Rb0.2 O3.4 、SnAl0.4 B0.5 P0.5 Cs0.1 O3.65、SnAl0.4 B0.5 P0.5 K0.1 Ge0.05O3.85、SnAl0.4B0.5 P0.5 K0.1 Mg0.1 Ge0.02O3.83、SnAl0.4 B0.4 P0.4 O3.2、SnAl0.3 B0.5 P0.2 O2.7 、SnAl0.3 B0.5 P0.2 O2.7 、SnAl0.4 B0.5 P0.3 Ba0.08Mg0.08O3.26、SnAl0.4 B0.4 P0.4 Ba0.08O3.28、SnAl0.4 B0.5 P0.5 O3.6 、SnAl0.4 B0.5 P0.5 Mg0.1 O3.7 。
SnAl0.5 B0.4 P0.5 Mg0.1 F0.2 O3.65、SnB0.5 P0.5 Li0.1 Mg0.1 F0.2 O3.05、SnB0.5 P0.5 K0.1 Mg0.1 F0.2 O3.05、SnB0.5 P0.5 K0.05Mg0.05F0.1 O3.03、SnB0.5 P0.5 K0.05Mg0.1 F0.2O3.03、SnAl0.4 B0.5 P0.5 Cs0.1 Mg0.1 F0.2 O3.65、SnB0.5P0.5 Cs0.05Mg0.05F0.1 O3.03、SnB0.5 P0.5 Mg0.1 F0.1 O3.05、SnB0.5 P0.5 Mg0.1 F0.2 O3 、SnB0.5 P0.5 Mg0.1 F0.06O3.07、SnB0.5 P0.5 Mg0.1 F0.14O3.03、SnPBa0.08O3.58、SnPK0.1 O3.55、SnPK0.05Mg0.05O3.58、SnPCs0.1 O3.55、SnPBa0.08F0.08O3.54、SnPK0.1 Mg0.1 F0.2 O3.55、SnPK0.05Mg0.05F0.1 O3.53、SnPCs0.1 Mg0.1 F0.2 O3.55、SnPCs0.05Mg0.05F0.1 O3.53。
Sn1.1 Al0.4 B0.2 P0.6 Ba0.08F0.08O3.54、Sn1.1 Al0.4 B0.2P0.6 Li0.1 K0.1 Ba0.1 F0.1 O3.65、Sn1.1 Al0.4 B0.4 P0.4 Ba0.08O3.34、Sn1.1 Al0.4 PCs0.05O4.23、Sn1.1 Al0.4 PK0.05O4.23、Sn1.2 Al0.5 B0.3 P0.4 Cs0.2 O3.5 、Sn1.2 Al0.4 B0.2 P0.6 Ba0.08O3.68、Sn1.2 Al0.4 B0.2 P0.6 Ba0.08F0.08O3.64、Sn1.2 Al0.4 B0.2 P0.6 Mg0.04Ba0.04O3.68、Sn1.2 Al0.4 B0.3 P0.5 Ba0.08O3.58、Sn1.3 Al0.3 B0.3 P0.4 Na0.2 O3.3 、Sn1.3 Al0.2 B0.4 P0.4 Ca0.2 O3.4 、Sn1.3 Al0.4 B0.4 P0.4 Ba0.2 O3.6 、Sn1.4 Al0.4 PK0.2 O4.6 、Sn1.4 Al0.2 Ba0.1 PK0.2 O4.45、Sn1.4 Al0.2 Ba0.2 PK0.2 O4.6 、Sn1.4 Al0.4 Ba0.2 PK0.2 Ba0.1 F0.2 O4.9 、Sn1.4 Al0.4 PK0.3 O4.65、Sn1.5 Al0.2 PK0.2 O4.4 、Sn1.5 Al0.4 PK0.1 O4.65、Sn1.5 Al0.4 PCs0.05O4.63、Sn1.5 Al0.4 PCs0.05Mg0.1 F0.2 O4.63。
SnSi0.5 Al0.1 B0.2 P0.1 Ca0.4 O3.1 、SnSi0.4 Al0.2 B0.4 O2.7 、SnSi0.5 Al0.2 B0.1 P0.1 Mg0.1 O2.8 、SnSi0.6 Al0.2 B0.2 O2.8 、SnSi0.5 Al0.3 B0.4 P0.2 O3.55、SnSi0.5Al0.3 B0.4 P0.5 O4.30、SnSi0.6 Al0.1 B0.1 P0.3 O3.25、SnSi0.6 Al0.1 B0.1 P0.1 Ba0.2 O2.95、SnSi0.6 Al0.1 B0.1 P0.1 Ca0.2 O2.95、SnSi0.6 Al0.4 B0.2 Mg0.1 O3.2 、SnSi0.6 Al0.1 B0.3 P0.1 O3.05、SnSi0.6 Al0.2 Mg0.2 O2.7 、SnSi0.6 Al0.2 Ca0.2 O2.7 、SnSi0.6 Al0.2 P0.2 O3 、SnSi0.6 B0.2 P0.2 O3 、SnSi0.8 Al0.2 O2.9 、SnSi0.8 Al0.3 B0.2 P0.2 O3.85、SnSi0.8 B0.2 O2.9 、SnSi0.8 Ba0.2 O2.8 、SnSi0.8 Mg0.2 O2.8 、SnSi0.8 Ca0.2 O2.8 、SnSi0.8 P0.2O3.1 。
Sn0.9 Mn0.3 B0.4 P0.4 Ca0.1 Rb0.1 O2.95、Sn0.9 Fe0.3 B0.4 P0.4 Ca0.1 Rb0.1 O2.95、Sn0.8 Pb0.2 Ca0.1 P0.9 O3.35、Sn0.3 Ge0.7 Ba0.1 P0.9 O3.35、Sn0.9 Mn0.1 Mg0.1 P0.9 O3.35、Sn0.2 Mn0.8 Mg0.1 P0.9 O3.35、Sn0.7 Pb0.3 Ca0.1 P0.9 O3.35、Sn0.2 Ge0.8 Ba0.1 P0.9 O3.35。
上記焼成されて得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の重量差から算出できる。
本発明の負極材料へは、電池を組み立てる前及び/または電池組立後に電池内でリチウムイオンを挿入できる。挿入量は、リチウムの析出電位に近似するまででよいが、例えば、負極材料当たり50〜700モル%が好ましいが、特に、100〜600モル%が好ましい。その放出量は挿入量に対して多いほど好ましい。軽金属の挿入方法は、電気化学的、化学的、熱的方法が好ましい。電気化学的方法は、正極活物質に含まれる軽金属を電気化学的に挿入する方法や軽金属あるいはその合金から直接電気化学的に挿入する方法が好ましい。化学的方法は、軽金属との混合、接触あるいは、有機金属、例えば、ブチルリチウム等と反応させる方法がある。電気化学的方法、化学的方法が好ましい。
本発明においては、以上示したような一般式(2)、(3)で示される化合物を主として負極材料として用いることにより、より充放電サイクル特性の優れた、かつ高い放電電圧、高容量で安全性が高く、高電流特性が優れた非水電解液二次電池を得ることができる。本発明において、特に優れた効果を得ることができるのはSnを含有し且つSnの価数が2価で存在する化合物を負極材料として用いることである。
Snの価数は化学滴定操作によって求めることができる。例えば Physics and Chemistry of Glasses Vol.8 No.4 (1967)の165頁に記載の方法で分析することができる。また、Snの固体核磁気共鳴(NMR)測定によるナイトシフトから決定することも可能である。例えば、幅広測定において金属Sn(0価のSn)はSn(CH3 )4 に対して7000ppm付近と極端に低磁場にピークが出現するのに対し、SnO(=2価)では100ppm付近、SnO2(=4価)では−600ppm付近に出現する。このように同じ配位子を有する場合ナイトシフトが中心金属であるSnの価数に大きく依存するので、119Sn−NMR測定で求められたピーク位置で価数の決定が可能となる。
Snの価数は化学滴定操作によって求めることができる。例えば Physics and Chemistry of Glasses Vol.8 No.4 (1967)の165頁に記載の方法で分析することができる。また、Snの固体核磁気共鳴(NMR)測定によるナイトシフトから決定することも可能である。例えば、幅広測定において金属Sn(0価のSn)はSn(CH3 )4 に対して7000ppm付近と極端に低磁場にピークが出現するのに対し、SnO(=2価)では100ppm付近、SnO2(=4価)では−600ppm付近に出現する。このように同じ配位子を有する場合ナイトシフトが中心金属であるSnの価数に大きく依存するので、119Sn−NMR測定で求められたピーク位置で価数の決定が可能となる。
本発明の負極材料に各種化合物を含ませることができる。例えば、遷移金属(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、ランタノイド系金属、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg)や周期表17族元素(F、Cl)を含ませることができる。また電子伝導性をあげる各種化合物(例えば、Sb、In、Nbの化合物)のドーパントを含んでもよい。添加する化合物の量は0〜20モル%が好ましい。
本発明における一般式(2)(3)で示される酸化物を主体とする複合酸化物の合成法は、焼成法、溶液法いずれの方法も採用することができる。例えば焼成法について詳細に説明すると、M1 化合物、M2 化合物とM4 化合物(M1 、M2 は相異なりSi、Ge、Sn、Pb、P、B、Al、Sb、M4 はMg、Ca、Sr、Ba)を混合し、焼成せしめればよい。
Sn化合物としては、たとえばSnO、SnO2、Sn2O3、Sn3O4、Sn7O13・H2O、Sn8O15、水酸化第一錫、オキシ水酸化第二錫、亜錫酸、蓚酸第一錫、燐酸第一錫、オルト錫酸、メタ錫酸、パラ錫酸、弗化第一錫、弗化第二錫、塩化第一錫、塩化第二錫、ピロリン酸第一錫、リン化錫、硫化第一錫、硫化第二錫、等を挙げることができる。
Si化合物としては、たとえばSiO2、SiO、テトラメチルシラン、テトラエチルシラン等の有機珪素化合物、テトラメトキシシラン、テトラエトキシシラン等のアルコキシシラン化合物、トリクロロハイドロシラン等のハイドロシラン化合物を挙げることができる。
Ge化合物としては、たとえばGeO2、GeO、ゲルマニウムテトラメトキシド、ゲルマニウムテトラエトキシド等のアルコキシゲルマニウム化合物等を挙げることができる。
Pb化合物としてはたとえばPbO2、PbO、Pb2O3、Pb3O4、硝酸鉛、炭酸鉛、蟻酸鉛、酢酸鉛、四酢酸鉛、酒石酸鉛、鉛ジエトキシド、鉛ジ(イソプロポキシド)等を挙げることができる。
P化合物としては、たとえば五酸化リン、オキシ塩化リン、五塩化リン、三塩化リン、三臭化リン、トリメチルリン酸、トリエチルリン酸、トリプロピルリン酸、ピロリン酸第一錫、リン酸ホウ素等を挙げることができる。
B化合物としては、たとえば三酸化二ホウ素、三塩化ホウ素、三臭化ホウ素、炭化ホウ素、ほう酸、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリプロピル、ほう酸トリブチル、リン化ホウ素、リン酸ホウ素等を挙げることができる。
Al化合物としては、たとえば酸化アルミニウム(α−アルミナ、β−アルミナ)、ケイ酸アルミニウム、アルミニウムトリ−iso−プロポキシド、亜テルル酸アルミニウム、塩化アルミニウム、ホウ化アルミニウム、リン化アルミニウム、リン酸アルミニウム、乳酸アルミニウム、ほう酸アルミニウム、硫化アルミニウム、硫酸アルミニウム、ホウ化アルミニウム等を挙げることができる。
Sb化合物としては、たとえば三酸化二アンチモン、トリフェニルアンチモン等を挙げることができる。
Sn化合物としては、たとえばSnO、SnO2、Sn2O3、Sn3O4、Sn7O13・H2O、Sn8O15、水酸化第一錫、オキシ水酸化第二錫、亜錫酸、蓚酸第一錫、燐酸第一錫、オルト錫酸、メタ錫酸、パラ錫酸、弗化第一錫、弗化第二錫、塩化第一錫、塩化第二錫、ピロリン酸第一錫、リン化錫、硫化第一錫、硫化第二錫、等を挙げることができる。
Si化合物としては、たとえばSiO2、SiO、テトラメチルシラン、テトラエチルシラン等の有機珪素化合物、テトラメトキシシラン、テトラエトキシシラン等のアルコキシシラン化合物、トリクロロハイドロシラン等のハイドロシラン化合物を挙げることができる。
Ge化合物としては、たとえばGeO2、GeO、ゲルマニウムテトラメトキシド、ゲルマニウムテトラエトキシド等のアルコキシゲルマニウム化合物等を挙げることができる。
Pb化合物としてはたとえばPbO2、PbO、Pb2O3、Pb3O4、硝酸鉛、炭酸鉛、蟻酸鉛、酢酸鉛、四酢酸鉛、酒石酸鉛、鉛ジエトキシド、鉛ジ(イソプロポキシド)等を挙げることができる。
P化合物としては、たとえば五酸化リン、オキシ塩化リン、五塩化リン、三塩化リン、三臭化リン、トリメチルリン酸、トリエチルリン酸、トリプロピルリン酸、ピロリン酸第一錫、リン酸ホウ素等を挙げることができる。
B化合物としては、たとえば三酸化二ホウ素、三塩化ホウ素、三臭化ホウ素、炭化ホウ素、ほう酸、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリプロピル、ほう酸トリブチル、リン化ホウ素、リン酸ホウ素等を挙げることができる。
Al化合物としては、たとえば酸化アルミニウム(α−アルミナ、β−アルミナ)、ケイ酸アルミニウム、アルミニウムトリ−iso−プロポキシド、亜テルル酸アルミニウム、塩化アルミニウム、ホウ化アルミニウム、リン化アルミニウム、リン酸アルミニウム、乳酸アルミニウム、ほう酸アルミニウム、硫化アルミニウム、硫酸アルミニウム、ホウ化アルミニウム等を挙げることができる。
Sb化合物としては、たとえば三酸化二アンチモン、トリフェニルアンチモン等を挙げることができる。
Mg、Ca、Sr、Ba化合物としては、各々の酸化塩、水酸化塩、炭酸塩、リン酸塩、硫酸塩、硝酸塩、アルミニウム化合物等を挙げることができる。
焼成条件としては、昇温速度として昇温速度毎分4〜2000℃であることが好ましく、さらに好ましくは6〜2000℃である。とくに好ましくは10〜2000℃である。
焼成温度としては250〜1500℃であることが好ましく、さらに好ましくは350〜1500℃であり、とくに好ましくは500〜1500℃である。
焼成時間としては0.01〜100時間であることが好ましく、さらに好ましくは0.5〜70時間であり、とくに好ましくは1〜20時間である。
降温速度としては毎分2〜107℃であることが好ましく、さらに好ましくは4〜107℃であり、とくに好ましくは6〜107℃であり、特に好ましくは10〜107℃である。
焼成温度としては250〜1500℃であることが好ましく、さらに好ましくは350〜1500℃であり、とくに好ましくは500〜1500℃である。
焼成時間としては0.01〜100時間であることが好ましく、さらに好ましくは0.5〜70時間であり、とくに好ましくは1〜20時間である。
降温速度としては毎分2〜107℃であることが好ましく、さらに好ましくは4〜107℃であり、とくに好ましくは6〜107℃であり、特に好ましくは10〜107℃である。
本発明における昇温速度とは「焼成温度(℃表示)の50%」から「焼成温度(℃表示)の80%」に達するまでの温度上昇の平均速度であり、本発明における降温速度とは「焼成温度(℃表示)の80%」から「焼成温度(℃表示)の50%」に達するまでの温度降下の平均速度である。降温は焼成炉中で冷却してもよくまた焼成炉外に取り出して、例えば水中に投入して冷却してもよい。またセラミックスプロセッシング(技報堂出版 1987)217頁記載のgun法・Hammer−Anvil法・slap法・ガスアトマイズ法・プラズマスプレー法・遠心急冷法・melt drag法などの超急冷法を用いることもできる。またニューガラスハンドブック(丸善 1991)172頁記載の単ローラー法、双ローラ法を用いて冷却してもよい。焼成中に溶融する材料の場合には、焼成中に原料を供給しつつ焼成物を連続的に取り出してもよい。焼成中に溶融する材料の場合には融液を攪拌することが好ましい。
焼成ガス雰囲気は好ましくは酸素含有率が5体積%以下の雰囲気であり、さらに好ましくは不活性ガス雰囲気である。不活性ガスとしては例えば窒素、アルゴン、ヘリウム、クリプトン、キセノン等が挙げられる。
焼成ガス雰囲気は好ましくは酸素含有率が5体積%以下の雰囲気であり、さらに好ましくは不活性ガス雰囲気である。不活性ガスとしては例えば窒素、アルゴン、ヘリウム、クリプトン、キセノン等が挙げられる。
本発明で用いられる一般式(2)(3)で示される化合物の平均粒子サイズは、0.1〜60μmが好ましく、1.0〜30μmが特に好ましく、2.0〜20μmがさらに好ましい。所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機、水ひなどを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。
本発明で用いられるより好ましいリチウム含有遷移金属酸化物正極材料としては、リチウム化合物/遷移金属化合物(ここで遷移金属とは、Ti、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種)の合計のモル比が、0.3〜2.2になるように混合して合成することが好ましい。さらに好ましいリチウム含有遷移金属酸化物正極材料としては、リチウム化合物/遷移金属化合物(ここで遷移金属とは、V、Cr、Mn、Fe、Co、Niから選ばれる少なくとも1種)の合計のモル比が0.3〜2.2になるように混合して合成することが好ましい。
とくに好ましいリチウム含有遷移金属酸化物正極材料は、Lix QOy (ここでQは主として、その少なくとも一種がCo、Mn、Ni、V、Feを含む遷移金属)、x=0.2〜1.2、y=1.4〜3)である。Qとしては遷移金属以外にAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量は遷移金属に対して0〜30モル%が好ましい。
とくに好ましいリチウム含有遷移金属酸化物正極材料は、Lix QOy (ここでQは主として、その少なくとも一種がCo、Mn、Ni、V、Feを含む遷移金属)、x=0.2〜1.2、y=1.4〜3)である。Qとしては遷移金属以外にAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを混合してもよい。混合量は遷移金属に対して0〜30モル%が好ましい。
好ましいリチウム含有金属酸化物正極材料の具体例としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a O2、LixCobV1-b Oz 、LixCobFe1-b O2、LixMn2O4、LixMncCo2-cO4、LixMncNi2-c O4、LixMncV2-c O4、LixMncFe2-c O4(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3)があげられる。
最も好ましいリチウム含有遷移金属酸化物正極材料の具体例としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a O2、LixMn2O4、LixCobV1-b Oz(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3)があげられる。ここで、上記のx値は、充放電開始前の値であり、充放電により増減する。
最も好ましいリチウム含有遷移金属酸化物正極材料の具体例としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a O2、LixMn2O4、LixCobV1-b Oz(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3)があげられる。ここで、上記のx値は、充放電開始前の値であり、充放電により増減する。
本発明で使用できる導電性の炭素化合物としては、構成された電池において、化学変化を起こさない電子伝導性材料であれば何でもよい。具体例としては、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石油コークス、石炭コークス、セルロース類、糖類、メソフェーズピッチ等の高温焼成体、気相成長黒鉛等の人工黒鉛等のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック等のカーボンブラック類、アスファルトピッチ、コールタール、活性炭、メソフューズピッチ、ポリアセン等を挙げることができる。
これらの中では、グラファイトやカーボンブラックが好ましい。炭素系以外の導電剤として、金属繊維等の導電性繊維類、銅、ニッケル、アルミニウム、銀等の金属粉類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物等を単独またはこれらの混合物を必要に応じて含ませることができる。
これらの中では、グラファイトやカーボンブラックが好ましい。炭素系以外の導電剤として、金属繊維等の導電性繊維類、銅、ニッケル、アルミニウム、銀等の金属粉類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物等を単独またはこれらの混合物を必要に応じて含ませることができる。
導電剤の合剤層への添加量は、負極材料または正極材料に対し6〜50重量%であることが好ましく、特に6〜30重量%であることが好ましい。カーボンや黒鉛では、6〜20重量%であることが特に好ましい。
本発明で用いる電極合剤を保持するための結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーを一種またはこれらの混合物を用いることができる。好ましい結着剤としては、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸Na、ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレンーマレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルロロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレンーブタジエン共重合体、アクリロニトリルーブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンを挙げることができる。特にポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが好ましい。これらの粒子サイズは0.05μm〜5μmが好ましい。
これらの結着剤は単独または混合して用いることができる。その結着剤の添加量は、少ないと電極合剤の保持力・凝集力が弱くまたサイクル性が悪く、多すぎると電極体積が増加し電極単位体積あるいは単位重量あたりの容量が減少し、さらに導電性が低下し、容量は減少する。結着剤の添加量は、特に限定されないが、1〜30重量%が好ましく、特に2〜10重量%が好ましい。
これらの結着剤は単独または混合して用いることができる。その結着剤の添加量は、少ないと電極合剤の保持力・凝集力が弱くまたサイクル性が悪く、多すぎると電極体積が増加し電極単位体積あるいは単位重量あたりの容量が減少し、さらに導電性が低下し、容量は減少する。結着剤の添加量は、特に限定されないが、1〜30重量%が好ましく、特に2〜10重量%が好ましい。
本発明の負極合剤または正極合剤ペーストの調整は、水系で行うことが好ましい。合剤ペーストの調整は、まず活物質および導電剤を混合し、結着剤(樹脂粉体のサスペンジョンまたはエマルジョン(ラテックス)状のもの)および水を加えて混練混合し、引続いて、ミキサー、ホモジナイザー、ディゾルバー、プラネタリミキサー、ペイントシェイカー、サンドミル等の攪拌混合機、分散機で分散して行うことができる。調整された正極活物質や負極活物質の合剤ペーストは、集電体の上に塗布(コート)、乾燥、圧縮されて、主に用いられる。
塗布は種々の方法で行うことができるが、例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法を挙げることができる。ブレード法、ナイフ法及びエクストルージョン法が好ましい。
塗布は、0.1〜100m/分の速度で実施されることが好ましい。この際、合剤ペーストの液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることができる。その塗布層の厚み、長さや巾は、電池の大きさにより決められるが、塗布層の厚みは、乾燥後圧縮された状態で、1〜2000μmが特に好ましい。
塗布は種々の方法で行うことができるが、例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法を挙げることができる。ブレード法、ナイフ法及びエクストルージョン法が好ましい。
塗布は、0.1〜100m/分の速度で実施されることが好ましい。この際、合剤ペーストの液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることができる。その塗布層の厚み、長さや巾は、電池の大きさにより決められるが、塗布層の厚みは、乾燥後圧縮された状態で、1〜2000μmが特に好ましい。
ペレットやシートの水分除去のための乾燥又は脱水方法としては、一般に採用されている方法を利用することができ、熱風、真空、赤外線、遠赤外線、電子線及び低湿風を単独あるいは組み合わせて用いることができる。温度は80〜350℃の範囲が好ましく、特に100〜250℃の範囲が好ましい。含水量は、電池全体で2000ppm以下が好ましく、正極合剤、負極合剤や電解液ではそれぞれ500ppm以下にすることが充放電サイクル性の点で好ましい。
シート状の電極合剤の圧縮は、一般に採用されているプレス方法を用いることができるが、特に金型プレス法やカレンダープレス法が好ましい。プレス圧は、特に限定されないが、10kg/cm2 〜3t/cm2 が好ましい。カレンダープレス法のプレス速度は、0.1〜50m/分が好ましい。プレス温度は、室温〜200℃が好ましい。
本発明で使用できる正極及び負極の支持体即ち集電体は、材質として、正極にはアルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金であり、負極には銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金であり、形態としては、箔、エキスパンドメタル、パンチングメタル、金網である。特に、正極にはアルミニウム箔、負極には銅箔が好ましい。
本発明で使用できるセパレータは、イオン透過度が大きく、所定の機械的強度を持ち、絶縁性の薄膜であれば良く、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、形態として、不織布、織布、微孔性フィルムが用いられる。特に、材質として、ポリプロピレン、ポリエチレン、ポリプロピレンとポリエチレンの混合体、ポリプロピレンとテフロン(米国DUPONT社の登録商標)の混合体、ポリエチレンとテフロンの混合体が好ましく、形態として微孔性フィルムであるものが好ましい。特に、孔径が0.01〜1μm、厚みが5〜50μmの微孔性フィルムが好ましい。
電池の形状はボタン、コイン、シート、シリンダー、角などのいずれにも適用できる。電池は、ペレット、シート状あるいはセパレーターと共に巻回した電極を電池缶に挿入し、缶と電極を電気的に接続し、電解液を注入し封口して形成する。この時、安全弁を封口板として用いることができる。更に電池の安全性を保証するためにPTC素子を用いるのが好ましい。
本発明で使用できる有底電池外装缶は材質としてニッケルメッキを施した鉄鋼板、ステンレス鋼板(SUS304、SUS304L,SUS304N、SUS316、SUS316L、SUS430、SUS444等)、ニッケルメッキを施したステンレス鋼板(同上)、アルミニウムまたはその合金、ニッケル、チタン、銅であり、形状として、真円形筒状、楕円形筒状、正方形筒状、長方形筒状である。特に、外装缶が負極端子を兼ねる場合は、ステンレス鋼板、ニッケルメッキを施した鉄鋼板が好ましく、外装缶が正極端子を兼ねる場合は、ステンレス鋼板、アルミニウムまたはその合金が好ましい。
該シート状の合剤電極は、巻いたり、折ったりして缶に挿入し、缶とシートを電気的に接続し、電解液を注入し、封口板を用いて電池缶を形成する。このとき、安全弁を封口板として用いることができる。安全弁の他、従来から知られている種々の安全素子を備えつけても良い。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子等が用いられる。また、安全弁のほかに電池缶の内圧上昇の対策として、電池缶に切込を入れる方法、ガスケット亀裂方法あるいは封口板亀裂方法を利用することができる。また、充電機に過充電や過放電対策を組み込んだ回路を具備させても良い。
電解液は、全量を1回で注入してもよいが、2段階以上に分けて行うことが好ましい。2段階以上に分けて注入する場合、それぞれの液は同じ組成でも、違う組成(例えば、非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入した後、前記溶媒より粘度の高い非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入)でも良い。また、電解液の注入時間の短縮等のために、電池缶を減圧(好ましくは500〜1torr、より好ましくは400〜10torr)したり、電池缶に遠心力や超音波をかけることを行ってもよい。
缶やリード板は、電気伝導性をもつ金属や合金を用いることができる。例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウム等の金属あるいはそれらの合金が用いられる。キャップ、缶、シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることが出来る。封口用シール剤は、アスファルト等の従来から知られている化合物や混合物を用いることができる。
本発明で使用できるガスケットは、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ポリアミドであり、耐有機溶媒性及び低水分透過性から、オレフィン系ポリマーが好ましく、特にプロピレン主体のポリマーが好ましい。さらに、プロピレンとエチレンのブロック共重合ポリマーであることが好ましい。
本発明の電池は必要に応じて外装材で被覆される。外装材としては、熱収縮チューブ、粘着テープ、金属フィルム、紙、布、塗料、プラスチックケース等がある。また、外装の少なくとも一部に熱で変色する部分を設け、使用中の熱履歴がわかるようにしても良い。本発明の電池は必要に応じて複数本を直列及び/または並列に組み電池パックに収納される。
電池パックには正温度係数抵抗体、温度ヒューズ、ヒューズ及び/または電流遮断素子等の安全素子の他、安全回路(各電池及び/または組電池全体の電圧、温度、電流等をモニターし、必要なら電流を遮断する機能を有す回路)を設けても良い。また電池パックには、組電池全体の正極及び負極端子以外に、各電池の正極及び負極端子、組電池全体及び各電池の温度検出端子、組電池全体の電流検出端子等を外部端子として設けることもできる。また電池パックには、電圧変換回路(DC−DCコンバータ等)を内蔵しても良い。また各電池の接続は、リード板を溶接することで固定しても良いし、ソケット等で容易に着脱できるように固定しても良い。さらには、電池パックに電池残存容量、充電の有無、使用回数等の表示機能を設けても良い。
電池パックには正温度係数抵抗体、温度ヒューズ、ヒューズ及び/または電流遮断素子等の安全素子の他、安全回路(各電池及び/または組電池全体の電圧、温度、電流等をモニターし、必要なら電流を遮断する機能を有す回路)を設けても良い。また電池パックには、組電池全体の正極及び負極端子以外に、各電池の正極及び負極端子、組電池全体及び各電池の温度検出端子、組電池全体の電流検出端子等を外部端子として設けることもできる。また電池パックには、電圧変換回路(DC−DCコンバータ等)を内蔵しても良い。また各電池の接続は、リード板を溶接することで固定しても良いし、ソケット等で容易に着脱できるように固定しても良い。さらには、電池パックに電池残存容量、充電の有無、使用回数等の表示機能を設けても良い。
本発明の電池は様々な機器に使用される。特に、ビデオムービー、モニター内蔵携帯型ビデオデッキ、モニター内蔵ムービーカメラ、コンパクトカメラ、一眼レフカメラ、レンズ付きフィルム、ノート型パソコン、ノート型ワープロ、電子手帳、携帯電話、コードレス電話、ヒゲソリ、電動工具、電動ミキサー、自動車等に使用されることが好ましい。
以下に具体例をあげ、本発明をさらに詳しく説明するが、発明の主旨を越えない限り、本発明は実施例に限定されるものではない。
実施例−1
〔正極合剤ペーストの作成例〕
正極活物質;LiCoO2(炭酸リチウムと四酸化三コバルトと3:2のモル比で混合したものをアルミナるつぼにいれ、空気中、毎分2℃で750℃に昇温し4時間仮焼した後、さらに毎分2℃の速度で900℃に昇温しその温度で8時間焼成し解砕したもの。中心粒子サイズ5μm、洗浄品50gを100mlの水に分散した時の分散液の電導度は0.6mS/m、pHは10.1、窒素吸着法による比表面積は0.42m2/g)を200gとアセチレンブラック10gとを、ホモジナイザーで混合し、続いて結着剤として2−エチルヘキシルアクリレートとアクリル酸とアクリロニトリルの共重合体の水分散物(固形分濃度50重量%)を8g、濃度2重量%のカルボキシメチルセルロース水溶液を60gを加え混練混合し、さらに水を50gを加え、ホモジナイザーで攪拌混合し、正極合剤ペーストを作成した。
〔負極合剤ペーストの作成例〕
負極活物質;SnGe0.1 B0.5 P0.58Mg0.1 K0.1 O3.35(一酸化錫6.7g、ピロリン酸錫10.3g、三酸化二硼素1.7g、炭酸カリウム0.7g、酸化マグネシウム0.4g、二酸化ゲルマニウム1.0gを乾式混合し、アルミナ製るつぼに入れ、アルゴン雰囲気下15℃/分で1000℃まで昇温し、1100℃で12時間焼成した後、10℃/分で室温にまで降温し焼成炉より取り出したものを集め、ジェットミルで粉砕したもの、平均粒径4.5μm、CuKα線を用いたX線回折法において2θ値で28°付近に頂点を有するブロードなピークを有する物であり、2θ値で40°以上70°以下には結晶性の回折線は見られなかった。)を200g、導電剤(人造黒鉛)30gとホモジナイザーで混合し、さらに結着剤として濃度2重量%のカルボキシメチルセルロース水溶液50g、ポリフッ化ビニリデン10gとを加え混合したものと水を30g加えさらに混練混合し、負極合剤ペーストを作成した。
〔正極および負極電極シートの作成〕
上記で作成した正極合剤ペーストをブレードコーターで厚さ30μmのアルミニウム箔集電体の両面に、塗布量400g/m2 、圧縮後のシートの厚みが280μmになるように塗布し、乾燥した後、ローラープレス機で圧縮成型し所定の大きさに裁断し、帯状の正極シートを作成した。さらにドライボックス(露点;−50℃以下の乾燥空気)中で遠赤外線ヒーターにて充分脱水乾燥し、正極シートを作成した。同様に、負極合剤ペーストを20μmの銅箔集電体に塗布し、上記正極シート作成と同様の方法で、塗布量70g/m2 、圧縮後のシートの厚みが90μmである負極シートを作成した。
〔電解液調整例〕
アルゴン雰囲気で、200ccの細口のポリプロピレン容器に65.3gの炭酸ジエチルをいれ、これに液温が30℃を越えないように注意しながら、22.2gの炭酸エチレンを少量ずつ溶解した。次に、0.4gのLiBF4,12.1gのLiPF6を液温が30℃を越えないように注意しながら、それぞれ順番に、上記ポリプロピレン容器に少量ずつ溶解した。得られた電解液は比重1.135で無色透明の液体であった。水分は18ppm(京都電子製 商品名MKC−210型カールフィシャー水分測定装置で測定)、遊離酸分は24ppm(ブロムチモールブルーを指示薬とし、0.1規定NaOH水溶液を用いて中和滴定して測定)であった。さらにこの電解液に表1に記載の化合物を所定濃度になるようにそれぞれ溶解させ電解液を調整した。
〔シリンダー電池の作成例〕
正極シート、微孔性ポリプロピレンフィルム製セパレーター、負極シートおよびセパレーターの順に積層し、これを渦巻き状に巻回した。この巻回体を負極端子を兼ねるニッケルメッキを施した鉄製の有底円筒型電池缶に収納した。さらに電解液として表1に記載の添加剤を加えた電解液を電池缶内に注入した。正極端子を有する電池蓋をガスケットを介してかしめて円筒型電池を作成した。
このようにして試料電池101〜114を作成した。
〔正極合剤ペーストの作成例〕
正極活物質;LiCoO2(炭酸リチウムと四酸化三コバルトと3:2のモル比で混合したものをアルミナるつぼにいれ、空気中、毎分2℃で750℃に昇温し4時間仮焼した後、さらに毎分2℃の速度で900℃に昇温しその温度で8時間焼成し解砕したもの。中心粒子サイズ5μm、洗浄品50gを100mlの水に分散した時の分散液の電導度は0.6mS/m、pHは10.1、窒素吸着法による比表面積は0.42m2/g)を200gとアセチレンブラック10gとを、ホモジナイザーで混合し、続いて結着剤として2−エチルヘキシルアクリレートとアクリル酸とアクリロニトリルの共重合体の水分散物(固形分濃度50重量%)を8g、濃度2重量%のカルボキシメチルセルロース水溶液を60gを加え混練混合し、さらに水を50gを加え、ホモジナイザーで攪拌混合し、正極合剤ペーストを作成した。
〔負極合剤ペーストの作成例〕
負極活物質;SnGe0.1 B0.5 P0.58Mg0.1 K0.1 O3.35(一酸化錫6.7g、ピロリン酸錫10.3g、三酸化二硼素1.7g、炭酸カリウム0.7g、酸化マグネシウム0.4g、二酸化ゲルマニウム1.0gを乾式混合し、アルミナ製るつぼに入れ、アルゴン雰囲気下15℃/分で1000℃まで昇温し、1100℃で12時間焼成した後、10℃/分で室温にまで降温し焼成炉より取り出したものを集め、ジェットミルで粉砕したもの、平均粒径4.5μm、CuKα線を用いたX線回折法において2θ値で28°付近に頂点を有するブロードなピークを有する物であり、2θ値で40°以上70°以下には結晶性の回折線は見られなかった。)を200g、導電剤(人造黒鉛)30gとホモジナイザーで混合し、さらに結着剤として濃度2重量%のカルボキシメチルセルロース水溶液50g、ポリフッ化ビニリデン10gとを加え混合したものと水を30g加えさらに混練混合し、負極合剤ペーストを作成した。
〔正極および負極電極シートの作成〕
上記で作成した正極合剤ペーストをブレードコーターで厚さ30μmのアルミニウム箔集電体の両面に、塗布量400g/m2 、圧縮後のシートの厚みが280μmになるように塗布し、乾燥した後、ローラープレス機で圧縮成型し所定の大きさに裁断し、帯状の正極シートを作成した。さらにドライボックス(露点;−50℃以下の乾燥空気)中で遠赤外線ヒーターにて充分脱水乾燥し、正極シートを作成した。同様に、負極合剤ペーストを20μmの銅箔集電体に塗布し、上記正極シート作成と同様の方法で、塗布量70g/m2 、圧縮後のシートの厚みが90μmである負極シートを作成した。
〔電解液調整例〕
アルゴン雰囲気で、200ccの細口のポリプロピレン容器に65.3gの炭酸ジエチルをいれ、これに液温が30℃を越えないように注意しながら、22.2gの炭酸エチレンを少量ずつ溶解した。次に、0.4gのLiBF4,12.1gのLiPF6を液温が30℃を越えないように注意しながら、それぞれ順番に、上記ポリプロピレン容器に少量ずつ溶解した。得られた電解液は比重1.135で無色透明の液体であった。水分は18ppm(京都電子製 商品名MKC−210型カールフィシャー水分測定装置で測定)、遊離酸分は24ppm(ブロムチモールブルーを指示薬とし、0.1規定NaOH水溶液を用いて中和滴定して測定)であった。さらにこの電解液に表1に記載の化合物を所定濃度になるようにそれぞれ溶解させ電解液を調整した。
〔シリンダー電池の作成例〕
正極シート、微孔性ポリプロピレンフィルム製セパレーター、負極シートおよびセパレーターの順に積層し、これを渦巻き状に巻回した。この巻回体を負極端子を兼ねるニッケルメッキを施した鉄製の有底円筒型電池缶に収納した。さらに電解液として表1に記載の添加剤を加えた電解液を電池缶内に注入した。正極端子を有する電池蓋をガスケットを介してかしめて円筒型電池を作成した。
このようにして試料電池101〜114を作成した。
比較例1
実施例1と同様の方法で、添加剤を加えていない電解液を使用して円筒型電池を作成した。
比較例2〜4
酸化物系負極活物質に変え、炭素系活物質(黒鉛粉末)を用い前記負極シートの作成と同様の方法で負極シートを作成し、表1の電解液をそれぞれ使用して円筒型電池を作成した。
比較例5〜6
実施例1と同様の方法で、添加剤量を大幅に変えて加えた電解液を使用して円筒型電池を作成した。
実施例1と同様の方法で、添加剤を加えていない電解液を使用して円筒型電池を作成した。
比較例2〜4
酸化物系負極活物質に変え、炭素系活物質(黒鉛粉末)を用い前記負極シートの作成と同様の方法で負極シートを作成し、表1の電解液をそれぞれ使用して円筒型電池を作成した。
比較例5〜6
実施例1と同様の方法で、添加剤量を大幅に変えて加えた電解液を使用して円筒型電池を作成した。
上記の方法で作成した電池について、電流密度5mA/cm2、充電終止電圧4.1V、放電終止電圧2.8Vの条件で充放電し、放電容量およびサイクル寿命を求めた。それぞれの電池の容量(Wh)の比、およびサイクル性(充放電1回目に対する300回目容量の割合)を表1に示す。
表1 実験結果
試料 添加剤 添加濃度 初期容量 サイクル性
(モル/リットル) (%)
101 A−8 0.01 0.99 83
102 A−15 0.001 1.00 82
103 A−15 0.01 0.98 83
104 A−15 0.05 0.97 82
105 A−29 0.01 0.98 83
106 A−29 0.001 1.0 83
107 A−29 0.01 0.98 82
108 A−30 0.01 0.97 81
109 A−31 0.01 0.99 82
110 A−32 0.01 0.98 81
111 A−45 0.01 0.97 83
112 B−10 0.01 0.98 82
113 B−18 0.01 0.98 84
114 B−20 0.01 0.97 83
115 C−2 0.01 0.98 82
116 C−6 0.01 0.98 84
117 C−19 0.01 0.97 83
比較例1 無し 0 1.0 70
比較例2 無し 0 0.80 76
比較例3 A−15 0.01 0.82 82
比較例4 A−29 0.01 0.82 82
比較例5 A−29 0.0001 1.0 71
比較例6 A−29 1.0 0.78 69
試料 添加剤 添加濃度 初期容量 サイクル性
(モル/リットル) (%)
101 A−8 0.01 0.99 83
102 A−15 0.001 1.00 82
103 A−15 0.01 0.98 83
104 A−15 0.05 0.97 82
105 A−29 0.01 0.98 83
106 A−29 0.001 1.0 83
107 A−29 0.01 0.98 82
108 A−30 0.01 0.97 81
109 A−31 0.01 0.99 82
110 A−32 0.01 0.98 81
111 A−45 0.01 0.97 83
112 B−10 0.01 0.98 82
113 B−18 0.01 0.98 84
114 B−20 0.01 0.97 83
115 C−2 0.01 0.98 82
116 C−6 0.01 0.98 84
117 C−19 0.01 0.97 83
比較例1 無し 0 1.0 70
比較例2 無し 0 0.80 76
比較例3 A−15 0.01 0.82 82
比較例4 A−29 0.01 0.82 82
比較例5 A−29 0.0001 1.0 71
比較例6 A−29 1.0 0.78 69
実施例−2
添加剤の添加を電解液から正極活物質に変更した以外は、実施例−1を繰り返し同様の結果を得た。
添加剤の添加を電解液から正極活物質に変更した以外は、実施例−1を繰り返し同様の結果を得た。
実施例−3
負極合剤上に負極材料1gあたり120mgのリチウム金属箔を短冊状に貼り付け電気的に接触させたことと、正極合剤の塗布量を片面で240g/m2にした以外は、実施例−1と実施例−2を繰り返し同様の結果を得た。
負極合剤上に負極材料1gあたり120mgのリチウム金属箔を短冊状に貼り付け電気的に接触させたことと、正極合剤の塗布量を片面で240g/m2にした以外は、実施例−1と実施例−2を繰り返し同様の結果を得た。
本発明の化合物を含有する電池は、初期容量が大きく、サイクル性が向上している。
1 ポリプロピレン製ガスケット
2 負極端子を兼ねる負極缶(電池缶)
3 セパレーター
4 負極シート
5 正極シート
6 非水電解液
7 防爆弁体
8 正極端子を兼ねる正極キャップ
9 PTC素子
10 内部フタ体
11 リング
2 負極端子を兼ねる負極缶(電池缶)
3 セパレーター
4 負極シート
5 正極シート
6 非水電解液
7 防爆弁体
8 正極端子を兼ねる正極キャップ
9 PTC素子
10 内部フタ体
11 リング
Claims (5)
- 非水溶媒とリチウム塩とを含む非水電解液であって、該電解液中に、一般式(1)
で表される化合物の少なくとも1種を、電解液溶媒に対して0.001〜0.1モル/l含有することを特徴とするリチウム二次電池用非水電解液。 - 一般式(1)で表される化合物のXが酸素原子である請求項1に記載のリチウム二次電池用非水電解液。
- 一般式(1)で表される化合物の含有量が、電解液に含有される支持塩に対して0.001〜10重量%である請求項1又は2に記載のリチウム二次電池用非水電解液。
- 支持塩が、少なくともLiBF4及び/又はLiPF6である請求項3に記載のリチウム二次電池用非水電解液。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005007507A JP2005108862A (ja) | 2005-01-14 | 2005-01-14 | リチウム二次電池用非水電解液及び非水電解液二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005007507A JP2005108862A (ja) | 2005-01-14 | 2005-01-14 | リチウム二次電池用非水電解液及び非水電解液二次電池 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25196096A Division JP3661301B2 (ja) | 1996-09-24 | 1996-09-24 | リチウム二次電池用非水電解液及び非水電解液二次電池 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005139475A Division JP4289324B2 (ja) | 2005-05-12 | 2005-05-12 | リチウム二次電池用非水電解液及びリチウム二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005108862A true JP2005108862A (ja) | 2005-04-21 |
Family
ID=34545428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005007507A Pending JP2005108862A (ja) | 2005-01-14 | 2005-01-14 | リチウム二次電池用非水電解液及び非水電解液二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005108862A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009099448A (ja) * | 2007-10-18 | 2009-05-07 | Sony Corp | 非水電解液二次電池及び非水電解液組成物 |
JP2009110959A (ja) * | 2007-10-26 | 2009-05-21 | Samsung Sdi Co Ltd | ビニル系化合物を採用した有機電解液及びリチウム電池 |
JP2010282760A (ja) * | 2009-06-02 | 2010-12-16 | Mitsubishi Chemicals Corp | 非水系電解液、非水系電解液二次電池、およびビニレンカーボネート |
-
2005
- 2005-01-14 JP JP2005007507A patent/JP2005108862A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009099448A (ja) * | 2007-10-18 | 2009-05-07 | Sony Corp | 非水電解液二次電池及び非水電解液組成物 |
JP2009110959A (ja) * | 2007-10-26 | 2009-05-21 | Samsung Sdi Co Ltd | ビニル系化合物を採用した有機電解液及びリチウム電池 |
US8632917B2 (en) | 2007-10-26 | 2014-01-21 | Samsung Sdi Co., Ltd. | Organic electrolyte solution including vinyl-based compound and lithium battery using the same |
JP2010282760A (ja) * | 2009-06-02 | 2010-12-16 | Mitsubishi Chemicals Corp | 非水系電解液、非水系電解液二次電池、およびビニレンカーボネート |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3756232B2 (ja) | 非水電解質二次電池 | |
JP4066465B2 (ja) | 非水電解質二次電池 | |
JPH11219730A (ja) | 非水電解液二次電池 | |
JPH113728A (ja) | 非水電解液二次電池 | |
JP4038826B2 (ja) | 非水電解液二次電池および製造法 | |
JP2008004557A (ja) | リチウム二次電池用非水電解液 | |
JP3661301B2 (ja) | リチウム二次電池用非水電解液及び非水電解液二次電池 | |
JP2005294274A (ja) | 非水二次電池用電解液ならびに非水電解液二次電池 | |
JPH09199168A (ja) | 非水電解質二次電池 | |
JP4285407B2 (ja) | リチウム二次電池用非水電解液及び非水電解液二次電池 | |
JPH09223516A (ja) | 非水電解液二次電池 | |
JP4096368B2 (ja) | 非水電解質二次電池 | |
JP4352469B2 (ja) | 非水電解液二次電池 | |
JP3787923B2 (ja) | 非水電解液二次電池 | |
JP4289324B2 (ja) | リチウム二次電池用非水電解液及びリチウム二次電池 | |
JP3666540B2 (ja) | 非水電解液二次電池 | |
JPH09223517A (ja) | 非水電解液二次電池 | |
JP3641873B2 (ja) | 非水電解液二次電池 | |
JP2005108862A (ja) | リチウム二次電池用非水電解液及び非水電解液二次電池 | |
JP2004006382A (ja) | リチウム二次電池用非水電解液及びリチウム二次電池 | |
JP4023484B2 (ja) | 非水電解液二次電池 | |
JP4218615B2 (ja) | リチウム二次電池用非水電解液及び非水電解液二次電池 | |
JP3635884B2 (ja) | 非水電解液二次電池 | |
JP3663763B2 (ja) | 非水電解質二次電池及びその製造方法 | |
JP4196207B2 (ja) | 非水電解液二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081224 |